Under review as a conference paper at ICLR 2026

FGECKO: A SIMULATION ENVIRONMENT TO GROUND
AGENT TOOL CALLS WITH STATEFUL FEEDBACK FOR

REFINEMENT

Anonymous authors
Paper under double-blind review

ABSTRACT

The ability to use tools is fundamental to large language model (LLM) agents.
However, when solving complex tasks, current LLMs are prone to incorrect tool
selection and invalid tool-call arguments. Although letting LLMs iteratively refine
the tool-call sequence using execution results from real tools can help, repeated
testing on real tools can be expensive and lead to unintended side effects. To im-
prove LLM tool calls while addressing the issues caused by using real tools for
refinement, we introduce Gecko[ﬂ an environment that simulates tool responses
using a combination of rules and LLMs. Specifically, Gecko checks the valid-
ity of tool calls including input arguments and tool names, synthesizes reason-
able responses that adhere to the output schema, and assesses whether all task
objectives have been achieved. Such feedback provided by Gecko allows LLMs
to refine their tool calls, forming a simple yet effective test-time scaling method
named GATS. In addition, we design an automated API schema converter so that
Gecko can quickly integrate and simulate a large number of tools. On BFCL and
72-bench, our test-time scaling method GATS enabled by Gecko consistently im-
proves tool calling performance of existing LLMs including GPT-40 and GPT-5
(Fig. [1)) and yields new state of the art. We further discuss working mechanisms
of our method and share rosy future possibilities.

1 INTRODUCTION

Building agent systems using LLMs to solve complex tasks has become increasingly popular. In
this mission, it is critical to let LLMs be able to use external tools, such as get_weather

GPT-5

GPT-4.1-mini

Deepseek-V3

Qwen-3-14B

Gemini-2.5-pro

---- Function Call GATS

Figure 1: GATS consistently improves the perfor-
mance of different LLMs on BFCL.

and fetch_ stock_data. While there ex-
ist strong LLMs such as GPT-40|OpenAl et al.
(2024), Qwen3 [Yang et al.| (2025)), and xLAM-
2 |Prabhakar et al.|(2025)), because of long con-
texts, high task complexity, and rigid tool def-
initions, it is still challenging for these LLMs
to select suitable tools and give accurate argu-
ments [Kate et al.[(2025); [Huang et al.[(2024).

To improve the tool-calling capabilities of
LLMs, some existing methods let LLMs use
real tools and use the execution results as feed-
back to refine LLM instructions [Singh et al.
(2025)); IShi et al.| (2024)); [Kang et al.| (2025);
L1 et al.| (2025). While this strategy improves
tool call accuracy, it is limited because using
real tools can be costly (e.g., RapidAPI charges
a service fee) and may yield undesirable conse-

quences|Li & Fung (2025)). For example, inappropriate execution of Tweet_Post during inference
may leak information irrelevant to the task, even if the post is deleted afterward.

'Gecko comes from keywords agent + feedback + environment.

Under review as a conference paper at ICLR 2026

Task: Move the ‘report.pdf” within Gecko Argument validation feedback:
current working directory to the ‘temp’ > > 'All tool calls are valid.
directory in ‘document’. Make sure to A STl (e s

create the ‘temp’ directory if not exist.

FYI, the current file system: 1. Successfully created ‘temp’ directory.

g Tool calls: 2. Successfully moved ‘report.pdf’.
document 1. mkdir(temp) Task state: Feedback:
 report.pdf 2. mv(report.pdf, temp) root 1. The ‘temp’ folder is in
Available tools: temp ‘document’. [Failed]
1. mv(source, destination): Move a file. A " report.pdf 2 The ‘report.pdf’ is moved
2. mkdir(dir_name): Create a new. document to ‘temp’. [Success]

3. cd(folder): Change the working. > Planning LLM < Working dir: home Conclusion: Failed

Figure 2: Overview of tool call refinement based on feedback from Gecko. The planning LLM
generates tool calls based on a task and available tools. Gecko processes these calls and provides
feedback on argument validation, simulated tool responses, and task state. The three types of feed-
back are used by the planning LLM for iterative refinement.

In this work, we aim to improve the performance of LLME] tool call and avoid using real tools during
test-time refinement. To this end, we introduce Gecko, a comprehensive environment hosting a large
number of simulated tools that produce semantically reasonable outputs and share the same input
and output formats with real tools. As shown in Fig. [2] after receiving a task from user and tool
calls from a planning LLM, Gecko will simulate the execution of the tool calls and provide three
types of feedback. First, Gecko checks whether the input follows predefined formats, e.g., ‘input 2
is invalid because only float numbers are allowed.” This is implemented by a combination of rules
and a helper LLM. Second, Gecko simulates tool responses. To ensure the simulated responses are
semantically suitable and consistent with prior tool calls, we carefully prompt a helper LLM with
the validated tool call, the tool schema, and the current task state. Third, Gecko uses a helper LLM
to estimate the key states that reflect task progress based on the simulated tool responses. A judge
LLM then assesses the inferred task state, determines whether task objectives are met, and provides
task feedback on completion status and any outstanding issues.

Further, the above three types of feedback allow us to naturally design a tool-call refinement method
named GATS (grounding agent test-time scaling). In this method, feedback from Gecko is sent to the
planning LLM to refine the tool calls, which are then fed to Gecko to collect further feedback. This
process iterates until task feedback indicates success or until it exceeds the maximum retry times.
Through GATS, we observe more correct arguments and a more reasonable selection of tools.

Therefore, by grounding agent tools calls in the Gecko virtual environment, we collect useful feed-
back for tool-call refinement while avoiding the cost incurred by real tools.

We perform extensive evaluation on the BFCL benchmark [Patil et al.[(2025)) and 72-bench Barres
et al.|(2025), where Gecko has automatically synthesized 8,578 and 25 tools, respectively. We show
that tool calls generated by many LLMs, such as GPT-40 and GPT-5, can be effectively hosted and
executed in Gecko. As shown in Fig. [T|and Table [3] improvements are consistent across different
agentic LLMs and across both single-turn and multi-turn tasks. For example, the overall perfor-
mance of GPT-4o is improved from 76.93% to 84.62% on BFCL. We further discuss new tasks
and possibilities that can be enabled through the proposed environment. In summary, this paper
discusses the following main points.

* We introduce Gecko, a simulation environment which allows virtual tool use and gives informative
feedback. Gecko successfully grounds tool calls generated by existing LLM:s.

* By providing tool use feedback to the planning LLM, Gecko naturally allows for GATS, a test-
time scaling that refines the tool calls during inference.

» We show our method brings consistent improvement to existing LLMs on BFCL and 72-bench.

* We point out exciting insights and future directions made possible by Gecko.

2This paper use ‘planning LLM’ or ‘agentic LLM’ to describe such LLMs.

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Improving LLMs of their intrinsic tool-calling abilities. ToolAlpaca|Tang et al. (2023)) fine-tunes
LLMs on tool-use data generated by strong teacher models like GPT-4. ToolLLM |Qin et al.| (2023)
collects a large number of real-world APIs and uses an automatic pipeline to construct instruction-
tuning data for tool-use fine-tuning. APIGen [Liu et al.|(2024b) and ToolACE [Liu et al.| (2024al)
improve the quality of synthetic tool-use data by format checking and semantic verification to im-
prove fine-tuning. These methods merely focus on training data synthesis, while Gecko, due to its
ability in simulating and grounding the tools, offers much higher flexibility. Gecko naturally sup-
ports test-time scaling while previous methods do not. Gecko also has very good potential in training
data synthesis and reinforcement learning (future work, refer to Section [5).

Test-time scaling for agentic tool use. Existing methods use feedback loops or self-reflection
grounded in real tool execution Shi et al.| (2024); |Du et al.| (2024)); |Qiao et al.| (2024); Singh et al.
(2025)); [L1 et al.| (2025)); |Chen et al.|(2025b); |Shi et al.|(2025)); Shinn et al.|(2023)); Zhou et al.| (2025)).
For example, ConAgent Shi et al.| (2024)) iteratively refines tool calls using feedback generated by
an observation LLM from real tool failure messages. TRICE |Qiao et al.|(2024)) combines behavior
cloning with reinforcement learning guided by real tool execution feedback, teaching the model to
refine its tool calls during inference. These methods rely on repeatedly calling real tools, leading to
tool-call costs and potential side effects. In contrast, Gecko removes the need for real tool executions
in test-time scaling. Moreover, while these methods provide feedback on correcting individual failed
tool calls, without maintaining a task state, they are unable to provide task-level feedback.

Simulation environments for agentic tool use. Existing methods either provide fixed, domain-
specific mock tools |Styles et al.| (2024); Liu et al.| (2023); |Chen et al.| (2025a) or simply wrap real
APIs|Qin et al.[(2023)), which has limited general-purpose tool simulation. For example, ToolSand-
box [Lu et al.|(2025) and BFCL |Patil et al| (2025) provide a set of stateful tools whose outputs
depend on history tool executions to simulate multi-turn tasks. 7-bench [Yao et al.| (2024) and T2
bench Barres et al.| (2025) emulate conversations between a user and an agent in airline and retail
scenarios. While these methods provide precise simulation on the designed use cases, they are lim-
ited by human-written tools and datasets and are hard to generalize. Therefore, they could only be
used for agent evaluation rather than to improve LLM performance at test time.

3 THE GECKO SIMULATION ENVIRONMENT

Gecko has five components: (1) an argument validator that checks the syntactic and semantic va-
lidity of tool calls (Section [3.1)); (2) a response generator that synthesizes realistic outputs for val-
idated tool calls (Section [3.2)); (3) a task state estimator that keeps track of the evolving task state
(Section [3.3); (4) a task feedback generator that judges task completion and identifies remaining
objectives (Section ; and (5) an API schema converter that transforms new tools into OpenAPI
3.1 schemas for integration (Section[3.5).

3.1 ARGUMENT VALIDATOR

Checking argument syntactic validity by manually defined rules. Our rules verify the pres-
ence of all the required parameters and reject unsupported ones based on the argument definitions.
Moreover, our rules check the input data types, e.g., integer, string, or boolean. Besides, we ensure
that input parameters are within the predefined range. We also have some other rules, listed in the
Appendix [A.3] Violations of these rules result in error feedback. See examples in Fig. [3{(a).

Checking argument semantic correctness by a helper LLM. ‘Semantic’ means descriptions and
common-sense knowledge about arguments. For example, the helper LLM rejects ‘Seattle’ if the
input requires ‘country’; the helper LLM identifies date formats (e.g., yyyy/mm/dd) from the context
and rejects incorrect date formats (e.g., mm/dd/yy) generated by the planning LLM; it also rejects
unreasonable input values implied by context, e.g., a negative value in the ‘age’ field. When such
semantic inconsistencies occur, error feedback will be generated. See examples in Fig. 3(b).

Table [T] presents the accuracy of argument validation on BFCL-Live-Simple. We use three metrics:
true positive detection rate (correct arguments detected as correct), syntactic error detection rate,
and semantic error detection rate. All the three metrics are computed based on rules. Details are

Under review as a conference paper at ICLR 2026

Task: Yesterday the website was down, and I fixed it. However, I forgot to create a ticket for it. Could you help me
with that? Remember to close it since it is solved.

(a) Syntactic arguments validation i(c) Synthesis response and task feedback
Tool calls:
1. create_ticket(subject="Website outage’)

i Gecko

y Tool calls:

! L create_ticket(time=2025-07-08" subject=...)
1 2. close_ticket(id=T123”)
i
1
1

T o . . . i Gecko
Validation feedback: Missing ‘time’ field in create_ticket.

(b) Semantic arguments validation

Tool calls:
1. create_ticket(time="07/08/2025’, subject=...)

i Gecko

Validation feedback: The ‘time’ field must match the
‘yyyy-mm-dd’ format according to its description.

Synthesis response:

1. Successfully created the ticket with id ‘T123’

2. Ticket ‘T123’ is now closed.

Task state: [{“id’="T102’, ‘status’=‘closed’, ‘time’=...}]
Task feedback:

1. A ticket is created for the issue. [Success]

2. The created ticket is closed. [Success]
Conclusion: Success

Figure 3: Examples of feedback provided by Gecko through (a) syntactic argument validation, (b)
semantic argument validation, and (c) synthetic responses, task state, and task feedback. The vali-
dation feedback (orange), synthetic response (yellow), and task state and feedback (blue) will then
be fed to the planning LLM during test-time scaling.

Detection rate | GPT-40 | GPT-4.1 nano | Qwen2.5 7B True positive | True negative
True positive | 100% 100% 100% Real tools, | ¢ 50, 87.5%
. LLM judge
Syntactic errors | 100% 100% 100% Sim tools
Semantic errors | 71% 69% 63% LLM judge 91.3% 87.5%

Table 1: Accuracy of argument validation on BFCL-
Live-Simple. ‘True positive’ is the rate where correct
arguments are determined as correct. We also show
percentage of syntactic errors and semantic errors be-
ing detected. As helper LLMs, GPT-40, GPT-4.1-
nano and Qwen-2.5-7B are evaluated.

Table 2: Accuracy of task success/failure
judgment on BFCL-Multi-Turn-Base. We
compare the use of real tools and simulated
tools. We use an LLM as judge. Both meth-
ods have good accuracy, while using simu-
lated tools has 5.4% lower true positive rate.

provided in the Appendix[A.3] Gecko has 100% accuracy in finding correct arguments and detecting
syntactic errors for all the three helper LLMs. When there are semantic errors in the tool arguments,
Gecko can detect 60% ~ 70% of them. As shown in Fig. [da), accuracy drops by 1.5% if argument
validation is removed. Results clearly demonstrate the usefulness of this component.

3.2 LLM-BASED TOOL RESPONSE GENERATOR

Beyond using validated arguments and the tool schema (tool description, input schema, and output
schema) as inputs, the response generator models the functionality of the tool, producing seman-
tically realistic and schema-compliant outputs. To support multi-turn tool response synthesis, we
additionally condition the generator on the current task state (Section [3.3), a compact state that
grounds prior tool calls to prevent factual conflicts with earlier tool responses and to preserve cross-
call consistency. Responses are produced by a helper LLM; prompts are provided in Appendix [A.4]
Examples are shown in Fig. 2] and Fig. [3|c).This is done through a helper LLM. Prompts are pro-
vided in the Appendix [A.4] The responses are part of the input to task state estimator and are an
important source of Gecko feedback. Examples of tool responses are shown in Fig. [2]and Fig. [3]c).

It is non-trivial to directly measure the effectiveness of response generation because there is no
ground truths. To do so, we designed an indirect experiment where we obtain ground truths of
task success/fail using real tools and rule-based task state matching on BFCL-Multi-Turn-Base. We
compare the use of real tools and simulated tools in task success/failure estimation. Results are
shown in Table[2] Compared with using real tools, tool simulation results in 5.4% accuracy decrease
when deciding successful tasks as successful. Interestingly, regardless of using real or simulated
tools, we observe the same accuracy of 87.5% in deciding task failure as failure. This experiment
indicates that simulated tools and their responses are slightly more erroneous than real tools, but the
overall accuracy of task success/failure estimation is acceptable.

Under review as a conference paper at ICLR 2026

3.3 LLM-BASED TASK STATE ESTIMATOR

Task state records the progress of a task. It summarizes the cumulative effects of past tool calls and
serves as Gecko’s central reference for grounding tool calls. Given the previous task state and the
newest tool call and its response, a helper LLM updates the task state to reflect the effect of that call.
For example, given the previous task state ‘apples in cart: 3” and a tool response ‘successfully delete
one apple from cart’, the updated state would be ‘apples in cart: 2°. The most recent task state is
used as input to the response generator (Section [3.2). For more examples, see Fig. [3[c) and Fig. [2]

Similar to task response generation, there is no direct measurement of task state estimation perfor-
mance. In Table 2] the performance of task success/failure estimation is generally very good. This
indirectly supports the effectiveness of task state estimation.

3.4 LLM-BASED TASK FEEDBACK GENERATOR

We use a judge LLM to create the feedback to be sent to the planning LLM. Two steps are involved.
First, we use the task description as input and let the judge LLLM generate a checklist specifying what
aspects are important for indicating the completion of this task, such as ‘“The temp folder is created
in document’ and ‘The report.pdf is moved to temp’ for the task in Fig. [2] Second, we let the judge
LLM decide whether the Gecko execution results fully satisfy the checklist: if yes, then the task
feedback indicates success; if not fully satisfied, the judge LLM identifies remaining objectives, and
another round of LLM planning and Gecko simulation will be executed. Specifically, the input to the
judge LLM includes the task, tool calls from the planning LLM, the simulated responses (Section
[3.2), and the task state (Section[3.3). An example of task feedback is shown in Fig. [3[c).

In Table[2] we present the accuracy of task success/failure judgement on the BFCL-Multi-Turn-Base.
When using real tools, the LLM judge achieves a true positive rate of 96.7% and a true negative rate
of 87.5%. This indicates that our task feedback generator works well.

The components described from Section [3.1]to Section [3.4]allow us to finally ground the agent tool
calls. That is, after receiving the tool calls from the planning LLM, Gecko checks argument validity,
simulates tool responses, estimate task state, and then give task feedback.

3.5 LLM-BASED API SCHEMA CONVERTER FOR VARIOUS TOOLS

Tools that have a standard OpenAPI schema can be directly used in Gecko. For Python functions and
other non-OpenAPI tool definitions, Gecko uses an LLM-based schema converter to produce Ope-
nAPI schemas.Given a description of a tool that details its purpose, input parameters, and expected
output, an LLM generates an OpenAPI 3.1.0 specification in the JSON format. Our text prompt is
provided in the Appendix This automated conversion allows Gecko to quickly integrate and
simulate tools and thus support more tools than StableToolBench. The generated schemas are used
by the argument validator (Section [3.1)) and response generator (Section [3.2).

4 GROUNDING AGENT TEST-TIME SCALING (GATS)

Given a task and tool calls generated by the planning LLM, Gecko provides three types of feedback:
argument validation, tool responses, and task feedback. In implementation, argument validation
happens before response generation and returns validation feedback to the planning LLM imme-
diately. If a tool call is valid, the simulated tool response is also returned immediately. From the
planning LLM’s perspective, Gecko mirrors real tools: each call either yields an error message from
validation or a tool response. After each valid call, Gecko updates the task state aligned with the
user-desired task. Task feedback is produced after the planning LLM finishes its output for the task.
The LLM judge (Section[3.4) evaluates the latest task state and the sequence of tool calls against the
task, determining success or identifying remaining objectives. This completes one attempt in GATS.
If the attempt fails, the tool call sequence and the task feedback will be sent to the planning LLM
in the next retry. Thanks to Gecko’s task state recording and session-based isolation mechanism
(Appendix [A.2)), retries can restart from exactly the same state snapshot, without interference from
tool calls generated in previous attempts. A diagram of this iterative scaling method is drawn in
Fig.[2] The pseudocode is provided in the appendix (Algorithm T).

Under review as a conference paper at ICLR 2026

5 DISCUSSIONS

Can Gecko be implemented only by prompting? Technically yes, if we can find a perfect prompt
to let the LLM output all the feedback and responses. However, the perfect prompt is almost im-
possible to create, because 1) our system is a combination of rule and LLM use, and 2) even if the
prompt is successfully written, it will be too complex and hard for a LLM to understand.

Why not use responses from real tools in Section [3.2? While real tool responses are accurate,
using them during test-time scaling has a few drawbacks. First, real tool execution may incur
substantial cost, including computational overhead and API usage fees (e.g., RapidAPI charges
per request). Second, performing iterative refinement directly on real tools increases the risk of
unintended side effects, such as sending wrong emails.

New research possibilities enabled by Gecko. First, Gecko is complementary to existing tool-
call data synthesis pipelines [Liu et al.| (2024bfa)) as a verifier to improve dataset quality. A typical
tool-call data point contains a task, tool definitions, and a tool-call sequence. These could be fed
into Gecko, which would simulate tool responses, estimate task state, and return task feedback
indicating whether the tool-call sequence solves the task. This feedback can be used to filter out
or correct erroneous data points. Second, Gecko can turn existing SFT tool-call datasets into RL
environments. Given tool definitions, Gecko can form an action space by converting each tool
definition to a callable tool. After each action, Gecko returns an observation that simulates the
tool execution result. Rewards are produced by an LLM judge via checklist—state comparison,
allowing multiple valid action sequences and yielding fine-grained, stepwise signals for reward-
function design. The resulting trajectories (states, actions, observations, rewards) can be used for
offline RL, and the same interface supports online exploration in Gecko.

Comparison with StableToolBench (STB) Guo et al.| (2025). While both Gecko and STB can
simulate API responses, Gecko has a few key advantages. First, to simulate an API, STB needs to
collect real responses from this API, which can be costly and less flexible. In comparison, Gecko
directly supports new APIs using only API descriptions. Second, API-call data in STB has quality
issues: it contains many erroneous responses due to invalid API calls, timeout errors, and server-
side unavailability (30-40% error rates in our preliminary investigation). Gecko does not have these
issues because the responses are simulated based on our converted OpenAPI schemas. Third, STB
lacks API argument validations and generates responses for all API calls, including invalid ones,
whereas real-world API servers reject such invalid calls. In contrast, Gecko has an argument va-
lidity checker that rejects invalid API calls and returns meaningful error messages, thus precisely
simulating real-world API server behavior. Finally, STB focuses on individual API calls without
considering multi-turn conversation history, while Gecko considers history from both task states and
conversation, especially in multi-turn scenarios, which ensures logical coherence.

Limitations. Gecko currently only supports text-out tools, such as get_temprature and does
not yet support tools that produce non-text outputs, whose outputs are non-text media, such as
download_video. In addition, for tools that rely on complex, dynamic external databases, such
as airline reservation systems, simulation outputs (e.g., available flights or a user’s booked tickets)
may diverge from the real-world state. For real-world deployments of GATS, a possible mitigation
is a hybrid execution mode: simulate state-changing (write) tools within Gecko while directly host-
ing read-only/query tools without simulation. This reduces simulation—reality drift for information
retrieval while retaining Gecko’s sandbox benefits for test-time scaling.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETUP

Benchmark. We evaluate Gecko and the grounding agent test-time scaling (GATS) method on the
Berkeley Function Call Leaderboard (BFCL) and the 72-bench. BFCL evaluates LLM tool-use
ability in three categories: non-live single-turn, live single-turn, and multi-turn. Single-turn means
that a task must be completed in one user—assistant round; non-live indicates that tasks and tools are
designed by experts, while live indicates that tasks and tools are sourced from real-world scenarios.
Multi-turn requires the model to plan and generate tool calls across several rounds based on tool-
execution results and the user feedback. Within single-turn, there are four task types: simple (one

Under review as a conference paper at ICLR 2026

Table 3: Method comparison on BFCLv3. We select eight most important metrics from the BFCL
website. Overall accuracy is computed as the average of average ‘Non-live single turn’, average
‘Live single turn’, and ‘Multi-turn’ categories. GATS consistently improves various planning LLMs.

Overall Acc Model Non-live single turn Live single turn Multi-turn

simple parallel multiple irrelevance |simple multiple irrelevance| base

State-of-the-art reference models
73.12 ToolACE-2-8B | 88.00 92.50 92.50 95.41 70.93 79.01 84.80 49.00
79.27 watt-tool-70B | 98.25 85.50 94.00 84.16 86.04 8347 68.48 68.00
80.96 xLAM-2-70b | 94.75 92.00 94.50 83.33 77.13 71.13 74.48 77.50
Baseline models and our proposed method
66.20 GPT-4.1-mini | 91.50 84.50 88.00 78.33 79.45 70.94 68.70 40.00

73.84 +GATS 96.25 88.00 95.50 84.58 | 84.49 74.54 80.83 50.50
58.85 GPT-4.1-nano | 82.25 78.50 75.00 80.83 | 65.11 58.97 72.22 32.00
67.59 +GATS 93.25 88.50 95.00 81.25 | 77.13 69.80 80.38 37.50
76.93 GPT-40 9275 92.50 92.50 84.16 |81.00 78.53 78.45 61.00
84.62 +GATS 96.50 95.00 95.50 95.83 84.10 81.01 93.42 72.00
73.78 Qwen-3-14B | 95.50 92.50 95.00 84.58 | 86.04 80.81 77.44 48.00
78.60 +GATS 96.75 93.50 95.00 92.50 | 87.59 83.00 91.50 54.00
66.44 |Gemini-2.5-pro| 86.25 69.00 86.00 91.66 | 77.90 62.20 89.68 39.50
70.44 +GATS 92.25 75.00 89.00 92.50 |80.62 67.99 91.83 44.00
70.40 Deepseek-V3 | 97.00 92.00 94.00 80.41 86.04 79.48 72.56 41.00
72.90 +GATS 97.25 92.00 95.50 83.75 | 88.75 81.76 78.79 43.50
61.94 |GPT-5-thinking| 78.00 84.00 76.00 92.91 61.62 57.45 89.70 33.50
66.08 +GATS 85.00 90.50 83.00 93.75 | 67.44 63.24 90.38 36.50

tool call is executed to answer a user query), multiple (multiple tool calls are executed sequentially
to answer a user query), parallel (multiple tool calls are executed in parallel to answer a user query),
and irrelevance (none of the provided tools is appropriate, so the correct behavior is to avoid tool
use). In total, BFCL contains 3,633 tasks involving 8,578 tools. 72-bench is specifically designed
to assess agent abilities in the real world in the retail scenario (72-retail) and airline scenario (72-
airline). In 72-bench, the agent must communicate with an LLM-simulated user, call domain APIs
and follow domain policy rules (e.g., refund and booking rules) to complete tasks. 72-retail has 13
APIs and 114 tasks; 72-airline has 12 APIs and 50 tasks.

Evaluation metric. For BFCL, we report accuracy, defined as the percentage of tasks completed
correctly. For single-turn tasks, a prediction is counted as correct only if the tool calls produced
by the model exactly match the reference solution. For multi-turn tasks, correctness is judged by
comparing the task outcome after each turn, such as tools results and updated file contents, with the
ground truth. A multi-turn task is considered successful only if the task outcomes match the ground
truth at every turn. For 72-bench, we use pass@1 averaged over 5 independent runs per task. Each
task has an annotated goal database state, and a run is successful only if the agent responses provide
all required information and the final database state matches the annotated goal.

Implementation details. We use GPT-40-nano as helper LLM for argument validation because
it is a relatively easy task. We use GPT-40 as helper/judge LLM response generation, task state
estimation and task feedback generation, because these tasks are more complex. For BFCL, we
execute GATS with a maximum of 3 times of retry in Gecko and directly use the resulting tool call
sequence as the final answer for each task. On 72-bench, because the internal database contents
are not exposed to the agent and must be discovered via the native tools in 72-bench (e.g., prior
reservations or available flights), simulated tool calls of Gecko may differ in details. To bridge this
gap, for each user message, we first run GATS to generate up to 3 rollouts, then pass all attempts
(including failures) and their task feedback as in-context examples to the 72-bench agent, so the
agent can learn to avoid potential errors in the 72-bench environment. In our runs, the user simulator
is configured to GPT-4.1. For result stability, we repeated the pass@1 evaluation five times and
report the mean. The LLM temperature is fixed to O for all requests if applicable.

Under review as a conference paper at ICLR 2026

6.2 MAIN EVALUATION

GATS consistently improves tool call capabilities of existing LLMs. On BFCL and 72-bench, we
use various existing LLMs as the planning LLM, such as GPT-4.1-mini OpenAll (2025a)), Deepseek
V3 |DeepSeek-Al et al.| (2025), watt-tool-70B watt-ai| (2025)), Qwen3-14B [Yang et al.|(2025)), Kimi-
K2-Instruct [Team et al.| (2025)), Claude Opus 4 |Anthropic| (2025) and GPT-5 OpenAl (2025b)). We
apply the proposed GATS on top of these planning LLMs and demonstrate the performance gain in
Table[3land Tabledl We have three observations.

First, GATS and consistently improves tool-call performance of these LLMs. For example, on
BFCL, the overall accuracy of GPT-40 and Qwen-3-14B is improved from 76.93% and 73.78%
to 84.62% and 78.60%, respectively. On 72-bench, our method improves GPT-40 from 54.3% to
56.7%, and GPT-5-thinking from 71.0% to 72.9%. We also note that there is less improvement
on 72-bench. The reason is that 72-bench tasks provide the agent with much less contexts, such
as available flights, than BFCL, making it much more challenging for Gecko to simulate accurate
responses (see Limitations in Section [5).Second, our method is effective for both single-turn and
multi-turn tasks. For example, the improvement of GPT-40 on ‘Live single turn’ is +3.10% and
+2.48% for ‘simple’ and ‘multiple’, respectively, while its improvement on ‘Multi-turn’ tasks is
+8%. Third and interestingly, while some planning LLMs have different performance on single-
turn tasks, GATS may bring them to similar levels. For example, on ‘Multiple’ under ‘Non-live
single turn’, the performance of GPT-4.1-mini, GPT-4.1-nano, Deepseek-V3, and GPT-40 becomes
~95% from 88%, 75%, 94%, and 92.5%, respectively. It suggests there exists some upper limit of
Gecko or the benchmark itself (e.g., annotation errors). We leave its explanation to future work.

Table 4: Method comparison on 72-bench. We Comparison with the state of the art. We ap-
report success rate (%) under 7-retail and 7-airline ply GATS to GPT-40 and report new state of

subsets and their average accuracy (Overall). the art on BFCL: overall accuracy = 84.62 %,
which is +3.66% higher than xLAM-2-70B.
Model | 72-retail | 72-airline | Overall Moreover, on various subsets, GPT-40+GATS

also reports very competitive performance, e.g.,
96.50% on simple single turn, 95.00% on par-
Claude Opus 4 81.8% 60.0% 70.9% allel single turn and 95.50% on multiple sin-
Claude Sonnet4 | 75.0% 55.5% | 65.25% gle turn. The multi-turn-base performance,
Kimi-K2-Instruct | 70.6% 56.5% | 63.55% 72.00%, is the second best among all the meth-

Baseline models and our proposed method ods. For 72-bench, GPT-5-thinking+GATS
achieves an overall accuracy of 72.9%, which

State-of-the-art reference models

GPT-40-mini 46.1% 28.4% 37.3% . 1.

+GATS 48.4% 30.8% 39.6% indicates state-of-the-art performance.

GPT-40 63.7% 44.8% 54.3%

+GATS 658% | 47.6% | 56.7% 03 FURTHER ANALYSIS

GPT-5-thinking 81.2% 60.8% | 71.0% Ablation studies. Gecko contains four key
+GATS 82.6% 632% | 729% components: argument validation, task state es-

timator, response generator, and feedback gen-
erator. Among the four, response generation cannot be removeq% so our ablation studies are for the
rest three. We experiment on the BFCL-Multi-Turn-Base with GPT-40. Results are shown in Fig.]
(a). w/o arg validation removes both rule-based and LLM-based argument validation in Gecko.
w/o task state est. does not estimate the task states. w/o fask feedback replaces the judge LLM
with a naive gating mechanism: if tool calls are generated, we give a success feedback; if no tool
calls are generated, then failure feedback. Results show that removing argument validation slightly
decreases accuracy (from 72.0% to 70.5%), while removing task state estimation has a greater im-
pact (68.0%). Eliminating task feedback causes the most significant drop (61.5%), indicating that
iterative feedback is most important when solving multi-turn tasks.

Comparing different LLMs used in different components in Gecko. To investigate the impact
of using different helper/judge LLMs, we replace them with a different LLM while keeping the
other components unchanged. Results on BFCL-Multi-Turn-Base are shown in Fig. f{b), where the
performance of the default setting is 72.0%. Replacing GPT-4.1-nano in argument validation with
GPT-40 results in a very minor drop (71.5%). Because argument validation is relatively simple, it

3Nonetheless, Tablepresented a variant of response generator by replacing simulated tools with real tools.
We observe that simulated tools have a reasonably lower but acceptable true positive rate.

Under review as a conference paper at ICLR 2026

<
N

76 [GPT-4.1-nano
72.0 — Gpra

72 70.5 =75 GPTdo
370 74 1 GPT-4.1-mini
o 68.0 231 120 720 72.0 72.0
g £72 : 710
= 66 271
Sea :E) 70 69.5

6 61.5 gg 68.0

60 7 ‘ | | ‘

Gecko (all) w/o arg. w/o task w/o task Argument Response Task state Task feedback
validation state est. feedback validator generator estimator generator
(a) Ablation study (b) Comparing LLM variants in Gecko components

Figure 4: (a) Ablation study of Gecko on BFCL-Multi-Turn-Base. The full system (72.0%) is
compared against variants with one component removed: argument validation (70.5%), task state
estimation (68.0%), and task feedback (61.5%); (b) LLM replacement study on Gecko evaluated on
BFCL ‘Multi-turn base’. For each component, the bar on the left is the original performance 72.0%.
Under LLM replacement, e.g., replacing GPT-4.1-nano with GPT-40 for argument validation.

(a) Accuracy vs. Retry times (b) Latency vs. Retry times (c) Cost vs. Retry times

- 18 0.025

896 216 ~

§» 95 214 ij/ 0.020
=] 7]

: 3‘3‘ 2 i Soo1s

< 8 0.010

0 1 2 3 0 1 2 3 0 1 2 3
Retry times Retry times Retry times

Figure 5: Test-time scaling behaviours. We evaluate GATS on the BFCL-Non-Live-Simple, using
GPT-4o0 as the planning LLM. Retry times is the maximum number of feedback-based refinement
steps allowed in GATS (Section E]) We report (a) accuracy (%), (b) average latency (s) and (c)
average cost ($) per user task versus maximum retry times.

does not require strong LLMs like GPT-40. If we replace GPT-40 with GPT-4.1-mini in response
generation and task state estimation, performance drops from 72.0% to 69.5% and 68.0%, respec-
tively. For the task feedback components, replacing GPT-40 with GPT-4.1-mini leads to a small
decrease in performance (-1.0%). It shows the robustness of this component to weaker LLMs.

Scaling behavior of GATS. GATS allows a maximum of times of retry, where each retry includes
Gecko feedback and then tool call refinement. We examine how the retry budget affects performance
on the BFCL-Non-Live-Simple, where maximum retry times vary from O to 3. As shown in Fig.[5}
increasing the max retry times improves accuracy, from 92.25% with no refinement to 96.50% with
three times of refinement. Most accuracy gain comes from the first retry, while further retries add
less improvement. Accordingly, latency and cost increase with retry times: runtime increases from
7.54 s to 18.11s, and cost from $0.00987 to $0.02557. Both also demonstrate decreasing margin:
most user tasks are resolved in the first retry, so they will not use up the maximum retry times. These
results clearly demonstrate a trade-off between accuracy gain and cost.

7 CONCLUSION

This paper introduces Gecko, a comprehensive simulation environment that takes tool calls from
planning LLMs as input and outputs a variety of feedback. Early feedback is the validity of tool
calls, while task-level feedback considers simulated responses and an estimate of the task state.
Building on Gecko, we propose a test-time method that iteratively refines tool calls via feedback,
named GATS. Our method is shown to consistently improve the performance of various LLMs on
agent tool call benchmarks. In the future, Gecko can serve as foundational infrastructure for agentic
tool use, enabling the community to (1) improve agents’ tool use at test time via tool simulation and
stateful, task-aware feedback; (2) synthesize higher-quality tool-call data for supervised fine-tuning
(SFT) by using Gecko as a verifier or within the data-synthesis loop; and (3) use Gecko to turn SFT
tool-call datasets into reinforcement learning environments.

Under review as a conference paper at ICLR 2026

REFERENCES

Anthropic. Claude opus 4 / opus 4.1. Anthropic model page / announcement, 2025. URL https:
//www.anthropic.com/claude/opus.

Victor Barres, Honghua Dong, Soham Ray, Xujie Si, and Karthik Narasimhan. 72-bench: Evaluating
conversational agents in a dual-control environment, 2025. URL https://arxiv.org/abs/
2506.07982.

Chen Chen, Xinlong Hao, Weiwen Liu, Xu Huang, Xingshan Zeng, Shuai Yu, Dexun Li, Shuai
Wang, Weinan Gan, Yuefeng Huang, Wulong Liu, Xinzhi Wang, Defu Lian, Baoqun Yin, Yasheng
Wang, and Wu Liu. Acebench: Who wins the match point in tool usage?, 2025a. URL https:
//arxiv.org/abs/2501.12851.

Guoxin Chen, Zhong Zhang, Xin Cong, Fangda Guo, Yesai Wu, Yankai Lin, Wenzheng Feng, and
Yasheng Wang. Learning evolving tools for large language models, 2025b. URL https://
arxiv.org/abs/2410.06617.

DeepSeek-Al, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Cheng-
gang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang,
Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting
Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui
Ding, Huajian Xin, Huazuo Gao, Hui Li, and Others. Deepseek-v3 technical report, 2025. URL
https://arxiv.orqg/abs/2412.19437.

Yu Du, Fangyun Wei, and Hongyang Zhang. Anytool: Self-reflective, hierarchical agents for large-
scale api calls, 2024. URL https://arxiv.org/abs/2402.04253|

Zhicheng Guo, Sijie Cheng, Hao Wang, Shihao Liang, Yujia Qin, Peng Li, Zhiyuan Liu, Maosong
Sun, and Yang Liu. Stabletoolbench: Towards stable large-scale benchmarking on tool learning
of large language models, 2025. URL https://arxiv.org/abs/2403.07714.

Yue Huang, Jiawen Shi, Yuan Li, Chenrui Fan, Siyuan Wu, Qihui Zhang, Yixin Liu, Pan Zhou, Yao
Wan, Neil Zhengiang Gong, and Lichao Sun. Metatool benchmark for large language models:
Deciding whether to use tools and which to use, 2024. URL https://arxiv.org/abs/
2310.03128l

Minki Kang, Jongwon Jeong, and Jaewoong Cho. T1: Tool-integrated self-verification for test-time
compute scaling in small language models, 2025. URL https://arxiv.org/abs/2504.
04718.

Kiran Kate, Tejaswini Pedapati, Kinjal Basu, Yara Rizk, Vijil Chenthamarakshan, Subhajit Chaud-
hury, Mayank Agarwal, and Ibrahim Abdelaziz. Longfunceval: Measuring the effectiveness of
long context models for function calling, 2025. URL https://arxiv.org/abs/2505.
10570.

Chengpeng Li, Mingfeng Xue, Zhenru Zhang, Jiaxi Yang, Beichen Zhang, Xiang Wang, Bowen Yu,
Binyuan Hui, Junyang Lin, and Dayiheng Liu. Start: Self-taught reasoner with tools, 2025. URL
https://arxiv.org/abs/2503.04625.

Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem.
Camel: Communicative agents for "mind" exploration of large language model society, 2023.
URLhttps://arxiv.org/abs/2303.17760.

Miles Q. Li and Benjamin C. M. Fung. Security concerns for large language models: A survey,
2025. URL https://arxiv.org/abs/2505.188809.

Weiwen Liu, Xu Huang, Xingshan Zeng, Xinlong Hao, Shuai Yu, Dexun Li, Shuai Wang, Weinan
Gan, Zhengying Liu, Yuanqing Yu, Zezhong Wang, Yuxian Wang, Wu Ning, Yutai Hou, Bin
Wang, Chuhan Wu, Xinzhi Wang, Yong Liu, Yasheng Wang, Duyu Tang, Dandan Tu, Lifeng
Shang, Xin Jiang, Ruiming Tang, Defu Lian, Qun Liu, and Enhong Chen. Toolace: Winning the
points of llm function calling, 2024a. URL|https://arxiv.org/abs/2409.00920.

10

https://www.anthropic.com/claude/opus
https://www.anthropic.com/claude/opus
https://arxiv.org/abs/2506.07982
https://arxiv.org/abs/2506.07982
https://arxiv.org/abs/2501.12851
https://arxiv.org/abs/2501.12851
https://arxiv.org/abs/2410.06617
https://arxiv.org/abs/2410.06617
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2402.04253
https://arxiv.org/abs/2403.07714
https://arxiv.org/abs/2310.03128
https://arxiv.org/abs/2310.03128
https://arxiv.org/abs/2504.04718
https://arxiv.org/abs/2504.04718
https://arxiv.org/abs/2505.10570
https://arxiv.org/abs/2505.10570
https://arxiv.org/abs/2503.04625
https://arxiv.org/abs/2303.17760
https://arxiv.org/abs/2505.18889
https://arxiv.org/abs/2409.00920

Under review as a conference paper at ICLR 2026

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao Du, Chenhui
Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yuxiao Dong, and Jie
Tang. Agentbench: Evaluating llms as agents, 2023. URL https://arxiv.org/abs/
2308.03688.

Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu, Tian Lan, Shirley Kokane, Juntao Tan, Weiran
Yao, Zhiwei Liu, Yihao Feng, Rithesh Murthy, Liangwei Yang, Silvio Savarese, Juan Carlos
Niebles, Huan Wang, Shelby Heinecke, and Caiming Xiong. Apigen: Automated pipeline for
generating verifiable and diverse function-calling datasets, 2024b. URL https://arxiv.
org/abs/2406.18518.

Jiarui Lu, Thomas Holleis, Yizhe Zhang, Bernhard Aumayer, Feng Nan, Felix Bai, Shuang Ma,
Shen Ma, Mengyu Li, Guoli Yin, Zirui Wang, and Ruoming Pang. Toolsandbox: A state-
ful, conversational, interactive evaluation benchmark for llm tool use capabilities, 2025. URL
https://arxiv.org/abs/2408.04682.

OpenAl Introducing gpt-4.1 in the api. OpenAl blog/ APIdocs, 2025a. URL https://openai.
com/index/gpt—-4-1/.

OpenAl. Gpt-5 system card. Technical report, OpenAl, 2025b. URL https://cdn.openai.
com/gpt—-5-system—card.pdf.

OpenAl, Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan
Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, Aleksander Madry, Alex Baker-
Whitcomb, Alex Beutel, Alex Borzunov, Alex Carney, Alex Chow, Alex Kirillov, Alex Nichol,
Alex Paino, Alex Renzin, Alex Tachard Passos, Alexander Kirillov, Alexi Christakis, Alexis Con-
neau, Ali Kamali, Allan Jabri, Allison Moyer, Allison Tam, Amadou Crookes, Amin Tootoochian,
Amin Tootoonchian, Ananya Kumar, Andrea Vallone, Andrej Karpathy, et al. Gpt-4o system card,
2024. URL https://arxiv.org/abs/2410.21276l

Shishir G Patil, Huanzhi Mao, Fanjia Yan, Charlie Cheng-Jie Ji, Vishnu Suresh, Ion Stoica, and
Joseph E. Gonzalez. The berkeley function calling leaderboard (BFCL): From tool use to agen-
tic evaluation of large language models. In Forty-second International Conference on Machine
Learning, 2025. URL https://openreview.net/forum?id=2GmDdhBdDk!

Akshara Prabhakar, Zuxin Liu, Ming Zhu, Jianguo Zhang, Tulika Awalgaonkar, Shiyu Wang, Zhi-
wei Liu, Haolin Chen, Thai Hoang, Juan Carlos Niebles, Shelby Heinecke, Weiran Yao, Huan
Wang, Silvio Savarese, and Caiming Xiong. Apigen-mt: Agentic pipeline for multi-turn data
generation via simulated agent-human interplay, 2025. URL https://arxiv.org/abs/
2504.03601.

Shuofei Qiao, Honghao Gui, Chengfei Lv, Qianghuai Jia, Huajun Chen, and Ningyu Zhang. Making
language models better tool learners with execution feedback, 2024. URL https://arxiv.
org/abs/2305.13068.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie Zhou, Mark Gerstein,
Dahai Li, Zhiyuan Liu, and Maosong Sun. Toolllm: Facilitating large language models to master
16000+ real-world apis, 2023. URL https://arxiv.org/abs/2307.16789.

Zhengliang Shi, Shen Gao, Xiuyi Chen, Yue Feng, Lingyong Yan, Haibo Shi, Dawei Yin, Pengjie
Ren, Suzan Verberne, and Zhaochun Ren. Learning to use tools via cooperative and interactive
agents, 2024. URL https://arxiv.org/abs/2403.03031,

Zhengliang Shi, Shen Gao, Lingyong Yan, Yue Feng, Xiuyi Chen, Zhumin Chen, Dawei Yin, Suzan
Verberne, and Zhaochun Ren. Tool learning in the wild: Empowering language models as auto-
matic tool agents. In Proceedings of the ACM on Web Conference 2025, pp. 2222-2237, 2025.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao.
Reflexion: language agents with verbal reinforcement learning. In A. Oh, T. Nau-
mann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neu-
ral Information Processing Systems, volume 36, pp. 8634-8652. Curran Associates, Inc.,

11

https://arxiv.org/abs/2308.03688
https://arxiv.org/abs/2308.03688
https://arxiv.org/abs/2406.18518
https://arxiv.org/abs/2406.18518
https://arxiv.org/abs/2408.04682
https://openai.com/index/gpt-4-1/
https://openai.com/index/gpt-4-1/
https://cdn.openai.com/gpt-5-system-card.pdf
https://cdn.openai.com/gpt-5-system-card.pdf
https://arxiv.org/abs/2410.21276
https://openreview.net/forum?id=2GmDdhBdDk
https://arxiv.org/abs/2504.03601
https://arxiv.org/abs/2504.03601
https://arxiv.org/abs/2305.13068
https://arxiv.org/abs/2305.13068
https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2403.03031

Under review as a conference paper at ICLR 2026

2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/1b44b878bb782e6954cd888628510e90-Paper—Conference.pdf.

Joykirat Singh, Raghav Magazine, Yash Pandya, and Akshay Nambi. Agentic reasoning and tool
integration for llms via reinforcement learning, 2025. URL https://arxiv.org/abs/
2505.01441.

Olly Styles, Sam Miller, Patricio Cerda-Mardini, Tanaya Guha, Victor Sanchez, and Bertie Vidgen.
Workbench: a benchmark dataset for agents in a realistic workplace setting, 2024. URL https:
//arxiv.org/abs/2405.00823\

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han, Qiao Liang, Boxi Cao, and Le Sun. Toolal-
paca: Generalized tool learning for language models with 3000 simulated cases, 2023. URL
https://arxiv.org/abs/2306.05301.

Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
Yanru Chen, Yuankun Chen, Yutian Chen, Zhuofu Chen, Jialei Cui, Hao Ding, Mengnan Dong,
Angang Du, Chenzhuang Du, Dikang Du, Yulun Du, Yu Fan, Yichen Feng, Kelin Fu, Bofei Gao,
Hongcheng Gao, Peizhong Gao, Tong Gao, Xinran Gu, Longyu Guan, Haiqing Guo, Jianhang
Guo, Hao Hu, Xiaoru Hao, Tianhong He, Weiran He, Wenyang He, Chao Hong, Yangyang Hu,
and Others. Kimi k2: Open agentic intelligence, 2025. URL https://arxiv.org/abs/
2507.20534l

watt-ai. watt-tool-70B model card. Hugging Face model hub, 2025. URL https://
huggingface.co/watt—ai/watt—tool-70B. model id = "watt-ai/watt-tool-70B";
70.6B params; license = Apache-2.0; references arXiv:2406.14868; accessed=2025-09-25.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. 7-bench: A benchmark for
tool-agent-user interaction in real-world domains, 2024. URL https://arxiv.org/abs/
2406.12045.

Huichi Zhou, Yihang Chen, Siyuan Guo, Xue Yan, Kin Hei Lee, Zihan Wang, Ka Yiu Lee, Guchun
Zhang, Kun Shao, Linyi Yang, and Jun Wang. Memento: Fine-tuning 1lm agents without fine-
tuning 1lms, 2025. URL |https://arxiv.org/abs/2508.16153|

12

https://proceedings.neurips.cc/paper_files/paper/2023/file/1b44b878bb782e6954cd888628510e90-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/1b44b878bb782e6954cd888628510e90-Paper-Conference.pdf
https://arxiv.org/abs/2505.01441
https://arxiv.org/abs/2505.01441
https://arxiv.org/abs/2405.00823
https://arxiv.org/abs/2405.00823
https://arxiv.org/abs/2306.05301
https://arxiv.org/abs/2507.20534
https://arxiv.org/abs/2507.20534
https://huggingface.co/watt-ai/watt-tool-70B
https://huggingface.co/watt-ai/watt-tool-70B
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2406.12045
https://arxiv.org/abs/2406.12045
https://arxiv.org/abs/2508.16153

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

OpenAl ChatGPT was used for grammar checks and phrasing suggestions. Anthropic Claude
(Claude Code) was used to assist with implementing and debugging portions of the code. LLMs
did not contribute to research ideation or experimental design.

A.2 DESIGN PRINCIPLES OF GECKO

Gecko is a simulated tool execution environment built on modern web-service principles and acces-
sible over the network. It exposes a RESTful HTTP interface so clients can interact with it using
standard JSON payloads.

Gecko uses FastAPI, a high-performance asynchronous web framework, to handle API requests,
and CAMEL |Li et al.| (2023) as the LLM agent framework. FastAPI’s native async support and
lightweight routing let Gecko handle many concurrent requests with low latency.

The architecture follows a middleware-based design pattern that provides a clear separation of
responsibilities. Each incoming request passes through a chain of middleware components that
handle different aspects of the processing pipeline. The session middleware manages state isolation
between different execution contexts, while the route middleware handles the mapping between API
endpoints and their corresponding OpenAPI specifications. This layered approach ensures that each
component focuses on a specific responsibility while maintaining loose coupling between different
parts of the system.

To support concurrency and retry mechanisms, we designed a session-based state management
system. Each client interaction runs inside its own session with a unique session ID. The session
holds its own configuration, execution history, and task state history so the server can safely retry
actions and replay earlier steps without mixing data from different clients. This isolation prevents
users from interfering with each other and lets Gecko handle many users at once. Sessions persist
across multiple tool calls, enabling multi-turn interactions that remain tied to the same session.

A.3 ARGUMENT VALIDATOR IMPLEMENTATION DETAILS

A.3.1 SYNTACTIC VALIDATION RULES

Our syntactic validation enforces comprehensive rule-based checks to ensure argument correctness
at the structural level.

Presence of required fields. We verify that all fields marked required in the OpenAPI schema
are present in the tool call. We also check that the tool call does not include any fields that are not
defined in the schema. Tool calls that violate this rule will receive an instant error message.

Type checking. Each provided argument is checked against the type (e.g., integer, float
number, string, boolean, array, and object) declared in the OpenAPI schema. Type
mismatches will result in an error message.

Constraint enforcement. The validator enforces constraints such as numeric bounds
(minimum/maximum, exclusiveMinimum/exclusiveMaximum), enumeration (enum),
and length/pattern restrictions for strings (miniLength/maxLength). When constraints are vio-
lated, the validator reports the specific constraint failure.

13

Under review as a conference paper at ICLR 2026

A.3.2 SEMANTIC VALIDATION VIA LLM

The semantic validator takes two primary inputs: the tool call to be verified and the correspond-
ing OpenAPI schema. The validator returns a JSON-parsable message that indicates whether the
tool call is semantically acceptable and enumerates any problems found. The main prompt for the
semantic validator is provided below.

Please validate the given function call arguments against their
parameter schemas.

xValidation Rulesxx:

1. xxScopexx
- Only validate arguments defined in the provided schemas.
- Ignore arguments not present in the schema (do not treat them as
errors) .
- Type validation has already been handled elsewhere. Just skip
type checking.

2. *xSemantic Checksx*x*
— Validate according to the parameter description, examples, enums,
or format requirements.

- If examples are provided (e.g. "full-time, part-time"), treat
them as semantic categories. Any value in the same category (e.g.
"internship", "contract") is wvalid.

- If the description specifies a format (e.g. ‘YYYY-MM-DDY'),
enforce that exact pattern.

— Use common sense to ensure values are within a reasonable range (
e.g. interest rate within [0,1]; clock hour within [0,12]).

— Detect redundant/overlapping information across arguments (e.g.
item="large pizza"‘ and ‘size="large"‘' are overlap).

— If uncertain about wvalidity, default to considering the argument
valid.

\

3. *xError Messagesx*x*
- Concise, precise, and human-readable.
— Do not include or suggest correct values.
- Only state which argument is invalid and why.

*xOutput Format#*x*:

AURNRY

valid=\<true|false> error_message="\<if false, list each invalid
argument and reason>"

*xExamplex*x:
— **params_schemaxx
‘[{"location": "The city that you want to go, e.g. ’"Beijing, China
"}, {"date": "The start date for the booking, format: YYYY-MM-DD
" }] A
— **args**
‘{"location": "London", "date": "01/01/2024"}*
— *xxOutput**
‘valid=false error_message="location not in required format (should
include city and country); date not in required format (YYYY-MM-DD

)ll\

14

Under review as a conference paper at ICLR 2026

A.4 RESPONSE GENERATOR IMPLEMENTATION DETAILS

The response generator synthesizes a tool response given three inputs: a tool call, the corresponding
OpenAPI schema, and the current estimated task state. The main prompt for the response generator
is provided below.

You are an API simulation engine that generates JSON responses
strictly following OpenAPI 3.1 schemas.

Rules:

1. Schema first. Always match the schema exactly (structure, names,
types, formats, required fields).

2. Entity-level consistency. Do not contradict any provided state or
any prior successful responses in this session.

3. Open-world reads. For read/query/search operations, if requested
entities/data are absent in the provided state, you MUST
synthesize realistic, schema-compliant values instead of returning

not—-found or error responses.

4. Writes remain consistent. For create/modify/delete operations,
produce a success result consistent with the schema unless it
would contradict previously returned state; do not invent
conflicts.

5. No extra rules. Do not invent constraints beyond the tool
definition and the provided state.

Realism & uniqueness guidelines (domain-agnostic):

— Deterministic diversity: derive identifier-like fields using stable
transforms of input arguments (e.g., incorporating parts of
arguments or their hashes) so that different arguments yield
different values within the session, while the same arguments
yield stable values.

— Identifier-like fields (e.g., keys ending with ‘_id‘, ‘Id‘, ‘code?‘,

‘number ‘) : prefer distinct values for distinct entities in the
same response unless the schema indicates they refer to the same
entity.

— Consistency: when two items share the same identifier-like wvalue in
one response, their associated attributes MUST NOT contradict each

other within that response.

— Plausible formats: choose values that look realistic when the schema

allows free-form text, but always prioritize matching schema
types and formats.

- Temporal consistency when both present: end/arrival timestamps
should be after start/departure timestamps; choose plausible
intervals without assuming domain-specific constraints.

— Diversity: vary counts and enumerations when optional, within
reasonable ranges, while staying schema-compliant.

Illustrative synthesis examples:

— Tool name: get_user_details:
Request: {"user_id": "john_doe_001"}
Response (success object) :

{

"user_id": "john_doe_001",

"name": "John Doe",

"email": "Jjohn.doel@example.com",

"phone": "+1-222-345-6789",

"loyalty_status": "silver",

"miles": 50000,

"address": "7340 Oak Street, San Francisco, CA 94110"

15

Under review as a conference paper at ICLR 2026

A.5 TASK STATE ESTIMATION IMPLEMENTATION DETAILS

The task state estimation contains two phases: initialization and progressive updating. First, the
task state bootstrapper constructs an initial task state from the task description and the relevant Ope-
nAPI schemas. The task state updater then progressively revises this state as the response generator
synthesizes tool responses.

The main prompt for the task state bootstrapper is as below.

You are initializing the system state for a task execution system with
multiple toolkits based on the given background information.
IMPORTANT: System state should contain ONLY these two types of data:
1. xxDomain Data (Databases)*x: The actual data that tools operate on
* FileSystem toolkit: files, directories structure
* Airline toolkit: users, flights, tickets, bookings
* Message toolkit: messages, inbox items
* These are stored at appropriate top-level or domain-specific keys
2. x»xRuntime Variablesx**: Execution context and session state
* Store these DIRECTLY under ’runtime_state’ (flat structure)
*+ Examples: current_working_directory, current_user, is_logged\
_in, session_token
* IMPORTANT: Read toolkit descriptions carefully for initialization
requirements

CRITICAL:

* NO ’runtime_state.toolkits’ structure - keep runtime_state FLAT

* NO nested toolkit sections within runtime_state

* NO duplicate concepts (e.g., only ONE current_directory for the
whole system)

NO static values, validation rules, or schema metadata

*

Example of CORRECT runtime_state structure:

"runtime_state": {{
"current_working_directory": "/root"
Hh

Rules:

1. Preserve all existing structures in the backgound information
2. Add runtime variables DIRECTLY under ’runtime_state’ (flat
structure)

Add domain data at appropriate keys (not in runtime_state)
NEVER create ’runtime_state.toolkits’ or any similar nesting
Avoid duplicating the same concept

Output valid JSON only

o U1 W W

Background information:
{background_information}

Toolkits summary:
{json.dumps (toolkits_summary, indent=2) }

Return the UPDATED config JSON with necessary domain data and runtime
state.

The main prompt for the task state updater is as below.

16

Under review as a conference paper at ICLR 2026

You are an expert at tracking the execution state of a task.
Update the system state based on the tool calls and their effects on
the system.

IMPORTANT GUIDELINES

1. xxState Tracking Principlesxx*
- Update the system state to reflect ALL persistent state changes
caused by tool calls
— Operations that create, modify, or delete resources MUST update
the corresponding structures
— {"In synthesis mode Store ALL synthesized data from read
operations as ground truth state" if synthesis_mode else "
Operations that just query or read data should NOT add their
results to the system state"}

2. xxsystem state Organizationw*x*
— When tool operations modify existing structures, update them
directly (e.g., adding a new directory should add it to the
directory tree)
- For execution context that doesn’t fit existing domain structures
, use the root-level "runtime_state"
— The "runtime_state" section is ONLY for execution context and
ephemeral telemetry (e.g., current location/cursor, active
selections, session info, temporary counters)
- DO NOT store canonical domain data in "runtime_state" (e.g.,
files, inbox messages, database rows must live under their domain

keys)
— If a counter already lives under "runtime_state" (e.g.,
runtime_state.toolkits.messageapi.message_count), update it ONLY

when the tool call semantics deterministically imply the change;
never infer from read-only calls
— Never duplicate the same fact both in a domain section and in "
runtime_state"
3. *xValue Formattingxx
— When recording locations, positions, or identifiers, use complete
, unambiguous values
- Avoid partial or relative references that could be misinterpreted
— Preserve the format conventions used in the original system state
4. xxWhat Changes to Trackxx
— Resource creation/deletion/modification (files, directories,
database records, etc.)
- State transitions (status changes, position changes, mode
switches)
— Context updates (current location, active selections, session
data)
- DO NOT track query results, search results, temporary
computations, or read-only operation outputs
5. xxExample Structure with runtime_statexx
{{
"DomainSystem" {{
// Domain resources with any modifications from state-changing
operations
by
"runtime_state" {{
// Execution context only (no canonical domain data)
"current_context" "...",
"current_user" "USROO01"
}}
}}

Output the updated system state in JSON format only.

17

Under review as a conference paper at ICLR 2026

A.6 TASK FEEDBACK GENERATION IMPLEMENTATION DETAILS

Task feedback generation has two steps. First, given the task description, we generate a detailed
checklist that decomposes and clarifies the task intent into clear and verifiable objectives. Second,
the checklist is verified item by item by an LLM-based judge, which receives the checklist, current
task state, executed tool calls, the response from the planning LLM, and the corresponding OpenAPI
schemas. The judge aggregates any checklist objectives that fail verification into a compact task-
level feedback message, which is returned to the planning agent to guide subsequent refinements.

The main prompt for checklist generation is given below.

You produce ATOMIC, STATE-OPERATION-BASED verification checklists for
tasks in ANY domain.

PREVIOUS TASKS (assumed done; resolve references only, do NOT re-—
verify): {prev_text}

CURRENT TASK: {current_task}

CRITICAL MULTI-TURN CONTEXT RULE:

When task mentions "values obtained", "results from previous", or
specific counts like "three values", these refer to OUTPUT from
the LAST task in PREVIOUS TASKS, not data from earlier tasks

RULES

1) Verify ONLY the current task. Return the MINIMAL set; if one item
suffices, return EXACTLY one.

2) Each item = one pass/fail assertion about final state (implied by
the question, do not guess the answer by yourself) or an executed
operation (no procedures).

3) IDENTIFY ALL SEMANTIC UNITS: Each complete thought, gquestion (
direct or indirect like "I wonder"), or action in the task needs
verification

4) PRESERVE LOGICAL FLOW: When actions depend on prior information or
results, verify each step

5) Use explicit identifiers/paths/IDs when inferable; avoid vague
pronouns.

6) RESOLVE AMBIGUOUS REFERENCES: When the current task contains
pronouns like "the file", "it", "that item", etc., resolve them to

specific entities based on PREVIOUS TASKS context.

7) Do NOT add optional behaviors (saving/exporting/logging/formatting)

unless explicitly required.

8) Search/lookup/filter. Assert the search was executed with the
specified term/criteria; do NOT require matches unless asked.

9) Transform/update. Assert the stated post-condition holds; do NOT
invent extra artifacts.

10) Copy operations. Verify: source file remains intact (copy
preserves original); destination file exists with the new name.

11) Create/Delete to assert existence/absence as specified.

12) Discrete relocation between containers (domain-agnostic). If
applicable and implied: destination container exists (if mentioned
); entity absent at source (for move, not copy); entity present at

destination.

OUTPUT
Return ONLY a pure JSON array of objects with a single key "
description". No extra text.

The main prompt for the LLM judge is as follows.

18

Under review as a conference paper at ICLR 2026

You are an expert in verifying a checklist based on the execution
results.

You have access to:

1. Current system state: The system state after execution

2. Tool calls: The list of functions that were called WITH their
results

3. Agent response: The agent’s output/explanation (if available)

4. Conversation history: Previous turns showing the context of how
data was obtained{history_text}

IMPORTANT: Some operations (like grep, sort, find, 1ls) are query
operations that don’t modify the system state.

For these operations, verify their execution by checking if the
corresponding tool was called in the tool_calls list OR Looking
for evidence in the agent_response (if provided) that the
operation was performed and results were obtained

Guidelines:

1. Verify items in the checklist one by one

2. For state-modifying operations (mkdir, create file, cd), check the
system state for changes

3. For query operations (grep, sort, 1ls, find), check tool_calls and
agent_response

4. For efficiency-related checklist items, analyze whether multiple
tool calls could be merged based on the tool definitions provided

5. Status should be one of ["success", "failed", "unknown"]

"success": Task completed (evidence in tool_calls/system state/
agent_response)

"failed": Task NOT completed AND agent provided NO explanation

"unknown": Task NOT completed BUT agent explained why (e.g., "missing
information", "need user confirmation", "tool unavailable")

6. Just modify the status and reasoning fields of the checklist items,
do not include any other text outside the json.{tool_defs_text}

7. If a tool call is made as the task required, do not mark it as
failed even if the result is not as you expected

8. Use conversation history to understand data references.

9. When evaluating relevance, consider the full multi-turn context to
understand where numbers/data come from

Evaluation principles (keep these high-level and tool-agnostic):

Only mark "failed" when there is clear evidence that the requirement
was not met and no explanation was provided by the agent; if
evidence is incomplete or you are not sure, use "unknown".

Accept equivalent pipelines that produce the required final outcome,
regardless of operation order or scope.

Do not fail solely because an intermediate step operated on a broader
scope; fail only if the final required subset/result is missing or

incorrect.

The output should be in json format:

[

{{"name": "...", "description": "...", "reasoning": "...", "status
": "success" or "failed" or "unknown"}}
{{"name": "...", "description": "...", "reasoning": "...", "status

": "success" or "failed" or "unknown"}}

1

Do not include any other text outside the json.

19

Under review as a conference paper at ICLR 2026

A.7 LLM-BASED API SCHEMA CONVERTER IMPLEMENTATION DETAILS

The main prompt for the API schema converter is given below.

Convert this tool description to an OpenAPI 3.1 endpoint specification

Tool description:
{tool_description}

Create an endpoint object with these exact fields:

operationId: {tool[’name’]}

summary: one—line description (keep it short)

description: brief description of the operation (1 sentence max)

requestBody: proper schema based on parameters

responses: ONLY USE STATUS 200 with oneOf schema for success/error

— Success response: Based on tool’s PURPOSE (not generic "result")

- Error response: Standard error object

6. Analyze the tool’s PURPOSE to generate an appropriate response
schema. For example:

If it calculates something (area, factorial, etc.), return the
calculated value

If it fetches data (user info, list of items), return the data
structure

If it performs an action (create, update, delete), return success
confirmation with relevant details

If it searches/filters, return matching results

g W N -

CRITICAL REQUIREMENTS:

— NEVER use $ref - always inline all schemas

— ONLY use HTTP status 200 for ALL responses

— Use oneOf schema in the 200 response to handle both success and
error cases

— All properties MUST have a "description" field

— The requestBody must have a schema with type "object"

— If no parameters, still include requestBody with empty properties

Return ONLY the endpoint object JSON.

A.8 EXPERIMENTS ON THE ACCURACY OF ARGUMENT VALIDATION

We evaluated the argument validator on the BFCL-Live-Simple subset. GPT-40 was used to generate
tool calls for each example. For tool calls that passed the official BFCL evaluation, we marked them
as correct. For tool calls that failed the BFCL evaluation, human annotators labeled each failure
as either a syntactic error (violates the tool schema, e.g., missing required field or wrong field
name/type) or a semantic error (schema-conformant but semantically inappropriate, e.g., wrong
granularity or implausible value). These labels formed the ground truth.

We then ran our argument validator on the same generated tool calls and compared its predictions
(correct / syntactic error/ semantic error) to the ground truth. Table[T]reports the detection rates.

A.9 PSEUDOCODE OF GATS

20

Under review as a conference paper at ICLR 2026

Algorithm 1: GATS loop for an individual dialog turn (inline detailed comments).

Input: Task 7', tool definitions D, schema converter C, planner LLM 7, argument validator V,
response generator (7, task state estimator F, judge LLM J, initial task state st
maximum retries Ry,

Output: Tool-call sequence trace

S <« C.convert(D) // convert tool definitions D into schemas S

checklist « J.gen_checklist(T) // decompose task T to checklist

last_error < null // holds last validation or judge error

for attempt < 0 to R, do

trace < [| // trace records tool call sequence

st < Stinit // initialize task state from previous task state

while true do

¢ < m.gen_next(T, st,trace,last_error) // planner generates tool call

if c == STOP then

L break // planner finished tool use for this attempt

(valid, errors) < V.validate(c, S) // arguments validation
if not valid then
last_error <— errors // return validation feedback
continue
re < G.generate(c, S, st) // simulate tool execution
st < E.update(st,c,r.) // update task state
append cto trace // record executed call

feedback < Jjudge(checklist, st,trace,S) // give task-level feedback
if feedback.success == true then
L break // task satisfied

last_error < feedback.error // return task-level feedback
return trace

21

	Introduction
	Related Work
	The Gecko Simulation Environment
	Argument Validator
	LLM-based tool response generator
	LLM-based task state estimator
	LLM-based task feedback generator
	LLM-based API schema converter for various tools

	Grounding Agent Test-time Scaling (GATS)
	Discussions
	Experiments
	Experimental setup
	Main Evaluation
	Further Analysis

	Conclusion
	Appendix
	The Use of Large Language Models (LLMs)
	Design Principles of Gecko
	Argument Validator Implementation Details
	Syntactic Validation Rules
	Semantic Validation via LLM

	Response Generator Implementation Details
	Task State Estimation Implementation Details
	Task Feedback Generation Implementation Details
	LLM-based API Schema Converter Implementation Details
	Experiments on the accuracy of argument validation
	Pseudocode of GATS

