
Better Algorithms for Individually Fair k-Clustering

Deeparnab Chakrabarty∗

Department of Computer Science
Dartmouth College
Hanover, NH 03755

deepc@cs.dartmouth.edu

Maryam Negahbani
Department of Computer Science

Dartmouth College
Hanover, NH 03755

maryam@cs.dartmouth.edu

Abstract

We study data clustering problems with ℓp-norm objectives (e.g. k-MEDIAN and
k-MEANS) in the context of individual fairness. The dataset consists of n points,
and we want to find k centers such that (a) the objective is minimized, while (b)
respecting the individual fairness constraint that every point v has a center within
a distance at most r(v), where r(v) is v’s distance to its (n/k)th nearest point.
Jung, Kannan, and Lutz [FORC 2020] introduced this concept and designed a
clustering algorithm with provable (approximate) fairness and objective guarantees
for the ℓ∞ or k-CENTER objective. Mahabadi and Vakilian [ICML 2020] revisited
this problem to give a local-search algorithm for all ℓp-norms. Empirically, their
algorithms outperform Jung et. al.’s by a large margin in terms of cost (for k-
MEDIAN and k-MEANS), but they incur a reasonable loss in fairness. In this paper,
our main contribution is to use Linear Programming (LP) techniques to obtain
better algorithms for this problem, both in theory and in practice. We prove that
by modifying known LP rounding techniques, one gets a worst-case guarantee on
the objective which is much better than in MV20, and empirically, this objective is
extremely close to the optimal. Furthermore, our theoretical fairness guarantees
are comparable with MV20 in theory, and empirically, we obtain noticeably fairer
solutions. Although solving the LP exactly might be prohibitive, we demonstrate
that in practice, a simple sparsification technique drastically improves the run-time
of our algorithm.

1 Introduction

As machine learning algorithms are widely used in practice for making high-stakes decisions affecting
human lives, there has been a huge body of work on FAIR-ML trying to ensure ‘fairness’ in the
solutions returned by these algorithms. There are two large intersecting bodies of work : one body’s
main focus in to understand what ‘fairness’ means (e.g. [26, 39, 38, 36, 14, 25]) in various different
contexts, and the second body’s focus has been on addressing the algorithmic challenges brought
forth by these considerations (e.g., [24, 9, 33, 6, 29, 5]).

This paper falls in the second class. In particular, we consider an individual fairness model proposed
by Jung, Kannan, and Lutz [25] for a k-clustering problem. Given points (clients) X in a space
with metric distance d, find k points (facilities) S ⊆ X , minimizing

(∑
v∈X d(v, S)p

)1/p
where

d(v, S) is v’s distance to the closest point in S. This includes k-CENTER, k-MEDIAN and the popular
k-MEANS objective for p =∞, p = 1 and p = 2 respectively, problems which have been extensively
studied [12, 23, 27, 4, 2] in the algorithms literature. Jung et. al. [25] proposed that in this context a
solution would be deemed individually fair, if for every client v ∈ X there is an open facility not
too far from it. More precisely, if there is a facility within distance r(v) which is the smallest radius

∗Supported by NSF grant #2041920

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

around v that contains n/k points. The rationale behind n/k is that if all the points had equal chance
of getting picked as a facility, each client v would expect a facility to be open within distance r(v).
Furthermore, this formulation encourages a solution to open more facilities in dense areas of the
metric which is motivated by the facility location application of clustering.

Jung et al. [25] gave a solution where every client v was served within a radius of 2r(v), which as a
jargon is called 2-approximate fair solution. However, their solution did not explicitly consider the
“objective” function (k-MEANS/k-MEDIAN, for instance) in the clustering problem, which is often
used as a proxy to measure the quality of the clustering. This was addressed in a follow up paper
by Mahabadi and Vakilian [29] who gave a (7, O(p))-approximation with respect to the ℓp-norm
objective. That is, they give a local-search based solution which is 7-approximately fair, but the
objective is violated by some Cp-factor where the constant C is rather large (for p = 1, the factor is
84). The theoretical running time of their algorithm is Õ(pk5n4).

1.1 Our Contributions

The main contribution of our paper is to give improved algorithms for this problem using linear
programming rounding. Our study stems from two observations: one, that the problem at the core of
Jung et al. [25] was in fact studied as “weighted/priority k-CENTER problem” by Plesník[32], and
that if all the r(v)’s were the same (which may not at all be the case), then the clustering problem has
also been studied under the guise of centridian/ordered median problem [3, 8, 10]. Combining ideas
from these two bodies of work, we design an (8, 8) algorithm for the FAIR-k-MEDIAN problem,
which obtains an 8-approximation for both cost and fairness (our cost guarantees improve as p grows).

Result 1. There is an (8, 21+2/p)-approximation algorithm for FAIR-(p, k)-CLUSTERING that runs
in LP solving time plus Õ(n2), overall Õ(kn4). In particular, we have (8, 8)-approximation and
(8, 4)-approximation algorithms for FAIR-k-MEDIAN and FAIR-k-MEANS, respectively.

Remark. The approximation factor compares itself with the optimal solution which opens centers
at the points in X . This is also the notion considered by [29] and [25]. If the optimal solution
is allowed to open centers anywhere in the real space, then one has an additional factor 2 loss in
the approximation [15]. Whether this extra hit of factor 2 is necessary, we leave as an interesting
algorithmic question.

Although solving an LP may seem prohibitive in practice, we can obtain a much faster running time
by implementing a sparsification routine (inspired by [32, 21]) with a marginal hit in the fairness and
clustering cost (see Lemma 5 for details). Empirically, this greatly decreases the running time, and is
often faster than the [29] implementation.

In our experiments, we also find that our theoretical bounds are too pessimistic. Indeed, we show that
our algorithm’s cost is at most %1 more than the optimal clustering cost (which does not have any
fairness violation), almost always, and never more than %15 in the rest. Furthermore, our maximum
fairness violation is at most a factor of 1.27 which is much better than our theoretical guarantee of
8. We also do a more fine-grained analysis of the fairness violation : consider a vector where each
coordinate stands for a clients “unfairness” indicating the ratio of its distance to r(v). When we plot
this as a histogram, we find that most of the mass is shifted to the “left”, that is, the percentage of
clients who satisfy their fairness constraints is significantly larger than in the [29] solution. This
seems to suggest the linear program, which is trying to minimize the cost, itself tries to increase the
number of fairly treated clients. We leave a theoretical investigation of this phenomenon for future
work.

Our experiments also demonstrate the price of fairness. We find that our linear programs, which
maintains absolute fairness, have objective value considerably larger than that of [29]. On the other
hand, if we tune the “fairness violation” of the linear program to match that of [29], then the objective
value of our algorithm drops. We run experiments to further elaborate on the inherent cost of fairness
in our datasets by demonstrating how the optimal cost changes with respect to varying degrees of
fairness relaxation.

It is worth noting that our algorithm works for arbitrary values of r(v) ≥ 0 for points v (and this
may be true for [29] as well), and we present our results thus. This setting might be of interest in
applications where the “fair radius” may not be n/k but something more nuanced.

2

1.2 Other related work

k-CENTER has a 2-approximation due to Gonzales, and Hochbaum and Shmoys [17, 21] and they
prove it is NP-hard to get better approximations. k-MEDIAN, and k-MEANS are hard to approximate
within factors better than 1.73 and 3.94 [19] respectively with current best approximations being 2.67
by [7] and 9 by [2]. Also recently, there has been an improvement on lower-bounds for approximating
Continuous k-MEDIAN and k-MEANS where centers can be picked anywhere in the real space. By
Cohen-Addad, Karthik, and Lee [15], it is NP-hard to approximate Continuous k-MEDIAN and
k-MEANS within factors 2− o(1) and 4− o(1) respectively.

FAIR-k-CENTER is a special case of Priority k-CENTER where the radii r(v) in which a point v
demands a center at that distance, are general values. [32] introduced this problem and gave a best
possible 2-approximation. Gørtz and Wirth [18] study the problem for asymmetric metrics and prove
that it is NP-hard to obtain any non-trivial approximation. [5] give a 9-approximation for the problem
in presence of outliers and further generalize to constant approximations for general constraints on
the solution centers. Another very closely related problem is Chance-k-Coverage introduced in [20]
in which for any point v, in addition to r(v), a probability p(v) is given and the goal is to find a
distribution on possible solutions such that a solution drawn from this distribution covers v with
probability at least p(v). This also has a 9-approximation by [20].

A clustering problem related to FAIR-k-MEDIAN and FAIR-k-MEANS is the Simultaneous k-
Clustering in which the goal is to find a solution with approximation guarantees with respect to
any monotone, symmetric norm. This problem has an O(1)-approximation due to Chakrabarty and
Swamy [11] with a line of previous work including [3, 10, 8].

Another similar notion of individual fairness is introduced by Chen et al. [13] in which a solution is
fair if there is no group of size at least n/k for which there exists a facility that would reduce the
connection cost of all members of the group if opened. [13] give a (1 +

√
2)-approximation for ℓ1,

ℓ2, and ℓ∞ norm distances for the setting where facilities can be places anywhere in the real space.
Micha and Shah [30] modified the approach to give close to 2-approximation for ℓ2 and proved the
previous results for ℓ1 and ℓ∞ are indeed tight.

Recently, Abbasi et al. [1] introduced a new notion of fairness centered around providing equitable
group representations. In this problem, the points are partitioned into groups and the goal is to
minimize the maximum clustering cost a group can have in the solution. The idea is that the cluster
centers should represent each group fairly, and this is captured by ensuring that each group’s clustering
cost is comparable with the others. This notion is orthogonal to the fairness criteria we study in this
paper; Although we could tune the maximum distance the points in a group can have to our solution,
that does not give any guarantees with respect to the objective cost and vice versa.

2 Preliminaries

In this section, we formally define our problems, establish some notations, and describe a classic
clustering routine due to Hochbaum and Shmoys [21] with modifications by Plesník[32]. Given a
subset S ⊆ X , we use d(v, S) to denote v’s distance to the closest point in S.
Definition 1 (FAIR-(p, k)-CLUSTERING Problem). The input is a metric space (X, d), radius
function r : X → R+, and integers p, k ≥ 1. The goal is to find S ⊆ X of size at most k such that
d(v, S) ≤ r(v) for all v ∈ X and the clustering cost

(∑
v∈X d(v, S)p

)1/p
is minimized.

Let opt be the clustering cost of an optimal solution. For α, β ≥ 1, an (α, β)-approximate solution is
S ⊆ X of size at most k with d(v, S) ≤ αr(v) for all v ∈ X and

(∑
v∈X d(v, S)p

)1/p≤ βopt. In
plain English, the fairness approximation is α while the objective/cost approximation is β. Our main
result is the following.

Theorem 1. There is an (8, 21+2/p)-approximation algorithm for FAIR-(p, k)-CLUSTERING that
runs in LP solving time plus Õ(n2), overall Õ(kn4).

The algorithm relies on rounding a solution to the following LP for FAIR-(p, k)-CLUSTERING2

where the optimal LP objective is at most optp. The variable yu denotes the amount by which u ∈ X

2The LP and its rounding is slightly different for p = ∞; we omit this from this version.

3

is open as a center. xvu for v, u ∈ X is the amount by which v is assigned to u. The constraints
respectively capture the conditions: every client must connect to someone, k centers are opened, no
client can connect to an unopened center, and crucially that a client cannot travel to a center further
than r(v).

optp ≥ min
∑

v,u∈X

d(v, u)pxvu (LP)

∑
u∈X

xvu = 1, ∀v ∈ X (LP1)∑
u∈X

yu = k (LP2)

xvu ≤ yu, ∀v, u ∈ X
(LP3)

xvu = 0, ∀v, u : d(v, u) > r(v)
(LP4)

0 ≤ xvu, yu ≤ 1, ∀v, u ∈ X.

From here on, we use the notation B(u, r) for u ∈ X and r ∈ R+ to denote the points in a ball of
radius r around u. That is B(u, r) := {v ∈ X : d(u, v) ≤ r}. Also, for any set of points U ⊆ X , let
y(U) :=

∑
u∈U yu. Considering (LP4) and (LP1) the following holds.

Fact 1. If y is from a feasible LP solution, then y(B(v, r(v))) ≥ 1 for all v ∈ X .

We now describe a routine Filter due to [32, 21] which is used as a subroutine in our main algorithm.
Assume all the points are initially “uncovered”. The routine takes a function R : X → R+, sorts
the points in order of increasing R(v)’s. Then it considers the first point in this order, calls it a
“representative” and “covers” all the points v at distance at most 2r(v) from it. Call these points
D(v). Repeating this procedure until all the points are covered, forms a partition on X such that the
representatives are “far apart”, while each non-representative is assigned to a “nearby” representative,
among other useful properties listed in Fact 2 and Fact 3.

Algorithm 1 Filter
Input: Metric (X, d), radius function R : X → R+

1: U ← X ▷ The set of “uncovered points”
2: S ← ∅ ▷ The set of “representatives”
3: while U ̸= ∅ do
4: u← argminv∈U R(v) ▷ The first point in U in non-decreasing R order
5: S ← S ∪ u
6: D(u)← {v ∈ U : d(u, v) ≤ 2R(v)} ▷ D(u) = B(u, 2R(v)) ∩ U and includes u itself
7: U ← U\D(u)
8: end while

Output: S, {D(u) : u ∈ S}

Fact 2. [32, 21] The following is true for the output of Filter: (a) ∀u, v ∈ S, d(u, v) >
2max{R(u), R(v)}, (b) The balls {B(u,R(u)) : u ∈ S} are mutually disjoint, (c) The set {D(u) :
u ∈ S} partitions X , (d) ∀u ∈ S,∀v ∈ D(u), R(u) ≤ R(v), and (e) ∀u ∈ S,∀v ∈ D(u), d(u, v) ≤
2R(v).

Fact 3. For any u ∈ S and w ∈ B(u,R(u)), the unique closest point in S to w is u.

Proof. Suppose otherwise. That is, there exists v ∈ S not equal to u s.t. d(w, v) ≤ d(w, u). Then
d(u, v) ≤ d(u,w) + d(w, v) ≤ 2d(w, u) ≤ 2R(u) which contradicts Fact 2 as we must have
d(u, v) > 2max{R(u), R(v)}.

To elaborate on the importance of Algorithm 1 and build some intuition, we point out the following
theorem of [32, 25].

Theorem 2. Take S the output of Algorithm 1 on a FAIR-(p, k)-CLUSTERING instance with R := r.
Then if the instance is feasible, |S| ≤ k and d(v, S) ≤ 2r(v) for all v ∈ X .

Proof. By Fact 2 we know that {D(u) : u ∈ S} partitions X so for any v ∈ X , there exists a
u ∈ S for which v ∈ D(u). Plus, d(v, u) ≤ 2R(v) = 2r(v). Now it only remains to prove |S| ≤ k.
To see this, let S∗ be some feasible solution and observe that two different u,w ∈ S, cannot be

4

covered by the same center in S∗. Since otherwise, if there exists f ∈ S∗ for which d(u, f) ≤ r(u)
and d(w, f) ≤ r(w) by triangle inequality d(u, v) ≤ d(u, f) + d(f, w) ≤ r(u) + r(v) and this
contradicts d(u,w) > 2max{r(u), r(v)} from Fact 2.

But of course, the above theorem does not give any guarantees for the clustering cost (unless p =∞).
It might be the case that many points are paying close to 0 towards the clustering cost in the optimal
solution, but are made to connect to a point much farther in the above procedure.

3 Algorithm for FAIR-(p, k)-CLUSTERING problem

Now we are ready to describe our algorithm Fair-Round which establishes Theorem 1. At a high-
level, we run our Filter routine by defining the input function R in a manner that is conscious
of the FAIR-(p, k)-CLUSTERING cost: given (x∗, y∗) which is an optimal solution to (LP), for
any v ∈ X let Cv be v’s contribution to the LP cost i.e. Cv :=

∑
u∈X d(v, u)px∗

vu and define
R(v) := min{r(v), (2Cv)

1/p}. Let us ponder for a bit to see what changes from Theorem 2. For
the output S, we still have the fairness guarantee d(v, S) ≤ 2r(v) for all v but since (2Cv)

1/p might
be less than r(v) for any v, we cannot guarantee that |S| ≤ k. Thankfully, in this case, we can still
prove |S| ≤ 2k (Corollary 1). The rest of the algorithm is deciding on a subset of at most k points
out of this S to return as the final solution, while ensuring the fairness and cost guarantees are still
within constant factor of the optimal. This idea is very similar to existing ideas in [3, 12] which look
at the problem without fairness considerations.

Recall that {D(u) : u ∈ S} partitions X and each u ∈ S is responsible for covering all the points in
D(u). Here, we could simply move each point in D(u) to u and divert the y value of each point to
its closest point in S. Note that, y(S) = k (Fact 4) and similar to the proof of Theorem 2 we could
show yu ≥ 1/2 (Lemma 1) for all u ∈ S hence |S| ≤ 2k (Corollary 1). If this leads to some y-value
reaching 1, we open those centers.

For u ∈ S with yu < 1, if we do not decide to include it in the final solution, we promise to open
Su, its closest point in S other than itself. In this case, all the |D(u)| points on u are delegated to Su.
Using the fact that yu < 1, we can prove that fairness guarantee (Lemma 3) approximately holds for
the points in D(u) even after this delegation.

To get the clustering cost guarantee, we need to do more work. Observe that, currently, u is already
fractionally assigned to v by 1− yu. So if instead of yu ≥ 1/2 we had yu = 1/2 we could ensure
that already u is assigned to v by 1/2 thus integrally assigning u to v only doubles the cost. This is
why we need to do more work to get yu ∈ {1/2, 1} for u ∈ S (see Lemma 2) and then bound the
clustering cost in Lemma 4.
Fact 4. y(S) = k and remains so after Line 11.

Proof. We initialize y to y∗ for which y∗(X) = k by LP2. The algorithm then transfers y(X) to S
by Line 11 without changing the total. Afterwards, the modifications in Lines 13 and 19 move the y
mass around in S but the total value y(S) remains unchanged.

Lemma 1. After Line 14 of Algorithm 2, 1/2 ≤ yu ≤ 1 for all u ∈ S.

Proof. First we argue that yu ≥ 1/2 for all u ∈ S by the end of Line 11. Fix u ∈ S. Per
Fact 3 y(B(u,R(u))) is entirely moved to yu. By definition of R(u) there are two cases: Case I,
R(u) = r(u) thus yu ≥ 1 as y∗(B(v, r(v))) ≥ 1 for all v ∈ X according to Fact 1. Case II, R(u) =
(2Cu)

1/p then by Markov’s inequality y∗(B(u,R(u))) ≥ 1/2 and after this point, yu is never
decreased to below 1/2. More precisely, Cu =

∑
v∈X d(u, v)px∗

uv ≥
∑

v∈X:
d(u,v)>R(u)

d(u, v)px∗
uv ≥

2Cu

∑
v∈X:

d(u,v)>R(u)
x∗
uv . Considering

∑
v∈X x∗

uv = 1 by LP1, this implies
∑

v∈X:
d(u,v)≤R(u)

x∗
uv ≥ 1/2

thus y∗(B(u,R(u))) ≥ 1/2.

As for proving yu ≤ 1, it might indeed be the case that yu > 1 by the end of Line 11 but the loop
ending at Line 14 can guarantee yu ≤ 1 for all u ∈ S. This is because y(S) = k (Fact 4) and we
already checked in the beginning of Algorithm 2 that |S| > k.

Corollary 1. S in Algorithm 2 has size at most 2k.

5

Algorithm 2 Fair-Round: FAIR-(p, k)-CLUSTERING bi-criteria approximation
Input: Metric (X, d), radius function r : X → R+, and (x∗, y∗) an optimal solution of LP

1: Cv ←
∑

u∈X d(v, u)px∗
vu ∀v ∈ X ▷ v’s cost share in the LP objective

2: R(v)← min{r(v), (2Cv)
1/p} ∀v ∈ X

3: S, {D(u) : u ∈ S} ← Filter((X, d), R)
4: if |S| ≤ k then
5: return S
6: end if
7: (x, y)← (x∗, y∗)
8: for all v ∈ X\S do ▷ Direct y mass from outside of S to the closest point in S
9: u← closest point in S to v

10: yu ← yu + yv , yv ← 0 ▷ Note: May cause yu to increase above 1
11: end for
12: while There are u, v ∈ S with yu > 1 and yv < 1 do ▷ Ensure yu ≤ 1 for all u ∈ S
13: yu ← yu − δ, yv ← yv + δ, where δ := min{1− yv, yu − 1}
14: end while ▷ Remark: By now, 1/2 ≤ yu ≤ 1 for all u ∈ S (see Lemma 1).
15: Su ← closest point in S\u to u ∀u ∈ S
16: while There are u, v ∈ S with
17: 1/2 < yu < 1, and yv < 1,
18: d(u, Su)

p|D(u)| > d(v, Sv)
p|D(v)| do ▷ Move y mass from u to v if u is costlier

19: yu ← yu − δ, yv ← yv + δ, where δ := min{1− yv, yu − 1/2}
20: end while ▷ Remark: At this point, yu ∈ {1/2, 1} for all u ∈ S (see Lemma 2).
21: T ← u ∈ S with yu = 1
22: Consider the forest of arbitrary rooted trees on vertices u ∈ S with edges (u, Su). Let O be

odd-level vertices in S\T , and E be even-level vertices in S\T .
23: if |E| ≤ |O| then
24: T ← T ∪ E
25: else
26: T ← T ∪O
27: end if
Output: T

Lemma 2. After Line 20 of Algorithm 2, yu ∈ {1/2, 1} for all u ∈ S.

Proof. Suppose not. Since y(S) = k (Fact 4) and k is an integer, by Lemma 1, there has to be at
least two u, v ∈ S with yu, yv ∈ (1/2, 1) which is a contradiction, since either one of them has to be
changed to 1/2 or 1 in the while loop ending at Line 20.

Lemma 3. For all v ∈ X , d(v, T) ≤ 8r(v).

Proof. Fix v ∈ X . Since {D(u) : u ∈ S} partitions X there exists u ∈ S such that v ∈ D(u).
According to Fact 2 d(v, u) ≤ 2R(v) ≤ 2r(v) by definition of R. If u ends up in T we are done.
Else, it has to be that yu < 1 and Su ∈ T . In what follows, we prove that if yu < 1 at Line 20 then
d(u, Su) ≤ 6r(v). This implies d(v, Su) ≤ 8r(v) hence the lemma.

We know that initially y∗(B(v, r(v))) ≥ 1 per Fact 1 but since v /∈ S, the y mass on B(v, r(v))
has been moved to S by Line 11. If for all w ∈ B(v, r(v)) their closest point in S was u, all
of y(B(v, r(v))) would be moved to u then yu = 1 by the end of Line 20. So there must exist
w ∈ B(v, r(v)) with x∗

vw > 0 along with u′ ∈ S, u′ ̸= u, such that d(w, u′) ≤ d(w, u) which made
yw to be moved to u′. By definition of Su, d(u, Su) ≤ d(u, u′). Applying the triangle inequality
twice gives:

d(u, Su) ≤ d(u, u′) ≤ d(u,w) + d(w, u′) ≤ 2d(u,w)

≤ 2(d(u, v) + d(v, w)) ≤ 2(2r(v) + r(v)) = 6r(v)

where the last inequality comes from Fact 2 stating d(u, v) ≤ 2r(v), and from the fact that x∗
vw > 0

implies d(v, w) ≤ r(v) by LP4.

Lemma 4.
(∑

v∈X d(v, T)p
)1/p ≤ (

(2p+2)
∑

v,u∈X Cv

)1/p ≤ 21+2/popt.

6

Proof. For the proof, we compare
∑

v∈X d(v, T)p with the optimal LP cost
∑

v∈X Cv which is
at most optp. Fix v ∈ X and u ∈ S for which v ∈ D(u). By Fact 2 d(v, u) ≤ 2R(v) ≤
2(2Cv)

1/p per definition of R. So moving D(u) to u for all u ∈ S has an additive cost of∑
u∈S

∑
v∈D(u) d(v, u)

p ≤ 2p+1
∑

v∈X Cv. From now on, assume there are D(u) collocated
points on a u ∈ S.

Moving around the y mass up to Line 11 adds a multiplicative factor of 2p loss in the approximation
ratio. The logic is: if u ∈ S was relying on w ∈ X in the LP solution, meaning, x∗

uw > 0 and
yw was moved to a u′ ∈ S (due to d(w, u′) ≤ d(w, u)) then the cost u has to pay to connect to
u′ is d(u, u′)p ≤ (d(u,w) + d(w, u′))p ≤ 2pd(u,w)p which is a 2p factor worse than the LP cost
d(u,w)p it was paying to connect to w earlier.

At this point (Line 14), note that the cost incurred by u is |D(u)|d(u, Su)
p(1 − yu). To elaborate

on this, corresponding to y, we define an x such that (x, y) is feasible for LP. Let xuu = yu and
xuSu

= 1− yu so that LP4 is satisfied for u. Then the cost incurred by u is |D(u)|(d(u, u)pxuu +
d(u, Su)

pxuSu
) = |D(u)|d(u, Su)

p(1 − yu). The while loop ending at Line 20 does not increase
the value of the objective function: As we decrease yu and increase yv, only if the cost incurred
by u is bigger than that of v. The last multiplicative factor 2 loss comes from when u ∈ S\T . In
which case, yu = 1/2 and Su ∈ T . So by assigning u to Su we pay |D(u)|d(u, Su)

p which is twice
more than before (as 1 − yu = 1/2). Observe that this last step is why we needed to do all the
work to get yu ∈ {1/2, 1} in Lemma 2. Putting the three steps together, the overall cost is at most
2× 2p + 2p+1 = 2p+2 times the LP cost or at most 21+2/popt.

Proof of Theorem 1. Using Corollary 1 and the fact that |T | ≤ |S|/2 by construction, we have
|T | ≤ k. Lemmas 3 and 4 give the fairness and approximation guarantees. As for runtime, notice that
Algorithm 2 runs in time Õ(n2). But the runtime is dominated by the LP solving time. According
to [37], finding a (1 + ε)-approximation to LP takes time O(kn2/ϵ2). Setting ε = 1/n gives the
O(kn4) runtime.

As evident, the runtime is dominated by the LP solving time. We end this section by descibing the
sparsification pre-processing that when applied to the original instance, can tremendously decrease
the LP solving time in practice while incurring only a small loss in fairness and clustering cost. One
reason why the LP takes a lot of time is because there are many variables; xvu for every v ∈ X and
every u within distance r(v) of v. To fix this, we first run the Filter algorithm on the data set with
R(v) = δr(v), where δ is a tune-able parameter. It is not too hard to quantify the loss in fairness and
cost as a function of δ, and we do so in the lemma below. More importantly, note that when δ = 1,
then the number of variables goes down from n to O(k); this is because of the definition of r(v)
which guarantees ≈ n/k points in the radius r(v) around v. Therefore, running the pre-processing
step would make the number of remaining points ≈ k. In our experiments we set δ to be much
smaller, and yet observe a great drop in our running times.

Algorithm 3 Sparsification + Fair-Round
Input: Metric (X, d), radius function r : X → R+, parameter δ > 0

1: S, {D(u) : u ∈ S} ← Filter((X, d), δr)
2: (x′, y′)← solve LP only on points S with objective function

∑
v,u∈S d(v, u)pxvu|D(v)|

3: x∗
vw ← x′

uw∀v, w ∈ X,u ∈ S : v ∈ D(u) ▷ v’s assignment is identical to its representative u
4: y∗u ← y′u if u ∈ S and 0 otherwise

Output: Fair-Round((X, d), (1 + δ)r, (x∗, y∗))

Lemma 5. Algorithm 3 outputs an (8(1 + δ), 21+2/p(1 + (δϕ)p)1/p)-approximation where ϕ =
(
∑

v∈X r(v)p)1/p/opt.

Proof. Observe that (x∗, y∗) is not a feasible LP solution anymore. Nevertheless, it will be feasible
for when r is dilated by a factor of (1 + δ) in the LP4. Here is how we argue LP4 holds in this case:
For any v, w ∈ X for which x∗

vw > 0, recall u ∈ S is chosen so v ∈ D(u) and x∗
vw := x′

uw > 0
meaning d(u,w) ≤ r(u). We have d(v, w) ≤ d(v, u)+d(u,w) ≤ δr(v)+ r(u) ≤ (1+ δ)r(v). The
last two inequalities are by Fact 2 as d(v, u) ≤ δr(v) and r(u) ≤ r(v). As for the LP cost of (x∗, y∗),

7

it is not longer upper-bounded by optp but rather by optp +
∑

u∈S

∑
v∈D(u) d(v, u)

p. This additive
term is at most

∑
v∈X(δr(v))p ≤ (δϕopt)p. Plugging this into Lemma 4 finishes the proof.

4 Experiments

Summary. We run experiments to show that the empirical performance of our algorithms can be
much superior to the worst-case guarantees claimed by our theorems (the codes are publicly availably
on Github3). While implementing our algorithm, we make the following optimization : instead of
choosing the constant “2” in Line 2 (definition of R) in our algorithm, we perform a binary-search to
determine a better constant. Specifically, we find the smallest β for which Algorithm 1 gives at most
k centers with R(v) := min{r(v), (βCv)

1/p} for all v. This step is motivated by the experiments
in [25].

We assess the performance with respect to (a) fairness, (b) objective value, and (c) running times. Due
to space restrictions, we focus on the k-MEANS objective and leave k-MEDIAN results to Appendix B.
Our fairness violation seldom exceeds 1.3 (compare this to the theoretical bound of 8), and often
is much better than that of [29] and [25]. The objective value of our solution is in fact extremely
close to the LP solution, which is a lower bound on the optimum cost (compare this to the theoretical
bound of 4). This occurs because typically the LP solution itself has many integer entries. Finally,
although the “vanilla” running time of the LP is pretty large, our sparsification routine Lemma 5
tremendously reduces the running time.

Datasets. Similar to [29], we use 3 datasets from the UCI repository4 [16] (also used in previous
fair clustsering works of [14, 6]). We use a set of numeric features (matching previous work) to
represent data in Euclidean metric.
1- bank [35] with 4,521 points, on data collected by the marketing campaign of a Portuguese banking
institution. We use 3 features “age”, “balance”, and “duration”.
2- census [28] with 32,561 points, based on the 1994 US census. Here we use the following 5
features: “age” , “final-weight”, “education-num”, “capital-gain”, and “hours-per-week”.
3- diabetes [34] with 101,766 points, from diabetes patient records from 130 hospitals across US.

Benchmarks. We compare with the algorithms of [29] and [25]. For [29], we set parameters
according to the experimental section of their paper. We remark that in their experimental section
they perform 1 swap in their local search instead of the 4-swaps for which they prove their theorem.
For our running time comparison, we also compare ours and the above two algorithm’s running times
with the popular k-Means++ algorithm of [4] from scikit learn toolkit [31] which has no fairness
guarantees.

4.1 Fairness analysis

For any solution T ⊆ X , define the “violation array” θT over v ∈ X as θT (v) = d(v, T)/r(v).
This provides a more fine-grained view of the per-client fairness guarantee violation. Similar to [29]
we use maximum violation (i.e. maxv∈X θT (v)) as a benchmark for fairness. In Figure 1 we have
plotted the maximum violation of our algorithm Fair-Round, [29] (noted as MV), and [25] (noted
as JKL). We find that our results are noticeably fairer than [29] while improving over [25] in many
cases.

Next, we compare the histograms of the violation vectors θ as described above. This picture provides
a better view of the fairness profile, as just looking at the maximum violation may not be a robust
measure; an algorithm that is largely unfair may be preferred to an algorithm that is extremely unfair
on a single point but extremely fair on all the rest. We show the histograms of the violation vectors of
these algorithms in Figure 2 (for a full set of histograms see Appendix A.1). As an example, even
though in bank with k = 20 our maximum violation is slightly worse than [25] our histogram shows
that we are slightly fairer overall. We observe that our algorithm ensures complete fairness for at
least %80 of the points in almost all the experiments. A theoretical study of the violation vector is
interesting and left as future work.

3https://github.com/moonin12/individually-fair-k-clustering
4https://archive.ics.uci.edu/ml/datasets/

8

https://github.com/moonin12/individually-fair-k-clustering
https://archive.ics.uci.edu/ml/datasets/

Figure 1: Comparison of maximum fairness violation with k-MEANS objective, between our algo-
rithm Fair-Round, the algorithm in [25] (denoted as JKL), and the algorithm in [29] (denoted as
MV), on average of 10 random samples of size 1000 each.

Figure 2: Histograms of violation vectors on bank with k = 20 k-MEANS objective comparing
Fair-Round with the algorithm in [25] (denoted as JKL) and the algorithm in [29] (denoted as MV),
on average of 10 random samples of size 1000 each.

4.2 Cost analysis

In Figure 3 we demonstrate that in our experiments, the objective value almost matches the optimal
cost, begin at most %1 more almost always, and never above %15 more than the LP cost. Note
that our cost is also higher than that of [29], and the reader may be wondering how the latter can
be better than the optimum cost. The reason is that the [29] cost is violating the fairness constraint
while the optimal cost is not. To do a more apples-to-apples comparison, one can also allow the same
violations as [29] and re-solve the linear program and also our rounding algorithms. On doing so,
we do find that our algorithm’s cost becomes lower than that of [29]. Details of this can be found
in Appendix A.2. The set-up also allows us to measure the cost of fairness: how much does the linear
programming cost and our algorithm’s cost decrease as we relax the fairness constraints. We do this
empirical study; see Appendix A.3 for our results.

Figure 3: Comparison of k-MEANS clustering cost, between our algorithm Fair-Round, the algorithm
in [25] (denoted as JKL), and the algorithm in [29] (denoted as MV), on average of 10 random samples
of size 1000 each. We also plot the LP cost which is a lower bound on the optimum cost (denoted as
Fair-LP.

Runtime analysis. We run our experiments in Python 3.8.2 on a MacBook Pro with 2.3 GHz 8-Core
Intel Corei9 processor and 32 GB of DDR4 memory. We solve our linear programs using the Python
API for CPLEX [22]. We demonstrate that even though solving an LP on the entire instance is time
consuming, our sparsification step tremendously improves on the runtime (Figure 4) while increasing
the clustering cost or fairness performance by a only a negligible margin (see Appendix A.4 for the
cost and fairness results). Below, the blue line with circles shows Fair-Round with “vanilla” LP

9

solver, and the green line with upside-down triangles Sparse-Fair-Round is the runtimes with the
sparse LP solution.

Figure 4: Comparison runtime with k-MEANS objective, between our algorithm Fair-Round, the
algorithm in [25] (denoted as JKL), the algorithm in [29] (denoted as MV), and k-Means++ on
average of 10 random samples of size 1000 each. Here, δ = 0.3, 0.05 and 0.01 for bank, census,
and diabetes. Note that [25], k-Means++, and our sparsified algorithm Sparse-Fair-Round have
very small differences in their running times.

References
[1] Mohsen Abbasi, Aditya Bhaskara, and Suresh Venkatasubramanian. Fair clustering via equitable

group representations. In Proceedings of the 2021 ACM Conference on Fairness, Accountability,
and Transparency, FAccT ’21, 2021.

[2] Sara Ahmadian, Ashkan Norouzi-Fard, Ola Svensson, and Justin Ward. Better guarantees for
k-means and euclidean k-median by primal-dual algorithms. In Proceedings, IEEE Symposium
on Foundations of Computer Science (FOCS), 2017.

[3] Soroush Alamdari and David B. Shmoys. A bicriteria approximation algorithm for the k-center
and k-median problems. In WAOA, pages 66–75. Springer, 2017.

[4] David Arthur and Sergei Vassilvitskii. K-means++: The advantages of careful seeding. In
Proceedings, ACM-SIAM Symposium on Discrete Algorithms (SODA), 2007.

[5] Tanvi Bajpai, Deeparnab Chakrabarty, Chandra Chekuri, and Maryam Negahbani. Revisiting
priority k-center: Fairness and outliers. In Proceedings, International Colloquium on Automata,
Languages and Programming (ICALP), 2021.

[6] Suman Bera, Deeparnab Chakrabarty, Nicolas Flores, and Maryam Negahbani. Fair algorithms
for clustering. In Adv. in Neural Information Processing Systems (NeurIPS), pages 4954–4965,
2019.

[7] Jarosław Byrka, Thomas Pensyl, Bartosz Rybicki, Aravind Srinivasan, and Khoa Trinh. An
improved approximation for k-median, and positive correlation in budgeted optimization. In
Proceedings, ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 737–756, 2014.

[8] Jaroslaw Byrka, Krzysztof Sornat, and Joachim Spoerhase. Constant-factor approximation for
ordered k-median. In Proceedings, ACM Symposium on Theory of Computing (STOC), pages
620–631, 2018.

[9] L. Elisa Celis, Damian Straszak, and Nisheeth K. Vishnoi. Ranking with Fairness Constraints.
In Proceedings, International Colloquium on Automata, Languages and Programming (ICALP),
pages 28:1–28:15, 2018.

[10] Deeparnab Chakrabarty and Chaitanya Swamy. Interpolating between k-median and k-center:
Approximation algorithms for ordered k-median. In Proceedings, International Colloquium on
Automata, Languages and Programming (ICALP), pages 29:1–29:14, 2018.

[11] Deeparnab Chakrabarty and Chaitanya Swamy. Approximation algorithms for minimum norm
and ordered optimization problems. In Proceedings, ACM Symposium on Theory of Computing
(STOC), pages 126–137, 2019.

10

[12] Moses Charikar, Sudipto Guha, Éva Tardos, and David B Shmoys. A constant-factor ap-
proximation algorithm for the k-median problem. Journal of Computer and System Sciences,
65(1):129–149, 2002.

[13] Xingyu Chen, Brandon Fain, Liang Lyu, and Kamesh Munagala. Proportionally fair clustering.
In Proceedings, International Conference on Machine Leanring (ICML), volume 97, pages
1032–1041, 2019.

[14] Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, and Sergei Vassilvitskii. Fair clustering through
fairlets. In Adv. in Neural Information Processing Systems (NeurIPS), pages 5029–5037, 2017.

[15] Vincent Cohen-Addad, C. S. Karthik, and Euiwoong Lee. On approximability of clustering
problems without candidate centers. In Proceedings, ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2021.

[16] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[17] Teofilo F. Gonzalez. Clustering to Minimize the Maximum Intercluster Distance. Theoretical
Computer Science, 38:293 – 306, 1985.

[18] Inge Li Gørtz and Anthony Wirth. Asymmetry in k-center variants. Theoretical Computer
Science, 361(2-3):188–199, 2006. Preliminary version in APPROX 2003.

[19] Sudipto Guha and Samir Khuller. Greedy strikes back: Improved facility location algorithms.
In Proceedings, ACM-SIAM Symposium on Discrete Algorithms (SODA), page 649–657, 1998.

[20] David G. Harris, Shi Li, Thomas Pensyl, Aravind Srinivasan, and Khoa Trinh. Approximation
algorithms for stochastic clustering. Journal of Machine Learning Research, 20(153):1–33,
2019. Preliminary version in NeurIPS 2018.

[21] Dorit S. Hochbaum and David B. Shmoys. A best possible heuristic for the k-center problem.
Math. Oper. Res., 10(2):180–184, May 1985.

[22] IBM. Ibm ilog cplex 20.1. 2021. Free academic edition.

[23] K. Jain and V. V. Vazirani. Approximation algorithms for metric facility location and k-
median problems using the primal-dual schema and lagrangian relaxation. Journal of the ACM,
48(2):274 – 296, 2001.

[24] Matthew Joseph, Michael Kearns, Jamie H Morgenstern, and Aaron Roth. Fairness in learning:
Classic and contextual bandits. In Adv. in Neural Information Processing Systems (NeurIPS),
pages 325–333, 2016.

[25] Christopher Jung, Sampath Kannan, and Neil Lutz. Service in your neighborhood: Fairness in
center location. In Proceedings, Foundations of Responsible Computing, FORC 2020, volume
156, pages 5:1–5:15, 2020.

[26] Toshihiro Kamishima, Shotaro Akaho, Hideki Asoh, and Jun Sakuma. Fairness-aware classifier
with prejudice remover regularizer. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pages 35–50, 2012.

[27] Tapas Kanungo, David M Mount, Nathan S Netanyahu, Christine D Piatko, Ruth Silverman,
and Angela Y Wu. An efficient k-means clustering algorithm: Analysis and implementation.
IEEE transactions on pattern analysis and machine intelligence, 24(7):881–892, 2002.

[28] Ron Kohavi. Scaling up the accuracy of naive-bayes classifiers: A decision-tree hybrid. In
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1996.

[29] Sepideh Mahabadi and Ali Vakilian. (individual) fairness for k-clustering. In Proceedings,
International Conference on Machine Leanring (ICML), pages 7925–7935, 2020.

[30] Evi Micha and Nisarg Shah. Proportionally fair clustering revisited. In 47th International
Colloquium on Automata, Languages, and Programming (ICALP 2020), 2020.

11

[31] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 2011. Open source, commercially usable - BSD license.

[32] Ján Plesník. A heuristic for the p-center problems in graphs. Discrete Applied Mathematics,
17(3):263 – 268, 1987.

[33] Clemens Rösner and Melanie Schmidt. Privacy Preserving Clustering with Constraints. In
Proceedings, International Colloquium on Automata, Languages and Programming (ICALP),
pages 96:1–96:14, 2018.

[34] Beata Strack, Jonathan P DeShazo, Chris Gennings, Juan L Olmo, Sebastian Ventura,
Krzysztof J Cios, and John N Clore. Impact of hba1c measurement on hospital readmis-
sion rates: analysis of 70,000 clinical database patient records. BioMed research international,
2014, 2014.

[35] Paulo Rita Sérgio Moro, Paulo Cortez. A data-driven approach to predict the success of bank
telemarketing. Decision Support Systems, 2014.

[36] Ke Yang and Julia Stoyanovich. Measuring fairness in ranked outputs. In Proceedings,
International Colloquium on Automata, Languages and Programming (ICALP), page 22. ACM,
2017.

[37] Neal E. Young. Sequential and parallel algorithms for mixed packing and covering. In 42nd
Annual Symposium on Foundations of Computer Science, FOCS, Las Vegas, Nevada, USA,
pages 538–546, 2001.

[38] Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, and Krishna P. Gummadi.
Fairness constraints: Mechanisms for fair classification. In Proceedings, International Confer-
ence on Artificial Intelligence and Statistics (AISTATS), pages 962–970, 2017.

[39] Rich Zemel, Yu Wu, Kevin Swersky, Toni Pitassi, and Cynthia Dwork. Learning fair representa-
tions. In Proceedings, International Conference on Machine Leanring (ICML), pages 325–333,
2013.

12

	Introduction
	Our Contributions
	Other related work

	Preliminaries
	Algorithm for Fair-(p,k)-Clustering problem
	Experiments
	Fairness analysis
	Cost analysis

