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Abstract

We develop a novel deep learning architecture for nat-

urally complex-valued data, which is often subject to com-

plex scaling ambiguity. We treat each sample as a field in

the space of complex numbers. With the polar form of a

complex-valued number, the general group that acts in this

space is the product of planar rotation and non-zero scal-

ing. This perspective allows us to develop not only a novel

convolution operator using weighted Fréchet mean (wFM)

on a Riemannian manifold, but also a novel fully connected

layer operator using the distance to the wFM, with natural

equivariant properties to non-zero scaling and planar rota-

tion for the former and invariance properties for the latter.

Compared to the baseline approach of learning real-

valued neural network models on the two-channel real-

valued representation of complex-valued data, our method

achieves surreal performance on two publicly available

complex-valued datasets: MSTAR on SAR images and Ra-

dioML on radio frequency signals. On MSTAR, at 8% of

the baseline model size and with fewer than 45, 000 param-

eters, our model improves the target classification accuracy

from 94% to 98% on this highly imbalanced dataset. On

RadioML, our model achieves comparable RF modulation

classification accuracy at 10% of the baseline model size.

1. Introduction

We study the task of extending deep learning to natu-

rally complex-valued data, where useful information is in-

tertwined in both magnitudes and phases. For example,

synthetic aperture radar (SAR) images, magnetic resonance

(MR) images, and radio frequency (RF) signals are acquired

in complex numbers, with the magnitude often encoding

the amount of energy and the phase indicating the size of

contrast or geometrical shapes. Even for real-valued im-

ages, their complex-valued representations could be more

successful for many pattern recognition tasks; the most

notable examples are the Fourier spectrum and spectrum-

based computer vision techniques ranging from steerable

filters [10] to spectral graph embedding [16, 24].

A straightforward solution is to treat the complex-valued

data as two-channel real-valued data and apply real-valued

deep learning. Such an Euclidean space embedding would

not respect the intrinsic geometry of complex-valued data.

For example, in MR and SAR images, the pixel intensity

value could be subject to complex-valued scaling. One way

to get around such an ambiguity is to train a model with

data augmentation [15, 7, 22], but such extrinsic data ma-

nipulation is time-consuming and ineffective. Ideally, deep

learning on such images should be invariant to the group of

non-zero scaling and planar rotation in the complex plane.

We treat each complex-valued data sample as a field

in the space of complex numbers, which is a special non-

Euclidean space. This perspective allows us to develop

novel concepts for both convolution and fully connected

layer functions that achieve equivariance and invariance to

complex-valued scaling.

A major hurdle in extending convolution from the Eu-

clidean space to a non-Euclidean space is the lack of a vec-

tor space structure. In the Euclidean space, there exists a

translation to go from one point to another, and convolution

is equivariant to translation. In a non-Euclidean space such

as a sphere, a point undergoing translation may no longer

remain in that space, hence translation equivariance is no

longer meaningful. What is essential and common between

a non-Euclidean space and the Euclidean space is that, there

is a group that transitively acts in the space. For example,

there is a rotation, instead of translation, to go from one

point to another on a sphere. Extending convolution to a

non-Euclidean space should consider equivariance to some

transitive action group specific to that space.

Note that such a manifold view applies to both the do-

main and the range of the data space. To extend deep learn-

ing to complex-valued images or signals, we take the mani-

fold perspective towards the range space of the data.

There is a long line of works that define convolution in

a non-Euclidean space by treating each data sample as a



function in that space [23, 5, 6, 9, 3, 14].

Our key insight is to represent a complex number by its

polar form, such that the general group that acts in this space

is the product of planar rotation and non-zero scaling. This

representation turns the complex plane into a particular Rie-

mannian manifold. We want to define convolution that is

equivariant to the action of this product group in that space.

When a sample is a field on a Riemannian manifold,

• Convolution defined by weighted Fréchet mean (wFM)

[18] is equivariant to the group that naturally acts on

that manifold [4].

• Non-linear activation functions such as ReLU may not

be needed, since wFM is a non-linear contraction map-

ping [17] analogous to ReLU or sigmoid.

• Taking the Riemannian geometric point of view, we

could also use tangent ReLU for better accuracy.

• We further propose a distance transform as a fully-

connected layer operator that is invariant to complex

scaling. It takes complex-valued responses at a previ-

ous layer to the real domain, where all kinds of stan-

dard CNN functions can be subsequently used.

A neural network equipped with our wFM filtering and

distance transform on complex-valued data has a group in-

variant property similar to the standard CNN on real-valued

data. Existing complex-valued CNNs tend to extend the

real-valued counterpart to the complex domain based on the

form of functions [2, 21], e.g. convolution or batch nor-

malization. None of complex-valued CNNs are derived by

studying the desired property of functions, such as equivari-

ance or linearity. Our complex-valued CNN is composed

of layer functions with all the desired properties and is a

theoretically justified analog of the real-valued CNN.

On the SAR image dataset MSTAR, compared to the

baseline of a real-valued CNN acting on the two-channel

real representation of complex-valued data and reaching

94% accuracy, our complex-valued CNN acting directly on

the complex-valued data (i.e., also without any preprocess-

ing) achieves 98% target classification accuracy with only

8% of parameters. Likewise, on the radio frequency signal

dataset RadioML, our method achieves comparable modu-

lation mode classification (a harder task than target recogni-

tion) performance with fewer parameters.

To summarize, we make two major contributions.

1. We propose novel complex-valued CNNs with theoret-

ically proven equivariance and invariance properties.

2. We provide sur-real (pun intended) experimental val-

idation of our method on complex-valued data classi-

fication tasks, demonstrating significant performance

gain at a fraction of the baseline model size.

These results demonstrate significant benefits of designing

new CNN layer functions with desirable properties on the

complex plane as opposed to applying the standard CNN to

the 2D Euclidean embedding of complex numbers.

2. Our Complex-Valued CNN Theory

We first present the geometry of the manifold of complex

numbers and then develop complex-valued convolutional

neural network (CNN) on that manifold.

Space of complex numbers. Let R denote the set of real

numbers. All the complex number elements assume the

form a + ib, where i =
√
−1, a, b ∈ R, and lie on a a

Riemannian manifold [1] denoted by C. The distance in-

duced by the canonical Riemannian metric is:

d(a+ ib, c+ id) =
√

(a− c)2 + (b− d)2. (1)

We identify C with the polar form of complex numbers.

Definition 1. We identify each complex number, a+ib, with

its polar form, r exp(iθ), where r and θ are the absolute

value (abs) or magnitude and argument (arg) or phase of

a + ib. Here θ ∈ [−π, π]. Hence, we can identify C as

R
+×SO(2), where R+ is the set of positive numbers, and

SO(2) is the manifold of planar rotations. Let F : C →
R

+×SO(2) be the mapping from the complex plane to the

product manifold R
+ × SO(2):

a+ ib
F7→ (r,R(θ)) ,

r = abs(a+ ib) =
√

a2 + b2

θ = arg(a+ ib) = atan2(b, a)

R(θ) =

[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]

.

Note that F is bijective.

Manifold distance between complex numbers. The

geodesic distance on this manifold is the Euclidean dis-

tance induced from Eq. (1) in the tangent space. Given

z1, z2 ∈ C, let (r1, R1) = F (z1) and (r2, R2) = F (z2).
While the Euclidean distance between two complex num-

bers is Eq. (1), their manifold distance R
+ × SO(2) is:

d (z1, z2) =
√

log2(r−1

1 r2) + ‖ logm
(

R−1

1 R2

)

‖2F , (2)

where logm is the matrix logarithm. Note that, for A =

R(θ) ∈ SO(2), we choose logm(A) to be θ

[

0 1
−1 0

]

.

Transitive actions and isometries. C is in fact a homoge-

nous Riemannian manifold [11], a topological space on

which there is a group of actions acts transitively [8].

Definition 2. Given a (Riemannian) manifold M and a

group G, we say that G acts on M (from left) if there ex-

ists a mapping L :M× G →M given by (X, g) 7→ g.X



satisfies (a) L (X, e) = e.X = X (b) (gh).X = g.(h.X) .

An action is called a transitive action iff given X,Y ∈ M,

∃g ∈ G, such that Y = g.X .

Proposition 1. Group G := {R \ {0}} × SO(2)
transitively acts on C and the action is given by

((r,R) , (rg, Rg)) 7→
(

r2gr,RgR
)

.

It is straightforward to verify that group G transitively

acts on C. We show that G is the set of isometries on C.

Proposition 2. Given z1 = (r1, R1), z2 = (r2, R2) ∈ C

and g = (rg, Rg) ∈ G, d (g.z1, g.z2) = d (z1, z2).

The proof follows from the definitions of d and g:

d (g.z1, g.z2)

=
√

log2
(

(r2gr1)
−1(r2gr2)

)

+ ‖ logm
(

R−1

1 R−1
g RgR2

)

‖2F
=d (z1, z2) .

Having defined our manifold range space for complex

numbers, we focus on extending two key properties, equiv-

ariance of a convolution operator and invariance of a CNN,

from real-valued CNNs to complex-valued CNNs.

Equivariance property of convolution. In the Euclidean

space R
n, the convolution operator is equivariant to trans-

lation: Given the kernel of convolution, if the input is trans-

lated by t, the output would also be translated by t. This

property enables weight sharing across the entire spatial do-

main of an image. The group of translations is the group of

isometries for Rn, and it transitively acts on R
n.

We extend these concepts to our complex number mani-

fold C. Our G = {R \ {0}} × SO(2) transitively acts on

C and is the group of isometries. In order to generalize the

Euclidean convolution operator on C, we need to define an

operator on C which is equivariant to the action of G.

CNNs on manifold valued data have recently been ex-

plored in [4], where convolution is defined on manifoldM
and equivariant to the group G that acts onM. In our case,

manifoldM=C and action group G = {R\{0}}×SO(2).
Convolution as manifold Fréchet mean filtering. Given

K points on our manifold C: {zi}Ki=1
⊂C, and K nonnega-

tive weights {wi}Ki=1
⊂(0, 1] with

∑

i wi = 1, the weighted

Fréchet mean (FM) (wFM) is defined as [18]:

wFM ({zi} , {wi}) = argmin
m∈C

K
∑

i=1

wid
2 (zi,m) , (3)

where d is the distance defined in Eq. (2). Unlike the stan-

dard Euclidean convolution which evaluates the weighted

data mean given the filter weights, the manifold convolution

wFM solves the data mean that minimizes the weighted vari-

ance. There is no closed-form solution to wFM; however,

there is a provably convergent K−step iterative solution [4].

While our filter response wFM ({zi} , {wi}) ∈ C is

complex-valued, a minimizing argument to Eq. (3), the

filter weights {wi} themselves are real-valued. They are

learned through stochastic gradient descent, subject to addi-

tional normalization and convexity constraints on {wi}.
Proposition 3. The convolution definition in Eq. (3) is

equivariant to the action of G = {R \ {0}} × SO(2).

The equivariance property of convolution follows from

the isometry in Prop. (2). Fig (1) illustrates the equivariance

of wFM with respect to planar rotation and scaling.

Rotation

wFM(z1; z2; w)

z1

z2

g:z1
g:z2

g:wFM(z
1; z

2; w)

wFM(z1; z2; w)

z1

z2

g:z1

g:z2
g:wFM(z1; z2; w)

Scaling

Figure 1: Equivariance of weighted Fréchet mean filtering

with respect to rotation and scaling in the complex plane.

Manifold vs. Euclidean convolution. Convolution is of-

ten written as
∑

i wixi, where {wi} is the filter and {xi} is

the signal. With our convexity constraint on {wi},
∑

i wixi

is the wFM on the Euclidean space as it is the minimizer of

the weighted variance defined in Eq. (3). The convexity con-

straint is to ensure that the resultant stays on the manifold.

Therefore, wFM as a convolution operator on the manifold

might appear rather arbitrary at first glance, it is an obvious

choice if we regard the standard convolution as the mini-

mizer of the weighted variance in the Euclidean space.



Next we turn to nonlinear activation functions. Our wFM

is non-linear and contractive [4], it thus performs not only

convolution but also nonlinear activation to a certain extent.

Nevertheless, we extend ReLU in the Euclidean space to a

manifold in a principled manner.

ReLU on the manifold: tReLU. The tangent space of a

manifold could be regarded as a local Euclidean approxi-

mation of the manifold, and a pair of transformations, loga-

rithmic and exponential maps, establish the correspondence

between the manifold and the tangent space.

Our tReLU is a function from C to C, just like the Eu-

clidean ReLU from R
n to R

n, but it is composed of three

steps: 1) Apply logarithmic maps to go from a point in C to

a point in its tangent space; 2) Apply the Euclidean ReLU

in the tangent space; 3) Apply exponential maps to come

back to C from the tangent space.

(r,R)
tReLU7→

( exp(ReLU(log(r))), expm(ReLU(logm(R))) ) (4)

where expm is the matrix exponential operator. Our man-

ifold perspective leads to a non-trivial extension of ReLU,

partitioning the complex plane by r and θ into four scenar-

ios, e.g., those with r<1 would be rectified to r=1.

Invariance property of a CNN classifier. For clas-

sification tasks, having equivariance of convolution and

range compression of nonlinear activation functions are not

enough; we need the final representation of a CNN invariant

to within-class feature variations.

In a standard Euclidean CNN classifier, the entire net-

work is invariant to the action of translations, achieved by

the fully connected (FC) layer. Likewise, we develop a FC

function on C that is invariant to the action of G.

Distance transform as an invariant FC layer. Since our

distance d is shown invariant to G, we propose the distance

of each point in a set to their weighted Fréchet mean, which

is equivariant to G, as a new FC function on C.

Consider turning an m-channel s-dimensional feature

representation, {ti}mi=1
⊂C, into a single FC feature u of m

dimensions. Each input channel ti contains s elements (in

any matrix shape) and is treated as an s-dimensional feature

vector. Our distance transform first computes the wFM of

m input features and then turns input channel i into a single

scalar ui as its distance to the mean:

m = wFM({ti}, {vi}) (5)

ui = d(ti,m), (6)

The m filter weights vi are learned per FC output channel,

and there could be multiple output channels in the FC layer.

Proposition 4. The above distance transform, defined as

the distance to the wFM, is invariant to the action of G.

The proof follows from Propositions 2 and 3:

d(g.ti,wFM(g.{ti}, {vi}))
=d(g.ti, g.wFM({ti}, {vi})) equivariance of wFM

=d(ti,wFM({ti}, {vi})) invariance of distance.

With our distance transform, complex-valued intermedi-

ate feature representations are turned into real values, upon

which we can apply any of the standard layer functions in

the real domain, such as softmax to the last layer of c chan-

nels for c-way classification.

Complex-valued neural network. With these new convo-

lution, nonlinear activation, and FC layer functions, we can

construct a complex-valued CNN which is invariant to the

action of G. Fig. (2) illustrates a possible CNN architecture.

Alg. (1) presents a CNN work-flow with two convolution

layers and one FC layer.
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Figure 2: Sample architecture of our complex-valued CNN

classifier that is invariant to G. It consists of our newly pro-

posed wFM convolution, tReLU nonlinear activation, and

FC distance transform layer functions, together achieving

invariance to complex-valued scaling in the range space.

Algorithm 1: Workflow of our sample CNN classifier

with 2 convolution layers and 1 FC layer.

function COMPLEX-VALUED CNN

VARIABLES(c1in, c
1
out, k1, c

2
out, k2, l, c)

x← Input(c1in, h, w)
x← Conv(x, c1out, k1)
x← tReLU(x)
x← Conv(x, c2out, k2)
x← tReLU(x)
x← Inv(x, l, c)

end function



3. Experimental Results

We conduct our experiments on two publicly available

complex-valued datasets: MSTAR [12] and RadioML [19,

20]. MSTAR contains complex-valued 2D SAR images,

and RadioML contains complex-valued 1D RF signals.

3.1. MSTAR Experiments

MSTAR dataset. It consists of X-band SAR image chips

with 0.3m × 0.3m resolution of 10 target classes such as

infantry combat vehicle (BMP2) and armored personnel

carrier BTR70. The number of instances per class varies

greatly from 429 to 6694. We crop 100×100 center regions

from each image without other preprocessing (Fig. (3)).

Figure 3: MSTAR has 10 imbalanced target classes, a sam-

ple image per class shown on the top and the total number

of images per class shown in the bottom. We use the HSV

color map for visualizing the phase of a complex-valued im-

age. SAR images are noisy with a large intensity range.

MSTAR baselines. We use the real-valued CNN model in

Fig. (8) and consider 4 possible representations of complex-

valued inputs as real-valued data. Let z = a+ ib = rejθ.

1. (a, b): Treat a 1-channel complex-valued image as a

2-channel real-valued image, with real and imaginary

components in two separate channels.

2. r: Take only the absolute value of a complex-valued

image to make a 1-channel real-valued image, with the

phase of complex numbers ignored.

3. (a, b, r): Take both the real, imaginary, and magnitude

of a complex-valued image to make a 3-channel real-

valued image.

4. (r, θ): Take the magnitude and phase of a complex-

valued image to make a 2-channel real-valued image.

100× 100× 1 49× 49× 16
23× 23× 32

11× 11× 64

4× 4× 128

256

FC
FC

512

CBRM
CBRM

CBRM
CBRM

CBRM

Softmax layer

FC

10

100× 100× 1

CCtR

20× 20× 50

CCtR
CCtR

4× 4× 100

dFM

200

Softmax layer

FC

10

Figure 4: Real-valued CNN baseline model (top) and our

complex-valued model (bottom) for MSTAR. CBRM de-

notes Conv, Batch-Normalization, ReLU, Pooling. CCtR

denotes Complex Convolution, tangent ReLU.

We perform a 30-70 random train-test split and report the

average classification accuracy over 10 runs.

Our CNN model. We use two complex convolution layers

with kernel size 5× 5 and stride 5 followed by one complex

convolution layer with kernel size 4 × 4 and stride 4, then

we use an invariant last layer with a softmax layer at the

end for classification. For the three complex convolution

layers, the number of output channels are 50, 100 and 200
respectively. We use ADAM optimizer with learning rate

0.005 and mini-batch size 100.

MSTAR results. Table (1) shows the confusion matrix and

the overall classification accuracy for each of the four real-

valued CNN baseline and our complex-valued CNN model.

Ours has a 3.6% accuracy gain over the best baseline.

This performance gain has to come from the group equiv-

ariant property of our convolution and the group invariant

property of our CNN classifier. The group that acts on the

complex numbers is R \ {0} × SO(2). Our equivariance

and invariance properties guarantee that our learned CNN

is invariant to scaling and planar rotations, unlike any stan-

dard real-valued CNN architecture. Table (1) also suggests

that our learned CNN is more robust to the imbalanced train-

ing data. For example, on the smallest class ‘BTR70’ with

test set size 429, our model correctly classifies 406 samples

while the baseline correctly classifies only 172 samples.

Among the real-valued baselines, just the magnitude r

alone gives a better classification accuracy than the two-

channel real-valued representation (a, b). Their combina-

tion (a, b, r) achieves a classification accuracy of 96.87%,

with 2% improvement over the magnitude only representa-

tion of r. The polar representation (r, θ) is better than the

two-channel real-imaginary representation (a, b), but is in

fact worse than the magnitude r only representation. A nat-

ural question is whether phase information is useful at all.

How useful is phase alone? We remove any useful in-



(a, b) : 89.77%

84.5 2.1 0.9 11.7 0.6 0.2 0.1

0.2 78.3 21.2 0.2

0.5 94.2 0.9 0.2 0.1 3.8 0.2

0.7 99.3

0.8 1.6 0.4 4.6 81.7 6.2 4.6 0.1 0.1

0.1 5.3 0.1 94.1 0.4

4.2 0.3 1.2 88.5 2.1 1.9 1.7

7.7 4.4 0.2 0.2 87.6

4.2 1.2 0.5 0.5 0.5 93.0

0.1 8.9 2.4 8.2 0.6 3.1 0.4 76.4

r : 94.46%

95.3 4.0 0.5 0.2

98.6 0.7 0.7

0.4 0.1 99.2 0.1 0.1 0.1

0.9 65.4 4.7 22.2 1.8 0.4 4.7

0.1 3.4 1.1 94.0 1.0 0.1 0.3

2.9 0.6 0.3 0.4 94.4 0.1 0.1 1.0 0.3

0.2 98.8 0.2 0.9

21.5 2.4 75.5 0.2 0.3

3.0 1.0 0.3 94.9 0.7

0.6 0.2 99.1

(a, b, r) : 96.87%

97.0 0.1 0.9 0.5 0.5 1.0 0.1

3.5 90.4 4.4 0.9 0.7

0.1 98.5 0.1 0.1 0.2 0.1 0.9

1.6 0.2 0.2 96.9 0.2 0.7 0.2

0.1 0.3 0.3 97.3 1.3 0.2 0.4 0.1

0.2 99.4 0.1 0.9 0.1

0.2 99.0 0.2 0.7

0.2 7.9 0.3 0.3 86.7 3.3 1.2

0.2 0.2 2.3 97.4

0.3 0.6 0.4 0.1 5.8 0.1 92.8

(r, θ) : 93.51%

91.7 0.2 1.8 4.4 0.5 0.1 1.2 0.2

5.1 86.2 0.2 0.7 7.7

0.2 96.8 0.5 1.9 0.3 0.3

9.5 13.5 56.1 16.9 1.8 0.7 1.3 0.2

0.1 0.1 1.3 96.6 0.1 1.1 0.6 0.1

0.1 0.1 0.6 3.3 94.1 0.1 1.3 0.4

99.7 0.2 0.2

11.0 0.3 86.0 2.4 0.2

1.0 0.2 98.6 0.2

6.7 0.1 0.1 1.9 0.6 1.4 89.2

z : 98.16%

97.8 0.1 1.9 0.2 0.1

1.4 97.4 0.2 0.7 0.2

0.4 99.0 0.1 0.1 0.4

4.2 1.8 1.1 90.2 1.6 1.1

0.2 1.8 96.4 1.0 0.6

0.4 0.1 98.9 0.1 0.5

10

4.9 0.2 94.4 0.5

1.2 0.5 98.3

0.9 0.1 0.1 98.9

Table 1: Confusion matrices for 4 real-valued baselines and

our complex-valued CNN. The method and the overall ac-

curacy is listed at the top left corner of each table. The order

of categories is the same as that in Fig. 3.

formation in the magnitude by normalizing each complex

number to norm 1. On the normalized complex numbers,

Table (2) shows the classification confusion matrix for the

baseline (a, b) CNN model and our model. The real-valued

CNN achieves an overall accuracy of 45.98%, with all the

(a, b) : 45.98%

100

100

100

100

100

100

100

100

100

100

z :97.00%

95.6 0.3 2.9 0.8 0.2 0.2

2.6 94.4 0.2 2.3 0.5

0.6 97.9 0.4 0.3 0.2 0.4

2.9 2.0 1.6 90.7 2.0 0.9

0.3 1.5 0.3 94.8 2.6 0.1 0.3 0.3

0.6 0.5 98.4 0.1 0.1 0.4

99.7 0.3 1.7

6.8 0.7 0.2 91.1 0.9 0.3

0.2 0.7 0.3 98.8

1.5 0.4 0.3 0.1 0.1 0.1 97.6

Table 2: Confusion matrices for the baseline model (a, b)
(top) and our model (bottom) applied to normalized com-

plex numbers. Same convention as Table 1. With an

overall accuracy of 97% over the baseline accuracy 46%,

our complex-valued CNN brings significant discrimination

power out of the phase information alone.

Figure 5: MSTAR classification accuracies by real-valued

baseline CNNs and our complex-valued CNN, with raw and

normalized complex number inputs.

test set classified as the largest class which consists of

45.98% samples of the entire dataset. That is, the real-

valued CNN is completely confused by the phase and un-

able to tease apart different classes. On the other hand, our

model gives a surprisingly high accuracy of 97%, only 1%
less than our result on the raw complex numbers which con-

tains the class-discriminative magnitude.

Fig. (5) compares the classification accuracies in differ-

ent settings. The stark contrast in real- and complex-valued

CNNs to phase data alone demonstrates not only the effec-

tiveness of our complex-valued CNN due to its invariance

to G, but also the richness of the phase information alone.



Figure 6: Sample MSTAR filter responses of our model after the first, second and third conv layer. Each row corresponds to

the same image; each column represents a particular channel’s absolute valued response.

CNN model domain representation # parameters

real (a, b) 530, 170
real r 530, 026
real (a, b, r) 530, 314
real (r, θ) 530, 170

complex z 44,826

Table 3: CNN model size comparison. Our complex-valued

CNN is 8% of the baseline real-valued CNN model size.

Our complex-valued CNN is better and leaner. Table

(3) lists the total number of parameters used in each CNN

model. As our complex-valued CNN captures the natural

equivariance and invariance in the non-Euclidean complex

number range space, which standard CNNs fail to do, our

model achieves a higher accuracy with a significant (more

than 90%) parameter reduction.

CNN visualization. Fig. (6) shows examples of filter re-

sponses at three convolution layers on the representative

images in Fig. (3). The first convolution layer produces

basically blurred versions of the input image. From the sec-

ond convolution layer onward, the filter response patterns

grow more divergent for different classes. While we show

one sample output from each class, the patterns within each

class are similar. For classes ‘D7’, ‘T62’, ‘ZIL131’, the fil-

ter responses are higher than the other classes. Furthermore,

the last convolution layer shows significantly different pat-

terns between different classes.

3.2. RadioML Experiments

RadioML dataset. RF modulation operates on both dis-

crete binary alphabets (digital modulations) and continu-

ous alphabets (analog modulations). Over each modem the

known data is modulated and then exposed to channel ef-

Figure 7: RadioML data samples. We plot one sample per

class at SNR 18. We use the HSV colormap to encode and

visualize the phase of complex valued 1D signals.



Figure 8: Representative filter outputs after the first, second, third convolutional layers (absolute valued responses) of our

complex-valued network on the RadioML data. Same convention as Fig. 6.

fects using GNU Radio. It is then segmented into short-time

windows in a fashion similar to how a continuous acous-

tic voice signal is typically windowed for voice recognition

tasks. Fig. (7) visualizes these 1D complex-valued time

series as colored lines. There are 220, 000 samples in Ra-

dioML [19, 20]. We use a 50-50 train-test split and 10 ran-

dom runs as in our MSTAR experiments.

RadioML baseline. It consists of two convolutional and

two fully connected layers as used in [19]. The convolution

kernel is of size 3 with 256 and 80 channels respectively.

Each convolutional layer is followed by ReLU and dropout

layers. This network has 2, 830, 491 parameters.

Our RadioML CNN model. It has two complex convolu-

tional layers of stride 5, kernel sizes 7 and 5, the numbers

of channels 64 and 128, followed by an invariant distance

128× 2

CBRM

CBRM

130× 256

FC

FC

11

Softmax layer

256

128× 1

CCtR

25× 64

CCtR
CCtR

5× 128

dFM

640

Softmax layer

FC

11

Figure 9: Real-valued CNN model and our complex-valued

model for RadioML. CBRM denotes Convolution, Batch-

Normalization, ReLU, and Pooling. CCtR denotes our

Complex-valued Convolution and tangent ReLU, and dFM

our distance transform with respect to the Fréchet mean.

transform layer and a final softmax layer for classification.

Fig. 9 shows both the real-valued baseline CNN and our

complex-valued CNN architectures. We use ADAM opti-

mizer [13] with learning rate 0.05 and mini-batch size 500.

Our complex-valued CNN has only 299, 117 parameters,

i.e., roughly 10% of the baseline model, yet it can achieve

test accuracy 70.23%, on par with 70.68% of the baseline

real-valued CNN model. This lean model result is consis-

tent with our MSTAR experiments. Fig. (8) also shows that

discriminative filter response patterns emerge quickly from

various smoothing effects of convolutional layers.

4. Summary

We take a manifold view on complex-valued data and

present a novel CNN theory. Our convolution from Fréchet

mean filtering is equivariant and our distance transform is

invariant to complex-valued scaling, an inherent ambiguity

in the complex value range space.

Our experiments on MSTAR and RadioML demonstrate

that our complex-valued CNN classifiers can deliver better

accuracies with a surreal leaner CNN model, at a fraction of

the real-valued CNN model size.

By representing a complex number as a point on a mani-

fold instead of two independent real-valued data points, our

model is more robust to imbalanced classification and far

more powerful at discovering discriminative information in

the phase data alone.

Acknowledgements. This research was supported, in part,

by Berkeley Deep Drive and DARPA. The views, opinions

and/or findings expressed are those of the author and should

not be interpreted as representing the official views or poli-

cies of the Department of Defense or the U.S. Government.



References

[1] William M Boothby. An introduction to differen-

tiable manifolds and Riemannian geometry, volume

120. Academic press, 1986.

[2] Kerstin Bunte, Frank-Michael Schleif, and Michael

Biehl. Adaptive learning for complex-valued data. In

ESANN. Citeseer, 2012.

[3] Rudrasis Chakraborty, Monami Banerjee, and Baba C

Vemuri. H-cnns: Convolutional neural networks

for riemannian homogeneous spaces. arXiv preprint

arXiv:1805.05487, 2018.

[4] Rudrasis Chakraborty, Jose Bouza, Jonathan Manton,

and Baba C Vemuri. Manifoldnet: A deep network

framework for manifold-valued data. arXiv preprint

arXiv:1809.06211, 2018.

[5] Taco Cohen and Max Welling. Group equivariant con-

volutional networks. In International conference on

machine learning, pages 2990–2999, 2016.

[6] Taco S Cohen, Mario Geiger, Jonas Köhler, and

Max Welling. Spherical CNNs. arXiv preprint

arXiv:1801.10130, 2018.

[7] Sander Dieleman, Kyle W. Willett, and Joni Dambre.

Rotation-invariant convolutional neural networks for

galaxy morphology prediction. Monthly Notices of the

Royal Astronomical Society, 2015.

[8] David Steven Dummit and Richard M Foote. Abstract

algebra, volume 3. Wiley Hoboken, 2004.

[9] Carlos Esteves, Christine Allen-Blanchette, Xiaowei

Zhou, and Kostas Daniilidis. Polar Transformer Net-

works. arXiv preprint arXiv:1709.01889, 2017.

[10] William T. Freeman and Edward H Adelson. The de-

sign and use of steerable filters. IEEE Transactions on

Pattern Analysis & Machine Intelligence, (9):891–906,

1991.

[11] Sigurdur Helgason. Differential geometry and symmet-

ric spaces, volume 12. Academic press, 1962.

[12] Eric R Keydel, Shung Wu Lee, and John T Moore.

Mstar extended operating conditions: A tutorial. In

Algorithms for Synthetic Aperture Radar Imagery III,

volume 2757, pages 228–243. International Society

for Optics and Photonics, 1996.

[13] Diederik P Kingma and Jimmy Ba. Adam: A

method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014.

[14] Risi Kondor and Shubhendu Trivedi. On the general-

ization of equivariance and convolution in neural net-

works to the action of compact groups. arXiv preprint

arXiv:1802.03690, 2018.

[15] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-

ton. ImageNet Classification with Deep Convolutional

Neural Networks. Advances In Neural Information

Processing Systems, 2012.

[16] Michael Maire, Takuya Narihira, and Stella X Yu.

Affinity cnn: Learning pixel-centric pairwise relations

for figure/ground embedding. In Proceedings of the

IEEE Conference on Computer Vision and Pattern

Recognition, pages 174–182, 2016.

[17] Stéphane Mallat. Understanding Deep Convolu-

tional Networks. Philosophical Transactions A,

374:20150203, 2016.

[18] Maurice Fréchet. Les éléments aléatoires de nature

quelconque dans un espace distancié. Annales de l’I.

H. P.,, 10(4):215–310, 1948.

[19] Timothy J O’Shea, Johnathan Corgan, and T. Charles

Clancy. Convolutional radio modulation recognition

networks. arXiv preprint arXiv:1602.04105, 2016.

[20] Timothy J O’Shea and Nathan West. Radio machine

learning dataset generation with gnu radio. Proceed-

ings of the 6th GNU Radio Conference, 2016.

[21] Chiheb Trabelsi, Olexa Bilaniuk, Ying Zhang, Dmitriy

Serdyuk, Sandeep Subramanian, João Felipe Santos,

Soroush Mehri, Negar Rostamzadeh, Yoshua Bengio,

and Christopher J Pal. Deep complex networks. arXiv

preprint arXiv:1705.09792, 2017.

[22] Jiayun Wang, Patrick Virtue, and Stella X Yu. Joint

embedding and classification for sar target recognition.

arXiv preprint arXiv:1712.01511, 2017.

[23] Daniel E Worrall, Stephan J Garbin, Daniyar Tur-

mukhambetov, and Gabriel J Brostow. Harmonic net-

works: Deep translation and rotation equivariance. In

Proc. IEEE Conf. on Computer Vision and Pattern

Recognition (CVPR), volume 2, 2017.

[24] Stella Yu. Angular embedding: A robust quadratic

criterion. IEEE transactions on pattern analysis and

machine intelligence, 34(1):158–173, 2012.


	. Introduction
	. Our Complex-Valued CNN Theory
	. Experimental Results
	. MSTAR Experiments
	. RadioML Experiments

	. Summary

