
Polybot: Training One Policy
Across Robots While Embracing Variability

Jonathan Yang, Dorsa Sadigh, Chelsea Finn
Stanford University

jyang27@cs.stanford.edu

Abstract: Reusing large datasets is crucial to scale vision-based robotic manip-
ulators to everyday scenarios due to the high cost of collecting robotic datasets.
However, robotic platforms possess varying control schemes, camera viewpoints,
kinematic configurations, and end-effector morphologies, posing significant chal-
lenges when transferring manipulation skills from one platform to another. To
tackle this problem, we propose a set of key design decisions to train a single pol-
icy for deployment on multiple robotic platforms. Our framework first aligns the
observation and action spaces of our policy across embodiments via utilizing wrist
cameras and a unified, but modular codebase. To bridge the remaining domain
shift, we align our policy’s internal representations across embodiments through
contrastive learning. We evaluate our method on a dataset collected over 60 hours
spanning 6 tasks and 3 robots with varying joint configurations and sizes: the Wid-
owX 250S, the Franka Emika Panda, and the Sawyer. Our results demonstrate sig-
nificant improvements in success rate and sample efficiency for our policy when
using new task data collected on a different robot, validating our proposed de-
sign decisions. More details and videos can be found on our project website:
https://sites.google.com/view/polybot-multirobot

Keywords: vision-based manipulation, multi-robot generalization

1 Introduction
Leveraging large datasets is essential to learning widely generalizable models in computer vision
[1] and natural language processing [2]. In robotic manipulation, a promising avenue of research
lies in the collection of similar extensive, in-domain datasets with the aspiration that they bestow
comparable benefits. However, while past datasets have demonstrated good generalizability within
the same hardware setup, applying them to different robotic configurations has proven difficult [3].
This challenge stems from four sources of variation: control scheme, camera viewpoint, kinematic
configuration, and end-effector morphology. Each of these factors can vary significantly across
robotic setups, leading to a large domain shift when transferring data collected on one robot platform
to another. In this paper, we study the problem of how to mitigate this issue and effectively leverage
robotic data across different platforms, making a stride toward learning widely-applicable policies.

In an effort to bridge the aforementioned domain gap, prior works have made advancements in
enabling transfer across a subset of the factors of variation. Early works have studied cross-
embodiment transfer across kinematic configurations from low-dimensional observations [4, 5].
More recently, efforts have shifted towards utilizing high-dimensional image observations, enabling
transfer across robotic hardware with a fixed camera angle for 3-DoF tasks [6] and across end-
effectors with a fixed embodiment [7]. Unlike these works, we do not constrain the camera view-
point, embodiment, or low-level controller to be fixed. Instead, we propose several new design
choices to align the observation and action spaces across robots, such as using wrist-mounted cam-
eras and a shared inverse kinematics solver. Each of these choices greatly mitigate the domain shift
across embodiments without compromising the generality of the robotic setup.

We integrate these design choices into a single framework that aligns the input, output, and internal
representation spaces of our policy across embodiments. Our choice of utilizing front-mounted wrist

7th Conference on Robot Learning (CoRL 2023), Atlanta, USA.

https://sites.google.com/view/polybot-multirobot

Figure 1: Our framework for generalization across multiple robots. We first standardize our
observation space using front-mounted wrist cameras and our action space using a shared higher-
level control environment. We then align our policy’s internal representations using contrastive
learning then finetune these representations to learn robot-specific dynamics.

cameras aligns the input (or observation) space by naturally reducing the visual variation between
embodiments. This allows us to remove assumptions about collecting data only under a specific fixed
angle. In order to align the output space of our policy, we employ a shared inverse kinematics solver,
while allowing the lower-level controller to vary. Although we would ideally completely unify the
output space by using a single abstract action space across robots, this is infeasible due to disparities
in action interpretation arising from hardware discrepancies. We instead learn a multiheaded policy
with robot-specific heads that capture separate dynamics. Finally, we exploit a consistent, low-
dimensional proprioceptive state signal to align our policy’s internal representations. This facilitates
generalization across the remaining factors that may cause a domain shift.

Our main contribution is a pipeline for learning end-to-end closed-loop policies that can reuse and
benefit from data collected on other robotic platforms. We empirically demonstrate that our method,
Polybot: Cross-Robot ADaptation and ALignmEntWe first show that given a shared dataset of
tasks, data from other robots for a new similar task can be transferred in a zero-shot fashion. In
addition, providing as few as 5 demonstrations allows our system to achieve an average of > 70%
success rate on difficult tasks which cannot be learned without data from other robots. We then
show that aligning internal representations across robots can help transfer across remaining domain
shifts, with our method having an average of 19% higher success rate over an ablation without
representation alignment. Finally, we show that our multiheaded training method achieves high
success on 6-DoF tasks outperforming naive blocking controllers that achieve no success at all.

2 Related Work
Learning from large datasets. The study of utilizing diverse datasets to scale robotic learning
is currently gaining momentum in the research community. Examples of large-scale real-world
robot datasets include single-embodiment datasets [8, 9, 3, 10, 11, 12] and simulation benchmarks
[13, 14, 15, 16]. However, these methods have typically focused on transfer with a single em-
bodiment. To maximally reuse data from various sources, there have additionally been efforts to
learn generalizable representations from sources other than robot data. One line of work is learn-
ing from human videos, including unstructured egocentric videos [17, 18, 19, 20, 21, 22, 23, 24],
egocentric videos collected with a parallel gripper device [10], and in-the-wild videos [25, 26, 27].
Apart from human videos, there are works that use representations from large-scale image datasets
[28, 29, 30, 31], Youtube videos [32], and multi-source data from the Internet [33]. Although these
methods can improve sample-efficiency and generalizability, they are often focused on learning vi-
sual representations that can be fine-tuned for learning robot policies. Instead, we focus directly on
learning visuomotor policies from robot data.

Learning across embodiments. A number of works have studied learning policies that transfer
across embodiments. Some works in the past have focused on smaller aspects of robotic transfer,

2

including across 2-dimensional kinematic configurations [4], robotic models in simulation [5, 34],
end-effector morphologies [7], dynamics [35, 36, 37, 38], and camera viewpoints [39]. A few works
exist that focus on the task of transferring between robotic hardware [6, 40, 41]. General naviga-
tion models (GNM) demonstrates cross-embodiment transfer in navigation for wheeled vehicles,
quadrupeds, and drones [40]. Hu et al. study transfer to new manipulators via a robot-aware visual
foresight model trained on observations from fixed exterior camera by computing a mask [6]. In
contrast to these works, we focus on transfer across a wide range of high-dimensional observations,
diverse robotic control schemes, and more complex 6-DoF tasks in the low-data regime.

Transfer learning. Cross-robot transfer is closely related to the general area of transfer learning,
where there is a large body of work on task generalization [42, 43, 44, 45, 46, 47, 48, 49, 33]
and sim2real generalization [39, 50, 51, 52, 53, 54, 55]. These methods either only use a single
embodiment or largely ignore cross-embodiment differences. In addition, our work is closely related
to the area of domain adaptation. Previous works include using GANs [56, 57, 55, 26], domain-
adversarial learning [58, 59, 60], contrastive learning [17, 21], and learning system-invariant feature
representations [61, 62, 63] to transfer between two related domains. Our method focuses on the
domain adaptation problem across robots by exploiting a low-dimensional proprioceptive signal.

3 Multi-Robot Generalization Through Domain Alignment
Our goal is to maximally reuse robotic datasets collected from one setup when deploying policies on
another. Let Dn

r = {{(p0, o0, a0), (p1, o1, a1), . . . , (pT , oT , aT)}} be a dataset containing demon-
strations of robot r completing task n. p ∈ Pr denotes the robot’s proprioceptive end-effector pose,
o ∈ Or denotes the image observation, and a ∈ Ar denotes the action. We assume that there exists
a shared dataset D̃ :=

⋃
n≤N,r≤R Dn

r of experience for N different tasks and R different robots.
Then, given a dataset for a new task on some robotic platform DN+1

j , 1 ≤ j ≤ R, we would like to
learn a policy πN+1

k (a|o), k ̸= j that completes the same task on robot k.

In order to reduce the domain gap between robots, we align the observation space, action space,
and internal representations of our policy. In an ideal world, this would allow us to train a joint
multitask policy π̃(ã|o, z) on DN+1

j ∪ D̃ where ã ∈ Ã is a shared action with similar interpre-
tation across robots. Prior work [40] demonstrates that training cross-embodiment policies with a
unified abstract action space can facilitate learning cross-robot features by coupling similar states
with similar signals. However, discrepancies in action interpretation across manipulators make
this approach infeasible, so we instead train a task-conditioned multiheaded policy with R heads:
πr(a|f̃(o), z), r ≤ R, a ∈ Ar where f̃ is a shared encoder and z is a one-hot task encoding. Fig. 5
and Fig. 6 in the Appendix depict this architecture.
3.1 Aligning the Observation Space
Ideally, an aligned observation space Õ would have the property that o1 ∈ Dn

j is similar to o2 ∈ Dn
k

if s1 is similar to s2, where s1 and s2 denote the ground truth states of o1 and o2. This corresponds
to f̃(o1) ∼ f̃(o2) if s1 ∼ s2. To align this space as much as possible while maintaining generality
of our robotic setup, we employ 3D-printed wrist camera mounts. The cameras are mounted directly
in front of the robot and positioned to capture the end-effector within their field of view. However,
because of variability across robots, the wrist camera mounts are not the same across robots, nor
do we standardize the camera angle. Appendix A.1 shows the locations of the wrist and exterior
cameras. Utilizing a wrist camera greatly simplifies the range of variation of camera positioning to
two dimensions: the height of the camera with respect to the tip of the end-effector, and the angle of
the camera. This is in contrast with exterior cameras, which require six dimensions to fully specify.
In addition, wrist cameras provide natural robustness to distribution shifts in the environment [64].
One noticeable example of this is invariance to visual differences in robotic arms, since only the
end-effector is in view as shown in the Observation Alignment section of Fig. 1.

3.2 Aligning the Action Space
To ensure a consistent action interpretation across robots, we use a shared upper-level environment.
Fig. 1 depicts our control stack under the Action Alignment section. For an action at ∈ Ar, we use a
shared upper-level environment, responsible for processing at and converting it into a commanded

3

Figure 2: Internal Representation Alignment. This figure depicts two trajectories across different
robots for the same task. Our contrastive pretraining approach maps observations with similar pro-
prioceptive state with respect to the grasped book and cabinet together. The green lines represent
example pairs of observations mapped together, while the red line represents an example pair of
observations whose embeddings are pushed apart.

delta pose target ∆pc
t. Then the sum of the robot’s current pose and desired target pose, pt +∆pc

t, is
transmitted to a robot-specific controller. For modularization, each robot-specific controller cr, 1 ≤
r ≤ R, exposes a small, shared API to set pose targets and query end-effector poses, which is
called by the upper-level environment. addition, we utilize a shared inverse kinematics solver, which
processes these pose targets into joint commands. Since inverse kinematics is an underspecified
problem, different solvers can cause large discrepancies in control. Our choice of a shared solver
minimizes inconsistencies in interpretation of pose commands by providing a more-standardized
target pose-to-joint mapping. In addition, it aligns the coordinate frame of the robots’ actions, by
using a consistent definition of a robot’s pose with respect to its base frame. Further details of our
implementations of these controllers and inverse kinematics solvers are provided in Appendix A.4.

While the above design decisions successfully aligns the poses of the robot pt ∈ Pri and ensures
consistent targets pt+∆pct are transmitted to each robot controller, it should be noted that the result-
ing achieved pose at the next timestep pt+1 is not necessarily aligned. This discrepancy arises from
the fact that the trajectory a end-effector follows to reach its target can differ based on the specific
robot controller cri and the characteristics of the robot’s hardware, even when employing a shared
inverse kinematics solver. For example, consider continuous or non-blocking controllers, which
interrupt the robot with a new command at regular intervals of ∆t. Due to movement limitations
imposed by the robot’s kinematic configuration, the resulting trajectory will be highly nonlinear
given the commanded pose pct and the current state. Consequently, even with a standardized control
stack, the displacement ∆pct proves insufficient for learning a shared action space with a consistent
learning signal because its interpretation differs per robot.

One attempt to circumvent this issue would be to use a blocking controller, which waits for a robot
to reach its target pose before issuing a new command. Firstly, we would relabel the actions in our
replay buffer as the change in achieved poses p and train a blocking controller to reach these poses.
Since teleoperation with blocking controllers is difficult, we would instead use continuous control
to collect the trajectory {(p0, o0, a0), (p1, o1, a1), . . . , (pT , oT , aT)}. We would then construct a
new dataset {(p0, o0,∆p0), (pn, on,∆pn), . . . , (pkn, okn,∆pkn)}, where ∆pkn = p(k+1)n − pkn.
However, we find that even with blocking controllers, pt + ∆pct can have significant error from
pt+1. Due to limited degrees of freedom of the hardware and inaccuracies with the controller, not
all ∆pt+1 actions are easily reachable from the current state. As a result, one robot may have
significant difficulty following trajectories from other robots for tasks that require more complex
6-DoF motion. Due to these challenges, we instead use separate heads πr(a|f̃(o), t) to learn each
robot’s individual dynamics. By doing so, our policy benefits from shared visual features and overall
movement directions, while enabling each head to learn the specific means to reach the desired goals.

4

3.3 Aligning Internal Representations

Aligning the internal representations of our policy can allow it to harness the advantages of training
with a consistent signal, even in the absence of a unified action space. Our use of a shared kinematics
solver provides a consistent proprioceptive signal pt with respect the robot’s base. As a result, two
(theoretical) trajectories with same exact same motion of the end effector, T1 ∈ Dn

r1 , T2 ∈ Dn
r2 will

differ only by some translation (i.e. for all timesteps t and pr1,t, pr2,t ∈ T1, T2, (pr1,t − pr2,t) = k
for some constant k). Even if we do not directly act on this signal when rolling out our policy, we
can still exploit it to learn better features from our observations. With this in mind, we propose to
pretrain robot-agnostic features, then fine-tune to learn robot-specific controls.

In order to pretrain using the shared pose signal, we use a contrastive method that maps together
similar states across trajectories and robots. We define the notion of "state similarity" by computing
the changes in pose between a state and a predefined set of "fixed states" in the trajectory. Fixed
states are defined as states in a trajectory that have a similar notion of task completion. For exam-
ple, in quasi-static environments, these "fixed states" can be defined as states where a subtask is
completed, since all successful demonstrations must contain this state. More specifically, consider
a trajectory τ := {(p0, o0, a0), (p1, o1, a1), . . . , (pT , oT , aT)} and a set of fixed poses pf := {ptf }.
We define the difference between a trajectory state and fixed state by

d(pi, ptf)
xyz = pxyzi − pxyztf

, d(pi, ptf)
quat = pquattf

(pquati)−1 (1)

where pxyzi is the proprioceptive Cartesian position of the state and pquati is the orientation of the
state. Since we may have more than one fixed state for trajectory, we additionally define a closest
fixed state difference d(pi) := d(pi, ptf), where tf is the first timestep greater than or equal to i
which corresponds to a fixed states. After randomly sampling an anchor batch A, for each state,
observation pair (pa, oa) ∈ A, we uniformly sample corresponding positive and negative states
(p+, o+) ∼ U(Ppa

), (p−, o−) ∼ U(Npa
) by thresholding the distances between closest fixed state

differences:

Ppa := {(p+, o+); ||d(pa)xyz − d(p+)
xyz||22 < ϵxyz, Dg(d(pa)

quat, d(p+)
quat) < ϵquat} (2)

Npa
:= {(p−, o−); ||d(pa)xyz − d(p−)

xyz||22 < ϵxyz, Dg(d(pa)
quat, d(p−)

quat) < ϵquat} (3)

We define Dg(p, q) as cos−1(2⟨p, q⟩2 − 1), or the geodesic distance between the two quaternions p
and q. We finally use a triplet contrastive loss to pretrain our policy: L(oa, o+, o−) = max(0,m+
||f̃θ(oa) − f̃θ(o+)||22 − ||f̃θ(oa) − f̃θ(o−)||22) where f̃θ is the shared encoder parameterized by
θ. These embeddings explicitly encourage mapping similar states together across trajectories and
robots. This is achieved by sampling states from other rollouts in the positive buffer that correspond
to similar poses with respect to a fixed pose. Fig. 2 depicts example positive and negative pair across
two trajectories from different robots.

By finetuning our policy using these embeddings, we can learn robot-specific elements built upon
robot-agnostic characteristics. To accomplish this, we train individualized dynamics modules
πr(a|f̃(o), t) for each robot using a multi-headed training approach. Each head corresponds to a
distinct action space that may vary across robots due to disparities in action interpretation. This is
depicted in Fig. 1 by arrows denoting separate actions per robot. By adopting this technique, we
circumvent potential challenges associated with trajectory matching involving blocking controllers,
facilitating transferability across more intricate tasks that necessitate greater degrees of freedom.

4 Experiment Setup

We aim to test the following questions: (1) Does leveraging datasets from other robotic platforms
enable zero-shot transfer and increase sample efficiency when learning a new task? (2) Can aligning
internal representations help bridge the domain gap across robotic platforms? (3) How does our
choice of multiheaded training over robot-specific dynamics compare to using a shared action space
through a blocking controller? (4) How does our decision of utilizing wrist cameras compare to the
past approaches of collecting data with exterior cameras? Videos of experiments can be found on
our project website: https://sites.google.com/view/cradle-multirobot

5

https://sites.google.com/view/cradle-multirobot

Robotic platforms. We evaluate our method with the WidowX 250S, Franka Emika Panda, and
Sawyer robot arms. All three of the robots are controlled with 6-DoF delta joint position control.
For each robot, we collect 64 by 64 image observations from two sources: an exterior camera
pointing at the robot, and a wrist camera mounted on the arm itself.

Figure 3: Pick/Place Tasks. The left
column contains the shared pick/place
task, while the other columns contain
the new distractor and new object vari-
ants. For zero-shot evaluation, we in-
clude data for the shared task across
all robots. For few-shot, we also in-
clude 5 demonstrations of a variant for
one robot.

Evaluation tasks. We assume access to a shared buffer con-
taining experience for at least one task on all three robots.
Then, we collect data for a target task on two robots that we
want to transfer to a third. For zero-shot evaluation, we directly
train on this data and evaluate on the third robot. We also test
sample-efficiency of learning a new task with few-shot experi-
ments, where we teleoperate 5 demonstrations for the new task
on the third robot.

To effectively leverage data from prior tasks to solve new tasks,
the prior tasks must share structural similarity with the new
tasks. With this in mind, we evaluate the robot on variants
for two types of tasks: standard pick/place, and shelf manip-
ulation. In the pick/place task, the robot needs to pick up a
marker and drop it into a white container from a variety of po-
sitions. In the shelf manipulation task, the robot rearranges
a book from a container onto a shelf. The first set of tasks
was chosen to evaluate multi-robot transfer in environments
with simple dynamics and greater similarity in control from
one robot to another. The second set evaluates transfer for en-
vironments that require greater degrees of motion. Each of the
tasks is evaluated on 10 starting locations for the objects.

For each type of task, we test for both scene generalization and task generalization. We define scene
generalization as generalization to a task for which there exists an mapping of observations to a
previously seen task. More formally, given an optimal policy π∗(a|o) for a previous task T1, a new
task T2 only differs with T1 by scene if there is a function f : O → O such that π∗(a|f(o)) solves
T2. Task generalization is more general than scene generalization, applying to new tasks which are
similar to an old one, but may require different actions and controls to solve. The following are the
variations that we evaluate on:

Scenario 1 (S1): New Distractor Pick/Place: Pick/place with a distractor object in the background
Scenario 2 (S2): New Object Pick/Place: Pick/place with a banana instead of a marker
Scenario 3 (S3): New Container Pick/Place: Pick/place putting a pen into a cup. This requires a
rotation motion that is not seen in the shared dataset.
Scenario 4 (S4): New Orientation Shelf : Shelf Manipulation with a reversed orientation of the orig-
inal container that contains the books. The motion to grasp and place the book is the same.
Scenario 5 (S5): New Compartment Shelf : Shelf Manipulation putting a book into a new compart-
ment on the bottom

Comparison methods. For few-shot transfer, we compare our main method (denoted are Con-
trastive + Multiheaded or Polybot to two different baselines. The first is Naive Multi-Robot Training,
which trains a task-conditioned multiheaded policy on exterior camera angles without contrastive
pretraining. We also evaluate the Single Robot Training baseline, which only contains demonstra-
tions for the target robot. We also consider two different ablations for our method: task-conditioned
multiheaded training without constrastive pretraining denoted as Ours w/o Contr., and constrastive
pretraining with a blocking controller denoted as Contr. + Blocking.

Dataset collection. Details are provided in Appendix A.2.

5 Experimental Results

6

Robot Method New Distr. (S1) New Obj. (S2) New Cont. (S3) New Orient. (S4) New Comp. (S5)
Pick and Place Shelf

Franka
Polybot 0.9 0.8 0.9 1.0 0.9

Naive Multi-Robot 0.4 0.3 0.3 0.0 0.0
Single Robot 0.2 0.2 0.0 0.0 0.0

Sawyer
Polybot 0.9 0.9 0.7 0.9 0.7

Naive Multi-Robot 0.3 0.2 0.2 0.0 0.0
Single Robot 0.2 0.1 0.0 0.0 0.0

WidowX
Polybot 0.9 1.0 0.7 0.8 0.7

Naive Multi-Robot 0.4 0.1 0.2 0.0 0.0
Single Robot 0.3 0.2 0.0 0.0 0.0

Table 1: Few-shot multi-robot transfer results. Given 5 demonstrations on a new task, Polybot
performs significantly better than a baseline without data from other robots. In addition, our task-
conditioned multiheaded policy enables the transfer of multi-robot data for shelf manipulation tasks,
where a blocking controller fails.

Robot Method S1 S2 S3 S4 S5

Franka Polybot 0.4 0.6 0.0 0.4 0.0
Contr. + Blocking 0.3 0.3 0.0 0.0 0.0

Sawyer Polybot 0.6 0.5 0.0 0.4 0.0
Contr. + Blocking 0.6 0.3 0.0 0.0 0.0

WidowX Polybot 0.4 0.4 0.0 0.5 0.0
Contr. + Blocking 0.4 0.3 0.0 0.0 0.0

Table 2: Zero-shot results. Polybot can learn a
new task with high structural similarity to tasks
in a shared multi-robot buffer given only data
from other robots.

Utilizing data from other robots signfi-
cantly improves few-shot generalization per-
formance on a new task. In Table 1, the suc-
cess rate for Polybot demonstrates significant
improvement on all tasks and all robots over sin-
gle robot training. On the Franka, the results
show an average of 0.56 higher success rate on
Pick/Place (0.9, 0.8, 1.0 versus 0.4, 0.3, 0.3) and
0.95 higher success rate on Shelf Manipulation.
(1.0, 0.9 versus 0.0, 0.0). This indicates that
Polybot can effectively utilize data from other
robots to learn a new task with high sample efficiency. Notably, single-robot training fails to get
any success on Shelf Manipulation. Qualitatively, we observe that this policy quickly falls out-of-
distribution and in unable to grasp the book. For tasks with high structural similarity to those in
the shared buffer such as New Distractor Pick/Place, training without other robot data has nonzero
performance, likely due to the variation in scenes we collect in our shared dataset. However, 5
demonstrations are not enough to cover the entire distribution of object positions for a new task,
leading to suboptimal performance.

Polybot facilitates better transfer than naive task-conditioned multiheaded training on with
exterior cameras. Table 1 shows significantly higher success rates for Polybot over naive multi-
robot training (0.9, 0.8, 0.9, 1.0, 1.0 versus 0.4, 0.3, 0.3, 0.0, 0.0 for the Franka). This suggests that
task-conditioned multiheaded training on exterior camera struggles to utilize data from other robots,
validating our hypothesis that a standardized observation space is crucial for this transfer to occur.
For Shelf Manipulation scenarios, naive multi-robot training fails to achieve any success. For Pick/-
Place scenarios, this method does have some success, but it is likely due to the similarities between
the new task and other tasks from the same robot.

Utilizing data from other robots allows for zero-shot generalization performance on a new
task. For tasks that have higher structural similarity to that scene in previous data for the robot such
as scene generalization tasks described in the experiment setup section, we see good success rate
for zero-shot multi-robot transfer. Table 2 showcases this, with both Polybot having success rates of
0.4, 0.6, 0.4 and the blocking controller having success rates of 0.3, 0.6, 0.4 for the New Distractor
Pick/Place task. Without data from other robots, the success rate would be near 0 because the new
task would not be present in the replay buffer. For Scenario 4, or New Orientation Shelf, Polybot has
nonzero performance while the blocking method doesn’t. This is because while both methods are
able to pick up the book from the reversed bookshelf, the blocking controller struggles with placing
the book onto the shelf.

Aligning the internal representations of the observations between robots leads to learning more
generalizable features. Table 3 compares the performances of Polybot with an ablation of the

7

Robot Method S1 S2 S3 S4 S5

Franka Polybot 0.9 0.8 0.9 1.0 0.9
Polybot w/o Contr. 0.8 0.5 0.7 0.6 0.7

Sawyer Polybot 0.9 0.9 0.7 0.9 0.7
Polybot w/o Contr. 0.7 0.5 0.4 0.6 0.7

WidowX Polybot 0.9 1.0 0.7 0.8 0.7
Polybot w/o Contr. 0.8 0.7 0.7 0.6 0.7

Table 3: Ablation: ours vs ours without contrastive.
Our contrastive pretraining and multiheaded finetuning
approach provides an average of 19%o improvement
on few-shot transfer for a new task over regular mul-
tiheaded training.

Method S1 S2 S3 S4 S5
Polybot 0.9 0.8 0.9 1.0 0.9

Contr. + Blocking 0.8 0.6 0.0 0.0 0.0

Polybot 0.9 0.9 0.7 0.9 0.7
Contr. + Blocking 0.9 0.9 0.0 0.0 0.0

Polybot 0.9 1.0 0.7 0.8 0.7
Contr. + Blocking 0.8 0.9 0.0 0.0 0.0

Table 4: Ablation: Ours vs contrastive +
blocking Although a blocking controller
has similar few-shot performance to Poly-
bot on simple Pick/Place variants, it strug-
gles with tasks that require 6-DoF motion.

contrastive pretraining phase. Aligning the internal representation of the policy causes an average
of 19% increase in performance over a baseline without contrastive pretraining. This suggests that
aligning the internal representation of the policy assists in learning features that generalize across
robots. We hypothesize that training on an aligned proprioceptive signal across robots. Notably,
multiheaded training alone seems to have reasonable performance on all tasks, albiet lower than our
method.

Multiheaded policies can better learn from 6-DoF, cross-robot demonstrations over blocking
controllers. Table 9 shows that on the Shelf Manipulation tasks, Polybot achieves high success
rates 1.0, 0.9 on the Franka compared to zero success rate on the blocking controller. In addition,
in the New Container Pick/Place, Polybot has a 0.9 success rate over the 0.0 with blocking. This
large discrepancy is explained by the inability of one robot to precisely imitate another robot. For
instance, variations in the length of the wrist link can lead to large discrepancies in the radius of
the rotation necessary to perform the Shelf Manipulation task. To verify this, we provide the error
over timestep of imitating each task in the Appendix. Notably, the blocking controller has high
performance on S1 and S2 due to lower discrepancy between robots for translational movement.

6 Discussion
Summary. We have developed a method, Polybot, that efficiently learns new tasks using data col-
lected on other robots. This is enabled through careful design decisions driven by a fundamental
observation: transferring data across domains requires aligning the domains as much as possible
without making assumptions that limit their applicability. For example, Polybot uses wrist cam-
eras, which can be mounted on a wide range of robots, while exhibiting significantly less variation
than exterior cameras, even if the mounting position is not fixed. In addition, Polybot uses a shared
higher-level action representation and varying lower-level controller, which can align the policy’s
actions while accommodating the diversity of robotic setups. Finally, our choice of contrastive loss
can align internal representations across robots. Despite the simplicity of each design decision, their
combination sufficiently aligns our multi-embodiment dataset to enable cross-embodiment transfer.
Polybot achieves over a 70% success rate on all tasks, outperforming naive multi-robot training.

Limitations and Future Work. One limitation of our approach is that our method requires a shared
dataset between robots to learn their correspondences. As a result, our method is not able to transfer
policies to a new robot with no demonstrations. Our method also does not allow for zero-shot
transfer on tasks with different motion than seen in the shared dataset. In addition, the scope of
our evaluation has been on parallel-jaw robotic manipulators. Generalization can become more
difficult with a more diverse set of end-effectors, although our method does not preclude this type
of transfer. Our use of egocentric cameras may lead to difficulties in partially observable settings,
such as settings without a clear view of the end-effector. Finally, our representation alignment relies
on a scalable method to compute fixed states across all trajectories, which may not apply for all
manipulation tasks. In the future, we plan to scale our datasets, as we believe that can allow for
more new tasks, camera-viewpoints, and end-effectors to be in-distribution.

8

Acknowledgments

We thank Tony Zhao, Moojin Kim, and Alexander Khazatsky for the numerous discussions about
real-world robot learning and Kyle Hsu, Hengyuan Yu, and Suvir Mirchandani for their helpful
feedback. This research was supported by the Office of Naval Research grants N00014-22-1-2621
and N00014-22-1-2293.

References

[1] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchi-
cal image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pages 248–255, 2009. doi:10.1109/CVPR.2009.5206848.

[2] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever. Improving language understanding
by generative pre-training. 2018.

[3] S. Dasari, F. Ebert, S. Tian, S. Nair, B. Bucher, K. Schmeckpeper, S. Singh, S. Levine, and
C. Finn. Robonet: Large-scale multi-robot learning. In Conference on Robot Learning, 2019.

[4] C. Devin, A. Gupta, T. Darrell, P. Abbeel, and S. Levine. Learning modular neural network
policies for multi-task and multi-robot transfer. In International Conference on Robotics and
Automation, 2016.

[5] T. Chen, A. Murali, and A. Gupta. Hardware conditioned policies for multi-robot transfer
learning, 2019.

[6] E. S. Hu, K. Huang, O. Rybkin, and D. Jayaraman. Know thyself: Transferable visual control
policies through robot-awareness. In International Conference on Learning Representations,
2022.

[7] G. Salhotra, xI Chun Arthur Liu, and G. Sukhatme. Bridging action space mismatch in learning
from demonstrations. 2023.

[8] P. Sharma, L. Mohan, L. Pinto, and A. Gupta. Multiple interactions made easy (mime): Large
scale demonstrations data for imitation, 2018.

[9] A. Mandlekar, Y. Zhu, A. Garg, J. Booher, M. Spero, A. Tung, J. Gao, J. Emmons, A. Gupta,
E. Orbay, S. Savarese, and L. Fei-Fei. Roboturk: A crowdsourcing platform for robotic skill
learning through imitation. 2018.

[10] S. Young, D. Gandhi, S. Tulsiani, A. Gupta, P. Abbeel, and L. Pinto. Visual imitation made
easy. 2020.

[11] E. Jang, A. Irpan, M. Khansari, D. Kappler, F. Ebert, C. Lynch, S. Levine, and C. Finn. Bc-z:
Zero-shot task generalization with robotic imitation learning. In Conference on Robot Learn-
ing, 2021.

[12] F. Ebert, Y. Yang, K. Schmeckpeper, B. Bucher, G. Georgakis, K. Daniilidis, C. Finn, and
S. Levine. Bridge data: Boosting generalization of robotic skills with cross-domain datasets.
In Robotics: Science and Systems, 2022.

[13] T. Yu, D. Quillen, Z. He, R. Julian, A. Narayan, H. Shively, A. Bellathur, K. Hausman, C. Finn,
and S. Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforce-
ment learning. In Conference on Robot Learning, 2019.

[14] S. James, Z. Ma, D. R. Arrojo, and A. J. Davison. Rlbench: The robot learning benchmark &
learning environment. 2019.

[15] Y. Zhu, J. Wong, A. Mandlekar, R. Martín-Martín, A. Joshi, S. Nasiriany, and Y. Zhu. robo-
suite: A modular simulation framework and benchmark for robot learning. In arXiv preprint
arXiv:2009.12293, 2020.

9

http://dx.doi.org/10.1109/CVPR.2009.5206848

[16] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine. D4rl: Datasets for deep data-driven
reinforcement learning. 2021.

[17] P. Sermanet, C. Lynch, Y. Chebotar, J. Hsu, E. Jang, S. Schaal, S. Levine, and G. Brain.
Time-contrastive networks: Self-supervised learning from video. In 2018 IEEE International
Conference on Robotics and Automation (ICRA), pages 1134–1141, 2018. doi:10.1109/ICRA.
2018.8462891.

[18] K. Schmeckpeper, O. Rybkin, K. Daniilidis, S. Levine, and C. Finn. Reinforcement learning
with videos: Combining offline observations with interaction, 2021.

[19] I. Radosavovic, T. Xiao, S. James, P. Abbeel, J. Malik, and T. Darrell. Real-world robot
learning with masked visual pre-training. 2022.

[20] K. Grauman et al. Ego4d: Around the world in 3,000 hours of egocentric video, 2022.

[21] S. Nair, A. Rajeswaran, V. Kumar, C. Finn, and A. Gupta. R3m: A universal visual represen-
tation for robot manipulation. In Conference on Robot Learning, 2022.

[22] Y. J. Ma, S. Sodhani, D. Jayaraman, O. Bastani, V. Kumar, and A. Zhang. Vip: Towards
universal visual reward and representation via value-implicit pre-training. In International
Conference on Learning Representations, 2023.

[23] A. Majumdar, K. Yadav, S. Arnaud, Y. J. Ma, C. Chen, S. Silwal, A. Jain, V.-P. Berges,
P. Abbeel, J. Malik, D. Batra, Y. Lin, O. Maksymets, A. Rajeswaran, and F. Meier. Where
are we in the search for an artificial visual cortex for embodied intelligence?, 2023.

[24] S. Karamcheti, S. Nair, A. S. Chen, T. Kollar, C. Finn, D. Sadigh, and P. Liang. Language-
driven representation learning for robotics. 2023.

[25] A. S. Chen, S. Nair, and C. Finn. Learning generalizable robotic reward functions from "in-
the-wild" human videos. 2021.

[26] S. Bahl, A. Gupta, and D. Pathak. Human-to-robot imitation in the wild. 2022.

[27] L. Shao, T. Migimatsu, Q. Zhang, K. Yang, and J. Bohg. Concept2robot: Learning manipula-
tion concepts from instructions and human demonstrations. 2020.

[28] R. Shah and V. Kumar. Rrl: Resnet as representation for reinforcement learning. 2021.

[29] L. Yen-Chen, A. Zeng, S. Song, P. Isola, and T.-Y. Lin. Learning to see before learning to act:
Visual pre-training for manipulation. 2021.

[30] M. Sharma, C. Fantacci, Y. Zhou, S. Koppula, N. Heess, J. Scholz, and Y. Aytar. Lossless
adaptation of pretrained vision models for robotic manipulation. 2023.

[31] C. Wang, X. Luo, K. Ross, and D. Li. Vrl3: A data-driven framework for visual deep rein-
forcement learning. 2023.

[32] M. Chang, A. Gupta, and S. Gupta. Semantic visual navigation by watching youtube videos.
2020.

[33] S. Reed et al. A generalist agent. Transactions on Machine Learning Research, 2022.

[34] H. You, T. Yang, Y. Zheng, J. Hao, and E. Taylor, Matthew. Cross-domain adaptive transfer
reinforcement
learning based on state-action correspondence. In J. Cussens and K. Zhang, editors, Proceed-
ings of the Thirty-Eighth Conference on Uncertainty in Artificial Intelligence, volume 180 of
Proceedings of Machine Learning Research, pages 2299–2309. PMLR, 01–05 Aug 2022.

10

http://dx.doi.org/10.1109/ICRA.2018.8462891
http://dx.doi.org/10.1109/ICRA.2018.8462891

[35] P. Christiano, Z. Shah, I. Mordatch, J. Schneider, T. Blackwell, J. Tobin, P. Abbeel, and
W. Zaremba. Transfer from simulation to real world through learning deep inverse dynam-
ics model. In CoRR, 2016.

[36] W. Yu, J. Tan, C. K. Liu, and G. Turk. Preparing for the unknown: Learning a universal policy
with online system identification. In CoRR, 2017.

[37] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel. Sim-to-real transfer of robotic con-
trol with dynamics randomization. In International Conference on Robotics and Automation.
IEEE, 2018.

[38] Q. Zhang, T. Xiao, A. A. Efros, L. Pinto, and X. Wang. Learning cross-domain correspondence
for control with dynamics cycle-consistency, 2021.

[39] F. Sadeghi, A. Toshev, E. Jang, and S. Levine. Sim2real view invariant visual servoing by
recurrent control. In International Conference on Robotics and Automation, 2017.

[40] D. Shah, A. Sridhar, A. Bhorkar, N. Hirose, and S. Levine. Gnm: A general navigation model
to drive any robot. In International Conference on Robotics and Automation, 2023.

[41] K. Bousmalis, G. Vezzani, D. Rao, C. Devin, A. X. Lee, M. Bauza, T. Davchev, Y. Zhou,
A. Gupta, A. Raju, A. Laurens, C. Fantacci, V. Dalibard, M. Zambelli, M. Martins, R. Pevce-
viciute, M. Blokzijl, M. Denil, N. Batchelor, T. Lampe, E. Parisotto, K. Żołna, S. Reed, S. G.
Colmenarejo, J. Scholz, A. Abdolmaleki, O. Groth, J.-B. Regli, O. Sushkov, T. Rothörl, J. E.
Chen, Y. Aytar, D. Barker, J. Ortiz, M. Riedmiller, J. T. Springenberg, R. Hadsell, F. Nori, and
N. Heess. Robocat: A self-improving foundation agent for robotic manipulation, 2023.

[42] E. Parisotto, J. L. Ba, and R. Salakhutdinov. Actor-mimic: Deep multitask and transfer rein-
forcement learning, 2016.

[43] Y. Duan, M. Andrychowicz, B. C. Stadie, J. Ho, J. Schneider, I. Sutskever, P. Abbeel, and
W. Zaremba. One-shot imitation learning, 2017.

[44] C. Finn, T. Yu, T. Zhang, P. Abbeel, and S. Levine. One-shot visual imitation learning via
meta-learning, 2017.

[45] K. Hausman, J. T. Springenberg, Z. Wang, N. Heess, and M. Riedmiller. Learning an embed-
ding space for transferable robot skills. In International Conference on Learning Representa-
tions, 2019.

[46] Z. Xu, K. Wu, Z. Che, J. Tang, and J. Ye. Knowledge transfer in multi-task deep reinforcement
learning for continuous control, 2020.

[47] S. Sodhani, A. Zhang, and J. Pineau. Multi-task reinforcement learning with context-based
representations. In International Conference on Machine Learning, 2021.

[48] A. Brohan et al. Rt-1: Robotics transformer for real-world control at scale, 2022.

[49] M. Ahn et al. Do as i can, not as i say: Grounding language in robotic affordances. 2022.

[50] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel. Domain randomization
for transferring deep neural networks from simulation to the real world. 2017.

[51] Z.-W. Hong, C. Yu-Ming, S.-Y. Su, T.-Y. Shann, Y.-H. Chang, H.-K. Yang, B. H.-L. Ho, C.-C.
Tu, Y.-C. Chang, T.-C. Hsiao, H.-W. Hsiao, S.-P. Lai, and C.-Y. Lee. Virtual-to-real: Learning
to control in visual semantic segmentation. In International Joint Conferences on Artificial
Intelligence, 2018.

[52] A. A. Rusu, M. Vecerik, T. Rothörl, N. Heess, R. Pascanu, and R. Hadsell. Sim-to-real robot
learning from pixels with progressive nets, 2018.

11

[53] Y. Chebotar, A. Handa, V. Makoviychuk, M. Macklin, J. Issac, N. Ratliff, and D. Fox. Closing
the sim-to-real loop: Adapting simulation randomization with real world experience. In 2019
International Conference on Robotics and Automation (ICRA), pages 8973–8979, 2019. doi:
10.1109/ICRA.2019.8793789.

[54] M. Kaspar, J. D. M. Osorio, and J. Bock. Sim2real transfer for reinforcement learning without
dynamics randomization, 2020.

[55] D. Ho, K. Rao, Z. Xu, E. Jang, M. Khansari, and Y. Bai. Retinagan: An object-aware approach
to sim-to-real transfer, 2021.

[56] K. Bousmalis, A. Irpan, P. Wohlhart, Y. Bai, M. Kelcey, M. Kalakrishnan, L. Downs, J. Ibarz,
P. Pastor, K. Konolige, S. Levine, and V. Vanhoucke. Using simulation and domain adaptation
to improve efficiency of deep robotic grasping. 2017.

[57] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image translation using cycle-
consistent adversarial networks. In 2017 IEEE International Conference on Computer Vision
(ICCV), pages 2242–2251, 2017. doi:10.1109/ICCV.2017.244.

[58] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand, and
V. Lempitsky. Domain-adversarial training of neural networks, 2016.

[59] K. Fang, Y. Bai, S. Hinterstoisser, S. Savarese, and M. Kalakrishnan. Multi-task domain
adaptation for deep learning of instance grasping from simulation. In 2018 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pages 3516–3523, 2018. doi:
10.1109/ICRA.2018.8461041.

[60] M. Xu, M. Islam, C. M. Lim, and H. Ren. Learning domain adaptation with model calibration
for surgical report generation in robotic surgery. In International Conference on Robotics and
Automation, 2021.

[61] A. Gupta, C. Devin, Y. Liu, P. Abbeel, and S. Levine. Learning invariant feature spaces to
transfer skills with reinforcement learning, 2017.

[62] N. H. Kim, Z. Xie, and M. van de Panne. Learning to correspond dynamical systems, 2020.

[63] S. J. Wang and A. M. Johnson. Domain adaptation using system invariant dynamics models.
In S. J. Wang and A. M. Johnson, editors, Proceedings of the 3rd Conference on Learning
for Dynamics and Control, volume 144 of Proceedings of Machine Learning Research, pages
1130–1141. PMLR, 07 – 08 June 2021. URL https://proceedings.mlr.press/v144/
wang21c.html.

[64] K. Hsu, M. J. Kim, R. Rafailov, J. Wu, and C. Finn. Vision-based manipulators need to also
see from their hands, 2022.

12

http://dx.doi.org/10.1109/ICRA.2019.8793789
http://dx.doi.org/10.1109/ICRA.2019.8793789
http://dx.doi.org/10.1109/ICCV.2017.244
http://dx.doi.org/10.1109/ICRA.2018.8461041
http://dx.doi.org/10.1109/ICRA.2018.8461041
https://proceedings.mlr.press/v144/wang21c.html
https://proceedings.mlr.press/v144/wang21c.html

A Appendix

Further details and videos of experiments can be found on our project website: https://sites.
google.com/view/polybot-multirobot

A.1 Robotic Setup

Figure 4: Our robotic setups. For each robot, we collect data with both a wrist camera and exterior
camera. The cameras are Logitech C920s and Zeds. Although these cameras do have slight differ-
ences in brightness and contrast, this does not seem to affect results.

A.2 Dataset Collection

We collect two types of datasets: a shared dataset containing data from similar tasks for all three
robots and a target dataset containing a new task from one robot platform which we want to transfer
to other platforms. For the purposes of evaluation, our shared dataset consists of the original tasks
we defined above. For each variant, we collect data on 3 diverse scenes and backgrounds to ensure
that the resulting policies have some degree of robustness to changes in the environment. In order to
provide diversity to visual observations, we use cups, plates, and wallpapers with intricate patterns
in the background. By collecting our datasets for each task over 3 variations of this scene, we ensure
that our policy is robust to changes in lighting conditions. Overall, our dataset contains 6 tasks over
3 robots with 3 different backgrounds per task and 50 demonstrations per (scene, robot, background)
combination collected over the course of 60 hours.

A.3 Higher-Level Environment Details

Our higher-level environment has of a shared image server and action processor between robots.
We use delta position control as our action space. This is parameterized by a 7-dimensional vector
consisting of 3 translational dimensions, 3 rotational dimensions, and 1 dimension indicate the per-
centage to close the parallel end-effector. The code for processing an action before sending it to the
lower-level controller is shown below:

d e f s t e p (s e l f , a c t i o n) :
s t a r t _ t i m e = t ime . t ime ()

P r o c e s s A c t io n
a s s e r t l e n (a c t i o n) == (s e l f . DoF + 1)
a s s e r t (a c t i o n . max () <= 1) and (a c t i o n . min () >= −1)

13

https://sites.google.com/view/polybot-multirobot
https://sites.google.com/view/polybot-multirobot

p o s _ a c t i o n , a n g l e _ a c t i o n , g r i p p e r = s e l f . _ f o r m a t _ a c t i o n (a c t i o n)
l i n _ v e l , r o t _ v e l = s e l f . _ l i m i t _ v e l o c i t y (p o s _ a c t i o n , a n g l e _ a c t i o n)
d e s i r e d _ p o s = s e l f . _ c u r r _ p o s + l i n _ v e l
d e s i r e d _ a n g l e = a d d _ a n g l e s (r o t _ v e l , s e l f . _ c u r r _ a n g l e)

s e l f . _ u p d a t e _ r o b o t (d e s i r e d _ p o s , d e s i r e d _ a n g l e , g r i p p e r)

comp_time = t ime . t ime () − s t a r t _ t i m e
s l e e p _ l e f t = max (0 , (1 / s e l f . hz) − comp_time)
t ime . s l e e p (s l e e p _ l e f t)

Given a delta position, angle, and gripper command, our environment first normalized and clips the
commands to ensure that large actions are not sent to the robot. Then, we add the delta position to
our current pose and the delta angle to our current angle. We pass the position and angle into our
lower-level robot controller.

A.4 Robot-Specific Controller Details

Each robot-specific controller provides the following API to the higher-level environment:

d e f u p d a t e _ p o s e (pos , a n g l e) :

d e f u p d a t e _ j o i n t s (j o i n t s) :

d e f u p d a t e _ g r i p p e r (c l o s e _ p e r c e n t a g e) :

d e f g e t _ j o i n t _ p o s i t i o n s () :

d e f g e t _ j o i n t _ v e l o c i t i e s () :

d e f g e t _ g r i p p e r _ s t a t e () :

d e f g e t _ e e _ p o s e () :

The functions update_pose, update_joints and update_gripper set targets for moving the robot.
For each lower-level controller, we use a shared inverse kinematics solver to take the target poses in
update_pose and convert them into joint targets. For simplicity, we use a Pybullet-based solver and
URDF model specifications for each of our robots to compute target joint positions from Cartesian
poses. When computing inverse kinematics through Pybullet, we manually set the joint limits of
each robot, since the solver does not automatically consider these limits by itself. We also use the
IK solver to give us joint positions, joint velocities, gripper states, and end-effector poses. This
allows us to use a standarized coordinate from with respect to the robot’s base to get a robot’s
Cartesian coordinates.

For each robot, we implement two controllers: a blocking version and a nonblocking ver-
sion. The blocking controller waits for an entire movement command to finish before executing the
next command. Meanwhile, the nonblocking or continuous controller continuously interrupts the
robot with a new target pose every fixed period of time.

A.5 Network Architecture

A.6 Contrastive Learning Details

We train our encoder with a triplet loss of margin m = 0.5.

L(oa, o+, o−) = max(0,m+ ||f̃θ(oa)− f̃θ(o+)||22 − ||f̃θ(oa)− f̃θ(o−)||22)

We provide nearest neighbor lookup for our robot below. We first embed the left image via our
encoder. Then, we embed all observations in a dataset for a different robot. For example, in the
top-left image, we use the shelf manipulation dataset with only Franka data. Then, we compute the

14

Figure 5: Our encoder architecture. We parameterize our encoder as a CNN. The convolutional
layers are flattened and then fed into two MLP layers to get a representation z. In order to learn
correspondence between robots, we train this encoder with a contrastive loss. We use random crop
and color jitter as image augmentations for our encoder.

Figure 6: Our decoder architecture. The output of our encoder z is concatenated with a one-hot
task index and fed into the decoder. This task index specifies a task either in the shared buffer, or
a new task which we want to achieve. After passing the input through two MLP layers, we feed in
into three-robot specific heads for each of the robots we are evaluating on.

Attribute Value
Input Width 64
Input Height 64
Input Channels 3
Kernel Sizes [3, 3, 3]
Number of Channels [16, 16, 16]
Strides [1, 1, 1]
Paddings [1, 1, 1]
Pool Type Max 2D
Pool Sizes [2, 2, 1]
Pool Strides [2, 2, 1]
Pool Paddings [0, 0, 0]
Image Augmentation Random Crops/Color Jitter
Image Augmentation Padding 4

Table 5: CNN hyperparameters for our policy encoder. Our CNN uses 64 by 64 images, which
passes through through 3 convolutional layers. Each layer has a 3by3 kernel with 16 channels. We
augment our architecture with random crop and color jitter.

embedding with the closest l2 distance from the embedding of the left image. Note that our method
also aligns trajectories with same robot.

15

Hyperparameter Value
Batch Size 64
Number of Gradient Updates Per Epoch 1000
Learning Rate 3E-4
Optimizer Adam

Hyperparameter Value
Batch Size 64
Number of Gradient Updates Per Epoch 1000
Learning Rate 1E-4
Optimizer Adam

Table 6: Hyperparameters. The left table contains hyperparameters for behavior cloning, and the
right table contains hyperparameters for contrastive learning.

Figure 7: Contrastive Nearest Neighbors. This figure shows nearest neighbors examples across
the three robots for embeddings from our pretrained encoder. These examples are computed for both
shelf and pick/place trajectories.

A.7 Shelf Tasks

Figure 8: Shelf Tasks. The original shelf tasks consists of placing the book on the top compartment.
The first target task requires doing the same from a reversed book container, while the second tasks
requires placing the book in the lower compartment. The tasks in the first column are part of the
shared dataset while the second and third are target tasks to test transfer.

16

A.8 Error between Commanded Delta Pose Target and Achieved Delta Pose

The following figures depict a plot of the l2 norm between the translational components of the delta
commanded pose targets and achieved delta poses for demonstration trajectories across 3 robots.
At each timestep, the environment receives a delta commanded pose target, which gets added to
the robot’s current pose then sent to the lower-level controller. Although the controller defines a
trajectory to reach this target pose, due to errors in the inverse kinematics solver and limitations on
movement imposed by the hardware, it may not reach the pose. We plot the error for each timestep
across a trajectory from a Pick/Place task and one from a Shelf Manipulation task. Expectedly, the
WidowX has the highest average error, followed by the Sawyer then the Franka. This error varies
wildly between robots and timesteps, causing the commanded delta pose to be highly unpredictable
from the achieved delta pose.

Figure 9: Action interpretation error for the
Franka.

Figure 10: Action interpretation error for the
Sawyer

Figure 11: Action interpretation error for the
WidowX.

17

A.9 Ablation: Wrist Camera Variation

In order to more comprehensively evaluate the effect of wrist-camera variation, we have 3D-printed
2 new wrist-camera mounts for the WidowX250S. We have then collected data for the shared Pick-
/Place task as well as New Distractor Pick/Place task variant. Here are the results

Viewpoint 1 (V1): Original Mount: The original camera mount used on the WidowX 250S for our
experiments. The mount is 20 degrees from vertical.
Viewpoint 2 (V2): Original Mount + Masked Gripper: The original camera mount used on the
WidowX 250S experiments with the bottom part of the image masked out.
Viewpoint 3 (V3): 35 Degree Mount A wrist-camera viewpoint that is 35 degres from the vertical.
Viewpoint 4 (V4): 50 Degree Mount A wrist-camera viewpoint that is 50 degres from the vertical.
Viewpoint 5 (V5): 50 Degree Mount + Change in Height: The 50-degree wrist-camera mount is
placed lower on the WidowX.

Figure 12: Our wrist camera mounts. The follow depicts the original, 35-degree and 50-degree
mounts.

Figure 13: Our wrist camera viewpoints. This figure depicts the viewpoints we used for our
ablations. The lego block is in the same place directly under the gripper for all mounts. Different
wrist camera angles can cause the same object to appear in different parts of an egocentric image.

Method V1 V2 V3 V4 V5
CRADLE 0.8 0.8 0.9 0.8 0.7

Table 7: Ablation: Wrist Camera Viewpoint The table depicts the few-shot performances of the
new-distract Pick/Place task with new distractor viewpoints. Each variation was evaluated 10 times
on a wide variety of angles.

Our results show consistently high success rate on a target task for the variation in viewpoint we
evaluated on. Notably, even though the location of the object on the image changes, CRADLE is
still able to learn good correspondences and transfer experience to these camera angles. We expect

18

that by training on a larger shared dataset with more variations in camera angle, we will be able to
finetune directly on new camera viewpoints without requiring shared data.

Interestingly, the policy performs well on the Pick/Place even with the bottom part of the image
cropped out. In order to make these experiments work, we had to include the robot’s proprioceptive
information alongside the 1-hot task ID and latent variable to the decoder. This allows the state to
maintain full observability on the Pick/Place tasks. With more than 1 viewpoint that does not contain
the gripper, the policy may have problems determining the camera angle from the image alone. This
is because there one can achieve the same image by either changing the camera angle or moving the
robot’s end-effector.

A.10 Ablation: End-Effector Size Variation

In order to consider the effect of variations in end-effector size, we have ran experiments on Pick-
/Place tasks with a larger and smaller gripper. Although we reuse data with the larger gripper, we
collect new data on both the shared Pick/Place task as well a small number of demonstrations for
each task variant using the smaller gripper. Similar to our main experiments, we finetune our policy
with 5 demonstrations for task variant. In order to succeed, a robot has to slightly adapt its actions
in order to transfer robotic data collected from the larger gripper to the smaller. If incorrect features
are transferred across these two settings, the policy may attempt to grasp the object too early.

Figure 14: Egocentric Viewpoints for the Larger/Smaller Grippers. The fingers on the left are a
larger 3D-printed variations of the smaller ones designed by Trossen Robotics on the right.

Method S1 S2 S3
CRADLE 0.9 1.0 0.7

Table 8: Ablation: End-Effector Size Variation: CRADLE achieved an average of 87% success
on few-shot generalization to a new gripper.

Our experiments show that CRADLE has high success rate on Pick/Place tasks with both small and
large grippers. These results are in-line with the results we see from transfer across the Franka’s
Sawyer’s and WidowX’s end effectors. Since the grippers are different sizes and widths, the pol-
icy will need to learn how to adapt to their individual constraints in order to get effective transfer
performance.

A.11 Ablation: Joint Egocentric and Exterior Training

Although our settings do not require partial observability, to provide evidence that CRADLE is able
to transfer information with joint egocentric and exterior training, we have runs New Distractor Pick-
/Place experiments with both joint and exterior camera training. In order to process this information,
we stack these viewpoints together channel-wise before passing it through the convolutional neural
network encoder. The following table describes the results:

19

Method S1 S2 S3
CRADLE 0.7 0.7 0.6

Table 9: Ablation: Joint Egocentric and Exterior Training The table depicts the performances
of the new-distract Pick/Place task with new distractor viewpoints. Each variation was evaluated 10
times on a wide variety of angles.

Although CRADLE is able to achieves > 60 success rate with both egocentric and exterior camera,
we see that its performance suffers. We believe that this is due to difficulties aligning the third-
person observations. Although wrist-camera perspectives look similar across embodiments, third-
person perspectives can have vary based on the a robot’s appearance. We believe that by pretraining
with more

20

	Introduction
	Related Work
	Multi-Robot Generalization Through Domain Alignment
	Aligning the Observation Space
	Aligning the Action Space
	Aligning Internal Representations

	Experiment Setup
	Experimental Results
	Discussion
	Appendix
	Robotic Setup
	Dataset Collection
	Higher-Level Environment Details
	Robot-Specific Controller Details
	Network Architecture
	Contrastive Learning Details
	Shelf Tasks
	Error between Commanded Delta Pose Target and Achieved Delta Pose
	Ablation: Wrist Camera Variation
	Ablation: End-Effector Size Variation
	Ablation: Joint Egocentric and Exterior Training

