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Abstract
This work explores the utility of a recently proposed diversity loss in training generative, theory-informed models
on underdetermined problems with multiple solutions. Unlike data-driven methods, theory-informed learning often
operates in data-free settings, optimizing neural networks to satisfy objectives and constraints. We demonstrate
how this diversity loss encourages the generation of diverse solutions across various example problems, effectively
avoiding mode collapse and enabling exploration of the solution space.

(a) Without diversity loss. (b) With diversity loss.

Figure 1. A neural network that is trained to represent a continuous set of parametric curves that connect two points. a) A network trained
without diversity exhibits mode collapse to a simple geodesic solution. b) When applying a diversity loss, the networks learns to represent
diverse curves.

1. Introduction and related work
In the past decade, there have been large advances in generative modeling (Kingma & Welling, 2013; Goodfellow et al., 2020;
Rezende & Mohamed, 2015; Tomczak, 2021), made possible by both large increases in the available compute resources and
dataset sizes. Generally, generative models are trained to approximate an underlying data-distribution. New samples can
then be generated from the learnt distributions. The diversity of the model output is thus derived from the diversity of the
training data D.
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However, deep learning models are not only applied in data-rich settings such as language or computer vision but are also
used in data-free (or data-sparse) theory-informed settings. Examples include Boltzmann generators (Noé et al., 2019),
Physics-informed neural networks (PINNs) (Raissi et al., 2019) and Geometry-informed neural networks (GINNs) (Berzins
et al., 2024).

In this setting, training data D is replaced with an objective o and constraints ci. The sought solution is parametrized by a
(deep) neural net fθ and the objective o(fθ) can then be optimized for, e.g. by minimizing the violation o(fθ) of a partial
differential equation (PDE) in the case of PINNs.

Notwithstanding the advances in theory-informed learning, many of the optimization problems of interest are underdeter-
mined, meaning there is not a single optimal solution sopt but a (discrete or continuous) set of solutions Sopt that minimize
the objective o. This motivates the question of whether (and how) one can train a theory-informed generative model
(generator) to sample from Sopt?

First attempts at generating multiple solutions for such underdetermined problems include (Zou et al., 2025), who used deep
ensembles in the PINN setting. They demonstrated that leveraging the randomness of neural network initialization can be
used to discover fluid flow solutions (e.g., Allen-Cahn equation, cavity flow).

GINNs go one step further: in addition to formalizing different geometric and topological losses to train neural signed
distance fields (SDFs) in a data-free manner, they introduce an explicit diversity loss to train a data-free shape generator. It
is used to avoid mode collapse of the generator and explore the solution space in underdetermined settings.

In this work, we focus on this, in fact, fairly general diversity loss, and demonstrate its utility with illustrative, reproducible
examples. We start with reproducing the “horseshoe” example of GINNs and compare their diversity to a formulation by
Leinster (2020) on finite point sets. We then proceed with a simple generalization to neural curves in 2D and 3D.

Accompanying this work, a Jupyter Notebook is available on the official MOSS GitHub repository. This notebook provides
a step-by-step walkthrough of all experiments presented, and it can be executed within minutes on a standard laptop (without
a GPU or accelerator).

2. Methods
Neural representations. Neural representations (NRs) are neural networks with parameters θ that represent a function
fθ : x, z 7→ y that maps (optional) a spatial (and/or temporal coordinate) x ∈ Rn and a latent vector z ∈ Rl to a quantity
y ∈ Rm. Compared to discrete representations, NRs offer superior memory efficiency and are continuous and analytically
differentiable functions (Xie et al., 2022). They have achieved notable success across various domains (Park et al., 2019;
Mescheder et al., 2019; Mildenhall et al., 2021; Karras et al., 2021).

NRs can easily be used to represent both discrete and continuous sets of solutions using the latent input z, also called
the modulation vector. A common approach we also follow is to use a simple multi-layer perceptron (MLP) as a base
architecture. Using a one-dimensional modulation code z ∈ [0, 1] as input, we generate neural curves for our experiments in
R2 and R3 respectively. In experiment 2, we also have an input x ∈ R, which gives us families of curves.

Constrained optimization is a widely used framework for translating given problem descriptions into a mathematical
formulation. The goal is to find a set of optimal solutions or feasible set K within a set of potential solutions S . For neural
representations, the potential solutions are functions f within a space F , where f represents either a geometric shape or
a solution to a partial differential equation (PDE). More formally, the set of constraints ci(f), i ∈ {1, ...,M} defines the
feasible set K = {f ∈ F|ci(f) = 0}. For notational simplicity, inequality constraints are converted to equality constraints.

min o(f) s.t. ci(f) = 0, i ∈ {1, ...,M} (1)

Measures of diversity. A measure of diversity should encapsulate several intrinsic properties, such as the number of
elements and the dissimilarity between elements within a set. Leinster (2020) identifies such properties and rigorously
demonstrates that only the Hill numbers Dq(P), where q ∈ [0,∞], over a set P satisfy all these properties simultaneously.
In our case, the set P equals the feasible set K. Leinster (2020) formalizes a diversity measure based on probability
distributions over the set P and, importantly, generalizes it to arbitrary pairwise similarity functions s : P ×P 7→ R defined
on elements of P . We refer to Leinster (2020) for an in-depth discussion.
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A diversity loss. The diversity loss introduced in GINNs defines a diversity measure δ on a set of functions {fi} as follows

δp({fi}) =
(∑

j

[
min
k ̸=j

d(fj , fk)
]1/p)p

. (2)

where the function d is a dissimilarity function and {fi} typically represent a set of solutions. Intuitively, δ encourages
diversity by maximizing the dissimilarity between each shape and its respective most similar shape in the set.

3. Experiments and Results
We demonstrate the effectiveness of the diversity loss (Eq. 2) with 3 illustrative examples. All examples are implemented in
the Jupyter notebook accompanying this submission and can be run on a laptop or Google Colab in a few minutes.

Horseshoe. The goal of the horseshoe task is to distribute points evenly within a horseshoe shape. This is an example of
applying the diversity loss on the finite set of points {Qi} with Qi ∈ R2. We compare the nearest neighbor diversity loss
(Eq. 1) with the Hill numbers defined in Leinster (2020, p. 184) with a similarity matrix Zi,j = e−d(fi,fj). The exponent q
is in the range q ∈ [0,∞) \ {1}. Additionally, we assume equal probability for each element (denoted p = 1 1

N in Leinster
(2021)), where 1 is a vector where all entries are one. This leads to the hill numbers:

DZ
q =

 N∑
i

1

N

( N∑
j

Zi,j
1

N

)q−1

1/(1−q)

. (3)

Additionally, we ablate the exponents. The qualitative results are depicted in Figure 2. DZ
q consistently fails to cover K and

pushes points to the boundary.
Next, we train a neural curve to fit within the horseshoe. We show that with the diversity loss δ0.5, the neural curve explores
the feasible set K, as shown in Figure 3. We continue to use δ0.5 as diversity loss for all further experiments.

Parametric curves in 1D. We train a neural network to generate diverse curves, mapping the parameter x ∈ [0, 1] within
the design region [−1, 1]2, connecting the points (−0.8, 0) and (0.8, 0). The diversity loss is computed via a pairwise
dissimilarity measure on these curves. Figure 1 shows how the model collapses to a single curve without the diversity loss.

Parametric curve on a sphere. We train a neural network to generate a diverse set of output points {y ∈ R3|fθ(z) = y}
lying on a sphere with radius r, enforced by a squared distance penalty ∥y∥22 = r. We use the Euclidean distance as a
dissimilarity measure, locally approximating the geodesic on the sphere, and compare its performance against a finite point
set optimized for even distribution on the sphere’s surface.
The result is shown in Figure 4. The curve without diversity loss exhibits little diversity. In contrast, the curve with explicit
diversity loss is much more diverse and wraps around the sphere several times. Since the optimization with diversity loss
needs to balance with the spherical loss, the points lie further away from the surface of the sphere.
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Figure 2. Visual comparison of diversity losses optimizing points Qi within a horseshoe-shaped feasible set K. The top row shows δmin

(Eq. 2), while the bottom row uses DZ
sum (Eq. 3), both with varying exponents p ∈ {0.5, 1, 2}. For 0 ≤ p ≤ 1, δ is concave, promoting

uniform coverage of K, whereas δmin’s convexity for p ≥ 1 leads to clustering. Conversely, DZ
sum consistently pushes points to K’s

boundary.

(a) Without diversity loss. (b) With diversity loss.

Figure 3. A neural network trained to distribute a parametric curve within the horseshoe feasible set K. a) Without diversity, the network
produces a short, localized curve. b) With diversity, the network learns to spread the curve throughout K.
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(a) Finite point set with diversity. (b) Neural curve w/o diversity loss. (c) Neural curve with diversity loss.

Figure 4. Discover diverse points on a sphere. a) A finite point set optimized for diversity on the sphere surface. a) A network trained
without diversity only covers a small area of the sphere’s surface. b) With diversity loss, the resulting curve covers a wider area of the
sphere’s surface, but this is at the expense of fitting the surface less well.

4. Conclusion
In this work, we demonstrated the practical utility of a diversity loss δ in training theory-informed generative models for
underdetermined problems. We successfully encourage the exploration of the solution space and generation of discrete and
continuous solution sets across examples ranging from point distributions to neural curves.

Our findings underscore the importance of explicitly incorporating diversity mechanisms in data-free learning paradigms,
particularly when the objective function admits a manifold of optimal solutions. Future work will focus on extending these
principles to more complex problem settings, such as neural fields on manifolds, more efficient optimization of the diversity
δ, and learning structured latent spaces, which have gained a prominent role in data-driven generative modeling.
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