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ABSTRACT

Understanding the intricate operations of Recurrent Neural Networks (RNNs)
mechanistically is pivotal for advancing their capabilities and applications. In this
pursuit, we propose the Episodic Memory Theory (EMT), illustrating that RNNs
can be conceptualized as discrete-time analogs of the recently proposed General
Sequential Episodic Memory Model. To substantiate EMT, we introduce a novel
set of algorithmic tasks tailored to probe the variable binding behavior in RNNs.
Utilizing the EMT, we formulate a mathematically rigorous circuit that facilitates
variable binding in these tasks. Our empirical investigations reveal that trained
RNNs consistently converge to the variable binding circuit, indicating universal-
ity in the learned dynamics of RNNs. Building on these findings, we devise an
algorithm to define a privileged basis, which reveals latent neurons instrumen-
tal in the temporal storage and composition of variables — a mechanism vital
for the successful generalization in these tasks. We show that the privileged ba-
sis enhances the interpretability of the learned parameters and hidden states of
RNNs. Our work represents a step toward demystifying the internal mechanisms
of RNNs and, for computational neuroscience, serves to bridge the gap between
artificial neural networks and neural memory models.

1 INTRODUCTION

AI-driven systems have become ubiquitous in real-world applications (Christian, 2021; Sears, 2021;
Bostrom, 2014; Müller & Bostrom, 2013). While these systems demonstrate remarkable proficiency,
their inherently black-box nature often renders them inscrutable (Alishahi et al., 2019; Buhrmester
et al., 2019; Fong & Vedaldi, 2017). Mechanistic interpretability aims to reverse engineer the in-
tricate workings of neural networks that drive their behavior (Olah, 2022). Gaining a mechanistic
understanding builds trust in AI systems and provides insights that can lead to refinement and in-
novation (Raukur et al., 2022). In essence, mechanistic interpretability is not just about demysti-
fying AI; it’s about harnessing its potential responsibly and efficiently. Recurrent Neural Networks
(RNNs) (Hochreiter & Schmidhuber, 1997) play a pivotal role in AI due to their unique ability to
process sequential data (Graves et al., 2013), making them indispensable for tasks involving time
series analysis, natural language processing, and other applications where understanding temporal
dynamics is crucial (Che et al., 2018). One major challenge in understanding RNNs mechanistically
is that the task-relevant information is stored in a hidden state that evolves over time. This temporal
nature of RNNs raises critical questions: How is information reliably stored and processed in this
evolving hidden state? and How are the learned parameters of RNNs connected to the computations
performed? Addressing these questions is vital for advancing our understanding and application of
RNNs in AI-driven systems.

Answering these questions in RNNs require elucidating the mechanisms of ’variable binding’ that
enables them to dynamically associate information with variables and manipulate the information
symbolically over time (Marcus, 2001). In cognitive systems, variable binding enables general-
ization in complex, structured tasks that involve symbolic relationships and dependencies between
various elements (Greff et al., 2020). For instance, in natural language processing, variable binding
promotes understanding and maintaining context over a sentence or a conversation. The importance
of uncovering the variable binding mechanisms stems from its potential to bridge the gap between
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simple pattern recognition and advanced cognitive capabilities, and move towards a better under-
standing and reasoning of AI systems. This will not only enhance the capabilities of AI systems but
also provides deeper insights into the nature of intelligence itself - both artificial and biological.

Organization: To formulate variable binding mechanisms in RNNs, we turn to computational neu-
roscience, drawing parallels between autonomously evolving RNNs and episodic memory retrieval
models. First, we show the connection between RNN architectures and a recently proposed episodic
memory model - General Sequential Episodic Memory Model in Section 3. We show that while
GSEMM was introduced in continuous time, its temporal discretization corresponds with the evolu-
tion of RNNs. Episodic memory has varied definitions in different fields. Our definition of episodic
memory is in line with the General Sequential Episodic Memory Model (Karuvally et al., 2022) and
neuroscience (Umbach et al., 2020), which describes the ability of neural networks to store and pro-
cess temporal and contiguous memory sequences. This contrasts with the psychological perspective
of episodic memory as the subjective recollection of personal experiences (Tulving, 1972) where the
focus is on the human recollecting the memory rather than the underlying system.

In Section 4, we develop a class of algorithmic tasks designed to investigate the variable bind-
ing mechanisms of RNNs. These tasks involve a two-phase process: in the input phase, an RNN
is presented with a series of d-dimensional vectors over s timesteps, and in the output phase, it
autonomously generates outputs based on this stored information, using a linear binary symbolic
composition function. The tasks, while simpler than complex real-world scenarios, builds upon and
extends previous task setups that explore RNN memory capabilities (Graves et al., 2014). Section
5 introduces the concept of variable memories—linear subspaces within the RNN that facilitate the
variable binding and recursive composition of information. This concept allows us to fully decon-
struct the mechanisms of variable binding in RNNs and propose a circuit mechanism answering
how RNNs store and process information over time. Our experimental findings demonstrate a con-
sistent convergence to the proposed circuit, contributing evidence to the ’universality hypothesis’
in mechanistic interpretability (Olah et al., 2020; Li et al., 2015a). Further, the circuit mechanisms
we found show notable similarities to recently developed brain-inspired traveling waves in RNNs
(Keller et al., 2023), indicating a broader applicability of the theory beyond the toy variable binding
tasks.

In Section 6, we leverage the empirical convergence result to propose an algorithm to construct a
privileged basis of the variable memories. In our results, we show that this basis fully deconstructs
the learned behavior by uncovering latent neurons (by basis change of the RNN hidden state) and
latent synaptic interactions (by basis change of the learned interactions) involved in information
processing.

2 RELATED WORKS

Our exploration of RNNs spans three, often separate, research direction - Dynamical Systems inter-
pretation of RNNs, Mechanistic Interpretability, and Neural Memory Models.

Dynamical Systems Interpretation of RNNs: Current approaches to interpret RNNs consider them
as non-linear dynamical systems and apply linearization around fixed or slow-changing points to
reveal their behavior (Marschall & Savin, 2023; Sussillo & Barak, 2013). The preliminary step
in this analysis involves linearization around fixed points and slow-changing points found using
optimization algorithms. The phase space flow is assembled piecemeal from each linearized region.
The exploration of the long-term behavior of these regions is undertaken through the eigen-spectrum
analysis of the corresponding linearized dynamical systems (Strogatz, 1994), providing insights
into the dynamics of convergence, divergence, stability, or spiraling (Rowley et al., 2009; Kim,
1996). However, this method becomes intractable in our variable binding tasks when there are many
dimensions exhibiting non-convergent behaviors. The proposed EMT generalizes this approach
to the class of variable binding tasks and enables interpretation even when the number of non-
converging dimensions is arbitrarily large (Appendix Figure 5).

Mechanistic Interpretability: Mechanistic interpretability seeks to reverse-engineer neural net-
works to expose the underlying mechanisms enabling them to learn and adapt to previously unen-
countered conditions. The prevailing strategy involves examining the networks’ internal “circuits”
(Conmy et al., 2023; Wang et al., 2022; Cammarata et al., 2020). Researchers have found that apply-
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Figure 1: Equivalence between Episodic Memory Models and Variable Binding: A. Episodic
Memory models aim to uncover the cognitive processes involved in the retrieval of subjective past
experiences often stored as a temporal sequence of memory items. The illustration shows the re-
trieval of a personal experience when an apple is observed. B. The illustration shows the application
of the Episodic Memory Theory, which poses that learning the addition operation over arbitrary
numbers to generate fibonacci numbers, a task involving variable binding, can be considered equiv-
alent to episodic memory retrieval where the computations are performed over variables instead of
predetermined memories. The abstract addition operation is stored in the synapses in the form of
how the variables interact with each other to produce the desired result (See Appendix A.3 for de-
tails).

ing interpretability methods to large networks, such as transformers (Vaswani et al., 2017) handling
complex tasks in natural language processing and vision, faces the challenge of unclear features to
be modeled in internal circuits. To address this challenge, toy models are created with clearly defined
features essential for task resolution. Probing models trained on toy tasks has resulted in supporting
evidence for prevalent hypotheses. Some of the notable hypotheses are universality (Chughtai et al.,
2023; Li et al., 2015b) - models learn similar features and circuits across different conditions when
trained on similar tasks, bottleneck superposition (Elhage et al., 2022) - a mechanism for storing
more information than the available dimensions, and composable linear representations (Cheung
et al., 2019) - the use of linear spaces in feature representation. Despite these advancements, current
approaches remain confined to forward only models like MLPs and transformers. Our proposed
EMT generalizes the circuit approach of mechanistic interpretability to recurrent architectures and
provides a mathematically grounded framework for deconstructing their behavior.

Neural Memory Models: Developments in memory modeling have revealed links between deep
neural networks and memory models. The first investigation of this link explored how the different
activation functions in Multi-Layer Perceptrons affected the learned representations and memory
capacity (Krotov & Hopfield, 2016). Later studies extended this connection to explain the practical
computational benefits observed in neural architectures like transformers (Ramsauer et al., 2020).
Recently, the traditional memory models capable of associative recall of static memories were ex-
panded to retrieving memory sequences (Karuvally et al., 2022; Chaudhry et al., 2023). This ex-
pansion allows memories that previously did not interact in the static memory retrieval context to
interact and produce complex temporal behavior (Kleinfeld, 1986; Kleinfeld & Sompolinsky, 1988).
A fundamental assumption in memory modeling (in both static and sequence retrieval) is that the
network’s memories are predetermined and stored in the synapses. This assumption limits the mod-
els’ applicability to understanding symbolic binding of memories typically available only during
inference. In EMT, we will demonstrate that by lifting the fixed memory assumption in memory
modeling, these memory models can be utilized to build principled circuits to show how RNNs bind
external information.

Summary: EMT reveals the synergistic relationship between the three fields - dynamical systems
interpretation of RNNs, mechanistic interpretability, and neural memory modeling and suggests a
unified approach to address the challenges of understanding neural behavior.

3 RNN AS EPISODIC MEMORY

We show that RNNs can be viewed as a discrete-time analog of a memory model called General
Sequential Episodic Memory Model (GSEMM) (Karuvally et al., 2022), and as a result, enable
human-interpretability in terms of learned memories and their interaction. See Appendix A.2 for
detailed proof. The sketch of the proof is detailed below. To be applicable for the more gen-
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action of the Φ operator on the variable memories reading information from the hidden state
during output phase

composed
result

composed
result

Figure 2: Circuit of variable binding in an illustrative task of four variables, each with five
dimensions: A. The hidden state at time t has subspaces capable of storing external information
in their activities. The colors depict the vector components (or activity) of the hidden state in the
variable memory basis. The linear operator Φ acts on the hidden state such that these activities
are copied between variable memories except for Ψ4, which implements the linear operation f . B.
The N th variable contents are read during the output phase using the appropriate linear operator
Wr = Ψ∗

N .

eral setting of RNNs, we slightly modify the GSEMM synapse formulation to a pseudoinverse
learning rule instead of the previous Hebbian rule. This modification allows the model to han-
dle the more general case of linearly independent memory vectors, instead of orthogonal vectors
only (Chaudhry et al., 2023; Personnaz et al., 1986). GSEMM is still a continous time memory,
so we discretize it using the forward Euler approximation under the conditions that the timescale
parameters of GSEMM are Tf = 1, Th = 0, and Td = 0. The final discrete system we obtain is
Vf (t+1) = Ξ (I+Φ′⊤) Ξ† σf (Vf (t)), where Vf is a vector representing the state of the neural net-
work, Ξ and Φ are matrices representing the stored memories and inter-memory interactions respec-
tively. The columns of the Ξ matrix are the static stored memories, and the matrix (I +Φ′⊤) = Φ⊤

directs the chronology of these memories to form the sequences. The discrete system we derived is
topologically conjugate to the update equations of an Elman RNN under the homeomorphic trans-
formation Vf = if the norm of the matrix is bounded by 1. That is, if ||ΞΦ⊤ Ξ†||≤ 1, we can
consider a new state variable h = σf (Vf ) such that

h(t) = σf (ΞΦ⊤ Ξ†h(t− 1)) . (1)

This conjugate system has equations that are equivalent to an Elman RNN hidden state update equa-
tion without bias h(t+ 1) = σf (Whhh(t)).

Corollary 3.0.1 The learned synaptic interactions of autonomously evolving Elman RNNs without
bias can be decomposed in terms of memory models (Whh = ΞΦΞ⊤) and interpreted as the re-
trieval of memories temporally transitioning according to the rules encoded in the intermemory
interactions.

This corollary also generalizes to the case of forward-only networks as they can be viewed as a
single-step update of the RNN update equations. We now formulate the Episodic Memory Theory
as follows: The Episodic Memory Theory (EMT) poses that the inner workings of learned
neural networks can be revealed by analyzing the learned inter-memory interactions and its
effect in the space of stored memories (Figure 1).

4 VARIABLE BINDING TASKS

Definition of Variable Binding: Variable binding in the context of RNNs refers to the network’s
ability to store and process pieces of input information symbolically across different timesteps, uti-
lizing this information to generate the necessary outputs.

For example, in a language translation task, variable binding involves storing the source sentence
provided to the RNN as input in the hidden state which will be referred to when generating the trans-
lated language. Directly analyzing the variable binding behavior of RNNs in complex tasks like lan-
guage translation is very challenging because it is not clear what the variables will be. We thus take
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Algorithm 1 Algorithm for approximating variable memories of trained linear RNNs
0 ≤ α ≤ 1
s ▷ number of time-steps in the input phase
Whh,Wr ▷ learned parameters of the RNN
Ψs ←W †

r
for k ∈ {s− 1, s− 2, . . . 1} do

Ψk ←
((
W⊤
hh

)k
W †
r

)
Ψk ← Ψk − EE†Ψk ∀E : λ(E) < 1 ▷ Remove the components along transient directions.

end for
Ψ← [Ψ1; . . . ; Ψs]

Ψ⊥ ← PC({ ˜h(t)} −ΨΨ† {h̃(t)}) ▷ Principle Components of h̃ from simulations

the approach of developing a class of toy variable binding tasks where the variables that need to be
stored are well-understood. This approach is used in the mechanistic interpretation of forward-only
neural networks (Chughtai et al., 2023; Li et al., 2015b), and RNNs (Maheswaranathan et al., 2019;
Graves et al., 2014; Sussillo & Barak, 2013). The variable binding tasks we consider are the gen-
eralization of the RepeatCopy task used to evaluate memory storage capabilities of recurrent neural
architectures used by Keller et al. (2023) and Graves et al. (2014). Our approach to interpreting the
trained RNNs also generalizes the dynamical systems approach of (Sussillo & Barak, 2013) to high
dimensional task spaces found in the variable binding tasks (See Appendix Figure 5 for the diversity
and high dimensional nature of the eigenvalue distribution found in the learned representation of the
variable binding tasks). By taking the step to generalize existing simple setups, the variable binding
tasks provide a path forward to close the gap between simple tasks and real-world scenarios, without
sacrificing on human-interpretability.

Variable Binding Tasks: We define variable binding tasks as consisting of two phases: the in-
put phase and the output phase. The input phase lasts for s timesteps. During each timestep
t (where 1 ≤ t ≤ s) of this phase, the RNN receives a d-dimensional input vector u(t) =
[u1(t), u2(t), . . . , ud(t)]⊤. These vectors u(t) provide the external information that the RNN is
expected to store within its hidden state. It is important to note that the information necessary to
compute the output at each timestep is cumulatively stored for use in subsequent steps.

Once the input phase concludes at timestep s, the output phase begins immediately from timestep
s + 1. During the output phase, the RNN no longer receives external input and instead operates
autonomously, generating outputs based on the information stored during the input phase. The RNN
should output the composition function

y(t) = f(y(t− 1), y(t− 2), . . . y(t− s)), for t > s (2)

y(t) is initialized as y(t) = u(t) for 0 < t ≤ s. This task setup implies that the RNN needs to use
the accumulated information from the input phase to influence its outputs in the subsequent phase.

For the purpose of our analysis in the paper, we define two constraints on the variable binding tasks:
(1) the composition function f , which governs the output generation, is linear, and (2) the domain
of f (the set of possible input values), and the codomain of f (the set of possible output values) are
binary, consisting of values in {−1, 1}. These simplifications enable us to focus on how the RNN
processes and integrate the input information across different timesteps to produce coherent outputs,
abstracting out what the variables are actually storing.

5 VARIABLE BINDING CIRCUIT IN RNN

In this section, we develop a circuit to explain the mechanisms in RNNs that enable them to learn and
generalize in the variable binding tasks. The circuit simplifies understanding the complex dynamics
of these networks in a more analytically tractable, and human interpretable form. Our approach
starts by considering RNNs in their linearized form, defined by specific linear equations involv-
ing the hidden state, input, and output. This simplification lays the foundation for further analysis.
We propose changing the basis of the RNN’s representation (both the hidden state and the learned
synaptic interactions), to treat the linearized RNN as transitioning according to the sequential mem-

5



Under review as a conference paper at ICLR 2024

Task hidden size: 64 hidden size: 128
L2: 0.0 L2: 0.001 L2: 0.1 L2: 0.0 L2: 0.001 L2: 0.1

T1 — (0.97) — (0.88) — (0.50) 0.0005 (1.00) — (0.93) — (0.50)
T2 0.0075 (1.00) — (0.85) — (0.50) 0.0055 (0.98) 0.0031 (0.98) — (0.50)
T3 0.0026 (1.00) 0.0010 (0.97) — (0.50) 0.0031 (0.98) 0.0005 (1.00) — (0.50)
T4 0.0112 (0.94) 0.0011 (1.00) — (0.50) 0.0022 (1.00) 0.0006 (1.00) — (0.50)

Table 1: RNNs consistently converge to the variable binding circuit: The top image shows the
composition functions for the 4 tasks, visualized as a matrix with x-axis input, and y-axis output.
Red color denotes +1, blue is -1 and no color is 0. T1 is the function for a simple repeat copy task,
the rest are other general composition functions. The table shows the MAE in the complex argument
between the eigenspectrum of the predicted Φ from the variable binding circuit and the empirically
learned Whh in 4 tasks across 20 seeds under different RNN configurations. This average error is
indeterminate (—) if the rank of the theoretical Φ is different from the empirical Whh. Values in
the brackets show the average test accuracy of the trained model. For models that have high test
accuracy (> 0.94), the error in the theoretically predicted spectrum is very low indicating consistent
convergence to the theoretical circuit. A notable exception of this behavior is T1 with hidden size=
64 andL2 = 0, where the restricted availability of dimensions forces the network to encode variables
in bottleneck superposition resulting in a low-rank representation of the solution.

ory relationships of GSEMM. This basis change is essential for simplifying our understanding and
deconstructing the internal computations of the RNN’s dynamics. We introduce the concept of vari-
able memory to collectively reason about the activities within subspaces of the RNN hidden state
and show that these subspaces can act as variables in the RNN computation. This concept of variable
memories is not restricted to the variable binding tasks and can be used by researchers to further de-
velop principled models of neural computation. We finally use the concept of variable memories to
propose a circuit and form principled hypotheses of what each parameter of the learned RNN is and
the role they play in RNNs trained on the variable binding tasks. We later validate these hypotheses
using experiments.

Linear RNN: We build our model of variable binding on a linearized RNN defined by the following
equations. {

h(t) =Whhh(t− 1) +Wuhu(t) ,

y(t) =Wr h(t) .
(3)

We envision that any non-linear RNN can be converted to this form by finding fixed points and
subsequent linearization (See Appendix A.5 for details). Here, Whh,Wuh,Wr are linear operators
that gets learned after training on the variable binding tasks. We will use the concept of variable
memories to form principled hypotheses for these operators that will be validated by experimental
results. h(t) is the hidden state, u(t) is the input, and y(t) is the output. We use a simplifying
assumption that Whh has sufficient capacity to represent all the variables required for the variable
binding tasks. We further assume that h(0) is the zero vector.

Variable Memory: We decompose the linear RNN using the GSEMM equivalence (Corollary 3.0.1)
and define variable memories as subspaces of the space spanned by: ψµ =

∑
i ξ
i
µei. In the new

basis, the hidden state vector is h(t) =
∑
µ h

ψµψµ. The subspace spanned by the collection of
vectors {Ψk} = {ψµ : µ ∈ {(k − 1)d, . . . , kd}} is called the kth variable memory. The activity of
the subspace is the contents of the kth variable.

Variable Memory Interactions (hypothesis): The variable binding tasks require mechanisms in Φ
capable of retaining variables of the variable binding tasks for s timesteps. One possibility for this
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Figure 3: EMT reveals latent neurons storing task relevant information over time: A. In the
repeat copy task (T1), the RNN needs to repeatedly produce an input sequence that is presented. A
typical trained hidden state after providing the input does not show any meaningful patterns con-
nected to the input. B. The same hidden states when visualized in the variable memories reveal the
input information being stored as variables and processed according to the variable binding circuit.
The actual hidden state is in a superposition of these latent variable memory activities.

is the following linear operator Φ, defined in terms of the variable memories.

Φ =

(s−1)d∑
µ=1

ψµψ
µ+d +

sd∑
µ=(s−1)d

sd∑
ν=1

Φµνψµψ
ν

︸ ︷︷ ︸
f(u(t−1),u(t−2),...,u(t−s))

. (4)

The action of the operator on the hidden state is illustrated in Figure 2A. For all variable memories
with index i ∈ {2, 3, 4, . . . s}, the variable contents (subspace activities) gets copied to the variable
memory with index i − 1. The operator then applies the function f defined in Equation 2 on the
variable contents and stores the result in the sth subspace. This circuit generalizes to any instantiation
of the variable binding tasks with a linear composition function f .

Reading from Variable Memories (hypothesis): Once RNN has performed its computation in
the space of variable memories, the computed information needs to be extracted from the hidden
state. The linear RNN has an operator Wr, which facilitates the reading of information from h(t) at
consecutive time steps. We propose that Wr has the following equation which projects the activity
of the sth subspace to the standard basis (Figure 2B) for output.

Wr =

sd∑
µ=(s−1)d+1

eµ−(s−1)d ψ
µ (5)

5.1 RESULT: RNNS CONSISTENTLY CONVERGE TO THE VARIABLE BINDING CIRCUIT

To substantiate that the current hypothetical circuit is learned by empirical RNNs when trained on
the variable binding tasks, we trained various RNN configurations, differing in hidden sizes and
regularization penalties on 4 variable binding tasks each differing in the linear composition function
f (See top of Table 1). After training, the RNNs were linearized, and the eigen-spectrum of the
learned Whh matrix is compared with the theoretical Φ, as defined in Equation 4. If RNNs learn a
representation in alignment with our model, both operators, i.e., the learned Whh and theoretical Φ,
are expected to share a portion of their eigenspectrums as they are similar matrices (i.e they differ
only by a basis change). We compared only the complex arguments of the spectrum, disregarding
the magnitude. The rationale behind this exclusion lies in what the magnitude tells about the dynam-
ical behavior. The eigenvalue magnitude portrays whether a linear dynamical system is diverging,
converging, or maintaining consistency along the eigenvector directions (Strogatz, 1994). RNNs
typically incorporate a squashing non-linearity, such as the Tanh activation function, which restricts
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Figure 4: EMT enables human interpretability of learned RNN parameters: The learned
weights when visualized in the variable memories result in a form that is human-interpretable. For
RNNs trained on two sample tasks T1 (A left) and T2 (B right), the weight matrix Whh converts into
a form that reveals internal mechanisms of how RNNs solve the task. For both tasks, the variables
with index < 8 copies its contents to the preceding variable. Variable 8 actively computes the func-
tion f applied on all the variables stored in the hidden state using the variable binding circuit. For
T1, it is a simple copy of the 1st variable, and for T2, it is a linear composition of all the variables
Notably, the circuit for T2 shows an optimized basis where all the irrelevant dimensions are absent.

trajectories that diverge to infinity. Essentially, provided the eigenvalue magnitude remains ≥ 1, the
complex argument solely determines the overall dynamical behavior of the RNN. Table 1 depicts
the average absolute error in the eigenspectrum and test accuracy when the RNN models are trained
across 4 distinct variable binding tasks. The table shows that RNNs consistently converge to the
hypothetical circuit.

6 PRACTICAL CONSIDERATIONS OF EMT

Now we have sufficient evidence to show that the learned parameters of RNNs converge to our
hypothetical circuit of Equation 4. We can now develop a procedure to explore empirical RNNs in
terms of the variable memories. The RNN can then be interpreted using the variable binding circuit
to deconstruct where the variable memories are stored and how they interact to produce the necessary
outputs. Viewing the operations of the learned RNN interaction matrix Whh in the basis of variable
memories has an additional benefit – it provides a path to influence or “fix” RNN behavior after
the training. This “fixing” operation can be imagined as changing the learned parameter Whh by
influencing specific weights of the extracted Φ. This can potentially be utilized to improve variable
storage characteristics, fix problems computing the composition f or even remove computations that
are deemed unnecessary.

Building on the intuition from the linear model, we use the learned RNN weights Whh, and Wr

to estimate the basis vectors of the variable memories. From our hypothesis on reading from vari-
able memories (Equation 5), Ψs = W †

r († is the Moore-Penrose pseudoinverse) defines a matrix
whose columns are the basis vectors of the sth variable memory. Similarly, other basis vectors can
be found as columns of the matrices obtained by propagating these dimensions forward in time:
Ψk = Φs−kΨs = W s−k

hh W †
r . Although the variable memories are defined based on a linear evo-

lution assumption, we found that the method of power iterating Whh was effective in defining the
variable memories for even the non-linear Elman RNNs. For completeness, we characterize RNN
behavior not currently explainable by the variable binding circuit using a space orthogonal to the
variable memories (Ψ⊥). The pseudo-code for the algorithm to approximate variable memories
from a linearized RNN is summarized in Algorithm 1. A formal analysis of the correctness of the
approximation is in the Appendix A.6.
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6.1 RESULT: VARIABLE MEMORY REVEALS VARIABLE BINDING LATENT NEURONS

We approximated the variable memories of RNNs trained on the Repeat Copy task (T1) using the
algorithm and visualized the hidden state. In the Repeat Copy task, the RNN must repeatedly output
the stream of inputs provided during the input phase. The simulated hidden states of learned RNNs
are visualized by projecting the hidden state in the variable memories: h̃ = ΨΨ†h. The results
shown in Figure 3 reveal that the hidden state is in a superposition (or distributed representation) of
latent neurons that actively store each variable required to compute the function f at all points in
time. The basis transformation helps to disentangle these superposed (or distributed) variables from
the hidden state so that they are easily visualized.

6.2 RESULT: VARIABLE MEMORIES ENABLE HUMAN INTERPRETABILITY OF LEARNED
WEIGHTS

In addition to revealing hidden neurons that store and process information over time, variable mem-
ories can also be used as bases to view the function of the learned matrices. The variable memories
are carefully constructed such that Whh converts to the underlying Φ when viewed in the basis and
any behavior not explainable by Φ is shown as interactions with the orthogonal space. The Figure
4 shows the learned parameters of Whh encoding the variable binding circuit. The low connectivity
(near zero magnitude in the interactions) between the variable memories and the orthogonal space
indicates that the variable binding circuit fully explains the behavior of the RNNs.

7 DISCUSSION

In this work, we frame Recurrent Neural Networks as discrete-time analogs of the General Sequen-
tial Episodic Memory Model – an energy-based memory model from computational neuroscience.
We introduced the concept of “variable memories,” linear subspaces capable of symbolically binding
and recursively composing information, providing a path forward to lift the fixed memory assump-
tion of the memory model, and promoting applicability in mechanistic understanding. The variable
memory approach addresses some of the limitations of current methods in understanding RNNs,
particularly the intractability of Jacobian spectral analysis in high-dimensional task spaces. We pre-
sented a new class of algorithmic tasks that are designed to probe the variable binding behavior by
generalizing existing simple tasks, taking a step to close the gap between toy tasks and real-world
tasks without compromising on human interpretability. We presented a circuit mechanism that is
capable of recursively storing and composing variables and showed empirical evidence that trained
RNNs consistently converge to this circuit indicating computational universality in the learned rep-
resentation and behavior of models. Building on the evidence, we used variable memories to define
a privileged basis from trained RNN parameters that revealed latent neurons actively involved in
information processing. Further, using variable memories, we viewed the learned parameters of an
RNN in a human-interpretable manner, enabling reasoning and understanding RNN behavior as re-
peatedly shifting and composing variables. Using the tools from the theory, we fully deconstructed
both the hidden state behavior and the learned parameters of empirically trained RNNs.

Limitations: With these results, it is also important to recognize inherent limitations to the variable
memory approach. One of the limitations is that the analysis we presented is primarily restricted
to linear dynamical systems. Although an accurate representation of the qualitative behavior within
small neighborhoods of fixed points can be found for non-linear dynamical systems, the RNNs have
to be confined to these linear regions for the approach to be applicable. It is still an interesting be-
havior that models consistently converge to this linearized regime, at least for the tasks outlined in
Section 4. Outside the linear regions, RNNs may also exhibit behaviors like ergodicity and chaos
which the current analysis cannot support. The second limitation of the approach is that external
information is stored as a linear superposition of variable memories in the hidden state. Our results
indicates that the role of non-linearity in encoding external information may be minimal for the
toy tasks. However, we have observed that when the number of dimensions of the linear operator
Whh is not substantially large compared to the task’s dimensionality requirements (bottleneck su-
perposition) or when the regularization penalty is high, the RNN can effectively resort to non-linear
encoding mechanisms to store external information (Appendix B.3). Overcoming these limitations
of non-linearity will be an interesting direction to pursue in future research, and will bring the con-
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cept of variable memories closer to addressing the challenges posed by the quest to understand
neural computation.

8 REPRODUCIBILITY STATEMENT

We have taken steps to ensure the reproducibility of the theoretical and empirical contributions of
the paper. The main contributions of the paper include: (1) The theoretical connection between
RNNs and sequence memory models, (2) creation of toy models to test variable binding in RNNs,
(3) a mathematical model of variable binding, and (4) algorithm to compute variable memories for
RNN interpretability. For (1), we summarize the high level ideas of the proof in the main document
in Section 3 and provide detailed steps in Appendix A.2. For (2), we provided a mathematical
description in Section 4 where the final paragraph details the assumptions we consider in the paper.
For (3), we detail the mathematical model in Section 5, the assumptions of linearity and sufficient
rank is stated in the section. Further, we have provided two fully worked examples in Appendix A.4.
For the theoretical component of (4), we have stated the algorithm in Algorithm 1, and explained
how the algorithm was formulated in Section 6. For the empirical component of (4), we have detailed
the empirical procedure for creating data in Appendix B.1, and training the models in Appendix B.2.
We also provided jupyter notebooks and custom python libraries that were used to create the plots
and tables in the supplementary materials.
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A THEORETICAL MODELS OF VARIABLE BINDING

In the appendix, we use the Dirac and Einstein summation conventions for brevity to derive all the
theoretical expositions in the main paper.

A.1 MATHEMATICAL PRELIMINARIES

The core concept of the episodic memory theory is basis change, the appropriate setting of the stored
memories. Current notations lack the ability to adequately capture the nuances of basis change.
Hence, we introduce abstract algebra notations typically used in theoretical physics literature to for-
mally explain the variable binding mechanisms. We treat a vector as an abstract mathematical object
invariant to basis changes. Vectors have vector components that are associated with the respective
basis under consideration. We use Dirac notations to represent vector v as - |v⟩ =

∑
i v
i |ei⟩. Here,

the linearly independent collection of vectors |ei⟩ is the basis with respect to which the vector |v⟩ has
component vi ∈ R. Linear algebra states that a collection of basis vectors |ei⟩ has an associated col-
lection of basis covectors

〈
ei
∣∣ defined such that

〈
ei
∣∣ej〉 = δij , where δij is the Kronecker delta. This

allows us to reformulate the vector components in terms of the vector itself as |v⟩ =
∑
i

〈
ei
∣∣v〉 |ei⟩.

We use the Einstein summation convention to omit the summation symbols wherever the summation
is clear. Therefore, vector |v⟩ written in basis |ei⟩ is

(6)|v⟩ = vi |ei⟩
=
〈
ei
∣∣v〉 |ei⟩ .

The set of all possible vectors |v⟩ is a vector space spanned by the basis vectors |ei⟩. A subspace of
this space is a vector space that is spanned by a subset of basis vectors {

∣∣e′j〉 : ∣∣e′j〉 ⊆ {|ei⟩}}.
The RNN dynamics presented in Equation 1 represented in the new notation is reformulated as:

(7)|h(t)⟩ = σf
((
ξiµΦ

µ
ν (ξ

†)νj |ei⟩
〈
ej
∣∣) |h(t− 1)⟩

)
= σf

(
Whh h⃗(t− 1)

)
.

The greek indices iterate over memory space dimensions {1, 2, . . . , Nh}, alpha numeric indices
iterate over feature dimension indices {1, 2, . . . , Nf}. Typically, we use the standard basis in our
simulations. For the rest of the paper, the standard basis will be represented by the collection of
vectors |ei⟩ and the covectors

〈
ei
∣∣. The hidden state at time t in the standard basis is denoted as

|h(t)⟩ =
〈
ej
∣∣h(t)〉 |ei⟩. 〈ej∣∣h(t)〉 are the vector components of |h(t)⟩ we obtain from simulations.

A.2 RNN-EPISODIC MEMORY EQUIVALENCE

We modify the GSEMM formulation with a pseudoinverse learning rule instead of the Hebbian
learning rule for the synapses. This modification allows us to deal with more general (linearly
independent vectors) memories than orthogonal vectors Personnaz et al. (1986). The dynamical
equations for our modified GSEMM are given below.

Tf
dVf
dt

=
√
αs Ξσh(Vh)− Vf ,

Th
dVh
dt

=
√
αs Ξ

† σf (Vf ) + αcΦ
′⊤Ξ†Vd − Vh,

Td
dVd
dt

= σf (Vf )− Vd,

(8)

The neural state variables of the dynamical system are Vf ∈ RNf×1, Vh ∈ RNh×1, Vd ∈ RNf×1.
The interactions are represented by Ξ ∈ RNf×Nh and Φ ∈ RNh×Nh . Ξ† is the Moore-Penrose
pseudoinverse of Ξ. To derive the connection between the continuous time model and discrete
updates of RNNs, we discretize the continuous time model using forward Euler approximation under
the conditions that Tf = 1, Th = 0, and Td = 0. From a given time t, the update equations are given
as

13
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
Tf (Vf (t+ 1)− Vf (t)) = Ξσh(Vh(t))− Vf (t) ,
Vh(t) = Ξ⊤ σf (Vf (t)) + Φ⊤Ξ⊤Vd(t) ,

Vd(t) = σf (Vf (t)) .

(9)

{
Tf (Vf (t+ 1)− Vf (t)) = Ξσh(Vh)− Vf (t) ,
Vh(t) = Ξ⊤ σf (Vf (t)) + Φ⊤Ξ⊤σf (Vf ) ,

(10){
Tf (Vf (t+ 1)− Vf (t)) = ΞVh − Vf (t) ,
Vh(t) = (I +Φ⊤)Ξ⊤σf (Vf ) ,

(11)

(12)Tf (Vf (t+ 1)− Vf (t)) = Ξ (I +Φ⊤)Ξ⊤σf (Vf )− Vf (t)

Final discrete upate equation

(13)Vf (t+ 1) = Ξ (I +Φ⊤)Ξ⊤σf (Vf )

Restrict the norm of matrix ||Ξ (I +Φ⊤)Ξ⊤||≤ 1.
This allows us to consider the transformation V ′

f = σf (Vf ), so for invertible σf ,

(14)σ−1
f (V ′

f (t+ 1)) = Ξ (I +Φ⊤)Ξ⊤V ′
f

(15)σ−1
f (V ′

f (t+ 1)) = Ξ (I +Φ⊤)Ξ⊤V ′
f

(16)V ′
f (t+ 1) = σf (Ξ (I +Φ⊤)Ξ⊤V ′

f )

this is a general update equation for an RNN without bias. The physical interpretation of this equa-
tion is that the columns of Ξ stores the individual memories of the system and the linear operator
(I+Φ) is the temporal interaction between the stored memories. In the memory modeling literature,
it is typical to consider memories as a fixed collection instead of a variable collection that shares a
common interaction behavior. We will show how in the next sections how the dynamics as a result
of fixed collection can be used to store variable information.

Topological Conjugacy with RNNs: Proof that dynamical systems governed by Equations 13 and
16 are topological conjugates.

Consider f(x) = Ξ (I + Φ⊤)Ξ⊤σf (x) for Equation 13 and g(x) = σf (Ξ (I + Φ⊤)Ξ⊤x) for
Equation 16. Consider a homeomorphism h(y) = σf (y) on g. Then,

(17)
(h−1 ◦ g ◦ h)(x) = σ−1

f (σf (Ξ (I +Φ⊤)Ξ⊤σf (x)))

= Ξ (I +Φ⊤)Ξ⊤σf (x)

= f(x)

So, for the homeomorphism h on g, we get that h−1 ◦ g ◦h = f proving that f and g are topological
conjugates. Therefore all dynamical properties of f and g are shared.

A.3 EXAMPLE: GENERALIZED FIBONACCI SERIES.

We consider a generalization of the Fibonacci sequence where each element Fn ∈ Rd is a vector
defined recursively as,

Fn =



u1 n = 1

u2 n = 2
...
us n = s∑n−1
t=n−s Ft n > s

(18)
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For any ui ∈ Rd. In order to store this process of generating sequences of Fn, the vectors
u1, u2, . . . us needs to be stored as variables and recursively added to produce new outputs. In
our framework, this can be accomplished by initializing the hidden state such that |h(s)⟩ =∑
i

∑
ψµ∈{Ψi} u

µ
i |ψµ⟩, that is each uµ is stored as activity of distinct subspaces of the hidden

state. To encode the Fibonacci process in Φ, we propose the following form for the inter-memory
interactions.

(19)Φ =

(s−1)d∑
µ=1

|ψµ⟩
〈
ψµ+d

∣∣+( d∑
µ=1

∣∣ψ(s−1)d+µ

〉(s−1∑
ν=0

〈
ψνd+µ

∣∣))
︸ ︷︷ ︸∑n−1

t=n−s Ft

.

This form of Φ has two parts. The first part implements a variable shift operation. The second
part implements the summation function of Fibonacci. Since the hidden state is initialized with all
the starting variables uµ, application of the Φ operator repeatedly, produces the next element in the
sequence. As of now, the hidden state contains all the elements in the sequence. The abstract algebra
notation allows proposing Wr which will extract only the required output. Formally,

Wr = Ψ∗
s =

sd∑
µ=(s−1)d+1

∣∣eµ−(s−1)d

〉
⟨ψµ| . (20)

It is the projection operator which extracts the contents of the N th variable memory in the standard
basis. Note that the process works irrespective of the actual values of uµ. To summarize, we now
have a memory model encoding a generalizable process of fibonacci sequence generation.

A.4 EXAMPLE: REPEAT COPY (T1)

Repeat Copy is a task typically used to evaluate the memory storage characteristics of RNNs since
the task has a deterministic evolution represented by a simple algorithm that stores all input vectors
in memory for later retrieval. Although elementary, repeat copy provides a simple framework to
work out the variable binding circuit we theorized in action. For the repeat copy task, the linear
operators of the RNN has the following equations.

Φ =
∑(s−1)d
µ=1 |ψµ⟩

〈
ψµ+d

∣∣+∑sd
µ=(s−1)d+1 |ψµ⟩

〈
ψµ−(s−1)d

∣∣
Wuh = Ψs
Wr = Ψ∗

s

(21)

This ϕ can be imagined as copying the contents of the subspaces in a cyclic fashion. That is, the
content of the ith subspace goes to (i−1)th subspace with the first subspace being copied to the N th

subspace. The dynamical evolution of the RNN is represented at the time step 1 as,

(22)|h(1)⟩ =
∣∣ψ(s−1)d+j

〉 〈
ej
∣∣ui(1) |ei⟩

(23)|h(1)⟩ = ui(1)
∣∣ψ(s−1)d+j

〉 〈
ej
∣∣ei〉

(24)|h(1)⟩ = ui(1)
∣∣ψ(s−1)d+j

〉
δij

Kronecker delta index cancellation

(25)|h(1)⟩ = ui(1)
∣∣ψ(s−1)d+i

〉
At time step 2,

(26)|h(2)⟩ = ui(1)Φ
∣∣ψ(s−1)d+i

〉
+ ui(2)

∣∣ψ(s−1)d+i

〉
15
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Expanding Φ

(27)|h(2)⟩ = ui(1)

(s−1)d∑
µ=1

|ψµ⟩
〈
ψµ+d

∣∣+ sd∑
µ=(s−1)d+1

|ψµ⟩
〈
ψµ−(s−1)d

∣∣∣
 ∣∣ψ(s−1)d+i

〉
+ ui(2)

∣∣ψ(s−1)d+i

〉

(28)|h(2)⟩ = ui(1)
∣∣ψ(s−2)d+i

〉
+ ui(2)

∣∣ψ(s−1)d+i

〉
At the final step of the input phase when t = s, |h(s)⟩ is defined as:

(29)|h(s)⟩ =
s∑

µ=1

ui(µ)
∣∣ψ(µ−1)d+i

〉
For t timesteps after s, the general equation for |h(s+ t)⟩ is:

(30)|h(s+ t)⟩ =
s∑

µ=1

ui(µ)
∣∣ψ[((µ−t−1 mod s)+1)d+i]

〉

From this equation for the hidden state vector, it can be easily seen that the µth variable is stored in
the [(µ− t− 1 mod s) + 1]

th subspace at time step t. The readout weights Wr = Ψ∗
s reads out the

contents of the sth subspace.

A.5 APPLICATION TO GENERAL RNNS

The linear RNNs we discussed are powerful in terms of the content of variables that can be stored
and reliably retrieved. The variable contents, ui, can be any real number and this information can be
reliably retrieved in the end using the appropriate readout weights. However, learning such a system
is difficult using gradient descent procedures. To see this, setting the components of Φ to anything
other than unity might result in dynamics that is eventually converging or diverging resulting in a loss
of information in these variables. Additionally, linear systems are not used in the practical design of
RNNs. The main difference is now the presence of the nonlinearity. In this case, our theory can still
be used. To illustrate this, consider a general RNN evolving according to h(t+1) = g(Whhh(t)+b)
where b is a bias term. Suppose h(t) = h∗ is a fixed point of the system. We can then linearize the
system around the fixed point to obtain the linearized dynamics in a small region around the fixed
point.

(31)h(t+ 1)− h∗ = J (g)|h∗ Whh (h(t+ 1)− h∗) +O((h(t+ 1)− h∗)2)

where J is the jacobian of the activation function g. If the RNN had an additional input, this can
also be incorporated into the linearized system by treating the external input as a control variable

(32)h(t+ 1)− h∗ = J (g)|h∗ Whh (h(t)− h∗) + J (g)|h∗ Wuhu(t)

Substituting h(t)− h∗ = h′(t)

(33)h′(t+ 1) = J (g)|h∗ Whh h
′(t) + J (g)|h∗ Wuhu(t)

which is exactly the linear system which we studied where instead of Whh = ΞΦΞ†, we have
J(g)|h∗Whh = ΞΦΞ†.

16



Under review as a conference paper at ICLR 2024

A.6 ERROR ANALYSIS OF THE VARIABLE MEMORY APPROXIMATION ALGORITHM

Our empirical results revealed that there are certain cases of tasks where the algorithm fails to re-
trieve the correct basis transformation. In this section, we will investigate why this dissociation from
theory happens. To this end, we want to formalize and compare what the hidden state is according
to the power iteration (h(t)) and the variable memories (|h(t)⟩).

|h(0)⟩ = 0 h(0) = 0 (34)

|h(1)⟩ = ui(1) |ψi⟩ h(1) =W †
r u(1) (35)

|h(1)⟩ = ui(1)
∣∣ψ(d+i)

〉
+ (ui(2) + Φ(0, . . . , u(1))i) |ψi⟩ h(1) =WhhW

†
r u(1) +W †

r u(2)
(36)

The error in the basis definition is given by

Ψ̃2 −Ψ2 = Φ(0, . . . u(1))i |ψi⟩
〈
ej
∣∣ (37)

Ψ̃3 −Ψ3 = Φ(0, . . . u(1))i
∣∣ψ(d+i)

〉 〈
ej
∣∣+Φ(0, . . . u(2), u(1))i

∣∣ψ(i)

〉 〈
ej
∣∣ (38)

For the power iteration to succeed in giving the correct variable memories, the effect of Φ acting on
the variable memories needs to be negligible. In the case of repeat copy, this effect is zero as the
operator Φ does not utilize any of the variables until the end of the input phase. For some of the
compose copy tasks, we showed in the paper, this effect is negligible. Another way to think about
this issue is that the Φ keeps on acting on the variable memories during the input phase and produces
outputs even though the variables are not filled in fully yet. This behavior pollutes the definition of
variable memories using power iteration. If Φ is sufficiently representative, for instance, the operator
associated with the Fibonacci generation, then after the first input is passed, the 2nd variable memory
will be the sum of the 1st and 2nd variable memories. Future development to the algorithm to general
tasks needs to take this figure out ways to get over this error.

B EXPERIMENTS

B.1 DATA

We train RNNs on the variable binding tasks described in the main paper with the following restric-
tions - the domain of u at each timestep is binary ∈ {−1, 1} and the function f is a linear function
of its inputs. We collect various trajectories of the system evolving accoding to f by first sampling
uniformly randomly, the input vectors. The system is then allowed to evolve with the recurrent
function f over the time horizon defined by the training algorithm.

B.2 TRAINING DETAILS

Architecture We used single layer Elman-style RNNs for all the variable binding tasks. Given
an input sequence (u(1), u(2), ..., u(T )) with each u(t) ∈ Rd, an Elman RNN produces the output
sequence y = (y(1), ..., y(T )) with y(t) ∈ RNout following the equations

h(t+ 1) = tanh(Whhh(t) +Wuhu(t)) , y(t) =Wrh(t) (39)

Here Wuh ∈ RNh×Nin , Whh ∈ RNh×Nh , and Wr ∈ RNout×Nh are the input, hidden, and readout
weights, respectively, and Nh is the dimension of the hidden state space.

The initial hidden state h(0) for each model was not a trained parameter; instead, these vectors were
simply generated for each model and fixed throughout training. We used the zero vector for all the
models.

Task Dimensions Our results presented in the main paper for the repeat copy (T1) and compose
copy (T2) used vectors of dimension d = 8 and sequences of s = 8 vectors to be input to the model.

Training Parameters We used PyTorch’s implementation of these RNN models and trained them
using Adam optimization with MSE loss. We performed a hyperparameter search for the best pa-
rameters for each task — see table 2 for a list of our parameters for each task.
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Figure 5: Diverse range of high-dimensional dynamical behavior around the fixed point for
the variable binding tasks: The figures show the distribution of the eigenspectrum of the Jacobian
around origin for the Elman RNN in the complex plane. For each of the representative tasks, the
spectral analysis reveals a very high dimensional dynamical behavior with a complex spectral distri-
bution. The dynamical behavior is non-trivial to interpret by the analysis of the Jacobian spectrum
in the class of variable binding tasks alone. The EMT provides an alternate interpretation of the
spectrum in these cases.

Repeat Copy (T1) Compose Copy (T2)
Input & output dimensions 8 8
Input phase (# of timesteps) 8 8

training horizon 100 100
Hidden dimension Nh 128 128
# of training iterations 45000 45000

(Mini)batch size 64 64
Learning rate 10−3 10−3

applied at iteration 36000
Weight decay (L2 regularization) none none

Gradient clipping threshold 1.0 1.0

Table 2: Architecture, Task, & Training Parameters

Curriculum Time Horizon When training a network, we adaptively adjusted the number of
timesteps after the input phase during which the RNN’s output was evaluated. We refer to this
window as the training horizon for the model.

Specifically, during training we kept a rolling average of the model’s loss by timestep L(t), i.e. the
accuracy of the model’s predictions on the t-th timestep after the input phase. This metric was com-
puted from the network’s loss on each batch, so tracking L(t) required minimal extra computation.

The network was initially trained at time horizon H0 and we adapted this horizon on each training
iteration based on the model’s loss by timestep. LettingHn denote the time horizon used on training
step n, the horizon was increased by a factor of γ = 1.2 (e.g. Hn+1 ← γHn) whenever the model’s
accuracy L(t) for t ≤ Hmin decreased below a threshold ϵ = 3 · 10−2. Similarly, the horizon was
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reduced by a factor of γ is the model’s loss was above the threshold (Hn+1 ← Hn/γ). We also
restricted Hn to be within a minimum training horizon H0 and maximum horizon Hmax. These
where set to 10/100 for the repeat copy task and 10/100 for the compose copy task.

We found this algorithm did not affect the results presented in this paper, but it did improve training
efficiency, allowing us to run the experiments for more seeds.

B.3 REPEAT COPY: FURTHER EXAMPLES OF HIDDEN WEIGHTS DECOMPOSITION

This section includes additional examples of the hidden weights decomposition applied to networks
trained on the repeat copy task.

A B

C D

Figure 6: Additional Experimental Results of Repeat Copy Task with 16 vectors, each of 5
dimensions: A. Whh visualized in the variable memory basis reveals the variable memories and
their interactions. B. After training, the eigenspectrum of Whh with a magnitude ≥ 1 overlaps
with the theoretical Φ. The boxes show the number of eigenvalues in each direction. C. During
inference, ”3141” is inserted into the network in the form of binary vectors. This input results in
the hidden state evolving in the standard basis, as shown. How this hidden state evolution is related
to the computations cannot be interpreted easily in this basis. D. When projected on the variable
memories, the hidden state evolution reveals the contents of the variables over time. Note that in
order to make these visualization clear, we needed to normalize the activity along each variable
memory to have standard deviation 1 when assigning colors to the pixels. The standard deviation of
the memory subspaces varies due to variance in the strength of some variable memory interactions.
These differences in interaction strengths does not impede the model’s performance, however, likely
due to the nonlinearity of the activation function. Unlike the linear model, interaction strengths well
above 1 cannot cause hidden state space to expand indefinitely because the tanh nonlinearity restricts
the network’s state to [−1, 1]Nh . This property appears to allow the RNN to sustain stable periodic
cycles for a range of interaction strengths above 1.
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A B

C D

Figure 7: Nonlinear Variable Memories Learned for the Repeat Copy Task with 16 vectors,
each of 5 dimensions. A. Eigenspectrum of Whh after training. The learned eigenvalues cluster
into 16 groups equally spaced around the unit circle, but there are only 3-4 eigenvectors per cluster
(indicated in red). Compare this to the theorized linear model, which has 5 eigenvalues per cluster
(indicated in black). The task requires 16· = 5 = 80 bits of information to be stored. Linearization
about the origin predicts that the long-term behavior of the model is dictated by the eigenvectors with
eigenvalue outside the unit circle because its activity along other dimensions will decay over time.
The model has only 16 · 4− 1 = 63 eigenvectors with eigenvalue near the unit circle, so this results
suggests the model has learned a non-linear encoding that compresses 80 bits of information into 63
dimensions. B:Whh visualized in the variable memory basis reveals the variable memories and their
interactions. Here, the variable memories have only 4 dimensions because the network has learned
only 63 eigenvectors with eigenvalue near the unit circle. The variable memory subspaces also have
non-trivial interaction with a few of the the non-memory subspaces. C. During inference, ”3141” is
inserted into the network in the form of binary vectors. This input results in the hidden state evolving
in the standard basis, as shown. How this hidden state evolution is related to the computations cannot
be interpreted easily in this basis. D. When projected on the variable memories, the hidden state
evolution is still not easily interpreted for this network, likely due to a nonlinear variable memories.
As in the previous figure, we normalized the activity along each variable memory to have standard
deviation 1 when assigning colors to the pixels.
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A B

C D

Figure 8: Additional Experimental Results of Repeat Copy Task with 8 vectors, each of 8
dimensions. This figure was included to show the decomposition applied to other values of s and
d for the Repeat Copy task. A: Whh visualized in the variable memory basis reveals the variable
memories and their interactions. B. After training, the eigenspectrum of Whh with a magnitude
≥ 1 overlaps with the theoretical Φ. The boxes show the number of eigenvalues in each direction.
C. During inference, ”3141” is inserted into the network in the form of binary vectors. This input
results in the hidden state evolving in the standard basis, as shown. How this hidden state evolution
is related to the computations cannot be interpreted easily in this basis. D. When projected on the
variable memories, the hidden state evolution reveals the contents of the variables over time. As
in the previous figures, we normalized the activity along each variable memory to have standard
deviation 1 when assigning colors to the pixels.
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Figure 9: Experimental Results of Compose Copy Task (T3) of 8 vectors, each of 8 dimensions:
A.Whh visualized in the variable memory basis reveals the variable memories and their interactions.
It is observed that Whh encodes an optimized version of the theoretical mechanisms since there are
dimensions in the variable memories irrelevant for future computations. B. Compared to repeat copy,
the eigenspectrum of the learned Whh is more complex, yet the theoretical Φ accurately predicts the
angles and number of eigenvalues. The eigenvalues’ magnitude greater than 1 (rather than close to 1
found in repeat copy) indicate that the non-linearity plays a role in controlling the diverging behavior
of the spaces. C. During the output phase, the past s variables are composed to form future outputs.
D. The hidden state evolution, when projected on the variable memories, reveals the contents of
the variables over time. Unlike repeat copy, the input phase does not precisely match the model’s
theoretical predictions. Transient dynamics dominate the initial timesteps, clouding the underlying
computations (t=1, 2, 3). Yet the long-term behavior (from t=16) of the output phase behavior is as
the theoretical model predicts with the composed result stored in the 8th variable memory at each
time.
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B.4 UNIFORM VS. GAUSSIAN PARAMETER INITIALIZATION

We also tested a different initialization scheme for the parametersWuh,Whh, andWhy of the RNNs
to observe the effect(s) this would have on the structure of the learned weights. The results pre-
sented in the main paper and in earlier sections of the Supplemental Material used PyTorch’s default
initialization scheme: each weight is drawn uniformly from [−k, k] with k = 1/

√
Nh. Fig. 10

shows the resulting spectrum of a trained model when it’s parameters where drawn from a Gaussian
distribution with mean 0 and variance 1/Nh. One can see that this model learned a spectrum similar
to that presented in the main paper, but the largest eigenvalues are further away from the unit circle.
This result was observed for most seeds for networks trained on the repeat copy task with s = 8
vectors of dimension d = 4 and d = 8, though it doesn’t hold for every seed. We also find that the
networks whose spectrum has larger eigenvalues usually generalize longer in time than the networks
with eigenvalues closer to the unit circle.

(a) Uniform Initialization (b) Gaussian Initialization
Figure 10: An effect of parameter initialization for the Repeat Copy Task with s = 8 vectors,
each of dimension d = 4. A: Spectrum (in red) of the learned hidden weights Whh for a network
whose parameters where initialized from a uniform distribution over [−k, k] with k = 1/

√
Nh.

This network has 32 eigenvalues that are nearly on the unit circle. These eigenvalues are clustered
into groups of 4, each group being an angle of θ = 2π/s apart from each other. These eigenvalues
coincide with the eigenvalues of the linear model for solving the repeat copy task. B: Spectrum (in
blue) of the learned hidden weights Whh for a network whose parameters where initialized from a
Gaussian distribution with mean 0 and variance 1/Nh. This network has 32 eigenvalues outside the
unit circle, but they are a larger radii than the model initialized using the uniform distribution. These
eigenvalues still cluster into eight groups of four, and the average complex argument of each group
aligns with the complex arguments of the eigenvalues for the linear model.
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