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ABSTRACT

Direct Preference Optimization (DPO) has recently been extended from text-only
models to vision-language models. However, existing methods rely on oversim-
plified pairwise comparisons, generating a single negative image via basic per-
turbations or similarity-based retrieval, which fail to capture the complex nature
of multimodal preferences, inducing optimization bias and hallucinations. To ad-
dress this issue, we propose MISP-DPO, the first framework to incorporate mul-
tiple, semantically diverse negative images in multimodal DPO via the Plackett-
Luce model. Our method embeds prompts and candidate images in CLIP (Con-
trastive Language–Image Pre-training) space and applies a sparse autoencoder to
uncover semantic deviations into interpretable factors. Negative samples are se-
lected based on reconstruction difficulty, semantic deviation from the positive,
and mutual diversity, yielding broader and more informative supervision. To han-
dle multi-negative comparisons, we adopt a Plackett–Luce objective and intro-
duce an importance sampling strategy that improves training efficiency. Experi-
ments across five diverse benchmarks demonstrate that MISP-DPO consistently
improves multimodal alignment over prior methods, validating the effectiveness
of semantic-aware, multi-negative sampling in preference-based learning.

1 INTRODUCTION

Direct Preference Optimization (DPO) (Rafailov et al., 2023; Amini et al., 2024) has shown great
promise for aligning language models by learning from pairwise comparisons, bypassing the need
for explicit reward modeling. Recent efforts have extended DPO to multimodal contexts, enhancing
vision-language model (VLM) alignment through image-text feedback(Wang et al., 2024a; Jiang
et al., 2024; Deng et al., 2024; Fu et al., 2025; Liu et al., 2025; Wu et al., 2025; Xing et al., 2025).
However, simply extending textual preference data to multimodal scenarios often introduces new
challenges, particularly exacerbating hallucinations (Wang et al., 2024a; Fu et al., 2025; Wu et al.,
2025). Existing multimodal DPO methods generate only a single negative image per comparison,
typically via adversarial cropping, random perturbations, or similarity-based retrieval (Liu et al.,
2025; Fu et al., 2025; Wu et al., 2025; Xing et al., 2025). This oversimplifies the rich space of
visual negatives, reducing supervision to a single dimension and limiting the model’s ability to
generalize. For instance, as illustrated in Figure 1, avoiding a single negative depicting a “green
apple” might teach the model to reject green hues but ignore mismatched contexts like “kitchen
counter” or incorrect objects like “pear.” By optimizing against narrow, one-dimensional deviations,
models risk spurious correlations, bias amplification, and persistent hallucinations.

The core challenge is that images lack explicit, compositional units like text tokens, making it diffi-
cult to isolate meaningful visual deviations (Sahin et al., 2024; Zeng et al., 2024; Zheng et al., 2024;
Hsieh et al., 2023; Kamath et al., 2024; 2023). Naive perturbations often destroy overall coherence
without isolating meaningful deviations, making it difficult to systematically explore the negative
factors of model weaknesses. Effective learning requires disentangling and surfacing multiple latent
error factors while maintaining prompt relevance. Existing methods incorporate these factors into a
single negative example, leaving models blind to orthogonal error types.

To address this, we propose MISP-DPO, the first framework to introduce multi-negative, semanti-
cally diverse supervision into multimodal DPO. Our approach consists of two stages,
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Figure 1: Overview of the MISP-DPO framework, which integrates CLIP encoding and sparse au-
toencoder–guided selection to identify diverse negatives for multi-negative preference optimization.

• In the first stage, we select diverse image-side negatives from a large open-domain pool. Prompts
and candidate images are embedded in CLIP (Radford et al., 2021) space, and a sparse autoencoder
(SAE) decomposes their semantic differences into disentangled latent factors (e.g., object, color,
layout). We prioritize negatives based on: (1) reconstruction error (informativeness), (2) semantic
deviation from the positive sample, and (3) mutual diversity, ensuring broad coverage of negative
types.

• In the second stage, we integrate these multiple negatives into a generalized DPO objective us-
ing the Plackett–Luce model. Rather than relying on binary comparisons, our approach ranks a
positive image above a diverse set of negatives, forcing the model to resolve multiple constraints
simultaneously. We further introduce an importance sampling scheme guided by SAE-derived
scores, improving training efficiency.

We evaluate MISP-DPO on five multimodal benchmarks (Sun et al., 2023; Guan et al., 2024; Lu
et al., 2024; Tong et al., 2024; Li et al., 2023a) focused on hallucination reduction and visual ground-
ing. Our method consistently outperforms strong baselines, achieving notable hallucination reduc-
tion and improved alignment, including a 30.09% average improvement over LLaVA-v1.5-7B (Liu
et al., 2023).

Our contributions are as follows:

• We propose the first framework to incorporate multi-negative supervision into multimodal DPO,
leveraging semantic diversity to systematically reduce hallucinations.

• We introduce an efficient negative sampling method based on CLIP embeddings and SAE–guided
importance sampling, providing semantically informative negative examples.

• Extensive evaluations demonstrate that our method substantially reduces hallucinations and
achieves robust multimodal alignment across multiple benchmarks.

2 RELATED WORKS

Multimodal Direct Preference Optimization. DPO (Rafailov et al., 2023) has become a widely
adopted method for aligning LLMs with human preferences due to its simplicity and stability. How-
ever, when extended to multimodal scenarios, especially for hallucination-prone tasks, standard
DPO often fails to effectively incorporate visual signals, leading models to overfit textual biases and
ignore image-grounded constraints. To mitigate this, recent works have adapted DPO for multimodal
hallucination reduction by incorporating visual preference supervision. mDPO (Wang et al., 2024a)
introduces conditional preference learning and reward anchoring, using lightweight perturbations
(e.g., cropping, diffusion) to construct visual negatives. CHiP (Fu et al., 2025) further complements
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this with hierarchical textual supervision and a visual contrastive loss to better align fine-grained text
and image semantics. While both methods demonstrate notable gains on hallucination benchmarks,
they rely on limited forms of visual augmentation, often constrained to local perturbations with nar-
row semantic variation. Other approaches, such as S-VCO (Wu et al., 2025) and Re-Align (Xing
et al., 2025), explore counterfactual or retrieval-based visual negative generation, but at the cost of
high computation and limited scalability. In this work, we follow the hallucination-centric prefer-
ence optimization paradigm initiated by mDPO, and propose a scalable framework for generating
informative visual negatives tailored for multimodal preference learning.

Multi-negative Preference Optimization. Recent works in textual and recommendation do-
mains (Amini et al., 2024; Shi et al., 2024; Baruch et al.) have extended DPO to multi-negative
settings, ranking positives above multiple negatives to enhance robustness. For example, Softmax-
DPO (Chen et al., 2024a) and DMPO (Shi et al., 2024) adopt soft ranking or Plackett–Luce objec-
tives to reduce noise sensitivity. However, such techniques remain underexplored in vision-language
models, where negatives must capture subtle cross-modal semantic shifts. Inspired by findings in
attribute-based recognition (Yan et al., 2023; Wang et al., 2024b) showing that compact, curated
subsets can match large noisy sets, we adapt this insight to multimodal preference learning. Our
framework uses a sparse autoencoder in CLIP space to select semantically diverse negatives, en-
abling importance-weighted ranking over multiple contrastive examples and capturing fine-grained
failure modes more effectively.

3 PRELIMINARIES

3.1 MULTIMODAL DIRECT PREFERENCE OPTIMIZATION

DPO (Rafailov et al., 2023) provides a principled way to align a learned policy with human pref-
erence judgments without explicitly modeling rewards. In the RLHF framework, solving for the
optimal policy π∗ under a fixed reference policy πref yields a latent reward function

r(x, y) = β log
π∗(y | x)
πref(y | x)

+ Z(x), (1)

where β scales the strength of alignment and Z(x) is a prompt-dependent normalizer. Substituting
this into the Bradley–Terry–Luce model and dropping Z(x) gives a simple training objective for a
parametric policy πθ,

LDPO(θ) = −E(x,yp,yn)∼D

[
log σ

(
β log

πθ(yp|x)
πref (yp|x) − β log πθ(yn|x)

πref (yn|x)
)]
. (2)

Recent work extends DPO to vision-language models (VLMs) by incorporating visual preferences.
Let x denote the multimodal prompt, mp a preferred image aligned with textual response yp, and
mn a rejected image. The multimodal reward r(m,x, y) now depends on visual grounding, with
preferences modeled as,

p∗(yp ≻ yn | m,x) = σ
(
r(m,x, yp)− r(m,x, yn)

)
.

To ensure a fair comparison across images, we hold yp fixed and vary only the image input, the
multimodal DPO loss (Wang et al., 2024a; Fu et al., 2025; Wu et al., 2025) focuses on visual dis-
crimination,

LDPOimg
(θ) = −E(mp,mn,x,yp)∼D

[
log σ

(
β log

πθ(yp|mp,x)
πref (yp|mp,x)

− β log
πθ(yp|mn,x)
πref (yp|mn,x)

)]
. (3)

This formulation supports joint optimization over visual and textual inputs, enabling the policy to
associate preferred images with relevant multimodal features.

3.2 MULTI-NEGATIVE PREFERENCE OPTIMIZATION

Multi-negative preference optimization (Chen et al., 2024a) extends the Direct Preference Optimiza-
tion approach (Rafailov et al., 2023), enabling language models to be trained against several negative
preferences rather than just one. Instead of using the Bradley–Terry formulation for single pairwise
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comparisons, this method adopts the Plackett–Luce model (Plackett, 1975; Luce et al., 1959) to
score a target choice in relation to an entire set of inferior alternatives.

Given a prompt x, a preferred response yp, and a set of N non-preferred responses Yn = {yin}Ni=1,
the Plackett–Luce probability that yp is ranked above all yin is

p∗(yp ≻ Yn | x) =
exp
(
r(x, yp)

)
exp
(
r(x, yp)

)
+
∑N

i=1 exp
(
r(x, yin)

) , (4)

where r(x, y) is the latent reward function. Substituting

r(x, y) = β log
πθ(y | x)
πref(y | x)

+ Z(x)

and noting that Z(x) cancels in the ratio gives

p∗(yp ≻ Yn | x) =
1

1 +
∑N

i=1 exp
(
β∆i

) , ∆i = log
πθ(y

i
n | x)

πref(yin | x)
− log

πθ(yp | x)
πref(yp | x)

.

Hence the multi-negative DPO training objective becomes

LMN-DPO(θ) = −E(x,yp,Yn)∼D

[
log σ

(
− log

N∑
i=1

exp
(
β∆i

))]
. (5)

Notably, when N = 1, LMN-DPO in equation 5 reduces exactly to the single-negative DPO loss.

4 FRAMEWORK

We propose MISP-DPO, a framework that address the limitations of single-negative supervision by
introducing multi-negative learning through two core components: (1) a diverse negative sampling
strategy using sparse autoencoders to identify semantically meaningful deviations, and (2) a general-
ized Plackett-Luce ranking objective that integrates multiple negatives to promote robust alignment.
An overview of the framework is shown in Figure 1.

4.1 MULTI-NEGATIVE OBJECTIVES

Due to the limitations of single-negative supervision and the inherently multi-faceted nature of visual
errors, we extend multimodal DPO to a multi-negative preference optimization setting. Let πθ

denote the VLM policy to be optimized. Each training instance consists of a multimodal prompt x, a
preferred image mp paired with an aligned textual response yp, and a set of N negative images Sn =
{mi

n}Ni=1 from open-domain sources. Following the Plackett-Luce formulation from Eq. equation 4,
we adapt equation 5 to visual preferences,

Limg(θ;Sn) = log σ

(
− log

∑
i∈Sn

exp

(
β log

πθ(yp | x,mi
n)

πref(yp | x,mi
n)
− β log

πθ(yp | x,mp)

πref(yp | x,mp)

))
(6)

This extends Eq. equation 3 to multiple negatives through the softmax aggregation and encourages
the model to assign higher preference scores to the correct image mp compared to all negative
images in Sn, thereby promoting more robust visual grounding.

Lemma 4.1 (Gradient Decomposition) Defining the preference advantage of each negative image
and the preference distribution as

ai = β

(
log

πθ(yp | x,mi
n)

πref(yp | x,mi
n)
− log

πθ(yp | x,mp)

πref(yp | x,mp)

)
, pθ(m

i
n | x,mp, yp) =

exp(ai)∑N
j=1 exp(aj)

.

Then the gradient of equation 6 decomposes as,

∇θLimg(θ;Sn) = βσ
(
log

N∑
i=1

exp(ai)
) N∑

i=1

pθ(m
i
n | x,mp, yp)∆θ(m

i
n,mp | x, yp), (7)

where ∆θ(m
i
n,mp | x, yp) = ∇θ log πθ(yp | x,mi

n)−∇θ log πθ(yp | x,mp).

4
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This result shows that the gradient is a weighted combination of correction signals across the image
space, offering interpretability in terms of how the model adjusts its predictions in response to each
visual discrepancy.

Although Eq.( 6) and its gradient give an unbiased update, they require drawing a large set of nega-
tives from the true pθ(mi

n | x,mp, yp) and computing S({mi
n}). In realistic image domains, neither

step is tractable. To alleviate this, we introduce a learnable distribution qϕ(mn | x,mp, yp) to sam-
ple a small candidate pool S̃n. Rewriting the gradient illustrated in Lemma 4.1 as an expectation
under qϕ gives a importance-sampling estimator,

∇θLimg(θ; S̃n) = βσ
(
log

∑
i∈S̃n

exp(ai)
) ∑

i∈S̃n

exp(ai)

qϕ(mi
n | x,mp, yp)

∆θ(m
i
n,mp | x, yp). (8)

To encourage joint reasoning across modalities, we extend our framework by incorporating textual
preference supervision. We follow recent multimodal DPO methods and replace traditional text-
only preferences with image-grounded negative responses yn for the same prompt and image mp.
The corresponding DPO loss is,

Ltext(θ; S̃n) = log σ
(
β log

πθ(yp | x,mp)

πref(yp | x,mp)
− β log

πθ(yn | x,mp)

πref(yn | x,mp)

)
. (9)

Our final loss combines both visual and textual preference signals,

L(θ; S̃n) = Limg(θ; S̃n) + λLtext(θ; S̃n). (10)

where λ balances the contributions of image-based and text-based supervision. This unified for-
mulation supports joint alignment across modalities, improving robustness and alignment quality in
VLMs.

4.2 IMPORTANCE SAMPLING VIA SPARSE AUTOENCODER

To address the limitations of existing methods that rely on simplistic, one-dimensional negatives, we
employ SAEs to disentangle and surface semantically meaningful variations in the visual space. By
providing a structured and interpretable latent representation, SAEs enable principled importance
sampling over diverse negative examples—prioritizing those that capture distinct failure modes and
are most informative for effective preference learning.

Embedding and Difference Vectors. Let T = {(mp, x)} be the training set of positive im-
age–prompt pairs. We use CLIP’s image and text encoders, fv and ft, to obtain d-dimensional
embeddings hv = fv(mp) and ht = ft(x), then fuse them via outer product and vectorization
e = vec

(
hv × h⊤

t

)
∈ Rd2

. For each negative candidate mi
n, we form the difference vector

di = e(mp, x) − e(mi
n, x).

Sparse Autoencoder Training. We train an SAE with encoder E and decoder D to decompose di
into sparse latent factors. The loss combines reconstruction fidelity and activation sparsity,

LSAE =
1

|T |N
∑

(mp,x)∈T

N∑
i=1

∥∥di −D(E(di))∥∥22 + γ

H∑
j=1

KL
(
ρ
∥∥ρ̂j), (11)

whereρ̂j is the average activation of hidden unit j, ρ ∈ (0, 1) is the target average activation, and γ
balances reconstruction against sparsity.

Diverse Negative Selection. We score each candidate mi
n by,

si =

∥∥di −D(E(di))∥∥22
maxj ℓj

+

∥∥E(di)∥∥1
maxj vj

, (12)

where ℓj and vj are the reconstruction error and activation magnitude across all candidates. To
choose the final top-K negatives S̃n, we run a greedy selection that maximizes coverage of distinct
error types while emphasizing hard negatives. We illustrate this algorithm in detail in Algorithm 1.

The selected set S̃n is then used in the importance-sampling gradient estimator of Eq. equation 8.
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Algorithm 1 Greedy Diversity-Promoting Selection

1: Input: Difference vectors {di}Ni=1, scores {si}, encoder E , selection size K

2: S̃n ← ∅
3: while |S̃n| < K do
4: i∗ ← argmaxi/∈S̃n

(
si + β minj∈S̃n

(1− cos(E(di), E(dj)))
)

5: S̃n ← S̃n ∪ {i∗}
6: end while
7: Output: selected negatives set S̃n

5 EXPERIMENT

5.1 EXPERIMENTAL SETTINGS

Models. We apply MISP-DPO to three widely-used multimodal LLMs: LLaVA-1.5-7B-HF,
Qwen2.5-VL-7B, and Qwen2.5-VL-3B. These models are chosen due to their open availability,
competitive performance, and diverse architectural designs (Chen et al., 2024b; Zhang et al., 2024).
LLaVA-1.5-7B-HF (Liu et al., 2023) integrates CLIP as the vision encoder with Vicuna-1.5-7B as
the language backbone. Qwen2.5-VL-7B (Bai et al., 2025) uses a proprietary vision module and
the strong Qwen2.5-7B language model. Qwen2.5-VL-3B is a lightweight 3B variant of the same
architecture, providing a better balance between efficiency and capability.

Training data. We choose RLHF-V-Dataset (Yu et al., 2024) as our training dataset. It contains
more than 5K samples, each with an image and a pair of text responses indicating preference. RLHF-
V provides fine-grained, segment-level human feedback on diverse vision-language instructions,
which has been shown to largely reduce hallucination while preserving informativeness. We treat
the paired image as the positive sample and select 3 negative images per sample from COCO training
dataset (Lin et al., 2014) using our importance sampling method, enabling effective training in our
MISP-DPO framework.

Baselines. We compare MISP-DPO against five baselines: (1) the pretrained model without pref-
erence tuning, (2) standard DPO (Rafailov et al., 2023), which uses only a single text preference
without any image-based supervision, (3) mDPO (Wang et al., 2024a) and (4) CHiP (Fu et al.,
2025), both of which incorporate image preferences but rely on a single negative image per com-
parison, and (5) a variant of our framework that uses multi-negative image preference optimization
with negatives randomly sampled from the COCO dataset. All methods are trained under the same
settings for a fair comparison.

Evaluation Benchmarks. We evaluate MISP-DPO and all baselines across five benchmarks span-
ning hallucination detection and vision-centric reasoning. MMHal-Bench(Sun et al., 2023) is a
hallucination-focused VQA benchmark covering 8 question types and 12 object categories. Hal-
lusionBench(Guan et al., 2024) measures visual and factual hallucinations; we report all-answer
accuracy (aA), figure-based accuracy (fA), and question-type accuracy (qA). POPE(Li et al., 2023b)
evaluates object hallucination in VLMs via Yes/No probing under random, popular, and adversarial
object settings. WildVision(Lu et al., 2024) evaluates real-world user preference alignment with 500
curated human-model interaction samples; we report reward score and win rate. MMVP(Tong et al.,
2024) assesses fine-grained visual reasoning using CLIP-blind image pairs, with accuracy reported
over 135 zero-shot questions across 9 pattern types. Except for MMHal-Bench, all evaluations
are conducted using VLMEvalKit(Duan et al., 2024), an open-source evaluation toolkit for vision-
language models. For MMHal-Bench, we use GPT-4.1-mini(Achiam et al., 2023) as the evaluator
and report overall response quality and hallucination rate.

Implementation Details. For training the Sparse Autoencoder, we set the latent dimension to 128
and the sparsity weight γ to 1, balancing reconstruction fidelity with latent sparsity. Following
prior work on multi-negative preference optimization (Chen et al., 2024a), we select three negative
images per instance. For multimodal DPO training, we set the supervision balance parameter λ
to 1 to equally weight image-based and text-based preferences. All models are fine-tuned using 2
NVIDIA A100 GPUs, with a per-device batch size of 2, gradient accumulation steps of 8 (yielding
an effective batch size of 32), and a learning rate of 10−5. The preference optimization coefficient β
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Hallucination Vision-Centric Total

Benchmarks MMHalBench HallusionBench POPE WildVision MMVP avg impr.
Score (↑) HalRate (↓) aA (↑) fA (↑) qA (↑) Acc. (↑) Reward (↑) WinRate (↑) Acc. (↑) over BASE

lla
va

-1
.5

-7
b-

hf
Base 2.78 51.04 47.73 17.63 12.30 84.37 -55.7 17.0 60.67 0%
DPO 3.29 37.50 55.62 22.83 22.63 83.02 -52.7 18.4 62.66 +21.13%
mDPO 2.99 49.81 47.32 20.52 13.19 83.25 -62.1 14.6 58.33 +0.22%
CHiP 3.13 34.04 51.95 17.92 19.78 82.56 -68.4 12.2 52.33 +5.59%
Random 3.42 36.46 55.94 23.69 22.63 82.61 -51.3 18.3 60.33 +22.23%
MISP-DPO 3.51 32.29 57.52 25.43 24.83 83.94 -46.4 20.6 63.00 +30.09%

Q
w

en
2.

5-
V

L
-7

B Base 4.61 18.09 70.45 43.06 45.27 87.65 33.5 69.2 77.67 0%
DPO 4.92 11.46 69.92 42.48 43.51 87.46 32.8 68.6 78.00 +3.85%
mDPO 5.01 14.89 67.40 41.33 42.20 87.02 28.5 66.2 76.33 -1.16%
CHiP 5.02 13.83 66.14 39.02 40.88 88.18 28.5 66.4 77.00 -1.33%
Random 4.75 16.67 70.24 42.48 43.95 87.60 30.7 67.8 78.33 -0.36%
MISP-DPO 5.05 11.46 71.24 43.77 45.61 88.66 32.4 68.4 79.00 +5.35%

Q
w

en
2.

5-
V

L
-3

B Base 4.20 22.34 64.67 37.57 36.70 87.48 -0.1 46.6 70.60 0%
DPO 4.50 18.75 65.19 36.41 37.14 87.42 7.5 51.2 71.33 +13.12%
mDPO 4.47 21.28 62.88 35.84 37.14 87.65 7.2 50.8 69.33 +10.51%
CHiP 4.51 15.96 62.14 36.13 34.29 87.30 6.3 51.0 70.33 +11.81%
Random 4.27 16.67 64.98 38.44 37.36 87.52 3.6 48.6 74.25 +8.57%
MISP-DPO 4.61 13.54 65.51 38.44 38.02 87.77 8.6 52.4 72.00 +19.89%

Table 1: Comparison of MISP-DPO against baseline methods across five vision–language bench-
marks and three model backbones. The benchmarks cover hallucination detection and vision-centric
reasoning. Average improvement over BASE is reported. ↑: higher is better; ↓: lower is better.

is set to 0.5. Following prior work on mDPO, we adopt LoRA for parameter-efficient tuning, with
a rank of 64 and scaling factor α = 128. For baseline methods, we strictly follow their original
settings: mDPO is trained for 3 epochs with the same learning rate (1e-5), β = 0.1; CHiP is trained
for 3 epochs with a batch size of 32, a learning rate of 5e-7, β = 0.5, and full-parameter finetuning.

5.2 OVERALL PERFORMANCE IMPROVEMENT

Table 1 shows the performance of MISP-DPO and baselines across five representative benchmarks,
grouped into two categories: hallucination detection (MMHalBench, HallusionBench, POPE) and
vision-centric reasoning (WildVision, MMVP). Our proposed MISP-DPO consistently achieves su-
perior results over all evaluation domains and model backbones.

The largest gains appear on hallucination benchmarks. MISP-DPO substantially reduces hallucina-
tion rates on MMHalBench (e.g., 32.29%, 11.46%, and 13.54% across different backbones) while
also achieving the highest accuracy across all HallusionBench metrics. POPE further confirms these
advantages. These improvements stem from the combination of diverse negative sampling, which
exposes the model to varied error types such as object mismatches and attribute distortions, and
importance sampling, which prioritizes hard negatives with high reconstruction errors from SAE,
leading to stronger visual grounding. On vision-centric reasoning tasks, MISP-DPO also provides
consistent gains. For example, it achieves the best reward (+8.6) and win rate (52.4) on WildVi-
sion for Qwen2.5-VL-3B, while also outperforming baselines on MMVP across different model
sizes. These results suggest that our method not only suppresses hallucinations but also enhances
the model’s ability to generate fine-grained, visually aligned responses.

We also conduct experiments under different β values on MMHalBench to balance reward learning
and regularization. Figure 4 reveals performance peaks at β ranging from 0.45 to 0.75, with degra-
dation at extremes β = 0.1/1.0. We choose β = 0.5 for optimal trade-off between hallucination
control and response quality, as it maximizes accuracy while minimizing hallucination rates across
all backbones.

5.3 EFFECTIVENESS OF IMPORTANCE SAMPLING

We analyze the impact of our importance sampling strategy using t-SNE visualizations of high-
quality negative images, shown in Figure 2. The left plot displays negatives selected by our SAE-
guided strategy, while the middle shows randomly sampled ones. Importance-sampled negatives
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Figure 2: t-SNE visualizations and benchmark results for negative sampling. Left: importance-
sampled negatives selected using SAE scoring exhibit broad semantic dispersion across three selec-
tions. Middle: randomly sampled negatives form tight, low-diversity clusters. Right: performance
across benchmarks with different numbers of negatives selected by MISP-DPO.

Figure 3: Negative image retrieval using our MISP-DPO method. Each row shows a chosen image
and three negatives; highlighted phrases in red, blue and green mark mismatches with negatives.
are well-dispersed across the embedding space, indicating high semantic diversity, whereas random
negatives cluster tightly, indicating redundancy and limited coverage. This distribution reveals that
our method captures heterogeneous error modes rather than collapsing onto a narrow, repetitive
subset of examples, thereby providing more informative supervision.

As illustrated in Figure 3, our selected negatives for the fruit cake image exhibit clear semantic
deviations: one introduces different types of cakes with distinct decorations, while others include
unrelated food items such as sandwiches, or scenes where the cake is present but not the main
visual focus, thereby weakening semantic alignment. Similarly, in the workspace scene, negative
examples capture meaningful variations such as differences in desk arrangement and surrounding
objects—including notebooks and cups—each impacting multimodal alignment differently. These
examples highlight how our sampling method uncovers diverse error modes, encouraging the model
to learn more robust visual distinctions, strengthening training signals, and improving generalization
beyond narrow, one-dimensional deviations.

5.4 COMPARISON OF NEGATIVE SAMPLING STRATEGIES

We evaluate five negative sampling strategies that share the same model architecture and loss for-
mulation but differ in how negative images are constructed: (1) mDPO, which relies on a single
diffusion-generated negative; (2) diffusion, which combines one diffusion negative with two neg-
atives selected by our method; (3) crop+diffusion, which mixes one cropped, one diffusion, and
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Model Benchmark MMHalBench HallusionBench POPE WildVision MMVP

Score (↑) HalRate (↓) aA (↑) fA (↑) qA (↑) Acc. (↑) Reward (↑) WinRate (↑) Acc. (↑)

Qwen2.5-7B

mdpo 5.01 14.89 67.40 41.33 42.20 87.02 28.5 66.2 76.33
diffusion 5.12 12.50 69.50 43.64 43.95 87.52 30.7 66.4 78.00
crop+diffusion 4.92 13.54 70.35 43.35 44.61 87.35 30.7 66.4 78.33
similarity 5.00 12.50 69.82 42.77 44.17 87.24 30.1 66.2 77.67
MISP-DPO 5.05 11.46 71.24 43.77 45.61 88.66 32.4 68.4 79.00

Qwen2.5-3B

mDPO 4.47 21.28 62.88 35.84 37.14 87.65 7.2 50.8 69.33
diffusion 4.56 14.58 65.19 39.31 37.14 87.35 8.0 52.4 71.33
crop+diffusion 4.39 17.70 64.03 38.44 36.48 87.20 5.3 49.8 71.33
similarity 4.20 19.79 65.08 39.01 36.92 87.62 4.7 49.4 70.30
MISP-DPO 4.61 13.54 65.51 38.44 38.02 87.77 8.6 52.4 72.00

Table 2: Comparison of different negative sampling strategies across five benchmarks. All variants
share the same model and loss design, differing only in how negative images are constructed.

one MISP-DPO-selected negative; (4) similarity, where three negatives are retrieved based on sim-
ilarity to the positive image; and (5) our model. As shown in Table 2, mDPO yields the weakest
performance, highlighting the limitations of single-negative supervision. Among multi-negative
variants, the diffusion strategy outperforms crop+diffusion, suggesting that a higher proportion of
semantically diverse negatives from our method improves supervision quality. The similarity variant
performs worse than diffusion, underscoring that naive retrieval of visually similar negatives does
not provide the challenging guidance needed. In contrast, MISP-DPO consistently achieves the best
scores across all benchmarks, validating the effectiveness of structured multi-negative selection via
SAE-guided importance sampling. Additional results are reported in Table 3 in the appendix.

Beyond the choice of sampling strategy, we further explore the number of negatives required. Fig-
ure 2 (right) shows performance across HallusionBench, MMVP, and MMHalBench with varying
numbers of negatives. One or two negatives are insufficient to provide high-quality supervision.
Performance peaks at three negatives, while increasing beyond this offers no further benefit. For
HallusionBench, adding five negatives even reduces performance, likely due to noise introduced by
redundant or low-quality samples. Together, these results demonstrate that three carefully chosen
negatives strike the best balance between informativeness and robustness.

5.5 HALLUCINATION REDUCTION WITH MISP-DPO.

Figure 5 in the Appendix presents qualitative comparisons highlighting the impact of multi-negative
supervision. Baseline methods such as DPO and CHiP frequently introduce hallucinated details
(e.g., incorrect objects, colors, or spatial relations), while MISP-DPO generates more faithful and
grounded descriptions. For instance, in the first example, only MISP-DPO correctly identifies that
the image lacks sand and accurately describes the bird. These results illustrate that incorporating
diverse negatives enables the model to better distinguish relevant from spurious cues, improving
factual accuracy in vision-language alignment.

6 CONCLUSION

We present MISP-DPO, a novel framework that introduces multi-negative, semantically diverse su-
pervision into multimodal Direct Preference Optimization. By leveraging CLIP-based embeddings
and a sparse autoencoder, our method efficiently selects image-side negatives that vary across multi-
ple semantic facets and reflect diverse failure modes. These negatives are integrated into a Plackett-
Luce-style ranking objective with importance sampling, enabling the model to learn from richer and
more structured supervision. The method remains efficient and scalable for real-world multimodal
applications. Extensive experiments across five benchmarks demonstrate that MISP-DPO consis-
tently outperforms strong baselines in hallucination reduction and visual grounding. While our
evaluations rely on GPT-based scoring—which may introduce bias or inconsistency when assessing
fine-grained alignment—our findings validate the effectiveness of semantic-aware, multi-negative
sampling for robust multimodal alignment and open up promising directions for scalable and inter-
pretable preference-based learning.
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A APPENDIX

A.1 EFFECT OF β ON HALLUCINATION AND QUALITY

Figure 4 illustrates the impact of different β values on both response quality (left) and hallucination
rate (right) on MMHalBench. We observe that the model performs best when β lies in the range of
0.45 to 0.75, achieving a good balance between response quality and hallucination suppression. To
ensure both accuracy and stability, we set β = 0.5 as the default value in all main experiments.

A.2 EXAMPLES OF HALLUCINATION REDUCTION WITH MISP-DPO

To illustrate the impact of our approach, Figure 5 presents qualitative comparisons across three
representative prompts, highlighting the improvements brought by MISP-DPO over baselines in-
cluding LLaVA, DPO, and CHiP. MISP-DPO demonstrates a stronger ability to avoid hallucinations
and produce factually accurate descriptions grounded in visual evidence. In the first example, it cor-
rectly identifies the absence of sand and avoids misidentifying the bird species. In the second case, it
faithfully describes the structure and positioning of the gloves despite occlusion. In the final exam-
ple, it provides a precise spatial interpretation of the two watches without fabricating brand-specific
details. These results suggest that our multi-negative supervision strategy improves the model’s sen-
sitivity to fine-grained semantic cues and its ability to reject spurious correlations and hallucinated
attributes, leading to more factually consistent vision-language generation.
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Figure 4: Performance comparison of Score and Hallucination Rate across different β values for on
MMHalBench.

A.3 UNBIASEDNESS AND FINITE-SAMPLE VARIANCE BOUNDS FOR IMPORTANCE
SAMPLING GRADIENT

For convenience, we define the inner gradient term in Lemma 4.1,

g(θ) :=

N∑
i=1

pθ(m
i
n | x,mp, yp)∆θ(m

i
n,mp | x, yp). (13)

Our importance-sampling scheme (Sec. 4.1) introduces a proposal distribution qϕ(mn | x,mp, yp)

induced by the CLIP+SAE pipeline, and samples a small candidate pool S̃n = {mk
n}Kk=1 from qϕ.

We then approximate the exact gradient using an importance-weighted estimator.

A.3.1 UNBIASEDNESS OF THE IS GRADIENT

Let the importance weight be

w(mn) =
pθ(mn | x,mp, yp)

qϕ(mn | x,mp, yp)
.

13
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Lemma A.1 (Unbiased IS gradient) Assume that qϕ(mn | x,mp, yp) > 0 whenever pθ(mn |
x,mp, yp) > 0. Define the Monte Carlo estimator of g(θ) as,

ĝk(θ) :=
1

K

K∑
k=1

w
(
mk

n

)
∆θ

(
mk

n,mp | x, yp
)
, mk

n ∼ qϕ(· | x,mp, yp).

Then ĝk(θ) is an unbiased estimator of g(θ),

E{mk
n}∼qϕ

[
ĝk(θ)

]
= g(θ). (14)

Proof A.1 Using linearity of expectation and the definition of importance weights,

E{mk
n}∼qϕ

[
ĝk(θ)

]
= Em∼qϕ

[
w(mn)∆θ(mn,mp | x, yp)

]
=

N∑
i=1

qϕ(m
i
n | x,mp, yp)

pθ(m
i
n | x,mp, yp)

qϕ(mi
n | x,mp, yp)

∆θ(m
i
n,mp | x, yp)

=

N∑
i=1

pθ(m
i
n | x,mp, yp)∆θ(m

i
n,mp | x, yp)

= g(θ),

which proves the claim.

Thus, the IS estimator recovers the exact gradient term in expectation, and hence the overall gradient
in Eq. 7,

∇θLimg(θ;Sn) = β σ
(
log

N∑
i=1

exp(ai)
)
g(θ), (15)

admits an unbiased importance-sampling estimator by replacing g(θ) with ĝk(θ).

A.3.2 VARIANCE BOUND UNDER FINITE NEGATIVE SAMPLING

We next calculate the variance of ĝk(θ) when only a finite number K of negatives are sampled.

Define the maximum importance weight,

∥w∥∞ := max
mn∈Sn

pθ(mn | x,mp, yp)

qϕ(mn | x,mp, yp)
.

Assume that the gradient differences are bounded, which in practice is achieved by gradient clipping
[4-6]. There exists L <∞ such that,∥∥∆θ(mn,mp | x, yp)

∥∥
2
≤ L ∀mn ∈ Sn. (16)

Lemma A.2 (Variance bound) Under the assumptions above, the mean-square error of the IS gra-
dient estimator isbounded as,

E
[
∥ĝk(θ)− g(θ)∥22

]
≤ L2

K
∥w∥∞.

Consequently, the expected absolute deviation satisfies,

E
[
∥ĝk(θ)− g(θ)∥2

]
≤ L

√
∥w∥∞
K

. (17)

Proof A.2 Because the K samples are i.i.d.,

Var
(
ĝk(θ)

)
=

1

K
Var
(
w(mn)∆θ(mn,mp | x, yp)

)
.
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Using the bound
∥∥∆θ(mn,mp | x, yp)

∥∥
2
≤ L, we obtain

E
[
∥ĝk(θ)− g(θ)∥22

]
≤ 1

K
Emn∼qϕ

[
∥w(mn)∆θ(mn,mp | x, yp)∥22

]
≤ L2

K
Emn∼qϕ

[
w(mn)

2
]
.

Moreover,

Emn∼qϕ

[
w(mn)

2
]
≤ ∥w∥∞ Em∼qϕ [w(mn)]

= ∥w∥∞
∑
mn

qϕ(mn)
pθ(mn)

qϕ(mn)
= ∥w∥∞

∑
mn

pθ(mn) = ∥w∥∞.
(18)

Combining these yields the desired variance bound. Applying Cauchy–Schwarz gives the final vari-
ance bound.

In our setting, the SAE-guided sampler is explicitly designed to approximate the target distribution
with diverse but not overly peaky weights, which empirically keeps ∥w∥∞ small and leads to stable
optimization.

A.4 NEGATIVE SAMPLING STRATEGIES ON LLAVA-1.5-7B MODEL

Table 3 shows that LLaVA-1.5-7B follows the same trend as Qwen2.5. The single-negative baseline
(mDPO) performs the weakest, while adding more negatives through diffusion or crop+diffusion
gives only moderate improvements.

In contrast, MISP-DPO consistently achieves the best results, notably lowering hallucination rate
and improving accuracy across HallusionBench, POPE, WildVision, and MMVP. This confirms
that our SAE-guided multi-negative sampling generalizes across model families, providing stronger
guidance even for smaller-scale vision–language models.

Model Benchmark MMHalBench HallusionBench POPE WildVision MMVP

Score (↑) HalRate (↓) aA (↑) fA (↑) qA (↑) Acc. (↑) Reward (↑) WinRate (↑) Acc. (↑)

llava-1.5-7b
mDPO 2.99 49.81 47.32 20.52 13.19 83.25 -62.1 14.6 58.33
diffusion 3.49 33.33 52.57 21.38 18.02 83.25 –53.0 18.8 61.33
crop+diffusion 3.44 35.42 53.63 22.54 19.78 83.80 -50.5 20.0 61.00
MISP-DPO 3.51 32.29 57.52 25.43 24.83 83.94 -46.4 20.6 63.00

Table 3: llava performance
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What is a vicuna
standing in the
sand looking at?

LLaVA A vicuna standing in the sand is looking at a painting of a bird.

DPO A vicuna standing in the sand is not looking at anything. In the image, a
black and white bird with a yellow and red beak is standing in front of a
green leafy plant. The bird is not looking at the plant, but rather at the
viewer.

CHiP A vicuna standing in the sand is looking at a painting of a bird.

MISP-DPO
(Ours)

In the image, there is no sand or any other background visible. The painting
features a colorful bird with a large beak. It is a black and white bird with a
yellow beak, not a vicuna. The bird is surrounded by green and black brush,
and the painting is described as a painting of a bird with a yellow beak. The
bird is not standing in the sand, and the image does not provide any context
or information about the bird looking at something.

Describe the hands
wearing the gloves.

LLaVA The hands wearing the gloves are large, and the gloves are black in color.

DPO The hands wearing the gloves are black and have a logo on the palm. The
gloves are made of a black material, and the hands are positioned in a way
that they are facing upwards.

CHiP In the image, the hands wearing the gloves are black in color.

MISP-DPO
(Ours)

The image shows two black gloves, one of which has a logo on the back.
They are positioned in such a way that they appear to be two hands. The
gloves are black and have a close-up view, making it difficult to discern
any other details. The gloves are not attached to any hands, but they are
positioned in a way that they appear to be hands.

Describe how the
two watches are
placed.

LLaVA In the image, there are two watches placed next to each other. One watch
is positioned on top of the other, with the top watch being a G-Shock watch
and the bottom watch being a Garmin watch. The two watches are placed
side by side, showcasing their differences in design and features.

DPO The watch with the red band is positioned on top of the watch with the
black band.The watch with the red band is on the left side of the image,
while the watch with the black band is on the left side of the image as well.

CHiP In the image, one watch is in the foreground, and the other is in the back-
ground. The foreground one is a close-up while the other is blurry.

MISP-DPO
(Ours)

The two watches are placed side by side, with the Garmin watch on the
left and the other watch on the right. The Garmin watch has a screen
displaying a map, while the other watch has a red band. The two watches
are positioned in such a way that the Garmin watch’s screen is visible, and
the other watch’s red band is also visible.

Figure 5: Comparison of responses from LLaVA model training through different methods: pre-
trained, DPO, CHiP, and MISP-DPO. Blue text indicates faithful descriptions; red text marks hallu-
cinated or unsupported content.
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