
Autophase V2: Towards Function Level Phase
Ordering Optimization

Mohammed Almakki§
University of Khartoum

mohammed.a.h.almakki@gmail.com

Ayman Izzeldin§

University of Khartoum
ayman.izzeldin@gmail.com

Qijing Huang
NVIDIA

jennyhuang@nvidia.com

Ameer Haj Ali
Anyscale

ameer@anyscale.com

Chris Cummins
Facebook

cummins@fb.com

Abstract—Compilers are equipped with optimization passes
that can be applied to improve the quality of a program. The se-
lection and ordering of these passes is a classic NP-hard problem
known as the phase ordering problem. Traditionally, compilers
use expert-picked sequences to optimize for performance (e.g. -
O2, -O3), or code size (e.g. -Os, -Oz). However, not all programs
respond positively to all optimizations, and prior work has shown
that these expert-picked phase orders can be outperformed by
tailoring the phase order decisions to individual programs.

In this work, we propose further specializing the phase
ordering for each function. We investigate the impact of various
function and module passes and show that function-specific phase
ordering provides an extra 2.3% improvement in code size
reduction compared to program-specific phase ordering using
a cheap search budget. Compared to using the Oz flag, the deep
reinforcement learning method achieves up to 9% more code
size reduction in the same dataset, and up to 6% improvement
when transferring to new unseen data. Our exhaustive search
experiment shows that searching on different levels of abstraction
will be beneficial for solving the phase ordering problem. How-
ever, we note several limitations with our reinforcement learning
approach, the observation features are not sufficient to give better
generalization, the reward has high variance and the datasets are
not well representative for all programs.

I. INTRODUCTION

Code optimization is an important step in developing ap-
plications. Many applications require critical constraints for
code performance. For example in applications that targets
low resource hardware the size of the code should be as
minimum as possible. Achieving a small code size reduction
will be beneficial for these kind of applications. In addition,
other factors like the compiler-time and run-time are important
for some applications. Applications developers use the tools
provided by the compilers to optimize their code. These tools
require manual work and are time consuming. Integrating
intelligent systems with compilers that automate the process
of code optimization will improve the process of developing
applications and help the Applications developers with their
work.

The optimizations performed by a compiler vary in their
purpose and results. Most importantly, these optimizations

§Equal contribution

are applied in a sequence, one after the other, and interact
and affect the output of each other in ways that affect the
output of a compiler. That is to say, the order in which
these optimizations are applied affects the target program in
ways that can have either a negative or positive impact on its
performance. Further, not all optimizations are suitable for all
programs. Choosing a specific order for these optimizations to
achieve the best outcome based on some performance metric
is known as the phase-ordering problem [16].

The current compilers either use predefined orders of passes
controlled by command-line flags, to achieve different opti-
mization levels that may or may not be optimal for the program
or allow the programmer to manually specify a sequence of
passes to apply to the program. Generally, the hard-coded
order is good but is not optimal for every program, as one fixed
optimization sequence is highly unlikely to be the optimal
sequence for every program.

Recently, deep learning methods, especially deep reinforce-
ment learning, have been used to solve optimization problems.
In the context of the phase-ordering problem, several authors
proposed methods to try and solve this problem using deep
reinforcement learning [6], [7], [14]. These methods showed
that different programs benefit from having different opti-
mization pipelines. Reinforcement learning has been used to
make agents learn to apply different optimization ordering for
different modules such that it produces better results compared
to the static sequence used in compilers nowadays.

However, work on this problem so far has not experimented
with applying different optimization phase orderings to differ-
ent segments of a program. Our goal is to explore this possibil-
ity and observe its effect on the overall program performance.
Towards this goal, we leverage the infrastructure provided by
LLVM and CompilerGym [4] to enable the application of
different optimization phase orderings on different functions.
We investigate searching different optimization orderings for
different functions in the program. To demonstrate our method
we use two approaches, random search and deep reinforcement
learning. Our results show that our method is promising. In
this paper, we make the following contributions:

• We propose a novel technique for phase ordering problem

1



that searches for optimization sequences on the function
level, rather than the whole-program level.

• We show that using a cheap time budget doing function-
specific phase orderings gives a 2.3% improvement in
code size reduction over program-specific phase orderings
using random search.

• We implement a deep reinforcement learning framework
for function-specific phase ordering problem based on
CompilerGym [4] environments. We train a policy on dif-
ferent datasets and show that it outperforms the −Oz flag
by 1.5% in the cBench dataset and 9% in CHStone [8]
dataset. Our method shows a good generalization by
achieving better or similar performance compared to the
−Oz flag in two different unseen datasets.

II. MOTIVATION

To demonstrate the need for per-function phase ordering we
performed an exhaustive search experiment on dijkstra module
from the cBench dataset which consists of 5 functions1. For
every function, using 13 function passes2 and a sequence
length of 5 passes, we searched for the optimal sequence that
gives the most code size reduction by enumerating all possible
sequences. The same experiment is done on the module level,
i.e. the same sequence of passes is applied to every function
in the module. Comparing the results of the two experiments,
the function level method outperforms the module level by 2%
in code size reduction shown in Table II. Table I shows the
optimal sequences obtained from the experiment. This clearly
shows that selecting different sequences of function passes for
each function yields more reduction than applying a single
sequence for all of the functions.

TABLE I
SAMPLE OF OPTIMAL PASS SEQUENCES FROM THE EXHAUSTIVE SEARCH

EXPERIMENT

Function Shortest Optimal Sequence Sample
print path -gvn -instcombine
enqueue -mem2reg -early-cse -simplifycfg
dequeue -sroa -early-cse
dijkstra -gvn -instcombine -reassociate -simplifycfg
main -gvn -instcombine -simplifycfg

Module Shortest Optimal Sequence Sample
dijkstra -gvn -instcombine -reassociate -simplifycfg

III. METHODOLOGY

This section describes our proposed approach for per-
function phase ordering.

1We omit the function qcount as it only consists of 2 instructions and is
not optimizable with the experiment setup

2The passes used for the exhaustive search experiments are: gvn, loop-
reduce, loop-deletion, reassociate, loop-rotate, early-cse, adce, instcombine,
simplifycfg, dse, loop-unroll, mem2reg, sroa.

TABLE II
THE INSTRUCTION COUNT REDUCTION OF THE OPTIMAL PASS SEQUENCES

FROM THE EXHAUSTIVE SEARCH EXPERIMENT

Method Module code size
reduction compared to −Oz

Module Level 0.964x
Function Level 0.984x

1) Overview: In LLVM, every program consists of a num-
ber of translation units called modules written in a platform-
independent intermediate representation (IR). Each module
contains, among other things, one or more functions which
themselves contain a list of basic blocks. A basic block
consists of a list of instructions. The optimization passes in
LLVM are divided into different types depending on how
those passes work and what code segments they target. Two of
these types are the function passes and module passes. As the
names suggest, the function passes apply an optimization on
a single function in a module, whereas module passes apply
an optimization on the whole module.

In the current implementation of LLVM, the opt tool is used
for managing and applying passes on modules. When applying
a function pass using opt tool on a module the function pass
will be applied for every function in the module. This approach
is not efficient as applying the function pass will not be optimal
for all functions. Moreover, there is a high probability that the
action will not affect the function as the previous work [9]
shows that the probability of a pass in −O3 flag pipeline to
modify the input code is very low.

Given that, we introduce a new technique for solving
the phase ordering problem. Our method solves the phase
ordering problem by finding the best optimization sequences
for every function in the module separately. Figure 1 shows
the difference between opt tool and our method.

Fig. 1. Comparison of the current opt tool method of applying the same
function pass on every function and our method of using different phase
orderings for different functions.

2) Deep Reinforcement Learning Environment Formulation:
Reinforcement learning is a sub-field of machine learning. It

2



has a different learning paradigm than common supervised
machine learning methods. It models the problem as an agent
that acts on a constrained environment with a state and
a mechanism to reward the agent. Reinforcement learning
problems involve learning that maps situations to actions in
order to to maximize a numerical reward signal. The goal
of reinforcement learning is to maximise this reward. Deep
reinforcement learning utilizes deep learning in finding the
solution to the reinforcement learning problem.

Let N be the number of steps in the environment. At
each step the agent can apply one of K transformation
function passes. The passes are applied on one function which
represents the state s of our environment. The state is not fully
observable and is modeled by a number of M features that
represents the observation o of the environment. The agent
selects one function pass in every step and tries to minimize
the code size reduction. The spaces in our environment are
defined as:

Action Space: It consists of K transformation function
passes. Then action a is defined as {a : a ∈ [0,K)}.

Observation Space: The observation o is an M+K vector
constructed by concatenating two vectors of and oh. of is M
dimensional function feature vector. oh is K dimensional ac-
tion history histogram vector. At each step the entry associated
with the applied action a is increased by one.

Reward: The reward R(st) of transitioning from state st
to st+1 is defined as:

R(st) =
C(st−1)− C(st)

O0(st=0)−Oz(st=0)
(1)

Where t is the timestep t. st is the observation at timestep
t. C(st) is the IR instruction count of the function at time t.
O0(st=0) is the IR instruction count of the function at t =
0 optimized using −O0 flag. Oz(st=0) is the IR instruction
count of the function at t = 0 optimized using −Oz flag.

3) Environment Implementation: To create our environ-
ment, we modified the LLVM environment in CompilerGym
[4] library to allow working on specific functions within the
module. For this, we introduced function benchmarks, bench-
marks that allow running function passes on specific functions
in the module. Additionally, we added multiple observations
to the environment for the function-specific information.

IV. EXPERIMENTAL SETUP

In this section, we give a general overview of how we set
up the random search and reinforcement learning experiments.

A. Random Search Experiments

To evaluate our method we first start by doing random
search experiments. The random search is carried out on every
function on the module. The search has two parameters, time
(t) and patience (p). Those parameters are defined as follows:

• Time: It is the search time for a specific function. The
search time is fixed. For example, if t = 10, then the
search will run for 10 seconds for each function.

• Patience: The patience of the search is the number of
steps allowed without improvement. For example, if p =
30, the search will stop after 30 steps are ran without any
improvement in the reward. The patience ratio is the ratio
of patience to the number of actions in the action space.

The random search on a single function proceeds by se-
lecting random actions from the action space to evaluate. The
random search is restarted if the patience condition is not met
and stopped if the search time has elapsed. These experiments
were based on CompilerGym [4] random search experiments
using the cBench dataset modules. We add support for our
function environment to the random search experiments code
in CompilerGym [4] by splitting each module into its functions
and then running the search on each function with the function
environment. After the search is finished the final function
pipelines are applied for every function and the whole module
instruction count reduction is calculated.

B. Reinforcement Learning Experiments

We use the Ray RLlib [11] framework for running reinforce-
ment learning experiments with the proximal policy optimiza-
tion (PPO) [15]. The RLlib [11] framework is an open-source
distributed reinforcement learning framework. Moreover, we
use Tune [12], a hyperparameter tuning framework, to run our
experiments.

V. EXPERIMENTAL RESULTS

A. Random Search Experiments

We ran random search experiments on 15 benchmarks se-
lected from cBench dataset. The benchmarks are selected only
if they include less than 150 functions, which amounts to 433
functions from the selected benchmarks. Three experiments
were conducted, two on the module level and one on the
function level. The three experiments’ setup is as follows.

• Function level experiment: We use all of the 91 function
passes available in the CompilerGym [4] LLVM envi-
ronment as the action space. The experiment is carried
out on the functions of the 15 benchmarks. The search
time is 120 seconds per function and the patience length
is 113. The patience is calculated based on the number
of function passes (91) times the patience ratio (1.25).

• Module level experiments: We use all the available 124
passes on CompilerGym [4] LLVM environment as the
action space. The experiments are carried out on 15
modules. The search time for one experiment is 3600
seconds per module and 120 seconds per module for the
other. Both experiments use a patience length of 155. The
patience is calculated based on the total number of passes
(124) times the patience ratio (1.25).

Figure 2 shows the code size reduction for each benchmark
from the three experiments. To compare these experiments we
calculated the geometric mean of the code size reduction for
the 15 modules. Table III summarizes the results of the three
experiments.The results show that the function level phase

3



ordering experiment outperforms the module level phase or-
dering experiment using less search time and shorter patience
length.

Fig. 2. Code size reduction comparison for the random search experiments
on 15 benchmarks from the cBench dataset.

TABLE III
RANDOM SEARCH EXPERIMENTS RESULTS

Method Time (s) Patience Geomean module code size
reduction compared to −Oz

Module level 3600 155 1.066x
Module level 120 155 1.050x
Function level 120 113 1.089x

B. Deep Reinforcement Learning Experiments

1) Deep Reinforcement Learning Performance: We trained
two RL agents using our method. For every dataset, we split
the modules into functions, then with every new episode a
new function is loaded in the environment. After all functions
are done the environment will go back to the first function
in the dataset. In addition, we removed every function that
is removed by −Oz as it is trivially optimizable. In both
experiments, we used an episode length of 45 and trained
for 50K episodes using the PPO algorithm with the default
configuration. Training and testing was done on the same
datasets.After training, the policy is rolled out only once for
every function in the test benchmarks for the same number of
steps. Figures 3 and 4 show the results of the two experiments
on cBench3 and CHStone datasets respectively. The results
show that our method gives better results than the −Oz flag.
Also, in sha in Figure 3 and adpcm in Figure 4 the agent was
able to achieve approximately 40% improvement over −Oz
flag.

2) Reinforcement Learning Generalization: To test the gen-
eralization of our method. We trained an agent on 100K
functions from AnghaBench [5] datasets. We used an episode
length of 45 and trained for 100K episodes using PPO
[15] algorithm with the default configuration. Then we tested
the agent on three unseen datasets (Csmith, cBench3 and
CHStone) by rolling out the trained policy only once for every

3Excluding ghostscript benchmark

Fig. 3. Code size reduction results for the RL agent trained and tested on
cBench dataset3. The geomean module code size reduction relative to −Oz
is 1.015x.

Fig. 4. Code size reduction results for the RL agent trained and tested on
CHStone dataset. The geomean module code size reduction relative to −Oz
is 1.090x.

function in every benchmark in the test dataset for the same
number of steps. The results are shown in table IV. From the
results, it shows that the agent can get positive results over
−Oz flag on the CHStone dataset and near performance to
−Oz on the cBench dataset.

TABLE IV
TEST DATASETS RESULTS

Dataset Geomean module code size
reduction compared to −Oz

cBench 0.999x
CHStone 1.064x
Csmith 0.945x

VI. RELATED WORK

Different approaches have been proposed to tackle the phase
ordering problem. Kulkarni et. al [10], used an evolutionary-
based method for selecting the order of optimization passes.
MiCOMP [1] used neuro-evolution to construct an artificial
neural that predicts good optimization passes. Cereda et. al
[2], used a collaborative filtering approach from the field of
recommendation systems in compiler optimization. ICMC [13]
combines metric learning and collaborative filter to find better
optimization orderings. BOCA [3] uses Bayesian optimization

4



to tackle the phase ordering problem. Jayatilaka et. al [9] used
two machine learning approaches to reduce the compilation
time.

Reinforcement learning-based methods are also used for
tackling the phase ordering problem. The Autophase [7] frame-
work applies deep reinforcement learning to the Autophase
problem. The framework achieves 28 precent circuit speedup
over the O3 compiler flag. CORL [14] framework Also uses
deep reinforcement learning to optimize the order of opti-
mization passes. The framework was able to achieve 1.32x
speedup on previously-unseen programs. CompilerGym [4] is
a multi-task reinforcement learning environment for compiler
optimization. A trained agent using this environment achieves
positive code size reduction results over the Oz compiler flag.

VII. CONCLUSION AND FUTURE WORK

We present a new technique for tackling the phase ordering
problem by applying different phase orderings to different
functions inside a single module. We show that our approach
gives better code size reduction using random search with a
cheaper search budget compared to module-level search for
an optimal optimization sequence. We also trained two deep
reinforcement learning agents on function benchmarks and
were able to get an improvement over −Oz performance.
Several limitations however need to be acknowledged. Our
current approach for the reinforcement learning agent uses the
Autophase [7] features vector for the observation space, which
hinders the agent’s ability to generalize due to the sparsity of
these features when extracted from a single function. Further
research is needed to identify a set of features that work
best for functions. In addition, there is high variance in the
reward during training because the functions are diverse, some
functions are easily optimized and some functions are not.
The high variance in reward affects the performance of the
reinforcement learning agent. As such, a good dataset that
represents a lot of functions is needed to achieve better gener-
alization. Further, these experiments focused on using function
passes on the function level, and completely omitted the use of
module passes. Further research should be done to investigate
the addition of module passes within the optimization pipeline.

REFERENCES

[1] A. H. Ashouri, A. Bignoli, G. Palermo, C. Silvano, S. Kulkarni, and
J. Cavazos, “Micomp: Mitigating the compiler phase-ordering problem
using optimization sub-sequences and machine learning,” ACM Trans-
actions on Architecture and Code Optimization (TACO), vol. 14, no. 3,
pp. 1–28, 2017.

[2] S. Cereda, G. Palermo, P. Cremonesi, and S. Doni, “A collaborative
filtering approach for the automatic tuning of compiler optimisations,”
in The 21st ACM SIGPLAN/SIGBED Conference on Languages, Com-
pilers, and Tools for Embedded Systems, 2020, pp. 15–25.

[3] J. Chen, N. Xu, P. Chen, and H. Zhang, “Efficient compiler autotuning
via bayesian optimization,” in 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). IEEE, 2021, pp. 1198–
1209.

[4] C. Cummins, B. Wasti, J. Guo, B. Cui, J. Ansel, S. Gomez, S. Jain,
J. Liu, O. Teytaud, B. Steiner et al., “Compilergym: Robust, performant
compiler optimization environments for ai research,” in 2022 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO).
IEEE, 2022, pp. 92–105.

[5] A. F. da Silva, B. C. Kind, J. W. de Souza Magalhães, J. N. Rocha,
B. C. F. Guimaraes, and F. M. Q. Pereira, “Anghabench: A suite
with one million compilable c benchmarks for code-size reduction,”
in 2021 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO). IEEE, 2021, pp. 378–390.

[6] A. Haj-Ali, N. K. Ahmed, T. Willke, Y. S. Shao, K. Asanovic, and
I. Stoica, “Neurovectorizer: end-to-end vectorization with deep rein-
forcement learning,” in Proceedings of the 18th ACM/IEEE International
Symposium on Code Generation and Optimization, 2020, pp. 242–255.

[7] A. Haj-Ali, Q. J. Huang, J. Xiang, W. Moses, K. Asanovic,
J. Wawrzynek, and I. Stoica, “Autophase: Juggling hls phase orderings
in random forests with deep reinforcement learning,” vol. 2, pp. 70–81,
2020. [Online]. Available: https://proceedings.mlsys.org/paper/2020/file/
4e732ced3463d06de0ca9a15b6153677-Paper.pdf

[8] Y. Hara, H. Tomiyama, S. Honda, H. Takada, and K. Ishii, “Chstone: A
benchmark program suite for practical c-based high-level synthesis,” in
2008 IEEE International Symposium on Circuits and Systems. IEEE,
2008, pp. 1192–1195.

[9] T. Jayatilaka, H. Ueno, G. Georgakoudis, E. Park, and J. Doerfert,
“Towards compile-time-reducing compiler optimization selection via
machine learning,” in 50th International Conference on Parallel Pro-
cessing Workshop, 2021, pp. 1–6.

[10] S. Kulkarni, “Improving compiler optimizations using machine learn-
ing,” Ph.D. dissertation, University of Delaware, 2014.

[11] E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, K. Goldberg,
J. Gonzalez, M. Jordan, and I. Stoica, “Rllib: Abstractions for distributed
reinforcement learning,” in International Conference on Machine Learn-
ing. PMLR, 2018, pp. 3053–3062.

[12] R. Liaw, E. Liang, R. Nishihara, P. Moritz, J. E. Gonzalez, and I. Stoica,
“Tune: A research platform for distributed model selection and training,”
arXiv preprint arXiv:1807.05118, 2018.

[13] H. Liu, J. Luo, Y. Li, and Z. Wu, “Iterative compilation optimization
based on metric learning and collaborative filtering,” ACM Transactions
on Architecture and Code Optimization (TACO), vol. 19, no. 1, pp. 1–25,
2021.

[14] R. Mammadli, A. Jannesari, and F. Wolf, “Static neural compiler
optimization via deep reinforcement learning,” in 2020 IEEE/ACM 6th
Workshop on the LLVM Compiler Infrastructure in HPC (LLVM-HPC)
and Workshop on Hierarchical Parallelism for Exascale Computing
(HiPar). IEEE, 2020, pp. 1–11.

[15] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[16] S.-A.-A. Touati and D. Barthou, “On the decidability of phase ordering
problem in optimizing compilation,” in Proceedings of the 3rd Confer-
ence on Computing Frontiers, 2006, pp. 147–156.

5


