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Abstract
Recent advances in large-scale language mod-
eling and generation have enabled the creation
of dialogue agents that exhibit human-like re-
sponses in a wide range of conversational sce-
narios spanning a diverse set of tasks, from
general chit-chat to focused goal-oriented dis-
course. While these agents excel at generating
high-quality responses that are relevant to prior
context, they suffer from a lack of awareness of
the overall direction in which the conversation
is headed, and the likelihood of task success in-
herent therein. Thus, we propose a framework
in which dialogue agents can evaluate the pro-
gression of a conversation toward or away from
desired outcomes, and use this signal to inform
planning for subsequent responses. Our frame-
work is composed of three key elements: (1)
the notion of a "global" dialogue state (GDS)
space, (2) a task-specific progression function
(PF) computed in terms of a conversation’s
trajectory through this space, and (3) a plan-
ning mechanism based on dialogue rollouts by
which an agent may use progression signals to
select its next response.

1 Introduction

All human conversation serves some purpose.
These may range from negotiating an agreement to
explaining a topic to maintaining a social relation-
ship. People are generally capable of forming an
assessment, sometimes subconsciously, whether a
conversation is going well or not and adjusting their
behavior accordingly. Such assessment, which un-
derlies most human conversation, is essential in
continuous awareness of the direction where the
interaction is heading and whether the parties are
in sync or not, e.g., Bernieri and Rosenthal (1991).
In a task-oriented interaction, the participants as-
sess if progress towards a successful outcome is
being made. In a negotiation, parties assess if an
agreement is likely. Even in a casual conversation,
people intuitively sense when to continue, when to
change the subject, or when to stop. Based on such

Figure 1: Our framework applied to the charity solici-
tation task in Persuasion For Good (Wang et al., 2019).
Given the dialogue history (center left), the system uses
rollouts (Lewis et al., 2017) to simulate the outcome of
two response candidates (bottom, in red). Each rollout
is mapped as a path through the Global Dialogue State
space (center right) where it can be compared with sim-
ilar outcomes. The candidates are finally ranked using
the Progression Function (top), and the best is selected.

(subjective) assessment, participants adjust what
to say next: whether to push forward, make a
concession, soften the tone, digress, or say good-
bye. A wide range of research in conversation
and discourse analysis is devoted to these and
related issues including (Beebe and Masterson,
2000; Cassell et al., 2007; Friedman, 2004; Grem-
ler and Gwinner, 2008; Langewitz et al., 2003);
however, recent efforts in Dialogue State Track-
ing (DST) have been primarily focused on collect-
ing fine-grained details (e.g., slot-value pairs for



travel booking or restaurant reservation) (Balara-
man et al., 2021) without concern for the overall di-
rection and quality of the conversation, even though
the latter is critical for achieving human-level dia-
logue interaction.

As such, we approach dialogue state tracking at
a higher level, focusing instead on what we call the
Global Dialogue State (GDS). Given a conversa-
tional task (e.g., negotiation), the global state of a
dialogue reflects the most likely outcome (e.g., a
strong agreement or a stalemate) given the history
of the dialogue up to the current turn. In contrast to
traditional DST, the global state remains invariant
to the specific details discussed at each turn (e.g.,
names, dates, quantities) that are typically the con-
cern of slot-filling models. Rather, global dialogue
states are influenced by the contexts in which these
details occur (e.g., “I would love to donate $5 to
this charity!” vs. “I would never donate $5 to this
charity”). Thus, the global state of a dialogue can
be measured in terms of its semantic similarity to
other groups of dialogues for the same task, which
can be naturally formulated as a cluster-assignment
problem in the dialogue embedding space. That
is, a dialogue which is assigned at the current turn
to a cluster of highly successful outcomes may as-
sume a high likelihood of success, and likewise
a dialogue assigned to a cluster of unsuccessful
outcomes may assume a low likelihood of success.
It follows from this that the path of a dialogue
through global state space can be used to derive a
Progression Function (PF) to give turn-level es-
timates of task success, which can in turn be used
by a dialogue agent to inform its next response.

The remainder of this paper is organized as fol-
lows: In Section 2 we review relevant literature
pertaining to dialogue state tracking and response
planning; in Section 3 we formally define the global
dialogue state and progression function, propose
supervised and unsupervised approaches for mod-
eling them, and describe how they can be used to
assess and select dialogue response candidates; in
Section 4 we experimentally apply our framework
to the charity solicitation task in the Persuasion
For Good dataset (Wang et al., 2019), reporting re-
sults from automatic and manual evaluations; and
in Sections 5 and 6 we conclude with a discussion
of limitations and future directions. Code for our
methods and experiments has been released, 1 and

1Available at https://github.rpi.edu/LACAI/
dialogue-progression

a listing of software packages we use can be found
in Appendix A.

2 Related Work

Our work lies at the intersection of dialogue state
tracking and response planning. As previously
noted, we approach dialogue state at a much higher
level than is typically seen in the DST literature.
Our concept of global dialogue state is not mutually
exclusive with traditional DST approaches, which
we refer to from here on as local DST. Rather,
an effective dialogue system might integrate local
and global DST approaches to enable simultane-
ous tracking of user intents and slot-value pairs
(needed for interfacing with external resources) and
the overall likelihood of conversational success.

2.1 Dialogue State Tracking

Local DST approaches are used in task-oriented
(also called goal-oriented) dialogue systems. Lo-
cal DST is responsible for identifying user in-
tent (e.g., search for restaurants) and extracting
slot-value pairs (e.g., location, price range). Re-
cent DST systems perform state tracking in a
diverse set of domains, including food ordering
(Lertvittayakumjorn et al., 2021), travel reserva-
tions (Qin et al., 2021), negotiations (He et al.,
2018), and many others. Datasets such as Mul-
tiWOZ (Budzianowski et al., 2018; Eric et al.,
2020; Zang et al., 2020) and SGD (Rastogi et al.,
2020) provide large-scale testbeds for training sin-
gle DST systems that generalize across many task
domains. However, local DST is generally not
deployed in open-domain end-to-end dialogue sys-
tems that focus on social interaction and user en-
gagement, recent examples including DialoGPT
(Zhang et al., 2020), Meena (Adiwardana et al.,
2020), and BlenderBot (Roller et al., 2021; Xu
et al., 2021). In open-domain models, the task is
unconstrained and thus it makes little sense to em-
ploy traditional slot-based dialogue state trackers.
Instead, these models track state implicitly in their
latent representations of dialogue history. Unlike
local DST, global state tracking is applicable in
both the task-oriented and open-domain settings.

2.2 Dialogue Response Planning

Many approaches exist for planning in dialogue
response generation. Planning helps a dialogue
agent maintain coherence over multiple turns and
stay on track to complete its goal. Lewis et al.
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(2017) introduce Dialogue Rollouts, allowing a
negotiation agent to simulate the remainder of a
conversation based on each of multiple candidate
responses and select the one which yields the best
outcome. Yarats and Lewis (2018) follow up by
separating semantic planning and surface realiza-
tion for response generation by first producing a
latent semantic representation of the dialogue plan
and then conditioning on it during generation with
rollouts. Similarly, Jiang et al. (2019) implement
a look-ahead module to implicitly predict multi-
ple future turns in an end-to-end encoder-decoder
architecture, experimenting with negotiation and
restaurant reservation settings. These works all
experiment in task domains where goal achieve-
ment is explicitly measurable, which is not true
in the general case. Thus we propose to combine
such methods with our progression function which
provides estimates of goal completion likelihood.
Particularly, in this paper we demonstrate the use
of rollouts with the PF as a reward signal.

3 Methods

The goal of our system is to construct a global di-
alogue state space for a task-specific dataset and
learn a progression function to estimate how well
an ongoing dialogue is progressing toward the de-
sired outcome of the task. The quantity output
by the progression function is an estimate of a
dialogue-level attribute which indicates task suc-
cess (e.g. satisfaction in a customer service task).
In many task domains, the success of a conversa-
tion cannot be completely measured by a single
attribute. For example, in the charity solicitation
task we use in our experiments, donation amount
is the primary success attribute. Here, there are
cases where the conversation appears to go very
well, but ultimately no donation is made for unex-
pected reasons such as the solicitee not being able
to afford to donate. One could reasonably expect
such an outcome to be “acceptable” in the context
of a solicitation task since the solicitee has engaged
with the solicitor and displayed interest, and we
cannot reasonably expect the solicitor to force a do-
nation out of someone who cannot afford it. Thus
we introduce the “acceptability score”, a synthetic
attribute that measures success by considering mul-
tiple factors (e.g., donation amount and sentiment).
For any dialogue dataset, the acceptability score
combines multiple dialogue-level attributes in a
way sensitive to their covariance with the primary

success attribute:

ACCD = primD +

|vD|∑
i=1

Cov(prim, attri) · vDi

(1)

where primD is the primary success attribute (e.g.
donation amount) value for dialogue D, vD is the
vector of all other attribute values (e.g., sentiment)
for dialogue D, and Cov(prim, attri) is the training
set covariance between the primary success indica-
tor and the i-th other attribute. We define the output
of the progression function to be an estimate of the
acceptability score.

To learn the progression function, dialogue-level
attribute annotations must exist for use in this pur-
pose. However, in many settings such annotations
are not available in sufficient quantity to directly
learn a progression model with sufficient general-
ization. Consequently, we propose supervised and
unsupervised approaches for learning the global
state and progression models.

3.1 Unsupervised Approach
3.1.1 Global Dialogue State
In the unsupervised approach, the GDS space is a
dialogue embedding space where clusters of em-
beddings represent groups of dialogues with similar
semantic content. For each complete dialogue D
in the training set, all utterances are independently
embedded and then pooled to create a dialogue-
level embedding uD ∈ Rd where d is the embed-
ding size. The GDS space is thus given as a matrix
in RN×d where N is the number of complete di-
alogues. To embed utterances we take advantage
of pre-trained sentence encoders exposed to large-
scale corpora. Specifically, we use a publicly avail-
able MPNet (Song et al., 2020) model fine-tuned
for semantic textual similarity using a contrastive
objective on over 1B training pairs from 32 dis-
tinct datasets. 2 To combine utterance embeddings
into a dialogue-level embedding we use recency-
weighted mean pooling. The recency weight β
determines how much emphasis is placed on more
recent utterances, where β = 0 means all utter-
ances are weighted evenly and β > 0 means that
more emphasis is placed on more recent utterances.
The motivation for recency weighting is to test the
hypothesis that more recent developments in a con-
versation are more relevant for predicting current

2Obtained from https://huggingface.co/
sentence-transformers/all-mpnet-base-v2
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Figure 2: Architecture of the supervised and unsupervised GDS and PF models (top). In GDS space (top right),
each cluster is characterized by similar dialogue semantics, and is thus interpreted as the class of typical outcomes
for dialogues within. GDS and PF can be used with rollouts (bottom) to allow a dialogue agent to plan ahead.

progression toward a goal. For example, a con-
versation may start out off-task with participants
engaging in small talk, and then later re-focus.

The embedding for dialogue D with |D| utter-
ances is thus formulated as uD = UT softmax(r)
where U is the matrix of utterance vectors in
R|D|×d and r ∈ R|D| is a vector of evenly spaced
real numbers over the interval [0, β]. The softmax
ensures all recency weights sum to 1 and can be
interpreted as probabilities as done with attention
scores in (Bahdanau et al., 2015; Vaswani et al.,
2017). As shown in Figure 3, each utterance is thus
weighted by a monotonically increasing probability
mass where higher values of β cause more mass to
be concentrated at the end of the dialogue.

Figure 3: Recency weight β controls how much empha-
sis is placed on recent utterances when computing uD.

The unsupervised GDS model is a clustering
of the dialogues in their embedding space. The
dialogue embeddings are either clustered directly
or after projection to a lower-dimensional space

using Parametric UMAP (Sainburg et al., 2020;
McInnes et al., 2018a). We experiment with k-
means and HDBSCAN (McInnes and Healy, 2017;
Campello et al., 2013) to cluster the embeddings.
For k-means, we choose the number of clusters
k and train with 10 random initializations. For
HDBSCAN, we choose the minimum cluster size
and minimum samples hyperparameters, and the
optimal number of clusters are selected automat-
ically. Unlike k-means which simply partitions
the embedding space, HDBSCAN classifies some
embeddings as noise points. Clustering hyperpa-
rameters are selected by cross-validation on several
metrics as described later in Section 4. The pro-
cess of constructing the GDS model is illustrated
in Figure 2.

The clusters output by this process can be in-
terpreted as the equivalence classes of final global
states possible for the task represented in the dia-
logue dataset. To estimate the global state of an
ongoing dialogue D′, it is embedded as uD′ ∈ Rd

in the same manner as the complete training dia-
logues, followed by optional dimensionality reduc-
tion. The trained k-means or HDBSCAN model
is then used to assign D′ to one of the existing
clusters, or possibly as a noise point in the case of
HDBSCAN.

Each cluster is assigned an aggregate acceptabil-



ity score by taking an average of acceptability for
each dialogue in the cluster. If k-means is used, we
aggregate using a 10% trimmed mean across all
dialogues in the cluster. If HDBSCAN is used, a
probability is returned for each dialogue represent-
ing the likelihood that it is a member of its assigned
cluster, so we compute the probability-weighted av-
erage across all dialogues in the cluster. Dialogues
classified as noise points are ignored.

To visualize the GDS model, Parametric UMAP
is used again to project the clustered dialogue em-
beddings into R2 or R3. As shown in Figure 1,
the GDS model can be mapped as a scatter plot
with each cluster labeled by its aggregate values.
If k-means is used, the cluster centroids can be
displayed as a bold point within each cluster. HDB-
SCAN clusters do not have centroids, but they do
have a number of representative points that are
close to the cluster core. We average these points
to simulate a centroid for display purposes, and
likewise show it as a bold point within each cluster.
To show how an ongoing dialogue D′ traverses the
GDS space over time, its embeddings at each turn
t are projected onto the map and connected with
line segments to form a path.

3.1.2 Computing Progression
Since each cluster in the GDS space is intended
to represent a class of end-task global states, we
compute the progression of an ongoing dialogue
D′ with respect to the likelihood that its final global
state will rest in each individual cluster. Supposing
there are k final clusters after running k-means
or HDBSCAN, we compute a probability vector
pD′ ∈ Rk such that pD′ i = P (uD′ ∈ Ci) for i ∈
{1, . . . k} where Ci is cluster i. pD′ is computed
differently for k-means and HDBSCAN. K-means
does not produce a probabilistic soft clustering, so
we define pD′ with respect to the proximity of uD′

to the centroids of each cluster:

pD′ = softmax
(

1

||uD′ − ci||2
: i ∈ {1, . . . k}

)
(2)

where ci ∈ Rd is the centroid of cluster i. HDB-
SCAN does produce a probabilistic soft clustering,
so in that case pD′ is already computed.

We ultimately want the closest (or most proba-
ble) clusters for ongoing dialogue D′ to have the
most sway in estimating its progression at the cur-
rent point in time. That is, if D′ has moved into

a cluster of high-success outcomes, its progres-
sion should increase. Likewise if D′ has moved
away from such a high-success cluster, either into
a lower-success cluster or off-task into a noisy or
unknown region of the GDS space, its progression
should decrease. Thus, once uD′ is computed, we
estimate its progression as the probability-weighted
average of the aggregate acceptability scores as-
signed to each cluster. This is formulated as

PROG(uD′) =
vTpD′∑k
i=1 pD′ i

(3)

where v ∈ Rk is a vector of the aggregate accept-
ability scores assigned to each cluster. The scaling
factor in the denominator ensures that ongoing di-
alogue embeddings classified as noise points by
HDBSCAN will not be assigned progression val-
ues close to zero as a consequence of not belonging
to any cluster, which can cause significant fluctu-
ation in the progression function as the dialogue
traverses noisy regions of the GDS space. 3 Fig-
ure 2 illustrates how progression of an ongoing
dialogue depends on its position in GDS space.

3.2 Supervised Approach

For the supervised approach, we simply fine-tune
RoBERTa (Liu et al., 2019) to directly predict ac-
ceptability given the dialogue history text, where
all utterances are concatenated into a single se-
quence. To construct the GDS space we obtain
the dialogue level embedding uD directly from the
CLS (<s>) token for each complete dialogue in the
training set, and cluster them as in Section 3.1.1.
Unlike the unsupervised approach where recency
weighting is used to “attend” to more recent parts
of the dialogue, the supervised fine-tuning process
causes the CLS embedding to aggregate the parts
of the dialogue most relevant to the task objective,
which is more optimal than the recency heuristic.
Also, unlike the unsupervised approach where pro-
gression for an ongoing dialogue is computed with
respect to its embedding, here progression is di-
rectly predicted by RoBERTa. In our experiments
we compare RoBERTa-base, RoBERTa-large, and
RoBERTa-large-adapted, the latter receiving ad-
ditional domain adaptation training for dialogue.
Domain adaptation is done via Masked Language
Modeling (MLM) on a self-generated version of

3For HDBSCAN we also experiment with softmax for
re-scaling vTpD′ , giving PROG(uD′) = softmax(vTpD′).



the Gutenberg Dialogue Dataset (Csaky and Rec-
ski, 2021). Hyperparameters and model weights
from domain adaptation training are provided with
our code release.

3.3 Response Planning

To allow a dialogue agent to use the progression
function as feedback for response planning, we
adopt Dialogue Rollouts (Lewis et al., 2017) to
simulate the outcomes of a set of response candi-
dates. A rollout for a response candidate simulates
the next N turns of the conversation (for both par-
ticipants) given that candidate is used. At each turn
of a negotiation task, Lewis et al. (2017) sample a
set of c response candidates and s rollouts per can-
didate. They score each rollout by a deterministic
reward (the value of the items “won” by the agent
during negotiation), and rank each candidate by the
average of its rollout scores. The highest ranking
candidate is then selected by the agent. As shown
in Figure 2, we generalize this process to any task
for which a progression function can be learned,
replacing the deterministic reward with the pro-
gression function value. To demonstrate this, we
fine-tune the 762M parameter DialoGPT (Zhang
et al., 2020) 4 as a dialogue response generator and
use beam sampling to generate response candidates
and rollouts. We select DialoGPT for this task as it
is pre-trained on a large Reddit dialogue corpus.

4 Experiments

4.1 Dataset

We apply our framework to the Persuasion For
Good dataset (Wang et al., 2019), which is a crowd-
sourced dialogue dataset where the task for an indi-
vidual playing the role of persuader is to convince
another individual playing the role of persuadee to
make a donation to a well-known children’s charity.
We selected this dataset since it has a clear task
objective (to solicit donations), but a complex re-
lationship between dialogue content and success.
The dataset authors identify 10 distinct persuasion
strategies used to solicit donations, where differ-
ent strategies correlate with donation amount at
different strengths. Additionally, participants in
Persuasion For Good dialogues complete a pre-task
psychological survey, yielding 23 attributes based
on the Big-Five personality traits (Goldberg, 1992),
the Moral Foundations endorsement (Graham et al.,

4Obtained from https://huggingface.co/
microsoft/DialoGPT-large

2011), the Schwartz Portrait Value (Cieciuch and
Davidov, 2012), and the Decision-Making style
(Hamilton et al., 2016) questionnaires for each in-
dividual. The dataset authors demonstrated varying
degrees of correlation between these psycholog-
ical attributes and the end-task donation amount.
The complexity in measuring progression in this
context, coupled with it being a relatively small
dataset, makes Persuasion For Good an interesting
and challenging testbed for our framework. Persua-
sion For Good contains 1017 dialogues, each with
approximately 10 turns per speaker (20 utterances).

4.2 Progression Function Experiments
As the objective of the task is to solicit donations,
we consider the end-dialogue persuadee donation
amount to be the primary dialogue success indi-
cator. We also augment the dataset by computing
average dialogue sentiment. To compute sentiment
we use a RoBERTa model5 fine-tuned on the sen-
timent classification task of the TweetEval bench-
mark (Barbieri et al., 2020), which was publicly
released by the benchmark authors. We score sen-
timent at the utterance level in the range [−1, 1]
by multiplying the sentiment class probabilities
predicted by RoBERTa for negative, neutral and
positive by {−1, 0, 1} respectively and summing
the result. We then average the utterance-level sen-
timent score for each dialogue.

We filter the dataset to eliminate dialogues with
end-task donation amounts outside the allowed task
parameters (between $0 and $2 USD), and use a
regular expression to filter out dialogues where the
persuadee fails to make a donation after promis-
ing a non-zero dollar amount in the conversation.
After filtration we are left with 751 dialogues for
our study. We split the dialogues into a training
and test set, leaving 577 dialogues for training and
174 for testing. After splitting, we mean-center the
dialogue values in the training set for each attribute
and scale them to have unit variance. We apply the
same transformation to the test set using the dis-
tribution parameters of the training set. Our final
pre-processing step is to compute the acceptabil-
ity score. To do this, we compute the covariance
matrix of the dialogue-level attribute values in the
training set, which include the donation amount
and psychological attributes for both the persuader
and persuadee from the original dataset, along with

5Obtained from https://
huggingface.co/cardiffnlp/
twitter-roberta-base-sentiment
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our computed sentiment scores. Since the values
are all standardized, the covariances are equivalent
to Pearson’s r. We select the covariances of all
attributes with respect to the persuadee donation
amount (see Figure 5 in Appendix B) and define
the acceptability score of each dialogue D as de-
fined in Section 3. We use the same covariances
obtained from the training set to compute accept-
ability scores on the test set. After pre-processing,
the training set has 52 total attributes. These in-
clude the persuadee/persuader donation amounts,
psychological variables, sentiment, and the accept-
ability score.

4.2.1 Progression Model Training
We train four progression models as outlined in Sec-
tions 3.1 and 3.2: (1) Unsupervised, (2) RoBERTa-
base, (3) RoBERTa-large, and (4) RoBERTa-large-
adapted. For each model, 10% of the training set
is held out as a validation set (58 dialogues). For
the unsupervised model, a grid search is run for
the hyperparameters (e.g., # clusters, recency β,
dim. reduction, etc.) over the validation set, and
the final model is obtained by re-training over the
full training set using the best hyperparameters.
The final model uses k-means for clustering with
k = 21 and recency weight β = 0.3. A com-
plete hyperparameter listing and details on the grid
search can be found in Appendix F. For the super-
vised RoBERTa models, fine-tuning is done with
AdamW (Loshchilov and Hutter, 2019) and an ini-
tial learning rate of 3× 10−5 for a maximum of 30
epochs. Early stopping is used over the validation
set with the checkpoint corresponding to the lowest
validation loss selected as the final model.

4.2.2 Automatic Evaluation
We evaluate the progression models on the follow-
ing automatic metrics: (1) Mean Absolute Error
(MAE) in predicting dialogue acceptability, and (2)
Pearson’s correlation (r) between overall PF slope
and dialogue acceptability. With MAE we validate
that the progression function is able to estimate
success of a complete dialogue, while PF slope cor-
relation validates that during an ongoing dialogue,
progression increases over time for high-success
dialogues and decreases over time for low-success
dialogues. To measure PF slope correlation, we fit
a least-squares regression line to the progression
curve of each dialogue in the test set, and measure
Pearson’s r between the regression slopes and their
corresponding acceptability scores. For robustness

Table 1: Progression Function Auto Eval Results: Mean
(SD) of MAE and Pearson’s r across runs.

Model MAE r
Unsupervised* 1.37 (± 0.01) 0.40 (± 0.02)
RoBERTa-base 0.99 (± 0.06) 0.50 (± 0.04)
RoBERTa-large 0.97 (± 0.10) 0.54 (± 0.06)
RoBERTa-large-adapted 0.95 (± 0.05) 0.57 (± 0.03)

For Pearson’s r, p < 0.01 for all runs (two-tailed; H0 is non-correlation).
* Hyperparameters of the unsupervised model can be found in Appendix G.

we repeat this evaluation 33 times with varying
initialization seeds for each model type (final hy-
perparameters stay constant) and report the means
and standard deviations across runs in Table 1.

Unsurprisingly, the supervised models outper-
form the unsupervised model on both metrics,
which is expected since they directly optimize
a mean squared error objective. Of the super-
vised models, the RoBERTa-large instances per-
form the best, with dialogue domain adaptation
boosting each metric. Pearson’s r is significant at
the p < 0.01 level for all runs (the null hypothesis
is non-correlation).

4.2.3 Manual Evaluation

To obtain a more precise evaluation, we asked three
annotators to estimate sentence-level progression
for dialogues in our test set. Two graduate stu-
dents and one postdoc in our lab served as our
annotators. For each of twelve randomly selected
test dialogues, each annotator rated all sentences
on a scale of {-1, 0, 1} for progression, with -1
indicating regression from the task goal, 0 indi-
cating neutral progression, and +1 indicating pro-
gression toward the task goal. Altogether, each
annotator provided 431 sentence ratings across 244
utterances. After aggregating at the utterance level,
average inter-annotator agreement is 0.57 (Cohen’s
kappa). For each dialogue, the cumulative sum of
the utterance-level manual ratings creates a ground-
truth progression curve, as shown in Figure 4.

We evaluate the progression models against the
ground-truth curves using Pearson’s correlation (r)
since the PF output and cumulative manual ratings
are continuous and on different scales. We report
the following correlations: (1) between utterance-
level PF value and ground-truth value (utt), (2)
between utterance-level PF slope and ground-truth
slope (utt-sl), (3) between dialogue-level PF slope
and ground-truth slope (dlg-sl), and (4) between
dialogue-level PF slope and the final ground-truth
progression value (dlg-sl-f). We repeat this evalua-
tion for each of the 33 uniquely initialized model in-



Table 2: Progression Function Manual Eval Results:
Mean (SD) of utt, utt-sl, dlg-sl, & dlg-sl-f across runs.

Model utt utt-sl dlg-sl dlg-sl-f
Unsuperv. 0.09 (± 0.13) 0.04 (± 0.01) -0.01 (± 0.07) -0.07 (± 0.07)
RoBERTa-b 0.39 (± 0.07) 0.18 (± 0.03) 0.26 (± 0.06) 0.26 (± 0.06)
RoBERTa-l 0.39 (± 0.08) 0.18 (± 0.06) 0.34 (± 0.09) 0.35 (± 0.10)
RoBERTa-l-a 0.48 (± 0.05) 0.24 (± 0.03) 0.43 (± 0.06) 0.41 (± 0.07)

b = base; l = large; l-a = large-adapted.

Figure 4: Left: ground-truth progression curve given by
the cumulative sum of utterance-level manual ratings.
Right: estimated curve from RoBERTa-large-adapted.

stances of each type from Section 4.2.2, averaging
each metric across raters and then across runs. We
report the aggregate means and standard deviations
across runs in Table 2. A complete listing of results
for each rater (averaged across runs) is provided
in Appendix C, along with detailed explanations
of each metric (Appendix D). Additionally, Figure
10 in Appendix E provides examples of disagree-
ment between the PF and ground-truth progression
curves which can be challenged despite high inter-
annotator agreement, demonstrating difficulty in
establishing ground-truth for this open-ended task.

4.2.4 Benefit of Domain Adaptation
To verify the beneficial effect of domain adaptation
we perform two-tailed paired t-tests to confirm the
differences in means between RoBERTa-large and
RoBERTa-large-adapted on all automatic and man-
ual metrics. For each metric, we pair the results
from both models for each run of the same seed,
since their regression heads would have received
identical initializations. We find that the means of
utt, utt-sl, dlg-sl, and dlg-sl-f differ at the p < 0.01
significance level, and the means of the automatic
Pearson’s r metric differ at the p < 0.05 level. This
confirms our intuition that domain adaptation for
dialogue prior to fine-tuning the regression objec-
tive aids generalization in this task.

4.3 Rollout Experiments

To demonstrate the ability of the PF to guide a dia-
logue agent, we use it to score rollouts generated

with DialoGPT as described in Section 3.3. Specif-
ically, we design a self-play experiment to automat-
ically evaluate the effect of PF-guided rollouts on
the success of the solicitation task in Persuasion For
Good. The following summarizes the experimental
setup, procedure, and results.

4.3.1 Exeperimental Setup
First, we fine-tune DialoGPT to generate responses
on Persuasion For Good. We add speaker control
tokens to the vocabulary so that the model can
be conditioned to generate as the persuader or per-
suadee, respectively. Training is done with AdamW
(initial lr=5× 10−5) for 6 epochs with early stop-
ping over a 10% validation set using perplexity.
The final model checkpoint was selected after 3
epochs, achieving validation perplexity of 8.82.

We then select a progression model to use for all
self-play runs. Since the supervised RoBERTa-
large-adapted model achieved the best average
scores across all automatic and manual evaluations,
we randomly select one of the 33 RoBERTa-large-
adapted instances from Section 4.2.2 to use for all
runs. We use this instance for rollout scoring and to
measure the progression of each self-play dialogue.

Finally, we train a binary classifier to identify
if the persuadee has stated the intent to donate in
a conversation, which we use to detect success-
ful self-play dialogues. We fine-tune a RoBERTa
model as a classifier using just the persuadee’s ut-
terances as input and use binarized donation labels
in Persuasion For Good as targets. Specifically, for
each dialogue the label is 0 if the donated amount
is $0, otherwise it is 1. We use the manually veri-
fied intended donation labels from Persuasion For
Good “ANNSET” for our validation and test splits
and use the remaining end-task donation labels for
training. Training is done with early stopping over
the validation split using macro F1. The final model
checkpoint achieved test F1 of 0.89 and test accu-
racy of 0.90. All three trained models used in this
experiment are available to download (see our code
release for instructions and hyperparameters).

4.3.2 Self-Play Procedure
From our test set of 174 dialogues, we manually
filter out 41 in which the persuadee pledges a do-
nation within the first 10 utterances, leaving 133
remaining conversations. For each of these, the re-
sponse generator is given the first 10 utterances as
context and tasked to complete a second set of 10
utterances, playing the role of both the persuader



Table 3: Rollouts self-play results: Mean (SD) of pro-
gression, sentiment, and % donated across runs.

Mode Prog. ER Sent. EE Sent. EE Don. %
No RO 0.01 (± 0.24) 0.51 (± 0.03) 0.44 (± 0.06) 38% (± 6%)

2x2x3 0.69 (± 0.29) 0.62 (± 0.05) 0.49 (± 0.07) 45% (± 10%)†
3x3x5 0.95 (± 0.16) 0.66 (± 0.02) 0.52 (± 0.04) 47% (± 11%)

All 2x2x3 and 3x3x5 means significant at p < 0.01 (or 0.05 if marked †)
when compared to No RO with two-tailed paired t-tests. ER and EE refer
to the persuader and persuadee respectively.

and persuadee. Since the task is solicitation, we al-
low the generator to use rollouts only when acting
as the persuader. We perform the self-play exper-
iment using three persuader modes: (1) with no
rollouts (No RO), (2) with 2 response candidates,
2 rollouts per candidate, and 3 utterances per roll-
out (2x2x3), and (3) with 3 response candidates, 3
rollouts per candidate, and 5 utterances per rollout
(3x3x5). For each utterance in each rollout, we
use beam sampling with num_beams=6, top_k=50,
top_p=0.95, and temperature=1.5+0.002·T where
T is the number of tokens in the dialogue history.
After generation, we compute the following met-
rics for each dialogue: (1) progression using the
selected RoBERTa-large-adapted instance (Prog.),
(2) persuader and persuadee sentiment using the
sentiment classifier from Section 4.2 (ER Sent. &
EE Sent.), and (3) the percent of test dialogues
where the persuadee pledges a donation amount or
explicitly states intent to donate, as detected by the
binary donation intent classifier (EE Don.%).

4.3.3 Self-Play Results
For robustness we repeat this procedure 5 times
with varying generation seeds for each persuader
mode. In total, 1,995 self-play dialogues are com-
pleted (133 dialogues for each of 3 modes for each
of 5 seeds). We average each metric across dia-
logues and then across runs, and report the aggre-
gate means and standard deviations across runs.
Additionally, to verify the benefit of rollouts, we
perform two-tailed paired t-tests to confirm the
differences in means between the rollout-enabled
modes (2x2x3 and 3x3x5) and the baseline (No
RO). For each metric, we average the results across
runs and pair these averages from both modes for
each dialogue. Results are shown in Table 3.

We observe that the mean progression increases
significantly when rollouts are used. This is ex-
pected since response candidates with the highest
average end-rollout progression are selected. We
also observe that rollouts lead to higher average
sentiment for both the persuader and persuadee,

which makes sense due to the correlation between
sentiment and the acceptability score (see Figure
5 in Appendix B). Finally, rollouts yield a higher
percentage of dialogues with a pledged or intended
donation. 6 All of these results are significant at
the p < 0.01 level except for EE Don.% in 2x2x3
mode which is significant at p < 0.05.

Although progression is noticeably higher for
the 3x3x5 mode than for the 2x2x3 mode (0.95
vs 0.69), all other metrics are close between these
modes with a small advantage in 3x3x5 mode. This
suggests that scaling rollout simulations can be
beneficial, but there may be diminishing returns for
simulation size. Example self-play dialogues are
provided in Tables 7, 8, and 9 in Appendix H.

5 Limitations & Future Direction

We recognize several limitations of our study which
warrant follow-up investigation. This study focuses
on a single task and dataset, and thus is subject to
the assumptions and biases therein. Since we in-
tend our framework to be general, it is prudent to
perform additional studies to verify the efficacy of
our methods on a variety of datasets spanning mul-
tiple dialogue domains and tasks. Also, although
we provide automatic evaluation of the ability of
rollouts to improve performance on a solicitation
task, we cannot assume that humans would respond
in the same way as DialoGPT. Thus, human evalu-
ation is needed to further validate this approach.

6 Conclusion

In this work we introduced the concept of global di-
alogue state and proposed a framework with which
a dialogue agent can gain awareness of where an
ongoing conversation is headed, the likelihood of a
successful outcome, and how its own response de-
cisions impact the overall direction of the dialogue.
We demonstrated that an unsupervised approach
to modeling the GDS space and progression func-
tion is feasible, which is useful in sparsely-labeled
settings. However, we showed that with domain-
adaptation pre-training for dialogue, supervised
methods are preferable when labels are available.
Finally, we demonstrated how using the PF as a
feedback mechanism via dialogue rollouts allows
an agent to improve outcomes on a solicitation task.

6We randomly selected 30 of the 1,995 self-play dialogues
and manually inspected them for donation intent. We found
the classifier labeled 26 of them correctly (87% accuracy).



Ethical Considerations

Ethical Dialogue Systems
We acknowledge the potential risks inherent in the
deployment of goal-oriented dialogue systems, and
especially note that care must be taken to ensure
persuasive dialogue systems are designed for bene-
ficial use as discussed by Wang et al. (2019). Con-
cretely, when applying our framework, care must
be taken to ensure that the goal of the system (de-
fined by the primary success attribute of the accept-
ability score) should be generally accepted as ben-
eficial. For example, our basis for dialogue accept-
ability in this work is with respect to raising money
for children’s charity. In general, the achievement
of the system’s goal should not intentionally lead
the user or any other party to harm. Additionally,
the definition of acceptability, through its primary
or any other correlated attributes, should not al-
low for discriminative responses, purposefully ma-
licious discourse, or other violations of accepted
ethical standards. For example, we include senti-
ment as secondary attributes in the acceptability
score, which, when applied via dialogue rollouts,
encourages the system to be courteous, polite, and
respectful. It is possible with minimal effort to in-
clude further secondary attributes that identify bias,
hate speech, and other indicators to help the system
remain safe to use.

Annotator Compensation
All manual annotators were recruited on a volun-
tary basis in an educational setting and did not
receive or expect monetary compensation. Specifi-
cally, two graduate students and one postdoc in our
lab served as our annotators.

Environmental Impact
All training and inference in this work was done
with two NVIDIA Quadro RTX 8000 GPUs. The
most compute-intensive portion of the work was
the additional domain adaptation pre-training for
RoBERTa-large-adapted (see Section 3.2), which
took approximately two weeks. After that the multi-
seed self-play evaluations took approximately four
days, and all other operations (e.g., training and
evaluating PF models, fine-tuning DialoGPT) took
24 hours or less.
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A Software Packages Used

Table 4: Software packages used in obtaining or presenting the results in this work

Package Version Citation URL

hdbscan 0.8.27 (McInnes et al., 2017) https://hdbscan.readthedocs.io/
kneed 0.7.0 (Satopaa et al., 2011) https://kneed.readthedocs.io/
Matplotlib 3.3.4 (Hunter, 2007) https://matplotlib.org/
NumPy 1.19.5 (Harris et al., 2020) https://numpy.org/
Pandas 1.2.4 (the pandas development team, 2020) https://pandas.pydata.org/
plotly 5.1.0 (plotly technologies inc., 2015) https://plotly.com/python/
PyTorch 1.9.0 (Paszke et al., 2019) https://pytorch.org/
PyTorch Lightning 1.5.8 (Falcon and team, 2019) https://pytorchlightning.ai
scikit-learn 0.24.1 (Pedregosa et al., 2011) https://scikit-learn.org/
SciPy 1.6.2 (Virtanen et al., 2020) https://scipy.org/scipylib/index.html
Sentence-Transformers N/A* (Reimers and Gurevych, 2019) https://sbert.net/
TensorFlow 2.5.1 (Abadi et al., 2015) https://tensorflow.org/
Transformers 4.11.3 (Wolf et al., 2020) https://huggingface.co/transformers/
umap-learn 0.5.1 (McInnes et al., 2018b) https://umap-learn.readthedocs.io/

* we use all-mpnet-base-v2 directly through Transformers, but it is part of the Sentence-Transformers model library. Additionally, we base
parts of our sentence embedding implementation on that found in Sentence-Transformers.

B Training Set Covariances For Acceptability Score

Figure 5: The covariances of all other dialogue attributes with respect to the persuadee donation are used to weight
the acceptability score. ER and EE refer to the persuader and persuadee respectively.

C Full Manual Evaluation Results

Table 5: Progression Function Manual Eval Results (all annotators, averaged across all runs)

Model utt (1/2/3) utt-sl (1/2/3) dlg-sl (1/2/3) dlg-sl-f (1/2/3)

unsupervised 0.09 / 0.06 / 0.12 0.02 / 0.04 / 0.05 0.04 / -0.03 / -0.02 -0.07 / -0.09 / -0.05
RoBERTa-base 0.39‡/ 0.30‡/ 0.48‡ 0.15†/ 0.17†/ 0.21‡ 0.30 / 0.12 / 0.34 0.26 / 0.16 / 0.35
RoBERTa-large 0.39‡/ 0.30‡/ 0.50‡ 0.16 / 0.18†/ 0.21† 0.41 / 0.17 / 0.46 0.36 / 0.21 / 0.47
RoBERTa-large-adapted 0.49‡/ 0.37‡/ 0.59‡ 0.21‡/ 0.24‡/ 0.29‡ 0.51 / 0.26 / 0.52 0.45 / 0.27 / 0.51
Average Pearson’s r p-value across runs: †: p < 0.05; ‡: p < 0.01; (two-tailed; H0 is non-correlation).

D Explanations of Manual Metrics
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Figure 6: utt: Pearson’s r (right) between utterance-level PF values (center, e.g., circled) and ground-truth values
(left, e.g., circled) for all 244 utterances across 12 dialogues. Points shown on the right are from annotator 3. This
metric is intended to measure if the PF and ground-truth progression curves assign similar values (relative to their
respective scales) at each step of an ongoing dialogue.

Figure 7: utt-sl: Pearson’s r (right) between utterance-level PF slopes (center, e.g., see triangle) and ground-truth
slopes (left, e.g., see triangle), for all 244 utterances across 12 dialogues. Utterance-level slopes are computed as the
differences in the progression curves between two dialogue steps. Points shown on the right are from annotator 3.
This metric is intended to measure if the PF and ground-truth progression curves move in the same direction at each
step of an ongoing dialogue.

Figure 8: dlg-sl: Pearson’s r (right) between dialogue-level PF slopes (center, e.g., see line) and ground-truth slopes
(left, e.g., see line), for all 12 dialogues. Dialogue-level slopes are computed by fitting least-squares regression lines
to the progression curves. Points shown on the right are from annotator 3. This metric is intended to measure the
ability of the overall PF trend to approximate the ground-truth progression curve.

Figure 9: dlg-sl-f: Pearson’s r (right) between dialogue-level PF slopes (center, e.g., see line) and the final ground-
truth progression value (left, e.g., circled), for all 12 dialogues. Dialogue-level slopes are computed by fitting
least-squares regression lines to the progression curves. Points shown on the right are from annotator 3. This metric
is intended to measure the ability of the overall PF trend to predict the end-task outcome.



E PF Disagreement Examples

Figure 10: Two examples where the PF (RoBERTa-large-adapted) disagrees with multiple annotators. We note that
the PF correctly decreases (Right) and stays negative (Left) given the turns boxed in red showing poor progression.



F Grid Search Details for Unsupervised Model

Algorithm 1: Grid search for hyperparameter tuning of the unsupervised progression model on
the validation set. Descriptions for each hyperparameter are provided in Table 6.

for β ∈ {0.0, 0.1, . . . , 2.0} do
for d ∈ {2, 16, 32, 64, 128, 768} do

for normalize_embeddings ∈ {True,False} do
for distance_metric ∈ {Cosine,Euclidean} do

▷ k-means experiments
for k ∈ {2, 3, . . . , 30} do

for inverse_distance ∈ {True,False} do
for standardized_proximity ∈ {True,False} do

measure_PF_slope_r();
▷ HDBSCAN experiments
for min_cluster_size ∈ {10, 20, . . . , 100} do

for soft_value_aggregation ∈ {True,False} do
for prob_scaling ∈ {None, softmax, sum} do

for standardized_proximity ∈ {True,False} do
measure_PF_slope_r();

Table 6: Hyperparameter Descriptions

Hyperparameter Description

β (recency weight) Controls how much emphasis is placed on recent tokens when computing dialogue embeddings.
d (embedding size) The dimensionality of dialogue embeddings. Values < 768 reduced with Parametric UMAP.
normalize_embeddings If True, embeddings are normalized to have unit magnitude after dimensionality reduction.
distance_metric The distance metric used by Parametric UMAP and centroid proximity calculations.*
k (number of clusters) Number of clusters to use for k-means.
inverse_distance If True, Euclidean centroid proximity is computed as the inverse distance instead of negative distance.**
standardized_proximity If True, centroid proximities are converted to z-scores before progression is computed. †
min_cluster_size Minimum number of points in a HDBSCAN cluster. Clusters with fewer points get merged into larger ones.
soft_value_aggregation If True, HDBSCAN cluster attribute aggregations are weighted with cluster membership probabilities.
prob_scaling The type of scaling applied to progression computed from HDBSCAN cluster membership probabilities.

*: Centroid proximity calculations refer to progression computation. Proximities used during clustering are always Euclidean.
**: Does not apply to cosine distance.
†: Applies only if k-means is used, or if HDBSCAN is used with softmax probability scaling.

G Final Unsupervised Model Hyperparameters

The final unsupervised model uses k-means (k = 21), β = 0.3, d = 768, normalized embeddings,
euclidean distance, and inverse distance for centroid proximity.

H Examples from rollout self-play experiment

The following examples in Tables 7, 8, and 9 compare self-play between the baseline No RO mode and
the two rollout modes 2x2x3 and 3x3x5. In each example, the utterance where the persuadee (EE) states
intent to donate is highlighted in red. The complete dialogues from the self-play experiments are included
with our code release.



Table 7: Rollout Self-Play Example 1: No RO vs. 2x2x3 (dialogue #7; generation seed: 247)

CONTEXT:

ER: Hello, Have you ever donated to a charity?
EE: A few times, yes.
ER: ow was your experience?
EE: It was ok. I didn’t really think much of it. Most of the time its just a dollar or two.
ER: Do you donate all te time?
EE: Not so much.
ER: Have yu heard of Save the children? It is pretty well known around the world.
EE: I think so.
ER: What do you think that they do?
EE: Give money to child. Support efforts in war torn countries. Healthcare. All that stuff.

NO ROLLOUTS (progression: -2.65; ER sentiment: 0.69; EE sentiment: 0.03)

ER: I. It is a worthy cause. You can donate all you want from it.
EE: I’m sorry. I’m broke right now. That’s why I’m asking if you do donate all the time.
ER: It’s okay. I understand and agree. I think it’s a good cause.
EE: So what is the charity that you donate to?
ER: I don’t have a specific charity, but I do think they are a decent charity.
EE: Are they a non-profit? What do they do?
ER: It’s a non profit. They help protect childrens rights to health and education.
EE: Well, I think they are a great charity. Do they provide help in other ways besides donating to them?
ER: Yes they help with children in the US and other developing countries.
EE: So I’m guessing the money goes towards programs to help those children get a proper education?

2x2x3 ROLLOUTS (progression: 0.15; ER sentiment: 0.67; EE sentiment: 0.63)

ER: I, they do. I have donated to the Red Cross and the Salvation Army in the past.
EE: I donated a couple of months ago. Do you donate often? I donate when I can.
ER: Yes, I donate to them as well. How much do you like to donate?
EE: i donate $.50 each month. Do you do the same?
ER: Yeah, that sounds great. Any bit helps though. Do you have an amount in mind?
EE: I would like to donate half. Is that a good idea?
ER: Yes that would be great. The children really do need it. I donate to them as well.
EE: I’m glad we can agree on a generous donation. How much would you like me to donate?
ER: I think half would be fine, I’m not sure, but that is a very generous amount.
EE: Well, it is nice to think that I’m not getting hit by a bot, so that’s a good thing.

Table 8: Rollout Self-Play Example 2: No RO vs. 3x3x5 (dialogue #88; generation seed: 756)

CONTEXT:

ER: Hello therehow are you?
EE: I am good. How are you?
ER: I’m pretty good, just trying to get ready for work soon.
EE: I understand that. So tell me about this charity.
ER: Have you heard of Save the Children? They do work around health, education, etc.
EE: I’m not sure that I have.
ER: They work mostly in developing countries. I would appreciate it if some of the funds could be donated. The researchers will pass that donation

on to the charity at the end.
EE: What kind of work do they do?
ER: They do emergency hunger relief, are engaged with Syrian children.
EE: Ok, that sounds good. How do I know it is a legitimate charity?

NO ROLLOUTS (progression: -0.43; ER sentiment: 0.71; EE sentiment: 0.50)

ER: They are a good non-profit that helps children all around the world
EE: Ah, that’s good to know. Do you know what the funding for this charity actually goes towards?
ER: They actually make a huge impact. Do you donate to charity often?
EE: No, I don’t think so, but I will look them up.
ER: They are a 501c, so it’s not like they’re going to ask you to give anything at this time. Every little bit helps.
EE: Cool, I don’t think I’m ready to give anything up yet. How about you?
ER: They are a legit charity that I donate to regularly. Have you donated to a charity before?
EE: No, I’m usually a pretty cautious individual with donations, but I think that would be a good idea.
ER: They’re great with giving to charities but I wouldn’t be comfortable donating more than the 10.00, but I usually donate my entire earnings

from this task to help out others.
EE: Cool, that’s good to know. Have a great day!

3x3x5 ROLLOUTS (progression: 0.36; ER sentiment: 0.65; EE sentiment: 0.70)

ER: Well, it’s not an international non-governmental organization, but they help children in war zones like Syria. Children are our future and
we need to help out where we can.

EE: Ah, I see! I will look into this. Does it have any good ratings on Charity Navigator?
ER: I have no idea, but I would be willing to look into them. They’re very trustworthy.
EE: They are very reputable. I will research them later and donate. Thanks!
ER: I’m glad to hear that. This is something I would like to be passionate about.
EE: Yes, I really love helping out! I think we need to take care of our country’s children. And if you would like to know more about a charity

you might like to research more: URL
ER: I would like to hear a little more about this charity from you.
EE: Well, I will look that up. This is one I really enjoy working on. I’ve heard of some of the kids who are in need, but this is one I’m very

passionate about. Do you have any other charities you’ve worked on?
ER: I’m going to look at some websites right now. It’s called Childrens International. You can research them. They are great. They promote the

rights of children in these situations, especially those that are separated from their parents or families. Have you donated to them?
EE: Not yet, but I think I will sometime in the future.



Table 9: Rollout Self-Play Example 3: No RO vs. 3x3x5 (dialogue #98; generation seed: 589)

CONTEXT:

ER: Hi, do you usually donate to charities
EE: I DO
ER: great! You’re such a nice person. What charities do you usually donate to?
EE: To church, I return tithes and I also do the offerings
ER: great! Well, have you ever heard about Save the Children charity?
EE: no, can you tell me more about it?
ER: it’s an international non-governemntal organization that promotes children’s rights, provides relief and helps support children in developing countries
EE: nice! I have a child so i’m all about helping kids
ER: would you donate to this charity? your donation will make such a huge impact for some children
EE: I would like to know more before i donate. How do i know if it’s a legit organization

NO ROLLOUTS (progression: -2.44; ER sentiment: 0.10; EE sentiment: 0.41)

ER: if you would like to donate, you can visit their site: URL
EE: i dont want to donate, if i did however, how much would i donate?
ER: if you have to donate, you would have to submit a donation agreement, i dont think you can donate right now
EE: ok, how do i submit it?
ER: You can’t donate until you check out their website.
EE: ok thanks for telling me, i will check it out
ER: It is a charity that focuses on children in the United States
EE: ok thanks for the information, if i ever get to a child’s situation, i will donate
ER: You’re very welcome
EE: ok, have a nice day

3x3x5 ROLLOUTS (progression: 1.14; ER sentiment: 0.36; EE sentiment: 0.52)

ER: I will send you a copy of the actual donation and you can make a donation from there.
EE: How do i donate?
ER: It’s in your task payment. You can do that right now.
EE: How do i donate?
ER: You don’t need to donate at this point, but I’ll give you a heads up on the website: URL
EE: Ok, i’ll go check it out now. Thank you very much!
ER: You’re welcome, but I have to ask, Would you be willing to donate $2, to the Save the Children charity?
EE: Ok. I will probably just donate $2.
ER: That is great. Thank you so much for your donation!
EE: You’re very welcome. Thank you, have a nice one!


