

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 IMPORTANCE SAMPLING FOR MULTI-NEGATIVE MULTIMODAL DIRECT PREFERENCE OPTIMIZATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Direct Preference Optimization (DPO) has recently been extended from text-only models to vision-language models. However, existing methods rely on oversimplified pairwise comparisons, generating a single negative image via basic perturbations or similarity-based retrieval, which fail to capture the complex nature of multimodal preferences, inducing optimization bias and hallucinations. To address this issue, we propose MISP-DPO, the first framework to incorporate *multiple*, semantically *diverse* negative images in multimodal DPO via the Plackett-Luce model. Our method embeds prompts and candidate images in CLIP (Contrastive Language–Image Pre-training) space and applies a sparse autoencoder to uncover semantic deviations into interpretable factors. Negative samples are selected based on reconstruction difficulty, semantic deviation from the positive, and mutual diversity, yielding broader and more informative supervision. To handle multi-negative comparisons, we adopt a Plackett–Luce objective and introduce an importance sampling strategy that improves training efficiency. Experiments across five diverse benchmarks demonstrate that MISP-DPO consistently improves multimodal alignment over prior methods, validating the effectiveness of semantic-aware, multi-negative sampling in preference-based learning.

1 INTRODUCTION

Direct Preference Optimization (DPO) (Rafailov et al., 2023; Amini et al., 2024) has shown great promise for aligning language models by learning from pairwise comparisons, bypassing the need for explicit reward modeling. Recent efforts have extended DPO to multimodal contexts, enhancing vision-language model (VLM) alignment through image-text feedback (Wang et al., 2024a; Jiang et al., 2024; Deng et al., 2024; Fu et al., 2025; Liu et al., 2025; Wu et al., 2025; Xing et al., 2025). However, simply extending textual preference data to multimodal scenarios often introduces new challenges, particularly exacerbating hallucinations (Wang et al., 2024a; Fu et al., 2025; Wu et al., 2025). Existing multimodal DPO methods generate only a single negative image per comparison, typically via adversarial cropping, random perturbations, or similarity-based retrieval (Liu et al., 2025; Fu et al., 2025; Wu et al., 2025; Xing et al., 2025). This oversimplifies the rich space of visual negatives, reducing supervision to a single dimension and limiting the model’s ability to generalize. For instance, as illustrated in Figure 1, avoiding a single negative depicting a “green apple” might teach the model to reject green hues but ignore mismatched contexts like “kitchen counter” or incorrect objects like “pear.” By optimizing against narrow, one-dimensional deviations, models risk spurious correlations, bias amplification, and persistent hallucinations.

The core challenge is that images lack explicit, compositional units like text tokens, making it difficult to isolate meaningful visual deviations (Sahin et al., 2024; Zeng et al., 2024; Zheng et al., 2024; Hsieh et al., 2023; Kamath et al., 2024; 2023). Naive perturbations often destroy overall coherence without isolating meaningful deviations, making it difficult to systematically explore the negative factors of model weaknesses. Effective learning requires disentangling and surfacing multiple latent error factors while maintaining prompt relevance. Existing methods incorporate these factors into a single negative example, leaving models blind to orthogonal error types.

To address this, we propose MISP-DPO, the first framework to introduce *multi*-negative, semantically *diverse* supervision into multimodal DPO. Our approach consists of two stages,

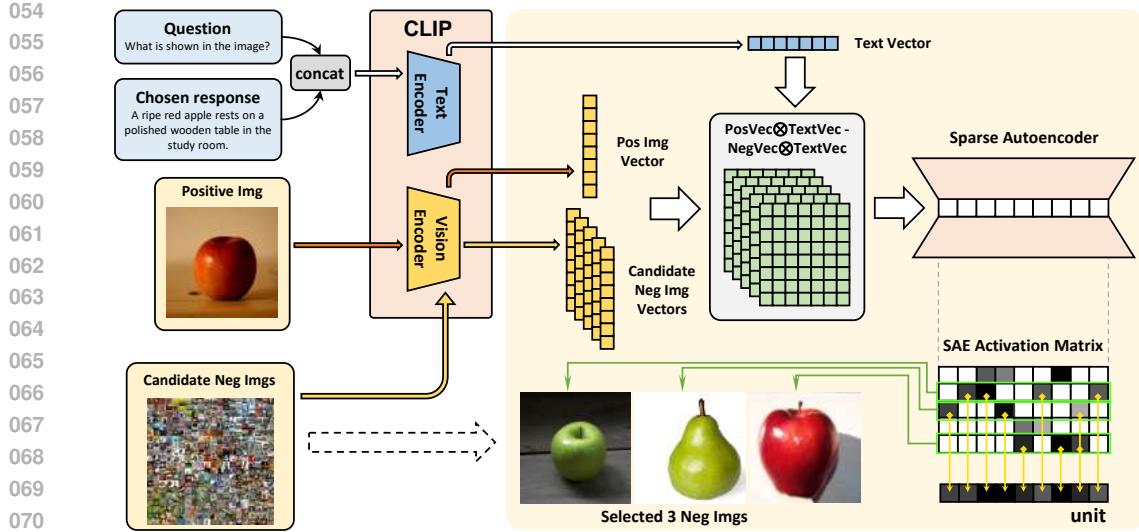


Figure 1: Overview of the MISP-DPO framework, which integrates CLIP encoding and sparse autoencoder-guided selection to identify diverse negatives for multi-negative preference optimization.

- In the first stage, we select diverse image-side negatives from a large open-domain pool. Prompts and candidate images are embedded in CLIP (Radford et al., 2021) space, and a sparse autoencoder (SAE) decomposes their semantic differences into disentangled latent factors (e.g., object, color, layout). We prioritize negatives based on: (1) reconstruction error (informativeness), (2) semantic deviation from the positive sample, and (3) mutual diversity, ensuring broad coverage of negative types.
- In the second stage, we integrate these multiple negatives into a generalized DPO objective using the Plackett–Luce model. Rather than relying on binary comparisons, our approach ranks a positive image above a diverse set of negatives, forcing the model to resolve multiple constraints simultaneously. We further introduce an importance sampling scheme guided by SAE-derived scores, improving training efficiency.

We evaluate MISP-DPO on five multimodal benchmarks (Sun et al., 2023; Guan et al., 2024; Lu et al., 2024; Tong et al., 2024; Li et al., 2023a) focused on hallucination reduction and visual grounding. Our method consistently outperforms strong baselines, achieving notable hallucination reduction and improved alignment, including a 30.09% average improvement over LLaVA-v1.5-7B (Liu et al., 2023).

Our contributions are as follows:

- We propose the first framework to incorporate multi-negative supervision into multimodal DPO, leveraging semantic diversity to systematically reduce hallucinations.
- We introduce an efficient negative sampling method based on CLIP embeddings and SAE-guided importance sampling, providing semantically informative negative examples.
- Extensive evaluations demonstrate that our method substantially reduces hallucinations and achieves robust multimodal alignment across multiple benchmarks.

2 RELATED WORKS

Multimodal Direct Preference Optimization. DPO (Rafailov et al., 2023) has become a widely adopted method for aligning LLMs with human preferences due to its simplicity and stability. However, when extended to multimodal scenarios, especially for hallucination-prone tasks, standard DPO often fails to effectively incorporate visual signals, leading models to overfit textual biases and ignore image-grounded constraints. To mitigate this, recent works have adapted DPO for multimodal hallucination reduction by incorporating visual preference supervision. mDPO (Wang et al., 2024a) introduces conditional preference learning and reward anchoring, using lightweight perturbations (e.g., cropping, diffusion) to construct visual negatives. CHiP (Fu et al., 2025) further complements

108 this with hierarchical textual supervision and a visual contrastive loss to better align fine-grained text
 109 and image semantics. While both methods demonstrate notable gains on hallucination benchmarks,
 110 they rely on limited forms of visual augmentation, often constrained to local perturbations with nar-
 111 row semantic variation. Other approaches, such as S-VCO (Wu et al., 2025) and Re-Align (Xing
 112 et al., 2025), explore counterfactual or retrieval-based visual negative generation, but at the cost of
 113 high computation and limited scalability. In this work, we follow the hallucination-centric prefer-
 114 ence optimization paradigm initiated by mDPO, and propose a scalable framework for generating
 115 informative visual negatives tailored for multimodal preference learning.

116 **Multi-negative Preference Optimization.** Recent works in textual and recommendation do-
 117 mains (Amini et al., 2024; Shi et al., 2024; Baruch et al.) have extended DPO to multi-negative
 118 settings, ranking positives above multiple negatives to enhance robustness. For example, Softmax-
 119 DPO (Chen et al., 2024a) and DMPO (Shi et al., 2024) adopt soft ranking or Plackett–Luce objec-
 120 tives to reduce noise sensitivity. However, such techniques remain underexplored in vision–language
 121 models, where negatives must capture subtle cross-modal semantic shifts. Inspired by findings in
 122 attribute-based recognition (Yan et al., 2023; Wang et al., 2024b) showing that compact, curated
 123 subsets can match large noisy sets, we adapt this insight to multimodal preference learning. Our
 124 framework uses a sparse autoencoder in CLIP space to select semantically diverse negatives, en-
 125 abling importance-weighted ranking over multiple contrastive examples and capturing fine-grained
 126 failure modes more effectively.

127 3 PRELIMINARIES

129 3.1 MULTIMODAL DIRECT PREFERENCE OPTIMIZATION

131 DPO (Rafailov et al., 2023) provides a principled way to align a learned policy with human pref-
 132 erence judgments without explicitly modeling rewards. In the RLHF framework, solving for the
 133 optimal policy π^* under a fixed reference policy π_{ref} yields a latent reward function
 134

$$135 \quad r(x, y) = \beta \log \frac{\pi^*(y | x)}{\pi_{\text{ref}}(y | x)} + Z(x), \quad (1)$$

137 where β scales the strength of alignment and $Z(x)$ is a prompt-dependent normalizer. Substituting
 138 this into the Bradley–Terry–Luce model and dropping $Z(x)$ gives a simple training objective for a
 139 parametric policy π_θ ,
 140

$$141 \quad \mathcal{L}_{\text{DPO}}(\theta) = -\mathbb{E}_{(x, y_p, y_n) \sim D} \left[\log \sigma \left(\beta \log \frac{\pi_\theta(y_p | x)}{\pi_{\text{ref}}(y_p | x)} - \beta \log \frac{\pi_\theta(y_n | x)}{\pi_{\text{ref}}(y_n | x)} \right) \right]. \quad (2)$$

143 Recent work extends DPO to vision–language models (VLMs) by incorporating visual preferences.
 144 Let x denote the multimodal prompt, m_p a preferred image aligned with textual response y_p , and
 145 m_n a rejected image. The multimodal reward $r(m, x, y)$ now depends on visual grounding, with
 146 preferences modeled as,
 147

$$148 \quad p^*(y_p \succ y_n | m, x) = \sigma(r(m, x, y_p) - r(m, x, y_n)).$$

149 To ensure a fair comparison across images, we hold y_p fixed and vary only the image input, the
 150 multimodal DPO loss (Wang et al., 2024a; Fu et al., 2025; Wu et al., 2025) focuses on visual dis-
 151 crimination,

$$153 \quad \mathcal{L}_{\text{DPO}_{\text{img}}}(\theta) = -\mathbb{E}_{(m_p, m_n, x, y_p) \sim D} \left[\log \sigma \left(\beta \log \frac{\pi_\theta(y_p | m_p, x)}{\pi_{\text{ref}}(y_p | m_p, x)} - \beta \log \frac{\pi_\theta(y_p | m_n, x)}{\pi_{\text{ref}}(y_p | m_n, x)} \right) \right]. \quad (3)$$

155 This formulation supports joint optimization over visual and textual inputs, enabling the policy to
 156 associate preferred images with relevant multimodal features.

158 3.2 MULTI-NEGATIVE PREFERENCE OPTIMIZATION

160 Multi-negative preference optimization (Chen et al., 2024a) extends the Direct Preference Optimiza-
 161 tion approach (Rafailov et al., 2023), enabling language models to be trained against several negative
 162 preferences rather than just one. Instead of using the Bradley–Terry formulation for single pairwise

162 comparisons, this method adopts the Plackett–Luce model (Plackett, 1975; Luce et al., 1959) to
 163 score a target choice in relation to an entire set of inferior alternatives.

164 Given a prompt x , a preferred response y_p , and a set of N non-preferred responses $\mathcal{Y}_n = \{y_n^i\}_{i=1}^N$,
 165 the Plackett–Luce probability that y_p is ranked above all y_n^i is
 166

$$167 \quad p^*(y_p \succ \mathcal{Y}_n \mid x) = \frac{\exp(r(x, y_p))}{\exp(r(x, y_p)) + \sum_{i=1}^N \exp(r(x, y_n^i))}, \quad (4)$$

170 where $r(x, y)$ is the latent reward function. Substituting

$$171 \quad r(x, y) = \beta \log \frac{\pi_\theta(y \mid x)}{\pi_{\text{ref}}(y \mid x)} + Z(x)$$

173 and noting that $Z(x)$ cancels in the ratio gives
 174

$$175 \quad p^*(y_p \succ \mathcal{Y}_n \mid x) = \frac{1}{1 + \sum_{i=1}^N \exp(\beta \Delta_i)}, \quad \Delta_i = \log \frac{\pi_\theta(y_n^i \mid x)}{\pi_{\text{ref}}(y_n^i \mid x)} - \log \frac{\pi_\theta(y_p \mid x)}{\pi_{\text{ref}}(y_p \mid x)}.$$

176 Hence the multi-negative DPO training objective becomes
 177

$$179 \quad \mathcal{L}_{\text{MN-DPO}}(\theta) = -\mathbb{E}_{(x, y_p, \mathcal{Y}_n) \sim D} \left[\log \sigma \left(-\log \sum_{i=1}^N \exp(\beta \Delta_i) \right) \right]. \quad (5)$$

182 Notably, when $N = 1$, $\mathcal{L}_{\text{MN-DPO}}$ in equation 5 reduces exactly to the single-negative DPO loss.
 183

184 4 FRAMEWORK

186 We propose MISP-DPO, a framework that address the limitations of single-negative supervision by
 187 introducing multi-negative learning through two core components: (1) a diverse negative sampling
 188 strategy using sparse autoencoders to identify semantically meaningful deviations, and (2) a general-
 189 ized Plackett–Luce ranking objective that integrates multiple negatives to promote robust alignment.
 190 An overview of the framework is shown in Figure 1.

192 4.1 MULTI-NEGATIVE OBJECTIVES

194 Due to the limitations of single-negative supervision and the inherently multi-faceted nature of visual
 195 errors, we extend multimodal DPO to a multi-negative preference optimization setting. Let π_θ
 196 denote the VLM policy to be optimized. Each training instance consists of a multimodal prompt x , a
 197 preferred image m_p paired with an aligned textual response y_p , and a set of N negative images $S_n =$
 198 $\{m_n^i\}_{i=1}^N$ from open-domain sources. Following the Plackett–Luce formulation from Eq. equation 4,
 199 we adapt equation 5 to visual preferences,

$$200 \quad \mathcal{L}_{\text{img}}(\theta; S_n) = \log \sigma \left(-\log \sum_{i \in S_n} \exp \left(\beta \log \frac{\pi_\theta(y_p \mid x, m_n^i)}{\pi_{\text{ref}}(y_p \mid x, m_n^i)} - \beta \log \frac{\pi_\theta(y_p \mid x, m_p)}{\pi_{\text{ref}}(y_p \mid x, m_p)} \right) \right) \quad (6)$$

203 This extends Eq. equation 3 to multiple negatives through the softmax aggregation and encourages
 204 the model to assign higher preference scores to the correct image m_p compared to all negative
 205 images in S_n , thereby promoting more robust visual grounding.

206 **Lemma 4.1 (Gradient Decomposition)** *Defining the preference advantage of each negative image
 207 and the preference distribution as*

$$209 \quad a_i = \beta \left(\log \frac{\pi_\theta(y_p \mid x, m_n^i)}{\pi_{\text{ref}}(y_p \mid x, m_n^i)} - \log \frac{\pi_\theta(y_p \mid x, m_p)}{\pi_{\text{ref}}(y_p \mid x, m_p)} \right), \quad p_\theta(m_n^i \mid x, m_p, y_p) = \frac{\exp(a_i)}{\sum_{j=1}^N \exp(a_j)}.$$

211 Then the gradient of equation 6 decomposes as,

$$213 \quad \nabla_\theta \mathcal{L}_{\text{img}}(\theta; S_n) = \beta \sigma \left(\log \sum_{i=1}^N \exp(a_i) \right) \sum_{i=1}^N p_\theta(m_n^i \mid x, m_p, y_p) \Delta_\theta(m_n^i, m_p \mid x, y_p), \quad (7)$$

215 where $\Delta_\theta(m_n^i, m_p \mid x, y_p) = \nabla_\theta \log \pi_\theta(y_p \mid x, m_n^i) - \nabla_\theta \log \pi_\theta(y_p \mid x, m_p)$.

216 This result shows that the gradient is a weighted combination of correction signals across the image
 217 space, offering interpretability in terms of how the model adjusts its predictions in response to each
 218 visual discrepancy.

219 Although Eq.(6) and its gradient give an unbiased update, they require drawing a large set of nega-
 220 tives from the true $p_\theta(m_n^i | x, m_p, y_p)$ and computing $S(\{m_n^i\})$. In realistic image domains, neither
 221 step is tractable. To alleviate this, we introduce a learnable distribution $q_\phi(m_n | x, m_p, y_p)$ to sam-
 222 ple a small candidate pool $\tilde{\mathcal{S}}_n$. Rewriting the gradient illustrated in Lemma 4.1 as an expectation
 223 under q_ϕ gives a *importance-sampling* estimator,
 224

$$225 \nabla_\theta \mathcal{L}_{\text{img}}(\theta; \tilde{\mathcal{S}}_n) = \beta \sigma \left(\log \sum_{i \in \tilde{\mathcal{S}}_n} \exp(a_i) \right) \sum_{i \in \tilde{\mathcal{S}}_n} \frac{\exp(a_i)}{q_\phi(m_n^i | x, m_p, y_p)} \Delta_\theta(m_n^i, m_p | x, y_p). \quad (8)$$

228 To encourage joint reasoning across modalities, we extend our framework by incorporating textual
 229 preference supervision. We follow recent multimodal DPO methods and replace traditional text-
 230 only preferences with image-grounded negative responses y_n for the same prompt and image m_p .
 231 The corresponding DPO loss is,

$$232 \mathcal{L}_{\text{text}}(\theta; \tilde{\mathcal{S}}_n) = \log \sigma \left(\beta \log \frac{\pi_\theta(y_p | x, m_p)}{\pi_{\text{ref}}(y_p | x, m_p)} - \beta \log \frac{\pi_\theta(y_n | x, m_p)}{\pi_{\text{ref}}(y_n | x, m_p)} \right). \quad (9)$$

235 Our final loss combines both visual and textual preference signals,

$$236 \mathcal{L}(\theta; \tilde{\mathcal{S}}_n) = \mathcal{L}_{\text{img}}(\theta; \tilde{\mathcal{S}}_n) + \lambda \mathcal{L}_{\text{text}}(\theta; \tilde{\mathcal{S}}_n). \quad (10)$$

238 where λ balances the contributions of image-based and text-based supervision. This unified for-
 239 mulation supports joint alignment across modalities, improving robustness and alignment quality in
 240 VLMs.

241 4.2 IMPORTANCE SAMPLING VIA SPARSE AUTOENCODER

243 To address the limitations of existing methods that rely on simplistic, one-dimensional negatives, we
 244 employ SAEs to disentangle and surface semantically meaningful variations in the visual space. By
 245 providing a structured and interpretable latent representation, SAEs enable principled importance
 246 sampling over diverse negative examples—prioritizing those that capture distinct failure modes and
 247 are most informative for effective preference learning.

248 **Embedding and Difference Vectors.** Let $\mathcal{T} = \{(m_p, x)\}$ be the training set of positive im-
 249 age-prompt pairs. We use CLIP’s image and text encoders, f_v and f_t , to obtain d -dimensional
 250 embeddings $h_v = f_v(m_p)$ and $h_t = f_t(x)$, then fuse them via outer product and vectorization
 251 $e = \text{vec}(h_v \times h_t^\top) \in \mathbb{R}^{d^2}$. For each negative candidate m_n^i , we form the difference vector
 252

$$253 d_i = e(m_p, x) - e(m_n^i, x).$$

254 **Sparse Autoencoder Training.** We train an SAE with encoder \mathcal{E} and decoder \mathcal{D} to decompose d_i
 255 into sparse latent factors. The loss combines reconstruction fidelity and activation sparsity,

$$257 \mathcal{L}_{\text{SAE}} = \frac{1}{|\mathcal{T}|N} \sum_{(m_p, x) \in \mathcal{T}} \sum_{i=1}^N \|d_i - \mathcal{D}(\mathcal{E}(d_i))\|_2^2 + \gamma \sum_{j=1}^H \text{KL}(\rho \parallel \hat{\rho}_j), \quad (11)$$

260 where $\hat{\rho}_j$ is the average activation of hidden unit j , $\rho \in (0, 1)$ is the target average activation, and γ
 261 balances reconstruction against sparsity.

262 **Diverse Negative Selection.** We score each candidate m_n^i by,

$$264 s_i = \frac{\|d_i - \mathcal{D}(\mathcal{E}(d_i))\|_2^2}{\max_j \ell_j} + \frac{\|\mathcal{E}(d_i)\|_1}{\max_j v_j}, \quad (12)$$

266 where ℓ_j and v_j are the reconstruction error and activation magnitude across all candidates. To
 267 choose the final top- K negatives $\tilde{\mathcal{S}}_n$, we run a greedy selection that maximizes coverage of distinct
 268 error types while emphasizing hard negatives. We illustrate this algorithm in detail in Algorithm 1.

269 The selected set $\tilde{\mathcal{S}}_n$ is then used in the importance-sampling gradient estimator of Eq. equation 8.

270 **Algorithm 1** Greedy Diversity-Promoting Selection

271

```

272 1: Input: Difference vectors  $\{d_i\}_{i=1}^N$ , scores  $\{s_i\}$ , encoder  $\mathcal{E}$ , selection size  $K$ 
273 2:  $\tilde{\mathcal{S}}_n \leftarrow \emptyset$ 
274 3: while  $|\tilde{\mathcal{S}}_n| < K$  do
275 4:    $i^* \leftarrow \arg \max_{i \notin \tilde{\mathcal{S}}_n} \left( s_i + \beta \min_{j \in \tilde{\mathcal{S}}_n} (1 - \cos(\mathcal{E}(d_i), \mathcal{E}(d_j))) \right)$ 
276 5:    $\tilde{\mathcal{S}}_n \leftarrow \tilde{\mathcal{S}}_n \cup \{i^*\}$ 
277 6: end while
278 7: Output: selected negatives set  $\tilde{\mathcal{S}}_n$ 
279

```

280 **5 EXPERIMENT**281 **5.1 EXPERIMENTAL SETTINGS**

282 **Models.** We apply MISP-DPO to three widely-used multimodal LLMs: LLaVA-1.5-7B-HF, 283 Qwen2.5-VL-7B, and Qwen2.5-VL-3B. These models are chosen due to their open availability, 284 competitive performance, and diverse architectural designs (Chen et al., 2024b; Zhang et al., 2024). 285 LLaVA-1.5-7B-HF (Liu et al., 2023) integrates CLIP as the vision encoder with Vicuna-1.5-7B as 286 the language backbone. Qwen2.5-VL-7B (Bai et al., 2025) uses a proprietary vision module and 287 the strong Qwen2.5-7B language model. Qwen2.5-VL-3B is a lightweight 3B variant of the same 288 architecture, providing a better balance between efficiency and capability.

289 **Training data.** We choose RLHF-V-Dataset (Yu et al., 2024) as our training dataset. It contains 290 more than 5K samples, each with an image and a pair of text responses indicating preference. RLHF- 291 V provides fine-grained, segment-level human feedback on diverse vision-language instructions, 292 which has been shown to largely reduce hallucination while preserving informativeness. We treat 293 the paired image as the positive sample and select 3 negative images per sample from COCO training 294 dataset (Lin et al., 2014) using our importance sampling method, enabling effective training in our 295 MISP-DPO framework.

296 **Baselines.** We compare MISP-DPO against five baselines: (1) the pretrained model without 297 preference tuning, (2) standard DPO (Rafailov et al., 2023), which uses only a single text preference 298 without any image-based supervision, (3) mDPO (Wang et al., 2024a) and (4) CHiP (Fu et al., 299 2025), both of which incorporate image preferences but rely on a single negative image per 300 comparison, and (5) a variant of our framework that uses multi-negative image preference optimization 301 with negatives randomly sampled from the COCO dataset. All methods are trained under the same 302 settings for a fair comparison.

303 **Evaluation Benchmarks.** We evaluate MISP-DPO and all baselines across five benchmarks spanning 304 hallucination detection and vision-centric reasoning. MMHal-Bench(Sun et al., 2023) is a 305 hallucination-focused VQA benchmark covering 8 question types and 12 object categories. Hal- 306 lusionBench(Guan et al., 2024) measures visual and factual hallucinations; we report all-answer 307 accuracy (aA), figure-based accuracy (fA), and question-type accuracy (qA). POPE(Li et al., 2023b) 308 evaluates object hallucination in VLMs via Yes/No probing under random, popular, and adversarial 309 object settings. WildVision(Lu et al., 2024) evaluates real-world user preference alignment with 500 310 curated human-model interaction samples; we report reward score and win rate. MMVP(Tong et al., 311 2024) assesses fine-grained visual reasoning using CLIP-blind image pairs, with accuracy reported 312 over 135 zero-shot questions across 9 pattern types. Except for MMHal-Bench, all evaluations 313 are conducted using VLMEvalKit(Duan et al., 2024), an open-source evaluation toolkit for vision- 314 language models. For MMHal-Bench, we use GPT-4.1-mini(Achiam et al., 2023) as the evaluator 315 and report overall response quality and hallucination rate.

316 **Implementation Details.** For training the Sparse Autoencoder, we set the latent dimension to 128 317 and the sparsity weight γ to 1, balancing reconstruction fidelity with latent sparsity. Following 318 prior work on multi-negative preference optimization (Chen et al., 2024a), we select three negative 319 images per instance. For multimodal DPO training, we set the supervision balance parameter λ 320 to 1 to equally weight image-based and text-based preferences. All models are fine-tuned using 2 321 NVIDIA A100 GPUs, with a per-device batch size of 2, gradient accumulation steps of 8 (yielding 322 an effective batch size of 32), and a learning rate of 10^{-5} . The preference optimization coefficient β 323

Benchmarks	Hallucination						Vision-Centric			Total
	MMHalBench		HallusionBench			POPE	WildVision		MMVP	
	Score (↑)	HalRate (↓)	aA (↑)	fA (↑)	qA (↑)	Acc. (↑)	Reward (↑)	WinRate (↑)	Acc. (↑)	
llava-1.5-7b-Hf	Base	2.78	51.04	47.73	17.63	12.30	84.37	-55.7	17.0	60.67
	DPO	3.29	37.50	55.62	22.83	22.63	83.02	-52.7	18.4	62.66
	mDPO	2.99	49.81	47.32	20.52	13.19	83.25	-62.1	14.6	58.33
	CHiP	3.13	34.04	51.95	17.92	19.78	82.56	-68.4	12.2	52.33
	Random	3.42	36.46	55.94	23.69	22.63	82.61	-51.3	18.3	60.33
	MISP-DPO	3.51	32.29	57.52	25.43	24.83	83.94	-46.4	20.6	63.00
+30.09 %										
Qwen2.5-VL-7B	Base	4.61	18.09	70.45	43.06	45.27	87.65	33.5	69.2	77.67
	DPO	4.92	11.46	69.92	42.48	43.51	87.46	32.8	68.6	78.00
	mDPO	5.01	14.89	67.40	41.33	42.20	87.02	28.5	66.2	76.33
	CHiP	5.02	13.83	66.14	39.02	40.88	88.18	28.5	66.4	77.00
	Random	4.75	16.67	70.24	42.48	43.95	87.60	30.7	67.8	78.33
	MISP-DPO	5.05	11.46	71.24	43.77	45.61	88.66	32.4	68.4	79.00
+5.35 %										
Qwen2.5-VL-3B	Base	4.20	22.34	64.67	37.57	36.70	87.48	-0.1	46.6	70.60
	DPO	4.50	18.75	65.19	36.41	37.14	87.42	7.5	51.2	71.33
	mDPO	4.47	21.28	62.88	35.84	37.14	87.65	7.2	50.8	69.33
	CHiP	4.51	15.96	62.14	36.13	34.29	87.30	6.3	51.0	70.33
	Random	4.27	16.67	64.98	38.44	37.36	87.52	3.6	48.6	74.25
	MISP-DPO	4.61	13.54	65.51	38.44	38.02	87.77	8.6	52.4	72.00
+19.89 %										

Table 1: Comparison of MISP-DPO against baseline methods across five vision–language benchmarks and three model backbones. The benchmarks cover hallucination detection and vision-centric reasoning. Average improvement over BASE is reported. \uparrow : higher is better; \downarrow : lower is better.

is set to 0.5. Following prior work on mDPO, we adopt LoRA for parameter-efficient tuning, with a rank of 64 and scaling factor $\alpha = 128$. For baseline methods, we strictly follow their original settings: mDPO is trained for 3 epochs with the same learning rate (1e-5), $\beta = 0.1$; CHiP is trained for 3 epochs with a batch size of 32, a learning rate of 5e-7, $\beta = 0.5$, and full-parameter finetuning.

5.2 OVERALL PERFORMANCE IMPROVEMENT

Table 1 shows the performance of MISP-DPO and baselines across five representative benchmarks, grouped into two categories: hallucination detection (MMHalBench, HallusionBench, POPE) and vision-centric reasoning (WildVision, MMVP). Our proposed MISP-DPO consistently achieves superior results over all evaluation domains and model backbones.

The largest gains appear on hallucination benchmarks. MISP-DPO substantially reduces hallucination rates on MMHalBench (e.g., 32.29%, 11.46%, and 13.54% across different backbones) while also achieving the highest accuracy across all HallusionBench metrics. POPE further confirms these advantages. These improvements stem from the combination of diverse negative sampling, which exposes the model to varied error types such as object mismatches and attribute distortions, and importance sampling, which prioritizes hard negatives with high reconstruction errors from SAE, leading to stronger visual grounding. On vision-centric reasoning tasks, MISP-DPO also provides consistent gains. For example, it achieves the best reward (+8.6) and win rate (52.4) on WildVision for Qwen2.5-VL-3B, while also outperforming baselines on MMVP across different model sizes. These results suggest that our method not only suppresses hallucinations but also enhances the model’s ability to generate fine-grained, visually aligned responses.

We also conduct experiments under different β values on MMHalBench to balance reward learning and regularization. Figure 4 reveals performance peaks at β ranging from 0.45 to 0.75, with degradation at extremes $\beta = 0.1/1.0$. We choose $\beta = 0.5$ for optimal trade-off between hallucination control and response quality, as it maximizes accuracy while minimizing hallucination rates across all backbones.

5.3 EFFECTIVENESS OF IMPORTANCE SAMPLING

We analyze the impact of our importance sampling strategy using t-SNE visualizations of high-quality negative images, shown in Figure 2. The left plot displays negatives selected by our SAE-guided strategy, while the middle shows randomly sampled ones. Importance-sampled negatives

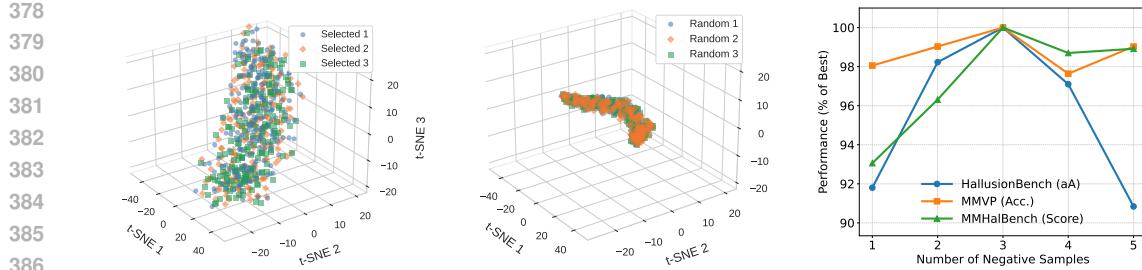


Figure 2: t-SNE visualizations and benchmark results for negative sampling. **Left:** importance-sampled negatives selected using SAE scoring exhibit broad semantic dispersion across three selections. **Middle:** randomly sampled negatives form tight, low-diversity clusters. **Right:** performance across benchmarks with different numbers of negatives selected by MISP-DPO.

Instruction: Detail the image's components with particular focus on each entity.
Chosen Response: In the foreground of this image, there is a fruit-topped **cake** with strawberries, blueberries, and candles, indicating that it might be used to celebrate an event. Besides, another dessert with candles can be seen in the background. Furthermore, there are a few **cups** nearby for drinks. The fruit cake is the **main focus**.

Instruction: What is being used as a mouse pad?
Chosen Response: In the image, a **photo** is being used as a **mouse pad**. This makeshift mouse allows for more effective control of the laptop. Also present on the desk are other items such as a **cell phone**, a **notebook**, and a **cup**, indicating that the workspace is actively being used for various tasks.

Figure 3: Negative image retrieval using our MISP-DPO method. Each row shows a chosen image and three negatives; highlighted phrases in **red**, **blue** and **green** mark mismatches with negatives. are well-dispersed across the embedding space, indicating high semantic diversity, whereas random negatives cluster tightly, indicating redundancy and limited coverage. This distribution reveals that our method captures heterogeneous error modes rather than collapsing onto a narrow, repetitive subset of examples, thereby providing more informative supervision.

As illustrated in Figure 3, our selected negatives for the fruit cake image exhibit clear semantic deviations: one introduces different types of cakes with distinct decorations, while others include unrelated food items such as sandwiches, or scenes where the cake is present but not the main visual focus, thereby weakening semantic alignment. Similarly, in the workspace scene, negative examples capture meaningful variations such as differences in desk arrangement and surrounding objects—including notebooks and cups—each impacting multimodal alignment differently. These examples highlight how our sampling method uncovers diverse error modes, encouraging the model to learn more robust visual distinctions, strengthening training signals, and improving generalization beyond narrow, one-dimensional deviations.

5.4 COMPARISON OF NEGATIVE SAMPLING STRATEGIES

We evaluate five negative sampling strategies that share the same model architecture and loss formulation but differ in how negative images are constructed: (1) mDPO, which relies on a single diffusion-generated negative; (2) diffusion, which combines one diffusion negative with two negatives selected by our method; (3) crop+diffusion, which mixes one cropped, one diffusion, and

432 433 434 435 436 437 438 439 440 441 442 443	432 433 434 435 436 437 438 439 440 441 442 443	432 433 434 435 436 437 438 439 440 441 442 443	432 433 434 435 436 437 438 439 440 441 442 443		432 433 434 435 436 437 438 439 440 441 442 443		432 433 434 435 436 437 438 439 440 441 442 443		432 433 434 435 436 437 438 439 440 441 442 443	
			Score (↑)	HalRate (↓)	aA (↑)	fA (↑)	qA (↑)	Acc. (↑)	Reward (↑)	WinRate (↑)
Qwen2.5-7B	mdpo	5.01	14.89	67.40	41.33	42.20	87.02	28.5	66.2	76.33
	diffusion	5.12	12.50	69.50	43.64	43.95	87.52	30.7	66.4	78.00
	crop+diffusion	4.92	13.54	70.35	43.35	44.61	87.35	30.7	66.4	78.33
	similarity	5.00	12.50	69.82	42.77	44.17	87.24	30.1	66.2	77.67
	MISP-DPO	5.05	11.46	71.24	43.77	45.61	88.66	32.4	68.4	79.00
Qwen2.5-3B	mDPO	4.47	21.28	62.88	35.84	37.14	87.65	7.2	50.8	69.33
	diffusion	4.56	14.58	65.19	39.31	37.14	87.35	8.0	52.4	71.33
	crop+diffusion	4.39	17.70	64.03	38.44	36.48	87.20	5.3	49.8	71.33
	similarity	4.20	19.79	65.08	39.01	36.92	87.62	4.7	49.4	70.30
	MISP-DPO	4.61	13.54	65.51	38.44	38.02	87.77	8.6	52.4	72.00

Table 2: Comparison of different negative sampling strategies across five benchmarks. All variants share the same model and loss design, differing only in how negative images are constructed.

one MISP-DPO-selected negative; (4) similarity, where three negatives are retrieved based on similarity to the positive image; and (5) our model. As shown in Table 2, mDPO yields the weakest performance, highlighting the limitations of single-negative supervision. Among multi-negative variants, the diffusion strategy outperforms crop+diffusion, suggesting that a higher proportion of semantically diverse negatives from our method improves supervision quality. The similarity variant performs worse than diffusion, underscoring that naive retrieval of visually similar negatives does not provide the challenging guidance needed. In contrast, MISP-DPO consistently achieves the best scores across all benchmarks, validating the effectiveness of structured multi-negative selection via SAE-guided importance sampling. Additional results are reported in Table 3 in the appendix.

Beyond the choice of sampling strategy, we further explore the number of negatives required. Figure 2 (right) shows performance across HallusionBench, MMVP, and MMHalBench with varying numbers of negatives. One or two negatives are insufficient to provide high-quality supervision. Performance peaks at three negatives, while increasing beyond this offers no further benefit. For HallusionBench, adding five negatives even reduces performance, likely due to noise introduced by redundant or low-quality samples. Together, these results demonstrate that three carefully chosen negatives strike the best balance between informativeness and robustness.

5.5 HALLUCINATION REDUCTION WITH MISP-DPO.

Figure 5 in the Appendix presents qualitative comparisons highlighting the impact of multi-negative supervision. Baseline methods such as DPO and CHiP frequently introduce hallucinated details (e.g., incorrect objects, colors, or spatial relations), while MISP-DPO generates more faithful and grounded descriptions. For instance, in the first example, only MISP-DPO correctly identifies that the image lacks sand and accurately describes the bird. These results illustrate that incorporating diverse negatives enables the model to better distinguish relevant from spurious cues, improving factual accuracy in vision-language alignment.

6 CONCLUSION

We present MISP-DPO, a novel framework that introduces multi-negative, semantically diverse supervision into multimodal Direct Preference Optimization. By leveraging CLIP-based embeddings and a sparse autoencoder, our method efficiently selects image-side negatives that vary across multiple semantic facets and reflect diverse failure modes. These negatives are integrated into a Plackett-Luce-style ranking objective with importance sampling, enabling the model to learn from richer and more structured supervision. The method remains efficient and scalable for real-world multimodal applications. Extensive experiments across five benchmarks demonstrate that MISP-DPO consistently outperforms strong baselines in hallucination reduction and visual grounding. While our evaluations rely on GPT-based scoring—which may introduce bias or inconsistency when assessing fine-grained alignment—our findings validate the effectiveness of semantic-aware, multi-negative sampling for robust multimodal alignment and open up promising directions for scalable and interpretable preference-based learning.

486 REFERENCES
487

488 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
489 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
490 report. *arXiv preprint arXiv:2303.08774*, 2023.

491 Afra Amini, Tim Vieira, and Ryan Cotterell. Direct preference optimization with an offset. *arXiv*
492 *preprint arXiv:2402.10571*, 2024.

493

494 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
495 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
496 2025.

497 Lior Baruch, Moshe Butman, Kfir Bar, and Doron Friedman. Preference tree optimization: Enhanc-
498 ing goal-oriented dialogue with look-ahead simulations. In *Scaling Self-Improving Foundation*
499 *Models without Human Supervision*.

500

501 Yuxin Chen, Junfei Tan, An Zhang, Zhengyi Yang, Leheng Sheng, Enzhi Zhang, Xiang Wang, and
502 Tat-Seng Chua. On softmax direct preference optimization for recommendation. *arXiv preprint*
503 *arXiv:2406.09215*, 2024a.

504

505 Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shen-
506 glong Ye, Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source
507 multimodal models with model, data, and test-time scaling. *arXiv preprint arXiv:2412.05271*,
508 2024b.

509

510 Yihe Deng, Pan Lu, Fan Yin, Ziniu Hu, Sheng Shen, Quanquan Gu, James Y Zou, Kai-Wei Chang,
511 and Wei Wang. Enhancing large vision language models with self-training on image comprehen-
512 sion. *Advances in Neural Information Processing Systems*, 37:131369–131397, 2024.

513

514 Haodong Duan, Junming Yang, Yuxuan Qiao, Xinyu Fang, Lin Chen, Yuan Liu, Xiaoyi Dong,
515 Yuhang Zang, Pan Zhang, Jiaqi Wang, et al. Vlmevalkit: An open-source toolkit for evaluat-
516 ing large multi-modality models. In *Proceedings of the 32nd ACM international conference on*
517 *multimedia*, pp. 11198–11201, 2024.

518

519 Jinlan Fu, Shenzhen Huangfu, Hao Fei, Xiaoyu Shen, Bryan Hooi, Xipeng Qiu, and See-Kiong
520 Ng. Chip: Cross-modal hierarchical direct preference optimization for multimodal llms. *arXiv*
521 *preprint arXiv:2501.16629*, 2025.

522

523 Tianrui Guan, Fuxiao Liu, Xiyang Wu, Ruiqi Xian, Zongxia Li, Xiaoyu Liu, Xijun Wang, Lichang
524 Chen, Furong Huang, Yaser Yacoob, et al. Hallusionbench: an advanced diagnostic suite for
525 entangled language hallucination and visual illusion in large vision-language models. In *Pro-*
526 *ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 14375–
527 14385, 2024.

528

529 Cheng-Yu Hsieh, Jieyu Zhang, Zixian Ma, Aniruddha Kembhavi, and Ranjay Krishna. Sugarcrape:
530 Fixing hackable benchmarks for vision-language compositionality. *Advances in neural informa-*
531 *tion processing systems*, 36:31096–31116, 2023.

532

533 Songtao Jiang, Yan Zhang, Ruizhe Chen, Yeying Jin, and Zuozhu Liu. Modality-fair preference
534 optimization for trustworthy mllm alignment. *arXiv preprint arXiv:2410.15334*, 2024.

535

536 Amita Kamath, Jack Hessel, and Kai-Wei Chang. Text encoders bottleneck compositionality in
537 contrastive vision-language models. *arXiv preprint arXiv:2305.14897*, 2023.

538

539 Amita Kamath, Cheng-Yu Hsieh, Kai-Wei Chang, and Ranjay Krishna. The hard positive truth
540 about vision-language compositionality. In *European Conference on Computer Vision*, pp. 37–
541 54. Springer, 2024.

542

543 Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yixiao Ge, and Ying Shan. Seed-bench: Bench-
544 marking multimodal llms with generative comprehension. *arXiv preprint arXiv:2307.16125*,
545 2023a.

540 Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating
 541 object hallucination in large vision-language models. *arXiv preprint arXiv:2305.10355*, 2023b.
 542

543 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 544 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *Computer
 545 vision–ECCV 2014: 13th European conference, zurich, Switzerland, September 6–12, 2014, pro-
 546 ceedings, part v 13*, pp. 740–755. Springer, 2014.

547 Chaohu Liu, Tianyi Gui, Yu Liu, and Linli Xu. Adpo: Enhancing the adversarial robustness of large
 548 vision-language models with preference optimization. *arXiv preprint arXiv:2504.01735*, 2025.
 549

550 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances
 551 in neural information processing systems*, 36:34892–34916, 2023.

552 Yujie Lu, Dongfu Jiang, Wenhui Chen, William Yang Wang, Yejin Choi, and Bill Yuchen Lin. Wild-
 553 vision: Evaluating vision-language models in the wild with human preferences. *arXiv preprint
 554 arXiv:2406.11069*, 2024.

555 R Duncan Luce et al. *Individual choice behavior*, volume 4. Wiley New York, 1959.

556 Robin L Plackett. The analysis of permutations. *Journal of the Royal Statistical Society Series C:
 557 Applied Statistics*, 24(2):193–202, 1975.

558 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 559 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 560 models from natural language supervision. In *International conference on machine learning*, pp.
 561 8748–8763. PMLR, 2021.

562 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 563 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances
 564 in Neural Information Processing Systems*, 36:53728–53741, 2023.

565 Ugur Sahin, Hang Li, Qadeer Khan, Daniel Cremers, and Volker Tresp. Enhancing multimodal
 566 compositional reasoning of visual language models with generative negative mining. In *Proceed-
 567 ings of the IEEE/CVF Winter Conference on Applications of Computer Vision*, pp. 5563–5573,
 568 2024.

569 Wentao Shi, Mengqi Yuan, Junkang Wu, Qifan Wang, and Fuli Feng. Direct multi-turn preference
 570 optimization for language agents. *arXiv preprint arXiv:2406.14868*, 2024.

571 Zhiqing Sun, Sheng Shen, Shengcao Cao, Haotian Liu, Chunyuan Li, Yikang Shen, Chuang Gan,
 572 Liang-Yan Gui, Yu-Xiong Wang, Yiming Yang, et al. Aligning large multimodal models with
 573 factually augmented rlhf. *arXiv preprint arXiv:2309.14525*, 2023.

574 Shengbang Tong, Zhuang Liu, Yuexiang Zhai, Yi Ma, Yann LeCun, and Saining Xie. Eyes wide
 575 shut? exploring the visual shortcomings of multimodal llms. In *Proceedings of the IEEE/CVF
 576 Conference on Computer Vision and Pattern Recognition*, pp. 9568–9578, 2024.

577 Fei Wang, Wenxuan Zhou, James Y Huang, Nan Xu, Sheng Zhang, Hoifung Poon, and Muhaoo
 578 Chen. mdpo: Conditional preference optimization for multimodal large language models. *arXiv
 579 preprint arXiv:2406.11839*, 2024a.

580 Xin Wang, Hong Chen, Si’ao Tang, Zihao Wu, and Wenwu Zhu. Disentangled representation learn-
 581 ing. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2024b.

582 Shengguang Wu, Fan-Yun Sun, Kaiyue Wen, and Nick Haber. Symmetrical visual contrastive op-
 583 timization: Aligning vision-language models with minimal contrastive images. *arXiv preprint
 584 arXiv:2502.13928*, 2025.

585 Shuo Xing, Yuping Wang, Peiran Li, Ruizheng Bai, Yueqi Wang, Chengxuan Qian, Huaxiu Yao,
 586 and Zhengzhong Tu. Re-align: Aligning vision language models via retrieval-augmented direct
 587 preference optimization. *arXiv preprint arXiv:2502.13146*, 2025.

594 An Yan, Yu Wang, Yiwu Zhong, Chengyu Dong, Zexue He, Yujie Lu, William Yang Wang, Jingbo
595 Shang, and Julian McAuley. Learning concise and descriptive attributes for visual recognition.
596 In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 3090–3100,
597 2023.

598 Tianyu Yu, Yuan Yao, Haoye Zhang, Taiwen He, Yifeng Han, Ganqu Cui, Jinyi Hu, Zhiyuan Liu,
599 Hai-Tao Zheng, Maosong Sun, et al. Rlhf-v: Towards trustworthy mllms via behavior alignment
600 from fine-grained correctional human feedback. In *Proceedings of the IEEE/CVF Conference on*
601 *Computer Vision and Pattern Recognition*, pp. 13807–13816, 2024.

602 Yunan Zeng, Yan Huang, Jinjin Zhang, Zequn Jie, Zhenhua Chai, and Liang Wang. Investigating
603 compositional challenges in vision-language models for visual grounding. In *Proceedings of the*
604 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 14141–14151, 2024.

605 Duzhen Zhang, Yahan Yu, Jiahua Dong, Chenxing Li, Dan Su, Chenhui Chu, and Dong Yu. Mm-
606 llms: Recent advances in multimodal large language models. *arXiv preprint arXiv:2401.13601*,
607 2024.

608 Chenhao Zheng, Jieyu Zhang, Aniruddha Kembhavi, and Ranjay Krishna. Iterated learning im-
609 proves compositionality in large vision-language models. In *Proceedings of the IEEE/CVF Con-*
610 *ference on Computer Vision and Pattern Recognition*, pp. 13785–13795, 2024.

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648
649

A APPENDIX

650
651A.1 EFFECT OF β ON HALLUCINATION AND QUALITY652
653
654
655

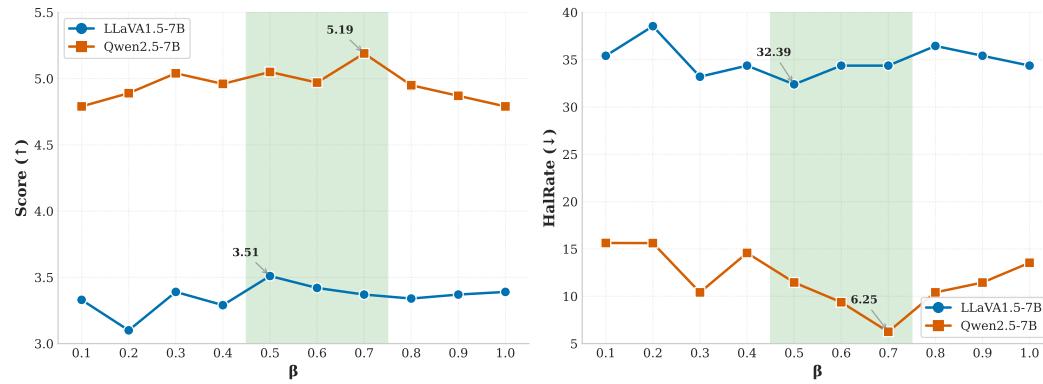
Figure 4 illustrates the impact of different β values on both response quality (left) and hallucination rate (right) on MMHalBench. We observe that the model performs best when β lies in the range of 0.45 to 0.75, achieving a good balance between response quality and hallucination suppression. To ensure both accuracy and stability, we set $\beta = 0.5$ as the default value in all main experiments.

656
657

A.2 EXAMPLES OF HALLUCINATION REDUCTION WITH MISP-DPO

658
659
660
661
662
663
664
665
666
667

To illustrate the impact of our approach, Figure 5 presents qualitative comparisons across three representative prompts, highlighting the improvements brought by MISP-DPO over baselines including LLaVA, DPO, and CHiP. MISP-DPO demonstrates a stronger ability to avoid hallucinations and produce factually accurate descriptions grounded in visual evidence. In the first example, it correctly identifies the absence of sand and avoids misidentifying the bird species. In the second case, it faithfully describes the structure and positioning of the gloves despite occlusion. In the final example, it provides a precise spatial interpretation of the two watches without fabricating brand-specific details. These results suggest that our multi-negative supervision strategy improves the model’s sensitivity to fine-grained semantic cues and its ability to reject spurious correlations and hallucinated attributes, leading to more factually consistent vision-language generation.



682

Figure 4: Performance comparison of Score and Hallucination Rate across different β values for on MMHalBench.

683
684
685

A.3 UNBIASEDNESS AND FINITE-SAMPLE VARIANCE BOUNDS FOR IMPORTANCE SAMPLING GRADIENT

686
687
688

For convenience, we define the inner gradient term in Lemma 4.1,

$$g(\theta) := \sum_{i=1}^N p_\theta(m_n^i \mid x, m_p, y_p) \Delta_\theta(m_n^i, m_p \mid x, y_p). \quad (13)$$

689
690
691

Our importance-sampling scheme (Sec. 4.1) introduces a proposal distribution $q_\phi(m_n \mid x, m_p, y_p)$ induced by the CLIP+SAE pipeline, and samples a small candidate pool $\tilde{\mathcal{S}}_n = \{m_n^k\}_{k=1}^K$ from q_ϕ . We then approximate the exact gradient using an importance-weighted estimator.

692

A.3.1 UNBIASEDNESS OF THE IS GRADIENT

693
694
695

Let the importance weight be

696
697
698

$$w(m_n) = \frac{p_\theta(m_n \mid x, m_p, y_p)}{q_\phi(m_n \mid x, m_p, y_p)}.$$

702 **Lemma A.1 (Unbiased IS gradient)** *Assume that $q_\phi(m_n \mid x, m_p, y_p) > 0$ whenever $p_\theta(m_n \mid$
 703 $x, m_p, y_p) > 0$. Define the Monte Carlo estimator of $g(\theta)$ as,*
 704

$$705 \quad \hat{g}_k(\theta) := \frac{1}{K} \sum_{k=1}^K w(m_n^k) \Delta_\theta(m_n^k, m_p \mid x, y_p), \quad m_n^k \sim q_\phi(\cdot \mid x, m_p, y_p).$$

708 Then $\hat{g}_k(\theta)$ is an unbiased estimator of $g(\theta)$,

$$710 \quad \mathbb{E}_{\{m_n^k\} \sim q_\phi} [\hat{g}_k(\theta)] = g(\theta). \quad (14)$$

712 **Proof A.1** *Using linearity of expectation and the definition of importance weights,*
 713

$$714 \quad \mathbb{E}_{\{m_n^k\} \sim q_\phi} [\hat{g}_k(\theta)] = \mathbb{E}_{m \sim q_\phi} [w(m_n) \Delta_\theta(m_n, m_p \mid x, y_p)]$$

$$715 \quad = \sum_{i=1}^N q_\phi(m_n^i \mid x, m_p, y_p) \frac{p_\theta(m_n^i \mid x, m_p, y_p)}{q_\phi(m_n^i \mid x, m_p, y_p)} \Delta_\theta(m_n^i, m_p \mid x, y_p)$$

$$716 \quad = \sum_{i=1}^N p_\theta(m_n^i \mid x, m_p, y_p) \Delta_\theta(m_n^i, m_p \mid x, y_p)$$

$$717 \quad = g(\theta),$$

722 which proves the claim.

724 Thus, the IS estimator recovers the exact gradient term in expectation, and hence the overall gradient
 725 in Eq. 7,

$$727 \quad \nabla_\theta L_{\text{img}}(\theta; \mathcal{S}_n) = \beta \sigma \left(\log \sum_{i=1}^N \exp(a_i) \right) g(\theta), \quad (15)$$

730 admits an unbiased importance-sampling estimator by replacing $g(\theta)$ with $\hat{g}_k(\theta)$.

732 A.3.2 VARIANCE BOUND UNDER FINITE NEGATIVE SAMPLING

734 We next calculate the variance of $\hat{g}_k(\theta)$ when only a finite number K of negatives are sampled.

735 Define the maximum importance weight,

$$737 \quad \|w\|_\infty := \max_{m_n \in \mathcal{S}_n} \frac{p_\theta(m_n \mid x, m_p, y_p)}{q_\phi(m_n \mid x, m_p, y_p)}.$$

739 Assume that the gradient differences are bounded, which in practice is achieved by gradient clipping
 740 [4-6]. There exists $L < \infty$ such that,

$$742 \quad \|\Delta_\theta(m_n, m_p \mid x, y_p)\|_2 \leq L \quad \forall m_n \in \mathcal{S}_n. \quad (16)$$

744 **Lemma A.2 (Variance bound)** *Under the assumptions above, the mean-square error of the IS gra-
 745 dient estimator is bounded as,*

$$746 \quad \mathbb{E} [\|\hat{g}_k(\theta) - g(\theta)\|_2^2] \leq \frac{L^2}{K} \|w\|_\infty.$$

749 Consequently, the expected absolute deviation satisfies,

$$751 \quad \mathbb{E} [\|\hat{g}_k(\theta) - g(\theta)\|_2] \leq L \sqrt{\frac{\|w\|_\infty}{K}}. \quad (17)$$

753 **Proof A.2** *Because the K samples are i.i.d.,*

$$755 \quad \text{Var}(\hat{g}_k(\theta)) = \frac{1}{K} \text{Var}(w(m_n) \Delta_\theta(m_n, m_p \mid x, y_p)).$$

756 Using the bound $\|\Delta_\theta(m_n, m_p \mid x, y_p)\|_2 \leq L$, we obtain
 757

$$\begin{aligned} 758 \mathbb{E}[\|\widehat{g}_k(\theta) - g(\theta)\|_2^2] &\leq \frac{1}{K} \mathbb{E}_{m_n \sim q_\phi} [\|w(m_n) \Delta_\theta(m_n, m_p \mid x, y_p)\|_2^2] \\ 759 \\ 760 &\leq \frac{L^2}{K} \mathbb{E}_{m_n \sim q_\phi} [w(m_n)^2]. \\ 761 \end{aligned}$$

762 Moreover,

$$\begin{aligned} 763 \mathbb{E}_{m_n \sim q_\phi} [w(m_n)^2] &\leq \|w\|_\infty \mathbb{E}_{m \sim q_\phi} [w(m_n)] \\ 764 \\ 765 &= \|w\|_\infty \sum_{m_n} q_\phi(m_n) \frac{p_\theta(m_n)}{q_\phi(m_n)} = \|w\|_\infty \sum_{m_n} p_\theta(m_n) = \|w\|_\infty. \\ 766 \\ 767 \end{aligned} \tag{18}$$

768 Combining these yields the desired variance bound. Applying Cauchy–Schwarz gives the final vari-
 769 ance bound.

770 In our setting, the SAE-guided sampler is explicitly designed to approximate the target distribution
 771 with diverse but not overly peaky weights, which empirically keeps $\|w\|_\infty$ small and leads to stable
 772 optimization.

774 A.4 NEGATIVE SAMPLING STRATEGIES ON LLAVA-1.5-7B MODEL

775 Table 3 shows that LLava-1.5-7B follows the same trend as Qwen2.5. The single-negative baseline
 776 (mDPO) performs the weakest, while adding more negatives through diffusion or crop+diffusion
 777 gives only moderate improvements.

778 In contrast, MISP-DPO consistently achieves the best results, notably lowering hallucination rate
 779 and improving accuracy across HallusionBench, POPE, WildVision, and MMVP. This confirms
 780 that our SAE-guided multi-negative sampling generalizes across model families, providing stronger
 781 guidance even for smaller-scale vision–language models.

784 Model	785 Benchmark	786 MMHalBench		787 HallusionBench			788 POPE	789 WildVision		790 MMVP
		Score (↑)	791 HalRate (↓)	aA (↑)	fA (↑)	792 qA (↑)		Reward (↑)	794 WinRate (↑)	
793 llava-1.5-7b	mDPO	2.99	49.81	47.32	20.52	13.19	83.25	-62.1	14.6	58.33
	diffusion	3.49	33.33	52.57	21.38	18.02	83.25	-53.0	18.8	61.33
	crop+diffusion	3.44	35.42	53.63	22.54	19.78	83.80	-50.5	20.0	61.00
	MISP-DPO	3.51	32.29	57.52	25.43	24.83	83.94	-46.4	20.6	63.00

791 Table 3: llava performance

810
811
812
813
814
815
816
817
818
819

What is a vicuna standing in the sand looking at?

LLaVA	A vicuna standing in the sand is looking at a painting of a bird.
DPO	A vicuna standing in the sand is not looking at anything. In the image, a black and white bird with a yellow and red beak is standing in front of a green leafy plant . The bird is not looking at the plant, but rather at the viewer.
CHiP	A Vicuna standing in the sand is looking at a painting of a bird.
MISP-DPO (Ours)	In the image, there is no sand or any other background visible. The painting features a colorful bird with a large beak . It is a black and white bird with a yellow beak, not a vicuna . The bird is surrounded by green and black brush, and the painting is described as a painting of a bird with a yellow beak. The bird is not standing in the sand, and the image does not provide any context or information about the bird looking at something .

Describe the hands wearing the gloves.

LLaVA	The hands wearing the gloves are large, and the gloves are black in color.
DPO	The hands wearing the gloves are black and have a logo on the palm . The gloves are made of a black material , and the hands are positioned in a way that they are facing upwards .
CHiP	In the image, the hands wearing the gloves are black in color.
MISP-DPO (Ours)	The image shows two black gloves , one of which has a logo on the back . They are positioned in such a way that they appear to be two hands. The gloves are black and have a close-up view, making it difficult to discern any other details. The gloves are not attached to any hands , but they are positioned in a way that they appear to be hands.

Describe how the two watches are placed.

LLaVA	In the image, there are two watches placed next to each other. One watch is positioned on top of the other, with the top watch being a G-Shock watch and the bottom watch being a Garmin watch . The two watches are placed side by side, showcasing their differences in design and features .
DPO	The watch with the red band is positioned on top of the watch with the black band . The watch with the red band is on the left side of the image , while the watch with the black band is on the right side of the image as well.
CHiP	In the image, one watch is in the foreground , and the other is in the background . The foreground one is a close-up while the other is blurry .
MISP-DPO (Ours)	The two watches are placed side by side , with the Garmin watch on the left and the other watch on the right . The Garmin watch has a screen displaying a map , while the other watch has a red band . The two watches are positioned in such a way that the Garmin watch's screen is visible , and the other watch's red band is also visible .

852
853
854
855
856
857
858
859
860
861
862
863
Figure 5: Comparison of responses from LLaVA model training through different methods: pre-trained, DPO, CHiP, and MISP-DPO. **Blue text** indicates faithful descriptions; **red text** marks hallucinated or unsupported content.