
Learning To Retrieve Prompts for In-Context Learning

Ohad Rubin Jonathan Herzig Jonathan Berant
The Blavatnik School of Computer Science, Tel Aviv University

{ohad.rubin,jonathan.herzig,joberant}@cs.tau.ac.il

Abstract

In-context learning is a recent paradigm in nat-
ural language understanding, where a large pre-
trained language model (LM) observes a test in-
stance and a few training examples as its input,
and directly decodes the output without any up-
date to its parameters. However, performance
has been shown to strongly depend on the se-
lected training examples (termed prompts). In
this work, we propose an efficient method for
retrieving prompts for in-context learning us-
ing annotated data and an LM. Given an input-
output pair, we estimate the probability of the
output given the input and a candidate train-
ing example as the prompt, and label training
examples as positive or negative based on this
probability. We then train an efficient dense
retriever from this data, which is used to re-
trieve training examples as prompts at test time.
We evaluate our approach on three sequence-to-
sequence tasks where language utterances are
mapped to meaning representations, and find
that it substantially outperforms prior work and
multiple baselines across the board.

1 Introduction

The striking language skills and world knowledge
embedded in large pre-trained language models
(LMs) (Devlin et al., 2019; Petroni et al., 2019; Raf-
fel et al., 2020; Brown et al., 2020) have recently
led to in-context learning, a new paradigm in natu-
ral language understanding. Under this paradigm,
a language model is given a prompt, which typi-
cally contains a few training examples, as well as a
test instance as input, and generates the output for
the test instance directly, without any update to its
parameters. This approach was first introduced in
GPT-3 (Brown et al., 2020), but has quickly spread
to other LMs (Lieber et al., 2021; Du et al., 2021;
Rae et al., 2021).

An attractive property of in-context learning is
that it provides a single model for multiple lan-
guage understanding tasks. However, Liu et al.

Retriever

Retriever Index

What is the longest river in
the smallest state in the usa?

1) states
2) size of #1
3) #1 where #2 is the lowest
4) rivers of #3
5) how long are #4
6) #4 where #5 is the highest

Which states border the
shortest river in the usa?

1) the usa
2) rivers of #1
3) how long are #2
4) #2 where #3 is the lowest
5) border states of #4

Which states border the
 longest river in the usa?

1) the usa
2) rivers of #1
3) how long are #2
4) #2 where #3 is the highest
5) border states of #4

1) rivers
2) #1 in the usa
3) lengths of #2
4) #2 where #3 is longest
5) length of #4

Inference LM

What is the length of the
longest river in the usa?

Similar examples

Question

Figure 1: An overview of prompt retrieval: Given a
question from BREAK, one retrieves similar training
examples from an index of the training set. The question
and training examples (the prompt) are passed to an
inference LM that decodes the output.

(2021a) showed that downstream performance can
vary widely depending on the choice of in-context
examples. This has sparked interest in prompt re-
trieval (see Fig. 1), where given a test instance,
training examples are chosen for the prompt based
on some similarity metric. Recent work has either
used off-the-shelf unsupervised similarity metrics,
or trained a prompt retriever to select examples
based on surface similarity (Das et al., 2021).

In this work, we suggest to use language mod-
els themselves to label examples that can serve as
good prompts, and train a prompt retriever from
this signal. To train the retriever (see Fig. 2), we
assume access to a training set of input-output pairs
and to a scoring LM, i.e., a language model that
will be used to score prompts. For each training
example (x, y), we go over other candidate train-
ing examples, and estimate the probability, accord-
ing to the scoring LM, of y conditioned on x and
the candidate prompt. We label training examples
that lead to high probability as positive and low
probability as negative and train a prompt retriever

D

Figure 2: An overview of our approach for training EPR. Given a training example, we use an unsupervised retriever
Ru to obtain a set of candidates. We then pass the candidates to a scoring LM and label the top-k and the bottom-k
as positive and negative examples, respectively. Last, we use this training data to train a dense retriever.

from this data using contrastive learning. We ar-
gue that using an LM for labeling examples is a
better proxy for training a retriever compared to
previously-proposed surface similarity heuristics.
Importantly, when creating the training data, we
have access to the gold label y, which can be used
to obtain a high-quality set of candidate prompts.
This leads to good positive examples and hard neg-
ative examples, which are beneficial for training
with a contrastive objective.

Using a scoring LM to train an efficient retriever
for a potentially different test time inference LM is
beneficial in two scenarios. First, when the scoring
LM is smaller than the inference LM and serves as
a proxy for it. This results in cheap and efficient
data generation for the retriever, accessible to a
wide range of researchers. Second, our approach
can be used even when the scoring and inference
LMs are identical (e.g., both are GPT-3). This is
beneficial when we do not have access to model
parameters and can only use it as a service, an
increasingly popular paradigm. In this case, we use
the LM to train a light-weight retriever that is only
tasked with learning a similarity function. More
generally, given that the scale of LMs is likely to
keep increasing in the foreseeable future, one can
view our approach for Efficient Prompt Retrieval,
or EPR, as a method for interfacing and learning to
interact with large LMs.

We empirically test EPR on three structured
sequence-to-sequence tasks, where input natural
language utterances are mapped to a meaning rep-
resentation: MTOP (Li et al., 2021) and SM-
CALFLOW(Andreas et al., 2020), which focus on
task-oriented dialogue, and BREAK (Wolfson et al.,

2020), a benchmark for mapping questions to a
language-based meaning representation. We ob-
serve that EPR substantially improves performance
compared to prior work on prompt retrieval. When
the scoring LM and inference LM are identical
(using GPT-NEO (Black et al., 2021)), perfor-
mance compared to the best baseline improves
from 26% to 31.9% on BREAK, from 57% to
64.2% on MTOP, and from 51.4% to 54.3% on
SMCALFLOW. When using GPT-NEO as a proxy
for larger LMs (GPT-J, GPT-3, and CODEX), we
observe similar gains, where performance improves
substantially in all cases.

To conclude, we propose an approach for retriev-
ing training examples for in-context learning in
large language models, and show it substantially
outperforms prior methods. Given recent develop-
ments in scaling LMs, designing efficient methods
for interacting with LMs is an important direction
for future research.

2 Background: Prompt Retrieval

Problem setup Given a training set D =
{(xi, yi)}ni=1 of input-output sequences, and a
test example xtest, our goal is to train a retriever,
R(xtest,D), that will retrieve a subset of training
examples P = {(xj , yj)}mj=1 ⊂ D, where m ≪ n.
We succinctly refer to P as the prompt.1

Given an inference LM, g, a good prompt should
lead to the target output sequence when the test
example xtest is concatenated to the prompt P and
passed as a prefix to g. Specifically, decoding from

1Prompt often refers to a natural language template filled
by an input example (Liu et al., 2021b), but here it denotes the
sequence of training examples provided as input to the LM.

the LM g([P;xtest]) should yield ytest. In this work,
we focus on structured tasks, such as semantic pars-
ing, where x is a natural language utterance and y
is a meaning representation for that utterance.

Prior work Liu et al. (2021a) investigated the
effect of different prompts on the performance
of GPT-3 and demonstrated that the choice of in-
context examples strongly affects downstream per-
formance. They used an unsupervised sentence
encoder to encode training examples, and retrieved
for every test instance its nearest neighbors.

Das et al. (2021) trained a supervised prompt
retriever for knowledge-base question answering.
The retriever was trained with supervision that is
tailored for knowledge-base queries, and relies on
surface similarity between formal queries. Con-
versely, our approach takes advantage of the gener-
ative LM itself and is thus more general.

Shin et al. (2021) used GPT-3 to select examples
for the prompt for few-shot semantic parsing. How-
ever, rather than training a retriever, they randomly
sample a large set of utterance-program pairs from
the training set, and choose those that are similar
to the target instance question according to GPT-3.
This results in an expensive inference procedure,
where GPT-3 is run hundreds of times for each test
instance, unlike our approach, which is based on a
light-weight sub-linear retriever.

3 Efficient Prompt Retriever

We now describe our method for training EPR,
an efficient prompt retriever for in-context learn-
ing. We first describe how to generate labeled data
(§3.1), and then how to use the training data for
training and inference (§3.2). Fig. 2 provides an
overview of the training procedure.

3.1 Generating the Training Data
Our approach relies on finding which training ex-
amples can serve as good prompts for other training
examples. Scoring all pairs of training examples is
quadratic in |D|, and thus prohibitive. Hence, we
present a method for choosing a set of candidate ex-
amples Ē ⊂ D, from which we will choose positive
and negative examples for training. Importantly,
since we are not at test time and are only generating
data for training, we can use the target sequence
y to retrieve a good set of candidates. This can be
approached using a simple retrieval method, given
that our goal is to retrieve examples that are similar
to the input in terms of their output sequence, y.

To obtain a high-quality candidate set of train-
ing examples, we take advantage of an unsuper-
vised retriever, Ē = Ru((x, y),D). For the choice
of the unsupervised retriever, we experiment with
BM25 (Robertson and Zaragoza, 2009), a sparse
retriever that relies on surface text similarity, and
SBERT (Reimers and Gurevych, 2019), which is
based on dense sentence encoding. For both, we
experimented with passing the retriever the training
pair (x, y) or the target sequence y only, and found
that using y leads to slightly higher performance.

Scoring the candidate set Once we retrieve the
set of candidates Ē = {ē1, · · · , ēL} for a training
example (x, y),2 we score each candidate ēl ∈ Ē
independently with a scoring LM, ĝ, which serves
as a proxy for the inference LM, g. Specifically,
the score for a candidate prompt is

s(ēl) = Probĝ(y | ēl, x),

which is the probability under the LM, ĝ, of the out-
put sequence conditioned on the candidate prompt
and input sequence. This indicates how helpful this
candidate is for decoding the target (independent
of all other candidates). We argue this score is a
better proxy for the utility of a training example at
inference time compared to prior approaches.

We apply this scoring function to all training ex-
amples, and define for each training example a set
of positive examples Epos, which includes the top-k
candidates in Ē according to s(ēl), and a set of neg-
ative examples Eneg, which includes the bottom-k
candidates in Ē according to s(ēl). This should lead
to relevant positive examples, assuming that the set
of candidates, Ē includes good prompt candidates
and hard negatives, since all candidates have high
similarity with (x, y) according to Ru(y,D). With
positive and negative examples at our disposal, we
can now apply contrastive learning, which we de-
scribe next.

3.2 Training and Inference

Training Our training procedure proceeds ex-
actly like the contrastive learning procedure from
DPR (Karpukhin et al., 2020). This procedure re-
sults in an input encoder EX(·), which receives the
sequence of input tokens, x, and a prompt encoder
EP (·), which receives a candidate prompt, namely,
a concatenation of the tokens in an input-output
pair. Both encoders are initialized with BERT-base

2We omit the dependence of Ē on (x, y) for simplicity.

(Devlin et al., 2019), and the output vector repre-
sentation is given by the CLS token, as usual. The
goal of training is to learn a similarity metric such
that given a test example xtest, it will be similar to
training examples that lead to decoding of ytest.

Our training instances are of the form
⟨xi, e+i , e

−
i,1, . . . e

−
i,2B−1⟩. Where the positive ex-

ample e+i is sampled from the set E(i)
pos, and our

negative examples consist of one hard negative ex-
ample sampled from E(i)

neg, B− 1 positive examples
from the other instances in the same mini-batch,
and the B − 1 hard negatives from those instances.
We define the similarity score between an input
and an input-output pair to be the inner product
sim(x, e) = EX(x)⊤EP (e). We can now define
the typical contrastive learning objective and mini-
mize for each example the negative log likelihood
of the positive example:

L(xi, e
+
i , e

−
i,1, . . . e

−
i,2B−1) (1)

= − log
esim(xi,e

+
i)

esim(xi,e
+
i) +

∑2B−1
j=1 esim(xi,e

−
i,j)

.

An advantage of this approach is that for batch size
B the effective batch size is of order B2, with the
in-batch negatives trick (Henderson et al., 2017).

Inference After training the input encoder and
prompt encoder, we encode the entire set of train-
ing examples with EP (·) in a pre-processing step
using FAISS (Johnson et al., 2017). At test time,
given an input sequence, xtest, we compute its en-
coding EX(xtest), and then use maximum inner-
product search over the training data to find the L
most similar training examples, sorted by their in-
ner product (from high to low): P = (e1, . . . , eL).
The final prompt P ′ is determined by C, the max-
imal context size supported by the inference LM,
g. Specifically, L′ ≤ L is the largest L′ such∑L′

i=1 |ei| + |xtest| + |y′| ≤ C, where |y′| is the
desired maximal length of the generated output. Fi-
nally, we return the output of greedy decoding on
g([eL′ ; eL′−1; . . . ; e1;xtest]).

We note that while at training time we score each
training example independently, at test time the
language model observes a prompt, i.e., a sequence
of examples. We leave modeling the dependence
between different training examples to future work.

4 Experimental Results

We now compare EPR to a wide range of unsu-
pervised and supervised baselines, both when the

scoring LM, ĝ, is smaller than the inference LM, g,
and when they are identical.

4.1 Datasets

We focus on tasks that map utterances to meaning
representations, where in-context examples can be
used to learn the mapping from inputs to outputs.
Examples from each dataset and the number of
examples are in Table 1.
• BREAK (Wolfson et al., 2020): A dataset map-

ping complex natural language questions into a
language-based meaning representation, where
a question is decomposed into an ordered list
of atomic steps. We use the low-level BREAK

subset, containing 44K/7K/8K examples in its
training/development/test sets.

• MTOP (Li et al., 2021): A semantic parsing
dataset, focused on task-oriented dialogue, where
commands are mapped to complex nested queries
across 11 domains. Similar to past work (Pasu-
pat et al., 2021), we use the English subset of
MTOP, containing 16K/2K/4K examples in its
training/development/test sets.

• SMCALFLOW (Andreas et al., 2020): A large
English-language task-oriented dataset that cov-
ers tasks such as calendar, weather, places, and
people. The meaning representation is a dataflow
program, which includes API calls, function com-
position and complex constraints. SMCALFLOW

includes 15K development set examples and
134K training examples, from which we sample
a random set of 44K examples for training.

4.2 Baselines and Oracles

We consider the following unsupervised baselines,
which are applied at test time only.
• RANDOM: we randomly sample examples from

the training set D.

• SBERT: We use SentenceTransformers,
a library providing BERT-based sen-
tence embeddings.3 Specifically, we use
paraphrase-mpnet-base-v2, a 110M
parameter model to encode the test utterance
xtest and retrieve the examples with the most
similar utterances as in-context examples.

• BM25: We use the classical sparse retrieval
method BM25 (Robertson and Zaragoza, 2009),
which is an extension of TF-IDF, to retrieve for

3https://www.sbert.net/index.html.

https://www.sbert.net/index.html

Dataset Size Utterance Meaning Representation

BREAK 60K There are more birds in the image on
the right than in the image on the left.

1) return right image;
2) return birds in #1;
3) return number of #2;
4) return left image;
5) return birds in #4
6) return number of #5;
7) return if #3 is higher than #6;

MTOP 22K call Zoey’s wife. [IN:CREATE_CALL =
[SL:CONTACT = [IN:GET_CONTACT =
[SL:CONTACT_RELATED = Zoey]
[SL:TYPE_RELATION = wife]]]]

SMCALFLOW 148K Can you create me a new meeting
on thursday morning?

(Yield (CreateCommitEventWrapper
(CreatePreflightEventWrapper
(Event.start_?
(DateTimeConstraint (Morning)
(NextDOW (Thursday)))))))

Table 1: Examples from each of the datasets we evaluate on.

each test utterance xtest the training examples
with the most similar utterance.

• BRUTEFORCE: We apply the prompt selection
method for few-shot semantic parsing from Shin
et al. (2021). Given a test example xtest, we sam-
ple 200 training examples. For each training
example (xi, yi), compute Probg(xtest | xi), and
use the highest scoring examples for the prompt.
Similar to us, this approach uses the inference
LM to choose prompts. However, it does so at
test time, which results in slow inference.
Next, we describe baselines that use the train-

ing set, D, to train a prompt retriever. All super-
vised methods share the following template. First,
a candidate set Ē of L = 50 examples is retrieved
with the unsupervised retriever Ru(y,D). We use
BM25 as an unsupervised retriever, since it outper-
formed SBERT (see §4.4). We then score each can-
didate prompt ēl ∈ Ē with some scoring function,
and label the top-k prompts as positive examples
and the bottom-k as negative examples (k = 5).
Different supervised methods only differ in the
scoring function itself.4

• DR-BM25: Here, we use the original BM25
scores for labeling positive and negative exam-
ples and training a dense retriever.

• CASE-BASED REASONING (CBR): We adapt
the scoring function from Das et al. (2021),
which focused on knowledge-base question an-
swering. They define the weight for a pair of log-
ical forms to be the F1 score between the two sets
of relations appearing in those logical forms, and
use this weight to softly label their data. Since
in our setting we do not assume logical forms,

4Results for k ∈ {1, 5, 10} and L ∈ {50, 100} are in
Appendix A.

we define the score between two output sequence
yi and yj to be the F1 between the two sets of
tokens in yi and yj , omitting stop words.

• EFFICIENT PROMPT RETRIEVAL (EPR): Our
full approach from §3.
Last, we also consider two oracle models.

• BM25-ORACLE: We score test examples
with BM25 using the gold output sequence
RBM25(ytest,D). This provides an upper-bound
on what can be learned by DR-BM25. EPR can
potentially outperform this oracle, since its train-
ing signal goes beyond surface text similarity.

• LM-ORACLE: We use the procedure for labeling
training data at test time. Given a test example
(xtest, ytest), we first retrieve L candidate training
examples with RBM25(ytest,D), we then sort the
candidates with the scoring LM ĝ, estimating the
probability of ytest given xtest and the candidate
prompt. This provides an upper bound for EPR,
since EPR is trained to emulate this behaviour.

4.3 Experimental Details

Language models In this work, we only train
a dense retriever, but use scoring and inference
LMs. For our scoring LM, ĝ, we use GPT-NEO

(Black et al., 2021), a 2.7B-parameter LM trained
on The Pile (Gao et al., 2021), an 825 GB English
text corpus, constructed from a wide range of high-
quality resources.

In addition, we consider the following infer-
ence LMs: (a) GPT-J (Wang and Komatsuzaki,
2021): a 6B-parameter LM, also trained on The
Pile. The advantage in this setup, is that GPT-J
was trained on the same corpus as GPT-NEO. (b)
GPT-3 (Brown et al., 2020): A 175B-parameter

Model BREAK MTOP SMCALFLOW

Unsuper.
RANDOM 1.7 7.3 8.9
SBERT 21.6 48.7 43.6
BM25 26.0 52.9 46.1
BRUTEFORCE 7.7 18.1 11.1

Super.
DR-BM25 23.6 50.2 43.1
CBR 25.7 57.0 51.4
EPR (ours) 31.9 64.2 54.3

Oracle BM25-ORACLE 32.3 58.9 47.3
LM-ORACLE 43.1 71.6 73.7

Table 2: Development results when GPT-NEO is the
scoring and inference LM. Numbers for BREAK are
LF-EM, and for MTOP and SMCALFLOW are EM.

Model BREAK MTOP

Unsuper. BM25 17.6 49.0

Super. CBR 18.4 57.5
EPR (ours) 23.9 64.4

Table 3: Test results where GPT-NEO is the scoring
and inference LM. Numbers for BREAK are NEM, the
official metric, and for MTOP are EM.

model, trained mostly on a filtered subset of com-
mon crawl. (c) CODEX (Chen et al., 2021): A
GPT-3 175B-parameter model finedtuned on code
from GitHub. Since our tasks involve mapping
from utterances to programs or meaning represen-
tations, CODEX might potentially perform well at
in-context learning.

For all LMs, we use a maximum context size of
C =2,048 tokens.

Evaluation On BREAK, we evaluate perfor-
mance on the development set with LF-EM (Has-
son and Berant, 2021), which is a better metric
compared to Normalized Exact Match (NEM), the
official metric, as it measures whether two mean-
ing representations are semantically equivalent. On
the test set, we use NEM. On MTOP and SM-
CALFLOW, we evaluate with Exact Match (EM),
i.e., whether the string output by the inference LM
is identical to the reference string.

We evaluate EPR in two settings: (a) LM-as-a-
service, and (b) LM-as-a-proxy. In the first set-
ting, we use GPT-NEO as both the scoring LM
and inference LM. In this setting, we evaluate on
the full development sets of BREAK, MTOP, and
SMCALFLOW. In the latter setting, as we access
GPT-3 and CODEX through a paid API, we sample
a random subset of 1,000 development examples
from each dataset and evaluate each model once on
this subset.

Model One-shot Full-context

Unsuper. RANDOM 1.1 1.7
BM25 15.2 26.0

Super.
DR-BM25 14.1 23.6
CBR 14.5 25.7
EPR 23.0 31.9

Oracle
BM25-ORACLE 18.0 32.3
LM-ORACLE 33.3 43.1
ANYCORRECT-ORACLE 53.6 -

Table 4: Development results on BREAK with GPT-
NEO in the one-shot setting. Numbers are LF-EM. Full-
context is the corresponding numbers from Table 2.

4.4 Results
LM-as-a-service Table 2 reports results where
the scoring and inference LMs are identical.
EPR substantially outperforms all other baselines.
Specifically, when comparing to the best baseline,
it improves performance from 26.0 to 31.9 on
BREAK, from 57.0 to 64.2 on MTOP, and from
51.4 to 54.3 on SMCALFLOW. This shows that
using the LM itself to label examples is an effective
approach for obtaining a strong prompt retriever.
Table 3 shows test results on BREAK and MTOP

corroborating that EPR substantially improves per-
formance compared to BM25 and CBR.

For the unsupervised methods, the RANDOM

baseline shows that random sampling of training
examples leads to poor performance. BM25 out-
performs SBERT for prompt retrieval, and con-
sequently we use BM25 in all of our supervised
approaches to retrieve the set of candidates, Ē . Last,
BRUTEFORCE performs worse than BM25. We as-
sume this is since the training sets are large (∼14-
120K examples), and sampling 200 examples does
not cover examples that are useful for GPT-NEO.

Interestingly, EPR outperforms BM25-ORACLE

on MTOP and SMCALFLOW and is comparable on
BREAK. This is surprising since BM25-ORACLE

has access to the output sequence ytest at test time,
illustrating that the signal provided by the scoring
LM for training goes beyond surface text similarity.
The performance of LM-ORACLE is substantially
higher than EPR, showing that the supervision pro-
vided by the scoring LM is strong, and training a
better retriever from this signal can substantially
enhance performance.

We further evaluate our models in the one-shot
setup, i.e., when the prompt given to the inference
LM includes the highest scoring example only. In
this setup, the inference LM is applied in the same
setting as when we generate labeled data, where
we go over each prompt candidate independently.

BREAK MTOP SMCALFLOW

Method RANDOM BM25 CBR EPR RANDOM BM25 CBR EPR RANDOM BM25 CBR EPR

GPT-3 4.2 20.1 21.3 25.3 7.6 52.5 54.8 62.6 5.8 35.3 41.6 46.5
CODEX 8.9 24.5 24.2 29.5 10.8 60.6 59.4 66.1 7.2 45.1 48.7 50.3
GPT-J 3.3 26.7 26.7 31.5 8.8 56.6 58.0 65.4 10.6 50.4 50.9 57.4

GPT-NEO 1.0 22.8 25.8 29.9 7.6 52.8 55.4 63.6 8.0 46.1 50.1 53.5

Table 5: Results on a random sample of 1,000 examples from the development set when using GPT-Neo as a scoring
LM across different inference LMs and datasets.

EPR CBR
Test

Example
Utterance Give the code of the airport with the

least flights.
Meaning

Representation 1) airports
2) flights of #1
3) number of #2 for each #1
4) #1 where #3 is lowest
5) code of #4

Top-1 Utterance What is the code of the city with the
most students?

What destination has the fewest number
of flights?

Meaning
Representation 1) cities

2) students in #1
3) number of #2 for each #1
4) #1 where #3 is highest
5) code of #4

1) destinations
2) flights of #1
3) number of #2 for each #1
4) #1 where #3 is lowest

Top-2 Utterance Return the code of the city that has the
most students.

Which destination has least number of
flights?

Meaning
Representation 1) cities

2) students in #1
3) number of #2 for each #1
4) #1 where #3 is highest
5) code of #4

1) destinations
2) flights to #1
3) number of #2 for each #1
4) #1 where #3 is lowest

Top-3 Utterance Find the count and code of the job has
most employees.

What is the number of airports per
country, ordered from most to least?

Meaning
Representation 1) jobs

2) employees of #1
3) number of #2 for each #1
4) #1 where #3 is highest
5) employees of #4
6) number of #5
7) code of #4
8) #6 , #7

1) countries
2) airports in #1
3) number of #2 for each #1
4) #3 sorted by most to least

Table 6: An example from BREAK development set where EPR is correct and CBR is incorrect along with the top-3
training examples retrieved from each retriever.

Since train and test time are now closer, we can ex-
pect the advantage of EPR to be more pronounced.

Table 4 shows the results. Indeed, EPR out-
performs the best baseline by 8.5%, and BM25-
ORACLE by 5%. In addition, we examine
ANYCORRECT-ORACLE, which tests whether any
of the candidates returned by BM25 leads to the
correct output. ANYCORRECT-ORACLE reaches
53.6%, 20 points above LM-ORACLE. This shows
the high quality of candidates provided by BM25
(applied on the y), as one can reach more than 50%
LF-EM with just a single prompt. Moreover, it
hints that a better scoring function can potentially
further improve performance.

LM-as-a-proxy Table 5 shows results when the
scoring LM is GPT-NEO and the inference LM is a
larger LM. First, the trends are similar to the LM-as-

a-service setup, i.e., EPR substantially outperforms
prior baselines, including our best unsupervised
baseline, BM25, and the best supervised baseline,
CBR, by 2-8 points on all datasets and all pre-
trained models. Thus, GPT-NEO serves as a good
proxy for choosing training examples.

To further validate this finding, we evaluate the
performance of GPT-J on BREAK with GPT-NEO

as the scoring LM compared to using GPT-J it-
self as the scoring LM. We find performance im-
proves slightly from 31.5 to 33.6. Analogously,
when using CODEX as the scoring LM and infer-
ence LM performance remains roughly the same:
29.5→29.3. Thus, using a smaller LM (GPT-NEO)
is an effective strategy for training a retriever that
will be applied on other LMs. Zooming in on dif-
ferent inference LMs, GPT-J performs slightly bet-
ter than GPT-NEO across the board, since it was

Figure 3: A t-SNE projection and clustering of the rep-
resentations learned by EPR for the training examples
in BREAK. An interactive version displaying individual
examples is available here.

trained on the same data and using the same pro-
cedure as GPT-NEO. CODEX outperforms GPT-
3, which can be explained by the fact that it was
trained on code, and our datasets involve map-
ping to programs or meaning representations. Sur-
prisingly, GPT-J outperforms CODEX (except on
MTOP) and GPT-3 despite being 30x smaller. This
can perhaps be explained by the fact that GPT-J
was trained on a different dataset (The Pile (Gao
et al., 2021)).

Pattern Copied Novel Total
Acc Rate Acc Rate Acc

BREAK
Exact 55.1% 10.4% 29.7% 89.6% 32.3%Abstract 58.0% 41.1% 14.5% 58.9%

MTOP
Exact 77.3% 25.3% 59.7% 74.7% 64.2%Abstract 71.6% 84.5% 23.4% 15.5%

SMCAL
Exact 62.5% 60.2% 42.4% 39.8% 54.5%Abstract 62.4% 81.2% 20.6% 18.8%

Table 7: Accuracy comparison between the decoded
instances that contained patterns from the prompt and
novel instances those that don’t. Results shown are on
the LM-as-a-service setup using GPT-NEO.

Analysis Table 6 shows an example from BREAK

where EPR decodes the correct output, while CBR
does not. All training examples retrieved by EPR
perform an argmax (argmin in the original utter-
ance), and return in the final step “a code”, while
the third example retrieved by CBR does not per-
form an argmax or argmin, and do not involve “a
code”. We provide additional examples in App. A.

Figure 3 shows a t-SNE (Hinton and Roweis,
2002) projection of the embeddings learned by EPR
for the training examples of BREAK, with a link
to an interactive version, where we applied the
OPTICS (Ankerst et al., 1999; Schubert and Gertz,
2018) clustering algorithm. Examining clusters

0.0 0.2 0.4 0.6 0.8 1.0
Distance

0.125

0.5

2.0

8.0

%

Exact
Abstract

Figure 4: On the subset of copied patterns we plot the
distribution of the distance from the test instance to the
example containing the pattern. Shown on the BREAK
validation set using EPR in the LM-as-a-service setup
using GPT-NEO. Note that the y-axis is in log-scale.

shows that EPR captures both lexical and structure
similarity. Examples for clusters are also available
in App. A.

Prompt copying We analyze how the LM uti-
lizes in-context prompts. Specifically, is the target
output copied from one of the prompts or is it a
composition of different prompt fragments, which
result in generalization to new structures.

To achieve this, we define two types of copy-
ing. (a) Exact copying measures if the generated
output exactly matches one of the examples in the
prompt, and (b) Abstract copying, that quantifies
if the structure of the decoded output matches any
of the structures seen in the prompt. Specifically,
we eliminate the effect of non-structural elements
such as entities and function arguments. We re-
place every sequence of words in the logical form
that appears in the input utterance with the string
[MASKED] for both the target utterance and in-
context examples. If the masked logical form that
the LM decoded appears in the set of masked ex-
amples defined by the prompt, we say that the LM
copied that abstract pattern.

Table 7 presents the results on the validation
set for each of our three datasets, as well as the
accuracy on each subset. We observe that the
rate of copying is much higher in MTOP and SM-
CALFLOW compared to BREAK, where in MTOP

and SMCALFLOW abstract copying reaches more
than 80%. Moreover, accuracy on examples where
copying occurred is much higher compared to ac-
curacy where no copying happened. For exam-
ple, on MTOP, 84.5% of the examples were ab-
stractly copied, and on that subset of examples,
EPR achieves 71.6% EM, compared to 64.2% on

https://anonymous.4open.science/w/Learning-to-retrieve-prompts-for-in-context-learning-1C4F/

the entire validation set. Nevertheless, even though
accuracy is much lower in cases where no copying
occurred, accuracy is not negligible, which shows
that some form of generalization to new structures
is taking place.

Another follow-up question is whether the model
copies patterns from prompts uniformly or does it
attend mostly to the ones with high retrieval score.
To answer this, we look at the subset of exam-
ples where copying occurred. We then identify for
each example the highest-ranking prompt that was
copied from, and define the distance of that prompt
by dividing the rank by the number of prompts that
fit in that example. Figure 4 shows the distribution
over distances for the BREAK dataset. We observe
that copying happens mostly from highly-ranked
prompts.

5 Related Work

In-context learning Our understanding of in-
context learning has grown substantially recently.
Saunshi et al. (2021) suggests that by conditioning
on a prompt, the task of predicting the next word
approaches linear separability. Xie et al. (2021)
suggests that in-context learning occurs when the
model infers a shared latent concept between ex-
amples in a prompt. Levine et al. (2021) present
a pre-training scheme theoretically motivated by
the bias of in-context learning, that gives signif-
icant improvements. Recently, Min et al. (2022)
showed that the model does not rely on the ground
truth input-label mapping provided in the demon-
strations as much as previously thought.

Retrieval Research on training dense retrievers
has skyrocketed recently, propelled by interest
in open-domain question answering (Chen et al.,
2017; Lee et al., 2019; Karpukhin et al., 2020; Guu
et al., 2020; Khattab and Zaharia, 2020; Qu et al.,
2021). Work on retrieval-based methods has also
spread more widely to other knowledge-intensive
tasks (Lewis et al., 2020), e.g., fact verification
(Samarinas et al., 2021).

Similar to us, Pasupat et al. (2021) proposed to
use retrieval in semantic parsing. However, they fo-
cus on controlling the output generated by a model.
Retrieval methods have also been successfully used
in language modeling (Khandelwal et al., 2020;
Borgeaud et al., 2021; Alon et al., 2022) and ma-
chine translation (Khandelwal et al., 2021).

Prompts Developing methods for interacting
with LMs and extracting desired behaviours has
attracted considerable attention, under the umbrella
term prompting. In this work, prompts are a set of
in-context training examples, but substantial effort
has also been devoted to casting natural language
tasks as language modeling by phrasing the tar-
get task in natural language (see survey in (Liu
et al., 2021b)). Such approaches include prompt
engineering through manual patterns (Petroni et al.,
2019; Schick and Schütze, 2021), decoding meth-
ods (Min et al., 2021; Zhao et al., 2021; Holtzman
et al., 2021), and methods for extracting either hard
(Shin et al., 2020; Haviv et al., 2021) or soft (Li and
Liang, 2021; Zhong et al., 2021; Qin and Eisner,
2021) prompts automatically.

Prompt retrieval for supervised models In par-
allel to this work, adding training examples as addi-
tional input has been shown to be useful for super-
vised models as well. Wang et al. (2022) and Xu
et al. (2021) used BM25 to retrieve and augment the
input with similar examples from the training set.
Fine-tuning the model with the additional inputs
improved performance on tasks such as summariza-
tion and question answering. Such methods can
also potentially benefit from a stronger retriever.

6 Conclusions

Large pre-trained LMs are becoming an insepara-
ble part of the natural language understanding eco-
system. However, accessing their weights or updat-
ing them can be prohibitive for many researchers.
In this work, we propose EPR, a method for learn-
ing to retrieve good prompts for in-context learning,
by using language models themselves as the scor-
ing function. This allows us to train a light-weight
retriever and substantially improve performance on
three challenging tasks.

More broadly, given that large LMs models are
likely to play a prominent role in developing lan-
guage understanding models, it is important to de-
velop approaches for interacting with such models
effectively. EPR can be viewed as a step in this
direction.

Acknowledgement

We thank Ori Ram and Itay Itzhak for helpful sug-
gestions and meaningful discussions. This research
was supported in part by The Yandex Initiative for
Machine Learning, and The European Research

Council (ERC) under the European Union Hori-
zons 2020 research and innovation programme
(grant ERC DELPHI 802800). This work was com-
pleted in partial fulfillment for the Ph.D degree of
Ohad Rubin.

References
Uri Alon, Frank F. Xu, Junxian He, Sudipta Sen-

gupta, Dan Roth, and Graham Neubig. 2022.
Neuro-symbolic language modeling with automaton-
augmented retrieval. ArXiv, abs/2201.12431.

Jacob Andreas, John Bufe, David Burkett, Charles
Chen, Josh Clausman, Jean Crawford, Kate Crim,
Jordan DeLoach, Leah Dorner, Jason Eisner, Hao
Fang, Alan Guo, David Hall, Kristin Hayes, Kellie
Hill, Diana Ho, Wendy Iwaszuk, Smriti Jha, Dan
Klein, Jayant Krishnamurthy, Theo Lanman, Percy
Liang, Christopher H. Lin, Ilya Lintsbakh, Andy Mc-
Govern, Aleksandr Nisnevich, Adam Pauls, Dmitrij
Petters, Brent Read, Dan Roth, Subhro Roy, Jesse
Rusak, Beth Short, Div Slomin, Ben Snyder, Stephon
Striplin, Yu Su, Zachary Tellman, Sam Thomson, An-
drei Vorobev, Izabela Witoszko, Jason Wolfe, Abby
Wray, Yuchen Zhang, and Alexander Zotov. 2020.
Task-oriented dialogue as dataflow synthesis. Trans-
actions of the Association for Computational Linguis-
tics, 8:556–571.

Mihael Ankerst, Markus M. Breunig, Hans-Peter
Kriegel, and Jörg Sander. 1999. Optics: Ordering
points to identify the clustering structure. SIGMOD
Rec., 28(2):49–60.

Emily M. Bender, Timnit Gebru, Angelina McMillan-
Major, and Shmargaret Shmitchell. 2021. On the
dangers of stochastic parrots: Can language mod-
els be too big? In Proceedings of the 2021 ACM
Conference on Fairness, Accountability, and Trans-
parency, FAccT ’21, page 610–623, New York, NY,
USA. Association for Computing Machinery.

Sid Black, Leo Gao, Phil Wang, Connor Leahy,
and Stella Biderman. 2021. GPT-Neo: Large
Scale Autoregressive Language Modeling with Mesh-
Tensorflow.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann,
Trevor Cai, Eliza Rutherford, Katie Millican, George
van den Driessche, Jean-Baptiste Lespiau, Bogdan
Damoc, Aidan Clark, et al. 2021. Improving lan-
guage models by retrieving from trillions of tokens.
arXiv preprint arXiv:2112.04426.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,

Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine
Bordes. 2017. Reading Wikipedia to answer open-
domain questions. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1870–1879,
Vancouver, Canada. Association for Computational
Linguistics.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde, Jared Kaplan, Harrison Ed-
wards, Yura Burda, Nicholas Joseph, Greg Brockman,
Alex Ray, Raul Puri, Gretchen Krueger, Michael
Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin,
Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea. Power, Lukasz Kaiser, Moham-
mad Bavarian, Clemens Winter, Philippe Tillet, Fe-
lipe Petroski Such, David W. Cummings, Matthias
Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel
Herbert-Voss, William H. Guss, Alex Nichol, Igor
Babuschkin, S. Arun Balaji, Shantanu Jain, Andrew
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew M. Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. ArXiv
preprint, abs/2107.03374.

Rajarshi Das, Manzil Zaheer, Dung Thai, Ameya God-
bole, Ethan Perez, Jay Yoon Lee, Lizhen Tan, Lazaros
Polymenakos, and Andrew McCallum. 2021. Case-
based reasoning for natural language queries over
knowledge bases. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 9594–9611, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Nan Du, Yanping Huang, Andrew M. Dai, Dmitry Lep-
ikhin Simon Tong, Yuanzhong Xu, Maxim Krikun,
Yanqi Zhou, Adams Wei Yu, Orhan Firat, Bar-
ret Zoph, Liam Fedus, Maarten Bosma, Zongwei
Zhou, Tao Wang, Yu Emma Wang, Kellie Web-
ster, Marie Pellat, Kevin Robinson, Kathy Meier-
Hellstern, Toju Duke, Lucas Dixon, Kun Zhang,
Quoc V Le, Yonghui Wu, Zhifeng Chen, and Claire
Cui. 2021. GLaM: Efficient scaling of language

https://doi.org/10.1162/tacl_a_00333
https://doi.org/10.1145/304181.304187
https://doi.org/10.1145/304181.304187
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.18653/v1/P17-1171
https://doi.org/10.18653/v1/P17-1171
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://aclanthology.org/2021.emnlp-main.755
https://aclanthology.org/2021.emnlp-main.755
https://aclanthology.org/2021.emnlp-main.755
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423

models with mixture-of-experts. arXiv preprint
arXiv:2112.06905.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang, Ho-
race He, Anish Thite, Noa Nabeshima, et al. 2021.
The pile: An 800gb dataset of diverse text for lan-
guage modeling. ArXiv preprint, abs/2101.00027.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat,
and Ming-Wei Chang. 2020. Retrieval augmented
language model pre-training. In ICML.

Matan Hasson and Jonathan Berant. 2021. Question
decomposition with dependency graphs. ArXiv,
abs/2104.08647.

Adi Haviv, Jonathan Berant, and Amir Globerson. 2021.
BERTese: Learning to speak to BERT. In Proceed-
ings of the 16th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Main Volume, pages 3618–3623, Online. Association
for Computational Linguistics.

Matthew Henderson, Rami Al-Rfou, Brian Strope, Yun
hsuan Sung, Laszlo Lukacs, Ruiqi Guo, Sanjiv Ku-
mar, Balint Miklos, and Ray Kurzweil. 2017. Effi-
cient natural language response suggestion for smart
reply.

Geoffrey E. Hinton and Sam T. Roweis. 2002. Stochas-
tic neighbor embedding. In NIPS.

Ari Holtzman, Peter West, Vered Shwartz, Yejin Choi,
and Luke Zettlemoyer. 2021. Surface form com-
petition: Why the highest probability answer isn’t
always right. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 7038–7051, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017.
Billion-scale similarity search with gpus. ArXiv
preprint, abs/1702.08734.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6769–6781,
Online. Association for Computational Linguistics.

Urvashi Khandelwal, Angela Fan, Dan Jurafsky, Luke
Zettlemoyer, and Mike Lewis. 2021. Nearest Neigh-
bor Machine Translation. In Proceedings of ICLR.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke
Zettlemoyer, and Mike Lewis. 2020. Generalization
through memorization: Nearest neighbor language
models. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net.

Omar Khattab and Matei Zaharia. 2020. Colbert: Effi-
cient and effective passage search via contextualized
late interaction over bert. In Proceedings of the 43rd
International ACM SIGIR conference on research
and development in Information Retrieval, pages 39–
48.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings
of ICLR.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova.
2019. Latent retrieval for weakly supervised open
domain question answering. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 6086–6096, Florence, Italy.
Association for Computational Linguistics.

Yoav Levine, Noam Wies, Daniel Jannai, Daniel I.
Navon, Yedid Hoshen, and Amnon Shashua. 2021.
The inductive bias of in-context learning: Rethinking
pretraining example design. ArXiv, abs/2110.04541.

Patrick S. H. Lewis, Ethan Perez, Aleksandra Pik-
tus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih,
Tim Rocktäschel, Sebastian Riedel, and Douwe
Kiela. 2020. Retrieval-augmented generation for
knowledge-intensive NLP tasks. In Proceedings of
NeurIPS.

Haoran Li, Abhinav Arora, Shuohui Chen, Anchit
Gupta, Sonal Gupta, and Yashar Mehdad. 2021.
MTOP: A comprehensive multilingual task-oriented
semantic parsing benchmark. In Proceedings of the
16th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Main Volume,
pages 2950–2962, Online. Association for Computa-
tional Linguistics.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582–
4597, Online. Association for Computational Lin-
guistics.

Opher Lieber, Or Sharir, Barak Lenz, and Yoav Shoham.
2021. Jurassic-1: Technical details and evaluation.
White Paper. AI21 Labs.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2021a. What
makes good in-context examples for gpt-3? ArXiv
preprint, abs/2101.06804.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2021b. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.

Sewon Min, Mike Lewis, Hannaneh Hajishirzi, and
Luke Zettlemoyer. 2021. Noisy channel language
model prompting for few-shot text classification.
arXiv preprint.

https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027
https://doi.org/10.18653/v1/2021.eacl-main.316
http://arxiv.org/abs/1705.00652
http://arxiv.org/abs/1705.00652
http://arxiv.org/abs/1705.00652
https://doi.org/10.18653/v1/2021.emnlp-main.564
https://doi.org/10.18653/v1/2021.emnlp-main.564
https://doi.org/10.18653/v1/2021.emnlp-main.564
https://arxiv.org/abs/1702.08734
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://openreview.net/forum?id=HklBjCEKvH
https://openreview.net/forum?id=HklBjCEKvH
https://openreview.net/forum?id=HklBjCEKvH
https://doi.org/10.18653/v1/P19-1612
https://doi.org/10.18653/v1/P19-1612
https://aclanthology.org/2021.eacl-main.257
https://aclanthology.org/2021.eacl-main.257
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://arxiv.org/abs/2101.06804
https://arxiv.org/abs/2101.06804
http://arxiv.org/abs/2107.13586
http://arxiv.org/abs/2107.13586
http://arxiv.org/abs/2107.13586

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe,
Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-
moyer. 2022. Rethinking the role of demonstra-
tions: What makes in-context learning work? ArXiv,
abs/2202.12837.

Panupong Pasupat, Yuan Zhang, and Kelvin Guu. 2021.
Controllable semantic parsing via retrieval augmen-
tation. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 7683–7698, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. 2019. Language models as knowl-
edge bases? In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 2463–2473, Hong Kong, China. Association
for Computational Linguistics.

Guanghui Qin and Jason Eisner. 2021. Learning how
to ask: Querying LMs with mixtures of soft prompts.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 5203–5212, Online. Association for Computa-
tional Linguistics.

Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu, Ruiyang
Ren, Wayne Xin Zhao, Daxiang Dong, Hua Wu, and
Haifeng Wang. 2021. RocketQA: An optimized train-
ing approach to dense passage retrieval for open-
domain question answering. In Proceedings of the
2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 5835–5847, On-
line. Association for Computational Linguistics.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie
Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susan-
nah Young, et al. 2021. Scaling language models:
Methods, analysis & insights from training gopher.
arXiv preprint arXiv:2112.11446.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

Stephen Robertson and Hugo Zaragoza. 2009. The
probabilistic relevance framework: Bm25 and be-
yond. Foundations and Trends in Information Re-
trieval, 3:333–389.

Chris Samarinas, Wynne Hsu, and Mong Li Lee. 2021.
Improving evidence retrieval for automated explain-
able fact-checking. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies: Demonstrations, pages 84–91,
Online. Association for Computational Linguistics.

Nikunj Saunshi, Sadhika Malladi, and Sanjeev Arora.
2021. A mathematical exploration of why language
models help solve downstream tasks. In Interna-
tional Conference on Learning Representations.

Timo Schick and Hinrich Schütze. 2021. Exploiting
cloze-questions for few-shot text classification and
natural language inference. In Proceedings of the
16th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Main Volume,
pages 255–269, Online. Association for Computa-
tional Linguistics.

Erich Schubert and Michael Gertz. 2018. Improving
the cluster structure extracted from optics plots. In
LWDA.

Richard Shin, Christopher Lin, Sam Thomson, Charles
Chen, Subhro Roy, Emmanouil Antonios Platanios,
Adam Pauls, Dan Klein, Jason Eisner, and Benjamin
Van Durme. 2021. Constrained language models
yield few-shot semantic parsers. In Proceedings of
the 2021 Conference on Empirical Methods in Natu-
ral Language Processing, pages 7699–7715, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric
Wallace, and Sameer Singh. 2020. AutoPrompt: Elic-
iting Knowledge from Language Models with Auto-
matically Generated Prompts. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 4222–4235,
Online. Association for Computational Linguistics.

Ben Wang and Aran Komatsuzaki. 2021. GPT-
J-6B: A 6 Billion Parameter Autoregressive
Language Model. https://github.com/
kingoflolz/mesh-transformer-jax.

Shuo Wang, Yichong Xu, Yuwei Fang, Yang Liu, S. Sun,
Ruochen Xu, Chenguang Zhu, and Michael Zeng.
2022. Training data is more valuable than you think:
A simple and effective method by retrieving from
training data. ArXiv, abs/2203.08773.

Tomer Wolfson, Mor Geva, Ankit Gupta, Matt Gard-
ner, Yoav Goldberg, Daniel Deutch, and Jonathan
Berant. 2020. Break it down: A question understand-
ing benchmark. Transactions of the Association for
Computational Linguistics, 8:183–198.

https://aclanthology.org/2021.emnlp-main.607
https://aclanthology.org/2021.emnlp-main.607
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/2021.naacl-main.410
https://doi.org/10.18653/v1/2021.naacl-main.410
https://doi.org/10.18653/v1/2021.naacl-main.466
https://doi.org/10.18653/v1/2021.naacl-main.466
https://doi.org/10.18653/v1/2021.naacl-main.466
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.18653/v1/2021.naacl-demos.10
https://doi.org/10.18653/v1/2021.naacl-demos.10
https://openreview.net/forum?id=vVjIW3sEc1s
https://openreview.net/forum?id=vVjIW3sEc1s
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.eacl-main.20
https://aclanthology.org/2021.emnlp-main.608
https://aclanthology.org/2021.emnlp-main.608
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://doi.org/10.1162/tacl_a_00309
https://doi.org/10.1162/tacl_a_00309

Sang Michael Xie, Aditi Raghunathan, Percy Liang,
and Tengyu Ma. 2021. An explanation of in-context
learning as implicit bayesian inference. ArXiv,
abs/2111.02080.

Yichong Xu, Chenguang Zhu, Shuohang Wang, Siqi
Sun, Hao Cheng, Xiaodong Liu, Jianfeng Gao,
Pengcheng He, Michael Zeng, and Xuedong Huang.
2021. Human parity on commonsenseqa: Augment-
ing self-attention with external attention.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate before use: Improv-
ing few-shot performance of language models. In
ICML, pages 12697–12706.

Zexuan Zhong, Dan Friedman, and Danqi Chen. 2021.
Factual probing is [MASK]: Learning vs. learning
to recall. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 5017–5033, Online. Association
for Computational Linguistics.

A Appendix

Distribution of the number of in-context exam-
ples Since the selection procedure for in-context
examples is dynamic, the number of in-context ex-
amples differs for each test instance. In Figure 5,
we plot the histogram of the number of examples
we fit in C = 2, 048 tokens.

Effect of hyperparameters We test the effect
of k, the number of prompts labeled as positive or
negative, and L, the number of prompts retrieved
by the unsupervised retriever. Table 8 shows that
performance is is generally robust w.r.t these hyper-
parameters.

BREAK MTOP SMCALFLOW

k = 1 31.5% 63.0% 54.5%
k = 5 31.9% 64.2% 54.3%
k = 10 31.0% 64.1% 52.2%

L = 50 31.9% 64.2% 54.3%
L = 100 32.3% 63.7% 51.0%

Table 8: In the LM-as-a-service setup, using GPT-Neo,
we search for other values for L and k, and note that the
choice of our hyperparameters is robust.

Training details To train EPR, we use the Adam
optimizer (Kingma and Ba, 2015) with batch size
120 and learning rate 1e-4 on eight RTX 3090. We
run training for 30 epochs. We used the default
DPR hyperparameters without tuning. We used the
final epoch of the model to perform model selec-
tion, and applied minimal learning rate tuning on
the validation set of BREAK.

Risk assessment Large language models have
been shown to exhibit various kinds of bias (Bender
et al., 2021), since EPR is trained on the signal
obtained from such large LMs, it might also exhibit
these biases.

Additional examples Tables 9, 10, and 11 pro-
vide more examples for cases where EPR is cor-
rect while CBR is incorrect along with the top-3
prompts for each method.

http://arxiv.org/abs/2112.03254
http://arxiv.org/abs/2112.03254
http://proceedings.mlr.press/v139/zhao21c.html
http://proceedings.mlr.press/v139/zhao21c.html
https://doi.org/10.18653/v1/2021.naacl-main.398
https://doi.org/10.18653/v1/2021.naacl-main.398

10 20 30 40 50 60 70
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Break

20 40 60 80 100
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

MTop

20 40 60 80 100
0.000

0.005

0.010

0.015

0.020

0.025

0.030
SMCalFlow

Figure 5: Distribution of the number of in-context examples per test instance for each of the datasets. We mark the
distribution mean using a dashed line.

EPR CBR
Test

Example
Utterance Remind me to add 2 dozen eggs to my

grocery list.
Meaning

Representation [IN:CREATE_REMINDER [SL:PERSON_REMINDED
me] [SL:TODO add 2 dozen eggs to my
grocery list]]

Top-1 Utterance Remind me to get two bottles of water. Please add a grocery list to my list of
things to be reminded about doing today.

Meaning
Representation [IN:CREATE_REMINDER [SL:PERSON_REMINDED

me] [SL:TODO get two bottles of water]
]

[IN:CREATE_REMINDER [SL:TODO a grocery
list] [SL:PERSON_REMINDED my]
[SL:DATE_TIME today]]

Top-2 Utterance Remind me to bring an extra pair of
shoes to the river.

Remind me to make a grocery list

Meaning
Representation [IN:CREATE_REMINDER [SL:PERSON_REMINDED

me] [SL:TODO bring an extra pair of
shoes to the river]]

[IN:CREATE_REMINDER [SL:PERSON_REMINDED
me] [SL:TODO make a grocery list]]

Top-3 Utterance Remind me to add bottled water to
grocery list.

I need to make a grocery list; will you
remind me when I get off work at 5:00
p.m.?

Meaning
Representation [IN:CREATE_REMINDER [SL:PERSON_REMINDED

me] [SL:TODO add bottled water to
grocery list]]

[IN:CREATE_REMINDER [SL:TODO make a
grocery list] [SL:PERSON_REMINDED me]
[SL:DATE_TIME at 5 : 00 p.m .]]

Table 9: An example from MTOP development set where EPR is correct and CBR is incorrect along with the top-3
training examples retrieved from each retriever.

EPR CBR
Test

Example
Utterance confirmed thanks
Meaning

Representation (PleasantryAnythingElseCombined)

Top-1 Utterance it’s ok bye Yes, but make sure to let me know the
weather for that time.

Meaning
Representation (PleasantryAnythingElseCombined) (let (x0 (Execute (^(Dynamic)

ConfirmAndReturnAction))) (do (Yield x0)
(Yield (WeatherForEvent (^(Dynamic) item
x0)))))

Top-2 Utterance It’s ok Awesome, perfect
Meaning

Representation (PleasantryAnythingElseCombined) (Yield (Execute (^(Dynamic)
ConfirmAndReturnAction)))

Top-3 Utterance It’s ok Perfect...
Meaning

Representation (PleasantryAnythingElseCombined) (Yield (Execute (^(Dynamic)
ConfirmAndReturnAction)))

Table 10: An example from SMCALFLOW development set where EPR is correct and CBR is incorrect along with
the top-3 training examples retrieved from each retriever.

EPR CBR
Test

Example
Utterance Create a meeting with David Crim today
Meaning

Representation (Yield (CreateCommitEventWrapper
(CreatePreflightEventWrapper (&
(Event.start_? (DateTime.date_? (?=
(Today)))) (Event.attendees_?
(AttendeeListHasRecipient (Execute
(refer (extensionConstraint
(RecipientWithNameLike (^(Recipient)
EmptyStructConstraint) (PersonName.apply
"David Crim")))))))))))

Top-1 Utterance make a meeting with jeri today set up a meeting with both of David
Crim’s reports today

Meaning
Representation (Yield (CreateCommitEventWrapper

(CreatePreflightEventWrapper (&
(Event.start_? (DateTime.date_? (?=
(Today)))) (Event.attendees_?
(AttendeeListHasRecipient (Execute
(refer (extensionConstraint
(RecipientWithNameLike (^(Recipient)
EmptyStructConstraint) (PersonName.apply
"jeri")))))))))))

(Yield (CreateCommitEventWrapper
(CreatePreflightEventWrapper (&
(Event.start_? (DateTime.date_? (?=
(Today)))) (Event.attendees_?
(AttendeeListHasPeople (FindReports
(Execute (refer (extensionConstraint
(RecipientWithNameLike (^(Recipient)
EmptyStructConstraint) (PersonName.apply
"David Crim"))))))))))))

Top-2 Utterance put meeting with emlime on today Make a meeting with David Largenstop on
the 24th.

Meaning
Representation (Yield (CreateCommitEventWrapper

(CreatePreflightEventWrapper (&
(Event.start_? (DateTime.date_? (?=
(Today)))) (Event.attendees_?
(AttendeeListHasRecipient (Execute
(refer (extensionConstraint
(RecipientWithNameLike (^(Recipient)
EmptyStructConstraint) (PersonName.apply
"emlime")))))))))))

(Yield (CreateCommitEventWrapper
(CreatePreflightEventWrapper (&
(Event.start_? (DateTime.date_? (?=
(nextDayOfMonth (Today) 24L))))
(Event.attendees_?
(AttendeeListHasRecipient (Execute
(refer (extensionConstraint
(RecipientWithNameLike (^(Recipient)
EmptyStructConstraint) (PersonName.apply
"David Largenstop")))))))))))

Top-3 Utterance I want meet Dr Kennady from today create a meet with bob today
Meaning

Representation (Yield (CreateCommitEventWrapper
(CreatePreflightEventWrapper (&
(Event.start_? (DateTime.date_? (?=
(Today)))) (Event.attendees_?
(AttendeeListHasRecipient (Execute
(refer (extensionConstraint
(RecipientWithNameLike (^(Recipient)
EmptyStructConstraint) (PersonName.apply
"Dr Kennady")))))))))))

(Yield (CreateCommitEventWrapper
(CreatePreflightEventWrapper (&
(Event.start_? (DateTime.date_? (?=
(Today)))) (Event.attendees_?
(AttendeeListHasRecipient (Execute
(refer (extensionConstraint
(RecipientWithNameLike (^(Recipient)
EmptyStructConstraint) (PersonName.apply
"bob")))))))))))

Table 11: An example from SMCALFLOW development set where EPR is correct and CBR is incorrect along with
the top-3 training examples retrieved from each retriever.

Utterance Meaning Representation

which 3 seas border philippines? 1#) return the philippines
2#) return seas that border #1

what three seas surround philippines? 1#) return seas
2#) return #1 that surround the philippines

what states does west virginia border? 1#) return west virginia
2#) return border states of #1

what states borders west virginia? 1#) return west virginia
2#) return border states of #1

which states border colorado 1#) return states
2#) return #1 that border colorado

Table 12: Example of a cluster from the t-SNE projection of EPR on BREAK.

Utterance Meaning Representation

List the total scores of body builders
in ascending order.

1#) return body builders
2#) return scores of #1
3#) return sum of #2 for each #1
4#) return #3 sorted by ascending order

What are the names of body builders in
descending order of total scores?

1#) return body builders
2#) return names of #1
3#) return scores of #1
4#) return sum of #3 for each #1
5#) return #2 sorted by #4 in descending order

List the total points of gymnasts in
descending order.

1#) return gymnasts
2#) return points of #1
3#) return sum of #2 for each #1
4#) return #3 sorted by descending order

What are the total points for all
gymnasts, ordered by total points
descending?

1#) return gymnasts
2#) return total points for all #1
3#) return #2 ordered by total points descending

List the total points of gymnasts in
descending order of floor exercise
points.

1#) return gymnasts
2#) return points of #1
3#) return sum of #2 for each #1
4#) return floor exercise points of #1
5#) return #3 sorted by #4 in descending order

Table 13: Example of a cluster from the t-SNE projection of EPR on BREAK.

Utterance Meaning Representation

Show the locations that have both
performances with more than 2000
attendees and performances with less
than 1000 attendees.

1#) return performances
2#) return attendees of #1
3#) return the number of #2 for each #1
4#) return #1 where #3 is more than 2000
5#) return #1 where #3 is less than 1000
6#) return the locations of #4
7#) return the locations of #5
8#) return the locations in both #6 and #7

Show the theme for exhibitions with both
records of an attendance below 100 and
above 500.

1#) return exhibitions
2#) return attendances of #1
3#) return number of #2 for each #1
4#) return #1 where #3 is below 100
5#) return #1 where #3 is above 500
6#) return #1 of both #4 and #5
7#) return themes for #6

Which themes have had corresponding
exhibitions that have had attendance
both below 100 and above 500?

1#) return themes
2#) return exhibitions with #1
3#) return attendances of #2
4#) return #1 where #3 is lower than 100
5#) return #1 where #3 is higher than 500
6#) return #1 of both #4 and #5

Show the publishers that have
publications with price higher than
10000000 and publications with price
lower than 5000000.

1#) return publishers
2#) return publications of #1
3#) return prices of #2
4#) return #1 where #3 is higher than 10000000
5#) return #1 where #3 is lower than 5000000
6#) return #1 of both #4 and #5

Show the famous titles of the artists
with both volumes that lasted more than
2 weeks on top and volumes that lasted
less than 2 weeks on top.

1#) return artists
2#) return volumes of #1
3#) return weeks on top that #2 lasted
4#) return number of #3 for each #2
5#) return #1 where #4 is more than 2
6#) return #1 where #4 is less than 2
7#) return #1 in both #5 and #6
8#) return famous titles of #7

Table 14: Example of a cluster from the t-SNE projection of EPR on BREAK.

Utterance Meaning Representation

What is the metal thing next to the
small cylinder?

1#) return the small cylinder
2#) return things
3#) return #2 that are metal
4#) return #3 that are next to #1

What is the purple thing next to the
brown thing?

1#) return the brown thing
2#) return things
3#) return #2 that are purple
4#) return #3 that are next to #1

What is the gray thing next to the
block?

1#) return gray thing
2#) return the block
3#) return #1 next to #2

What is the shiny thing next to the
cylinder?

1#) return shiny thing
2#) return cylinder
3#) return #1 next to #2

What is the thing in front of the red
square?

1#) return things
2#) return squares
3#) return #2 that is red
4#) return #1 that is in front of #3

Table 15: Example of a cluster from the t-SNE projection of EPR on BREAK.

Utterance Meaning Representation

Is the purple thing behind the big red
thing?

1#) return purple thing
2#) return big red thing
3#) return Is #1 behind #2

is the purple sphere in front of the
blue cube?

1#) return the purple sphere
2#) return the blue cube
3#) return if #1 is in front of #2

is the gray sphere behind the green
cylinder?

1#) return the green cylinder
2#) return the gray sphere
3#) return if #2 is behind #1

is the red cube in front of the yellow
ball?

1#) return the red cube
2#) return the yellow ball
3#) return if #1 is in front of #2

Is the blue ball in front of the silver
cube?

1#) return blue ball
2#) return silver cube
3#) return is #1 in front of #2

Table 16: Example of a cluster from the t-SNE projection of EPR on BREAK.

