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ABSTRACT

While diffusion models excel at image synthesis, their generative pre-training has
been shown to yield useful representations, paving the way towards unified gen-
erative and discriminative learning. However, their potential is hindered by an
architectural limitation: the model’s intrinsic semantic information flow is po-
tentially sub-optimal. The features encoding the richest high-level semantics are
often underutilized and diluted in decoding layers, impeding the formation of a
strong representation bottleneck. To address this, we introduce self-conditioning,
a lightweight mechanism that reshapes the model’s layer-wise semantic hierar-
chy without external guidance. By aggregating and rerouting the richest inter-
mediate features to guide its own decoding layers, our method concentrates more
high-level semantics, concurrently strengthening generative guidance and form-
ing a more discriminative representation. Results are compelling: this approach
demonstrates a consistent dual-improvement trend across models and architec-
tures with minimal overhead. Crucially, it creates an architectural semantic bridge
that enables an effective integration of other discriminative techniques, such as
contrastive self-distillation, to further amplify gains. Extensive experiments show
that our enhanced models, particularly pixel-space UViT and latent-space DiT,
become powerful unified learners, surpassing various self-supervised models in
linear evaluation while also improving or maintaining high generation quality.

1 INTRODUCTION

Diffusion models (Ho et al.|, 2020) have recently emerged as one of the most powerful and popu-
lar techniques in generative Al, renowned for their ability to synthesize photorealistic visual data.
These models have demonstrated remarkable versatility and high performance across a spectrum of
tasks, such as class-conditional generation (Peebles & Xiel 2023} Karras et al., 2024)), text-to-image
synthesis (Rombach et al., 2022} [Esser et al.||2024) and image editing (Mokady et al., 2023} Brooks
et al.,[2023)), along with flexible customization options (Ruiz et al.,[2023}; Zhang & Agrawalal[2023)).

Meanwhile, interest has grown in repurposing pre-trained diffusion models for discriminative tasks.
Studies have shown that the intermediate representations (Baranchuk et al.,2022; |Xiang et al.|, 2023)
are effective for downstream tasks, particularly dense prediction like segmentation (Xu et al., |2023)),
depth estimation (Zhao et al.| [2023) and keypoint detection (Xu et al.,[2024). These findings high-
light diffusion’s potential as unified generative-and-discriminative learners, which gain a deep un-
derstanding of data through generative pre-training, as in language models (Chen et al.||2020a).

Despite these advances, diffusion models still face challenges in representation learning: achiev-
ing optimal performance often necessitates specialized methods for feature extraction (Meng et al.,
2024)), distillation (L1 et al., 2023a)), or design of dedicated decoders (Zhao et al.,|2023). Moreover,
while adept at capturing local semantics crucial for dense prediction, their global feature quality
often underperforms modern self-supervised learners, especially in image-level tasks such as linear
classification (Hudson et al.| |2023; |Chen et al., 2024)). This discrepancy underscores a limitation in
their ability to condense high-level semantics into a compact, discriminative feature.

Unlike paradigms imposing an explicit information bottleneck, such as view alignment in contrastive
methods (Wang & Isolal [2020) or asymmetric encoder-decoder design in masked autoencoders (He
et al., [2022), diffusion models distribute semantic information across all layers, with each offering
representations of varying granularity (Baranchuk et al.,[2022). While this dispersion is an emergent
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and natural outcome of generative pre-training, it poses a fundamental challenge for representation
learning, as no single layer is explicitly designed as a semantic bottleneck (Hudson et al.,|[2023).

Prior works such as DDAE (Xiang et al., 2023)  Table 1: Trade-offs and gains in generation and
have revealed that these emergent features form  representation. We enhance standard diffusion
a layer-wise hierarchy, with richest ones resid- models in both domains, without requiring major
ing in intermediate layers. However, these di- framework overhauls or external knowledge.
agnostic works only evaluated pre-trained mod-

els without enhancing them. Moving from di- [ Generative Model: Representafion Learning

A A . . Standard, Sample Self-supervised, ~ Feature

agnosls to lnterventlon’ we pOSlt that l’he most generalizable  quality++ | no extra encoder quality++
R R R T-DAE {Chen ct alJ2024, X X v
semantically rich features are sub-optimally —_sopaEudorealj7is)  x v v v
. . . RCG (L1 et al.|2023b v v X X
routed and consequently diluted in decoding.  repa(Yueral]ois v v X %
. . . DDAE (Xiang et al.[[2023] | v X | v X
This flawed information flow not only weakens  ppak+ wurs v % v %

guidance for synthesizing global structures but also impedes the formation of a stronger representa-
tion bottleneck. To resolve this, we introduce self-conditioning, a mechanism to reshape model’s in-
trinsic semantic hierarchy by rerouting its information flow, resulting in a tighter bottleneck (Fig. [5).

Our high-level principle is simple: aggregate a rich semantic feature from an intermediate layer, and
use it to condition subsequent decoding layers. To implement this efficiently, our strategy is to reuse
the inherent conditioning pathways already present in diffusion backbones, allowing for tailored
yet minimal modifications: for UNet (Dhariwal & Nichol, |2021)) and DiT (Peebles & Xiel [2023)),
we leverage their adaptive normalizations by injecting a global pooled feature vector after a time-
adaptive transformation (Fig. E]); for in-context conditioning UViT (Bao et al.,|2023al), we introduce
an additional token to automatically aggregate features and condition patch tokens via self-attention
(Fig.[2). This flexible reuse strategy makes our approach a plug-and-play enhancement with minimal
computational overhead, and demonstrates a broad applicability across diverse architectures.

The immediate outcome of self-conditioning is a dual benefit: improved sample and feature quality.
More importantly, it forges an architectural semantic bridge that explicitly connects discrimina-
tive bottleneck to its generative decoding path. This bridge unlocks further potentials: dedicated
representation learning methods, such as contrastive learning (Chen et al.| [2021)), can now be inte-
grated to directly refine the bottleneck feature. In turn, this enhanced feature is fed back through the
bridge, providing stronger semantic guidance for generation. Our full framework, DDAE++, com-
bines these synergistic components with self-conditioning to further amplify gains in both domains.

Extensive experiments demonstrate a consistent dual-improvement trend, where accuracy is signif-
icantly boosted while FID is either improved or maintained at state-of-the-art levels, a contrast to
prior works that often sacrifice generative abilities (Hudson et al.| 2023 |Chen et al.| 2024). Particu-
larly noteworthy are UViT and DiT, which, with our enhancements, exhibit exceptional potential for
representation learning, surpassing various self-supervised models. Crucially, the most substantial
gains from discriminative techniques are observed when paired with self-conditioning, highlighting
the synergy our approach facilitates between generative and discriminative paradigms.

In summary, our key contributions are:

* Conceptual: We identify and address a core limitation in diffusion models, i.e., their sub-optimal
semantic information flow, thereby intrinsically and concurrently enhancing their dual capabilities.

* Methodological: We propose self-conditioning, a lightweight mechanism that repurposes condi-
tioning pathways to tighten semantic bottleneck and amplify synergistic discriminative methods.

* Empirical: Evaluation across models, backbones and datasets reveals a clear dual-improvement
trend, and shows our enhanced UViT and DiT are powerful unified learners with good scalability.

2 RELATED WORK

Self-supervised learning (SSL) has established two dominant paradigms with distinct properties.
Contrastive learning (CL) distills image-level semantics into a compact feature, pulling augmented
views of an image closer. This instance discrimination (Wu et al.,2018) makes it highly effective for
linear evaluation (Grill et al.|[2020; (Chen et al.| [2021). Masked image modeling (MIM), conversely,
learns by reconstructing corrupted inputs, akin to denoising autoencoding (Vincent et al., [2008).
While this generative process preserves rich, transferable information, the resulting features are less
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compact and discriminative (Bao et al.| 20215 He et al.| [2022). As a form of denoising autoencoders
(Xiang et al.,|2023}; |Chen et al., [2024), diffusion naturally inherits a similar trade-off. Our work op-
erates at the intersection of these paradigms to address it. We first enhance semantic aggregation and
utilization via an architectural modification, and then integrate an explicit contrastive loss, aligning
with the trend of hybrid methods that unify CL and MIM (Zhou et al., [2022; |[Huang et al., [2023)).

Semantic-enhanced diffusion models. Unconditional models often lag behind those conditioned
on semantic cues in terms of generation quality (Bao et al.,[2022). To bridge this gap, some studies
leverage external vision foundation models to provide semantic guidance, which can be in the form
of pseudo-labels derived from clustering (Hu et al., [2023alb) or direct feature injection (Li et al.,
2023b). However, reliance on external signals can compromise the flexibility of native unconditional
applications (e.g., image translation (Su et al.l [2023)) and domain adaptation (Liu et al., [2023)).
Recent methods like REPA (Yu et al[2025) use external features as a distillation target to regularize
the output, rather than as an input condition. In contrast, our work is entirely self-contained. We posit
that powerful semantic cues for guidance already exist within model’s feature hierarchy, but remain
sub-optimally utilized. By focusing on improving the internal information flow, our approach fully
preserves original model’s flexibility, and is potentially orthogonal to external methods like REPA.

3 BACKGROUND

Diffusion models. Diffusion (Ho et al.| [2020; [Karras et al., [2022)) and flow-based (Lipman et al.,
2023; Liu et al., 2023) models are state-of-the-art generative models with strong theoretical connec-
tions (Esser et al.,2024). These models, hereinafter collectively referred to as diffusion models, con-
struct paths that progressively transform data into noise via a time-forward process over ¢ € [0, T]:

T, = oy + oye  where e ~ N(0, 1), (1)

with schedules for ay, o such that ¢ = 0 corresponds to pgqtq and ¢ = T approximates N (0, I). To
reverse this, an ordinary differential equation (ODE) is typically formulated (Song et al.,|2021b):

dxy = ve (x4, t)dt, 2

where velocity dz;/d¢t is parameterized by a time-conditioned network vy, which, once trained, en-
ables ODE solvers to generate data. The estimation of vy is closely related to denoising autoencoding
and score matching (Song et al., 2021b), allowing the training objective to be reparameterized into
flexible forms, typically including training the network to predict the added noise e, the clean data
T, or the velocity. For simplicity, we refer to any such objective as diffusion loss, denoted by L.

Different formulations of diffusion models may vary in noise schedule, training objective and ODE
solver. In this paper, we examine three representative ones: DDPM (Ho et al., 2020), EDM (Karras
et al.}2022) and Rectified Flow (RF) (Liu et al.,|2023)), with detailed overview provided in Appx.

Backbones for diffusion models. Early works like DDPM adapt a UNet (Ronneberger et al.| [2015)
architecture, where time ¢ is specified through a global conditioning pathway, by injecting sinusoidal
embeddings (Vaswani et al., [2017) of ¢ into each block. We refer to this basic version as ddpnﬂ
DDPM++ (Song et al.,[2021b)) further builds upon this, enhancing its capacity by doubling depth and
employing BigGAN-style blocks (Brock et al., 2018). We refer to this scaled-up variant as ddpmpp.

Recently, ViT-based backbones have demonstrated better scalability (Bao et al.,|2023b; [Esser et al.}
2024). We examine two designs with distinct conditioning mechanisms: UViT (Bao et al.| 2023a),
which processes all inputs (including time and other conditions) as tokens in a transformer; and DiT
(Peebles & Xie, 2023), which injects conditions via AdalLN, analogous to UNet’s AdaGN (Dhariwal
& Nichol, 2021)). The architectural similarity of these backbones to those used in visual recognition
(Dosovitskiy et al., 2021)) also motivates our investigation into their representation learning potential.

Motivation for a comprehensive baseline. Most related studies focus on extracting features from
one specific model (Baranchuk et al.l|2022; [Yang & Wang|, [2023)), with few efforts to identify which
models (and what factors) lead to better representations. While DDAE first suggested a link between
generation and recognition by comparing DDPM and EDM, its analysis had limitations: the com-
parison lacked strict control over confounding factors (e.g., backbone sizes, augmentations), and its
scope did not cover modern advances like flow-based models or ViT-based backbones.

"We distinguish backbones (notations like ddpm) from models (DDPM), which can be combined flexibly.
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(a) UNet with self-conditioning: an illustration.  (b) DiT with self-conditioning: PyTorch-like pseudocode.

Figure 1: Self-conditioning applied to backbones based on adaptive normalization. Originally,
time ¢ (and optional condition c) are specified via a global conditioning pathway, where their embed-
ding e is injected into all layers. Here, we collect features from a specific layer by ,
and add them to the pathway of decoding layers, after being projected and time-adaptively scaled.

To better understand the properties of diffusion representations, and to validate our method’s gen-
eralizability, we establish a more comprehensive and controlled baseline. It spans multiple model
formulations, backbones (of different types and sizes) and datasets, providing a solid foundation to
demonstrate that our method yields consistent benefits across diverse settings.

4 APPROACH

Our DDAE++ framework enhances diffusion models by systematically addressing their sub-optimal
and under-utilized representations. It is built upon three necessary and complementary perspectives:
1) The architectural foundation is our core contribution, self-conditioning, which better produces
and utilizes the semantics, and creates a robust bridge between representation and generation path-
ways. The bridge is a critical enabler for two other perspectives, translating further improved se-
mantics into improved generation. 2) From the data-space, we employ non-leaky augmentations to
generally improve representation robustness. 3) From the objective-space, we introduce contrastive
self-distillation to directly refine the newly formed bottleneck. Together, these architectural, data-
space and objective-space components form a complete and coherent system for dual enhancement.

4.1 SELF-CONDITIONING

The essence of self-conditioning is to create a feedback loop: aggregating useful features from an in-
termediate layer and rerouting them to guide subsequent decoding layers. However, a conflict arises
due to diffusion model’s nature: effective representation often occurs in a narrow range of timesteps,
while high-quality generation relies on the entire trajectory. The aggregated features, while valuable
within a certain range, can be too noisy to provide beneficial guidance in others. Therefore, our im-
plementations are designed to be time-adaptive, dynamically modulating the features. Specifically:

For UNet and DiT, our approach re-injects features from an intermediate layer back into the de-
coder’s conditioning pathway. As illustrated in Fig. we first apply global average pooling to the
encoded feature map of a designated layer to obtain a feature vector. This vector is then projected
and modulated by a learned, time-dependent scaling factor before being added to the original con-
ditioning embedding (details in Fig. [Ib). This enriched embedding is propagated to all rest layers.

Identifying this bottleneck layer efficiently and without data leakage is crucial. We employ a search
procedure based on training dynamics: guided by architectural heuristics, we first select a small set
of candidates (e.g., layer 8-11 in DiT). We then launch short, parallel training runs for each, and
select the one yielding lowest training loss after a few epochs as the final bottleneck. As validated
in ablation studies, this training-loss-based strategy serves as a reliable proxy for final performance.

For UViT, our approach automates the entire self-conditioning process, i.e., semantic aggregation,
time-adaptive modulation and decoding guidance, through an attention-native mechanism. Since all
information, not only patch tokens but also the time token, is globally and continuously interacted, a
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Figure 2: Self-conditioning applied to backbones based on in-context attention. Based on the
all-as-tokens design, we leverage an additional token to automatically interact with patch tokens and
the time token, eliminating the need for manual feature selection, pooling, modulation or rerouting.

dedicated summary token is more natural than layer-wise pooling and vector scaling. We therefore
introduce an additional learnable token, initialized randomly and conceptually empty, to dynami-
cally aggregate and utilize global semantics as it propagates through the transformer (Fig. [2al).

We refer to this token as [CLS] due to its functional similarity to ViT’s class token, and this design
may also connect to register tokens (Darcet et al.,[2024) and visual prompts (Jia et al., 2022)). Note
that despite the nomenclature, we do not apply any regularization to this token at this stage (learned
solely through diffusion), in contrast to the class token used in supervised ViT training.

4.2 ADAPTING DISCRIMINATIVE LEARNING TECHNIQUES

Non-leaky augmentations, the data-space component of our framework, serve a dual purpose: gen-
erally enhancing features and creating positive views for contrastive learning. To avoid harmful arti-
facts introduced by aggressive SSL transformations (Chen et al., 2020b), we adopt the weaker, non-
leaky geometric pipeline from EDM (Karras et al., 2022). A vector of transformation parameters
is used to condition the model, further preventing augmentation effects from leaking into generated
samples. While preserving generative quality, this choice presents a trade-off, as these transforma-
tions may yield less diverse views and potentially limit contrastive effectiveness (Tian et al., [2020).

We also find that [CLS] and the augmentation token can interfere with each other through attention,
weakening the bottleneck. Disabling their direct interaction restores performance gains (Fig. 2b).

Contrastive self-distillation is employed to directly refine the bottle- EMArate | FID) Acct
neck feature self-conditioning operates on. A key insight is that diffu- 0.999 9.17 60.06
sion models already maintain a high-quality “teacher” model through 0.9993 8.99 60.18
exponential moving averaging (EMA) of weights, a standard prac- 0.9999 8.81 60.47

tice to improve generation quality (Karras et al., 2024)). Intriguingly, our preliminary study reveals
that the EMA decay rate optimal for generation is also optimal for representation. This alignment
suggests that the EMA model, originally intended for generation, serves as a powerful and readily
available teacher for discriminative learning, obviating the need for a separate momentum encoder.

Leveraging this, we adapt MoCo v3 (Chen et al.,[2021) for self-distillation. For a input view, features
from the bottleneck layer of the online model (i.e., the pooled feature or the [CLS] token) are passed
through a time-dependent MLP projection head. These are trained to align with target features from
EMA model, which are extracted from the same layer using an augmented view, but at a fixed,
optimal timestep for classification. The final objective is a weighted sum of diffusion loss and
contrastive loss: £ = Lgifr +vLMmoco- Detailed formulation and illustration are provided in Appx.

Summary. Our full framework effectively unifies denoising autoencoding and instance discrimina-
tion within diffusion models based on an architectural enhancement. Studies with related concepts,
such as SODA (Hudson et al., [2023) and REPA (Yu et al.}|[2025)), are discussed in Appx.
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Table 2: A comprehensive comparison of generative and discriminative performances of self-
supervised diffusion models. Baseline: We extend to more models and backbones, clarifying the
impact of each design factor. + Self-conditioning: We introduce a simple method that leverages
discriminative features within denoising network to guide generation by itself. As a generalizable
enhancement, it improves both metrics in most cases, especially on the more diverse CIFAR-100.
Colored values indicate gains (or degradation). Best results for each backbone are in bold.

Unconditional CIFAR-10 Generation & Linear Probing Unconditional CIFAR-100 Generation & Linear Probing
. Baseline + Self-conditioning Baseline + Self-conditioning

Model  Backbone | gy ™"a 4 FIDy Acc.t Model  Backbone | gy ™"s o4 | FID) Acc.t
DDPM  ddpm 3.60 9034 | 3.67 (+0.07) 90.94 (+0.60) DDPM  ddpm 597 62.06 | 5.77 (-0.20)  63.55 (+1.49)
EDM  ddpm 339 9141 | 3.30(-0.09) 91.07 (-0.34) EDM ddpm 621  63.68 | 6.01(-0.20) 65.35 (+1.67)
RF ddpm 389  90.67 | 3.67(-0.22)  90.91 (+0.24) RF ddpm 649  60.84 | 6.25(-0.24) 62.83 (+1.99)
DDPM  ddpmpp 298 94.02 | 2.75(-0.23) 94.34 (+0.32) DDPM  ddpmpp 443  69.35 | 401 (-042) 7I1.11 (+1.76)
EDM ddpmpp 223 94.83 | 2.18(-0.05) 94.85 (+0.02) EDM ddpmpp 346 71.09 | 3.36 (-0.10)  71.61 (+0.52)
RF ddpmpp 2.54 9397 | 242(-0.12)  93.72(-0.25) RF ddpmpp 4.07 6746 | 429 (+0.22) 68.49 (+1.03)
DDPM UVIiT-S 448 93.67 | 413(-0.35) 94.30 (+0.63) DDPM UVIiT-S 735 70.66 | 7.14 (-0.21) 72.04 (+1.38)

5 EXPERIMENTS

We present a series of experiments evaluating the efficacy, generalizability, scalability and the syn-
ergistic behavior of our method. In particular, we address the following research questions:

* How effective is our method in concurrently improving dual metrics on diverse baselines? (Tab.[2)
* How does each component interact and contribute to the overall improvements? (Tab.|3| Fig.

* Does self-conditioning remain effective and scalable with DiT on challenging datasets? (Tab.
Fig. ) How does it work? (Fig. 5] [6)

Implementation details. Our pixel-space experiments build upon DDAE (Xiang et al.| |2023), af-
ter stabilizing some hyper-parameters in feature evaluation. Consequently, Tab. 2| represents our
controlled and overhauled setup, so we do not report its original results. For latent-space models,
we follow the state-of-the-art training recipe, Lightning-DiT (Yao et al.,|2025), for fast convergence.
FID (Heusel et al.,2017) and IS (Salimans et al.,|2016)) are used to measure sample quality. The stan-
dard linear probing protocol is used to measure feature quality, where the backbone is frozen and no
fine-tuning is performed. Details on training, evaluation, layer/timestep hyper-parameters and other
SSL methods in comparison, are specified in Appx. [B] and qualitative results are in Appx.[D]

5.1 MAIN PROPERTIES

Observations from baseline models. Tab. 2{shows the performance of our re-implemented, uncon-
ditional baselines, encompassing combinations’] of models and backbones described in Sec.[3] Re-
garding sample quality, EDM generally achieves best FID, consistently outperforming RF, another
continuous-time model, suggesting that designing a suitable noise schedule is crucial. Meanwhile,
UVIiT still lags behind UNet in pixel-space generation. For classification, while larger models tend
to yield higher results, the model formulation is also crucial. Notably, EDM consistently delivers the
highest accuracy, even when it does not achieve the lowest FID (e.g., EDM-ddpm on CIFAR-100),
suggesting that generative and discriminative qualities do not naturally align in baseline models.

Self-conditioning improves both metrics. Tab. 2| shows a dual-improvement trend: it not only im-
proves FID but also significantly boosts feature quality, particularly on the more diverse CIFAR-100
where accuracy increases by up to 1.99%, a substantial gain in the SSL context. Remarkably, this is
achieved with negligible overhead: a mere 0.5M parameters for UNet and one more token for UViT.

We now extend our analysis to assess how self-conditioning interacts with discriminative techniques,
namely data augmentations (Aug) and contrastive learning (CL), with results presented in Tab.

Aug alone is not helpful enough. Using Aug alone provides mixed results: it slightly improves FID
on CIFAR-10 but can degrade it notably on CIFAR-100. This suggests the geometric pipeline, tuned
by EDM for CIFAR-10, may not generalize well, highlighting a key challenge for diffusion-based
unified learning. Crucially, the fact that FID can worsen even when feature quality improves (e.g.,
7.35 to 7.96) indicates a disconnect: enhanced features are not effectively leveraged for generation.

2We find UVIT to be unstable with EDM and REF, so these two are excluded.
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3.39 91.41 6.21 63.68 Correlation on CIFAR-100
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v 214 9535 335 72.88 FID
, 448 9367 135 70.66 . .
UVIT-S v 400 9514 796 125  Figure 3: Correlation between gen-
DDPM + 1 token 413 9430 7.14 72.04  eration and discrimination. Origi-
(0.4%) j y 2-‘3"5) gg-gg g-gg ;iig nal diffusion baselines (in gray) only
- - - - show relatively weak linear correla-
Contrastive ;z:}‘zgg f ? gg:ég:gg:ég gg:?g:;g:g? tion. Our self-conditioning, aug and
MIM-based  ViT-B crop 61.70-70.20 __ contrastive enhancements make it
MDM unet 94.80 —  more significant by. simultaneously
SODA# resl8+unet v 80.00 5490 and gradually boosting both metrics

#Official code unavailable; we build a simplified version based on core principles. towards the upper—right ideal region.

Self-conditioning directly addresses this issue. When applied jointly with Aug, it not only coun-
teracts the FID degradation on CIFAR-100 (e.g., 7.35 to 7.05), but further amplifies FID gains when
Aug alone yields marginal ones (e.g., 3.32 vs. 3.08). Our architectural bridge ensures that improved
representations from Aug are effectively utilized, leading to better outcomes in both domains.

CL and diffusion are complementary. While adding CL can sometimes cause a slight trade-off
with FID, it is mitigated by self-conditioning, and it suggests the information generated by CL may
differ from that needed in diffusion. This can actually be beneficial to building stronger representa-
tions: our fully combined method consistently achieves high accuracy (the highest in most cases).

Putting all together. Fig. 3| visualizes the evolving relationship between generation and discrim-
ination. In baseline models, the correlation (discussed in |Xiang et al.[ (2023); |Yu et al.| (2025)) is
relatively weak, indicating that better generative models do not necessarily yield better representa-
tions (in line with (Chen et al.[(2024)). In contrast, our method establishes a much clearer positive
correlation, demonstrating its ability to bridge the gap between the two domains. This effect is
particularly pronounced for UViT. Although the accuracy is initially outperformed by UNet, our
enhancements unlock its potential, enabling it to surpass ddpmpp with less compute and achieve
highest results in Tab. [3] This suggests that, despite sub-optimal in pixel generation compared to
UNet, UVIT possesses unique potential to learn powerful representations, which we successfully
unlock, even in this low-data regime where ViTs typically struggle (Dosovitskiy et al., 2021)).

5.2 PERFORMANCE AND SCALABILITY ON IMAGENET

To assess our method’s effectiveness on more challenging, large-scale datasets, we conduct experi-
ments on ImageNet-256x256 with latent-space DiTs. Our analysis demonstrates strong performance
in a standard setting, alongside excellent scalability with respect to training duration and model size.

Fig. 4| reveals a more comprehensive picture: our models consistently outperform their respective
baselines in FID, IS and linear probing accuracy throughout the training progress. Most impor-
tantly, the performance gap does not narrow; in fact, the accuracy gain widens as training proceeds,
highlighting a desirable property similar to other SSL methods (Chen et al.| 2021; He et al., 2022]).
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Figure 4: Detailed performance evolution, showing scalability and consistency. Across different
settings and metrics, our method outperforms the respective baselines throughout the training.

Finally, we compare these results with other
SSL and diffusion-based methods in Tab. [
While self-conditioning models do not yet
match leading contrastive methods like DINO
(Caron et al., 2021), they outperform other
generative learners such as I-DAE and MIM-
based ViT-B/L, even with their longer train-
ing schedules. We hypothesize that a key fac-
tor limiting our recognition accuracy is the ab-
sence of augmentation regularization within
latent-space training (at least cropping), a
non-trivial challenge we defer to future work.

Note that these DiT baselines are powered by
the state-of-the-art Lightning-DiT (Yao et al.,
2025)), and operate at a high-performance fron-
tier with extremely fast convergence. Against
the backdrop of such already highly-optimized
systems, the ability of our minimal, plug-and-

Table 4: Performance comparison on ImageNet.

ImageNet-256x256

Model Backbone Aug CL
Ep. FID| Accuracy?
Flattened, clean VAE latent 40.04
RF DiT-B 100 27.76 63.77
+1.38M 100 26.85 64.59
RF DiT-B 400  21.26 64.93
+1.38M 400  20.85 66.55
RF DiT-B 100 15.51 62.01
(cond) +1.38M 100 14.28 62.60
RF DiT-L 100 8.26 65.34
(cond) +2.36M 100 7.94 66.18
DiT-L crop 400 11.60 57.50
I-DAE DiT-L crop 400 — 65.00
DiT-Bx2  crop 400 — 60.30
CcL resnet50 v v 100 66.50-69.30
ViT-B v v 300 71.60-78.20
CL* ViT-B crop v 400 61.10-65.30
MIM ViT-B crop 400 61.40-62.90
ViT-L crop 200 62.20-65.80

*DINO with only flip+crop available (crop — multi-crop), reported by SODA.

play tweaks to yield further discernible dual improvements is particularly compelling and valuable.

How does self-conditioning work? Fig.[5|and Fig.[6]illuminate how it operates. Specially, we focus
on how it reshapes the layer-wise discriminability: in baseline, while there’s a shift of more discrim-
inative features towards middle layers as training progresses (the model itself gradually learns how
to adjust the landscape), the shift is slow and the variation is modest, in line with the distributed
representation theory in Sec. [I] In contrast, we not only accelerate the convergence to middle lay-
ers, but also create a more pronounced performance hierarchy. This sharper focus suggests a more
effective bottleneck. Intriguingly, while our designated layer is the 10th, peak accuracy emerges at
an even earlier layer. We leave the deeper investigation to future work. Additionally, the observed
reduction in denoising loss suggests that effective semantic guidance is indeed taking place.
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Figure 5: Self-conditioning reshapes feature distribution. While Figure 6: Self-conditioning
discriminative features gradually shift towards middle layers, they re- facilitates the optimization
main dispersed with modest differences. We accelerate this shift, form- and narrows the loss gap be-
ing a pronounced concentration, indicative of a condensed bottleneck. tween un- and class-cond.

Table 5: Ablation studies on CIFAR-10/100 for 1200 epochs. Our design choices are in gray.
(a) Self-conditioning in UNet.

(b) MLP projection head. (c) Distillation timestep.
Models, approaches FID]  Acc.t
DDPM, baseline 3.02 94.02 MLP head FID]  Acc.t Target timestep FID]  Acc.t
DDPM, addition 2.80 94.18 Original MoCo v3 5.87 69.01 Minimal noise 5.81 68.76
DDPM, adaptive 2.76 94.34 Time-dependent 5.88 69.50 Optimal for linear 5.88 69.50
EDM, baseline 225 04.83 (d) Contrastive loss weight. (e) Distillation target in UViT.
EDM, addition 243 9485
EDM, adaptive 221 94.85 ¥ FID|  Acc.t Feature to contrast FID| Acc.T
R, baseline 557 93.97 0.1 6.03 69.08 Pooling of tokens 8.51 73.15
RF, addition 560 9360 0.01 588 69.50 [cLs] 737 7448
RE, adaptive 242 9372 0.001 396 6842

5.3 ABLATION STUDIES

Below we show ablation experiments on design choices in self-conditioning and self-distillation.
Tab. The adaptive addition of semantic features into the pathway is crucial, which consistently
yields greater improvements, whereas a direct addition does not show much benefits. Tab.[5b} Using
the original MoCo v3 projection head results in the same FID, but linear probing accuracy decreases
by 0.5% compared to our time-dependent one. Tab. Using target features extracted with the
optimal timestep that performs in linear probing, leads in accuracy by 0.7% when compared to SD-
DiT’s minimal-noise design (Zhu et al.,[2024). Tab. @ Either excessive and insufficient contrastive
weight leads to degradation in both metrics, suggesting that the contrastive method can contribute
positively to dual aspects when appropriately tuned. Tab. We investigate two potential methods
to extract features from UVIiT as distillation target: by average pooling (in line with linear probing)
or by taking the [CLS] token. The [CLS] approach benefits both metrics, indicating that self-
conditioning based on this token works well because it aggregates global semantics naturally.

Finally, we validate our training-loss-based bot- Bottleneck | Loss @ 20ep.  FID @ 100 ep.
tleneck selection strategy, by evaluating four can- (Baseline) 0.4141 15.51
didate layers in a conditional DiT-Base for self- Layer 8 0.4135 14.79
EFESO . . Layer 9 0.4133 14.28
conditioning on ImageNet. The layer (9th) yielding Laver 10 04136 1450
.. . . ayer . .
the lowest training loss after 20 epochs of training, Layer 11 0.4140 1473

will also achieve the optimal generation FID.

6 CONCLUSION

We show that established diffusion architectures can be enhanced, by conditioning the decoding pro-
cess on features learned by themselves. The idea can be surprisingly simple to implement, yet con-
currently improves both generation and representation quality at almost no cost. It also facilitates the
integration of discriminative techniques for further recognition gains. We hope this straightforward
principle inspires continued progress towards unified diffusion-based generation and understanding.
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A DETAILED DESCRIPTION OF OBJECTIVES

DDPM (Ho et al., 2020) operates over a large number of discrete timesteps (1" = 1000), based on
a variance preserving schedule, i.e., r; = a:xo + /1 — afe. The network learns to predict the
noise ey, and is trained using the e-prediction objective ||eg(2¢,t) — €||3. Euler’s method is used for
sampling, also known as DDIM (Song et al., [2021a)).

EDM (Karras et al., 2022) is a continuous-time model based on the variance exploding schedule,
i.e., x; = xo + o€, where oy spans a continuous range of [0.002,80]. The network predicts the
denoised image Dy, and is trained with the xq-prediction objective || Dg(z¢,t) — xo|5. 2" order
Heun solver can be utilized for efficient sampling.
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Table 6: Details of diffusion model formulations.

Pixel-space DDPM

Pixel-space EDM

training noise schedule
training loss weighting
dropout rate

Prean = —1.2, Psya = 1.2
uncertainty (When using non-leaky)
0.13

EMA decay rate 0.9993

ODE sampler 2" order Heun

sampling noise schedule | i, = 0.002, 0)p0r = 80,p =7
sampling NFE 35(18 x2—-1)

Latent-space RF

training noise schedule

t € [0,1], lognorm sampling

T 1000
training noise schedule | linear beta schedule [1074,0.02]
training loss weighting | none
dropout rate 0.1
EMA decay rate 0.9999
ODE sampler Euler (DDIM)
sampling NFE 100
Pixel-space RF
training noise schedule | ¢ € [0,1]
dropout rate 0.1
EMA decay rate 0.9999
ODE sampler RK45
sampling NFE 140-160 adaptive

EMA decay rate 0.9999

ODE sampler Euler

sampling NFE 250

CFG parameters scale=1.5, interval=[0, 0.89]
timestep shift 33

RF (Rectified Flow) (Liu et al.| 2023)) defines the forward process as a linear interpolation between
data and noise, i.e., vy = (1 — t)zo + te, with ¢ sampled from [0, 1]. The network directly estimates
the velocity and is trained using a v-prediction objective ||vg(z¢, t) — (€ —z¢)||3. Euler’s ODE solver
is used for sampling.

MoCo v3 (Chen et al., [2021) is a contrastive self-distillation framework that learns representations
by matching positive pairs. It uses an online model to compute the representation ¢; of an image, and
a momentum-updated teacher for representation ko of another augmented view. Both online model
and teacher consist of a backbone and a MLP projection head (Chen et al., [2020b)), and the online
encoder has an extra MLP prediction head (Grill et al.| 2020). MoCo v3 employs a symmetrized
contrastive 10ss Lyoco = LinfoNcE(4G1, k2) + Linfonce(g2, k1) to train the model.

B IMPLEMENTATION DETAILS

Diffusion models. Our pixel-space implementations are primarily based on the official codebases of
DDAEE] and UViTﬂ including model and backbone definitions for DDPM, EDM, ddpm, ddpmpp,
and UVIiT. The uncertainty loss weighting based on multi-task learning proposed in EDM2 (Karras
et al.,2024)) is also incorporated when non-leaky augmentation is applied to EDM, as it mitigates the
slower convergence caused by augmentations. We also implement RF following core principles in
Flow Matching (Lipman et al., [2023)) and Rectified Flow (Liu et al., [2023)). Our implementations of
ddpm and UVIT are equivalent to official versions, while ddpmpp is a simplified variant, adhering
to main designs outlined in (Song et al.| 2021b) but omitting certain details like skip connection
rescaling, which don’t find helpful. Our latent-space implementations are based on the official
codebase of Lightning-Di Pre-trained VA-VAE checkpoint is used, also downloaded from its
official repository. We fix the “3-channel CFG” bug originated in DiT (Peebles & Xie, |2023) to
enhance sample quality. More hyper-parameters are provided in Tab.[6]and Tab.

Pre-training. On all pixel-space datasets, we
train all models for 2000 epochs, saving check-

Table 7: Details of backbone architectures.

points every 200 epochs for FID measurement. UNet-based arcmtec.m.re ddpm ddpmpp
. . base channels (multiplier) 128 128
We observe that the model typically achle\fes channels per resolution 12220 200
lowest FID after 1400-2000 epochs. The train- blocks per resolution 2 4
ing setups for DDPM and RF are identical, attention resolutions {16} {16}
while EDM differs slightly in warmup, dropout,  attention heads 1 1
and EMA rate. These hyper-parameters are ~ BigGAN block for up/down | no yes
inherited and have not been heavily tuned. _(paramcount) 35.M 56.5M
For UViT, the official implementation applies V’tT'ﬁ“s,ed architecture ngT'S ]1)1T-B
weight decay to all parameters. However, we patch s1ze
. 2 . hidden size 512 768
find that excluding bias and positional embed- ;T [ayers 13 12
ding yields better results. We also apply weight attention heads 8 12
decay to the [CLS] token, contrasting with (param count) 44.3M 129.8M
3 - - Latent-space compressor VA-VAE
“https://github.com/FutureXiang/ddae output latent size 16x16 (256/16)
*https://github.com/baofff/U-ViT output dimension 32

>https://github.com/hustvl/LightningDiT
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Table 8: Time and layer for feature extraction. Out denotes output layers in UNet and UViT.

On Tiny-ImageNet and ImageNet100-64x64

Model  Backbone TimeO ! CIFARLali(y)er Timgn CIFARL]:yOer Model  Backbone Time Layer

DDPM  ddpm t=11 out 6/12 | £ =11 ou6/12 _EDM  ddpm oy = 0.2964* out_5/12

EDM  ddpm oy =0.06% out7/12 | oy = 0.06% out_6/12 DDPM  UViT-S t =66 out_1/6

RF ddpm t =0.06 out_7/12 | t = 0.06 out_7/12 *Corresponds to ¢t = 6 in 18 sampling steps.

DDPM  ddpmpp t=11 out.7/15 | t =11 out_8/15

EDM  ddpmpp | oy =0.06% out9/15 | o, =0.06% out8/15 On INT00-256x256 | On INTk-256x256
RF ddpmpp | t=006  out8/15 | t=006 our8/15 ~ Model ~ Backbone | oo Layer | Time Layer
DDPM UVIT-S t=11 out_2/6 t=11 out_2/6 RE Dil-B t=025 8/12 t=025 9/12
*Corresponds to ¢ = 4 in 18 sampling steps. (cond) DiT-B t=0.25 8/12 t=025 10/12

common practices. All these experiments are

conducted on 4 NVIDIA 3080Ti or 4090 GPUs

with automatic mixed precision enabled. On

latent-space 256x256 datasets, we train DiT models for either 1400 epochs (unconditional, IN100),
1000 epochs (class-conditional, IN100), or 100 epochs (both, IN1k). These training durations are
sufficient for conditional models, but unconditional ones may still benefit from longer training. Hor-
izontal flip is applied as the only data augmentation method, unless specified otherwise (i.e., pre-
viously using non-leaky on CIFAR). We cache two flipping versions of latents on IN100 or IN1k
datasets during data pre-processing. All these experiments are conducted on 6 NVIDIA 4090 GPUs
with automatic mixed precision.

Feature extraction. We determine the optimal timestep (noise scale) and layer index for feature
extraction by grid searching over reasonable ranges, evaluated using linear probing on the validation
set, following the practice in DDAE. The selected values are summarized in Tab. (8] and may differ
from those of DDAE due to slight changes in linear probing settings. Notably, the optimal layer
index is also utilized during the training of UNet and DiT models with self-conditioning. Similarly,
the optimal noise scale is adopted for extracting the target feature in contrastive self-distillation.

Linear probing. We simplify the settings in DDAE by using identical training epochs and learning
rates for all models. Additionally, we find that random cropping is unnecessary for linear probing,
so we use only horizontal flipping as the augmentation method. The training and evaluation config-
urations are shown in Tab.[9] On CIFAR datasets, linear probing accuracy is reported as the highest
among the checkpoints at 800, 1000, and 1200 epochs. On other datasets, we find that the linear
probing accuracy does not saturated till the end of the training.

Table 9: Details of pre-training and linear evaluations. All our models (as well as other baselines
in comparison) are trained and evaluated within same datasets, without transfer learning.

Pixel-space experiments: CIFAR, Tiny-IN, IN100-64x64
Pre-training Linear probing

GPUs 4 * 3080Ti (CIFAR) or 4 * 4090 (others) Latent-space experiments: IN100-256x256, IN1k-256x256
; i : Pre-training  Linear probing
batch 512 (dd 256 (dd , uvit
aleh size Adam (m(let)pm) or 236 (ddpmpp. uvit) GPUs 6 * 4090 § * 4090
optimizer or AdamW (uvit) Adam batch size 1024 1440
13 (DDPM., RF) optimizer Adam Adam
warmup epochs 00 (Epy) - epochs (1);1(;(()) ((1111\\1]11(])(())) 30
epochs 2000 é(S) (CtthAR) learning rate 2e-4 2e-3
. (others) Ir schedule constant cosine
learning rate de-4 4e-3 augmentations  flip flip
Ir schedule constant cosine
augmentations  flip (optional non-leaky) flip

C METHODOLOGY COMPARISON

Our full approach with contrastive self-distillation culminates in a self-supervised model that learns
semantically meaningful representations through cross-view alignment (discriminative, inherited
from CL) and intra-view reconstruction (generative, inherent in diffusion denoising, analogous to
MIM) Huang et al.| (2023); Zhou et al.| (2022). As for generative modeling, our design leads to a
self-supported semantic-conditional framework that uses intermediate features as semantic cues
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to guide generation, with the feature encoder absorbed into the diffusion network as its first few
layers.

Relation to SODA. SODA [Hudson et al.| (2023) learns representations through cross-view recon-
struction. Similar to our self-conditioning, it also employs a feature modulation mechanism to
impose a tighter bottleneck between the encoder and decoder, thereby learning compact, linearly-
separable features. However, SODA focuses on image-conditional tasks like novel view synthesis,
so it uses a disentangled encoder separate from diffusion decoder. Additionally, SODA’s features
are learned through pure generative pre-training, without investigating the influence of contrastive
methods.

Please note that a direct comparison with SODA is not so appropriate. First, since SODA has
not released its official code, we made our best effort to re-implement one, and we found that it
does not perform well on CIFAR and Tiny-ImageNet datasets. Second, SODA is optimized for
representations and cannot function as a regular diffusion model in standard unconditional (or class-
conditional) settings. Third, SODA may not achieve superior FID and Acc simultaneously with a
same model, as it employs different augmentations for classification (stronger) and reconstruction
(weaker).

Relation to “Guided Diffusion from Self-Supervised Diffusion Features”. This study |[Hu et al.
(2023a) also improves unconditional generation without relying on external encoders, by utilizing
discriminative features within diffusion models. However, it only uses these features to generate
pseudo-labels through Sinkhorn-Knopp cluster assignment, without enhancing them by compar-
ing cluster assignments as in SWAV |Caron et al.| (2020). In contrast, our work presents a more
fundamental combination of diffusion pre-training, self-condition guidance, and contrastive feature
enhancement.

Relation to SD-DiT. SD-DiT Zhu et al.|(2024) is a recent work that aims to accelerate the training
convergence of DiT |Peebles & Xie|(2023) through self-distillation. It aligns features extracted from
the visible patches of an image with those extracted from the entire image by an EMA teacher. While
this joint optimization of generative and discriminative objectives is similar to our approach, it does
not focus on enhancing representation quality. Furthermore, its key design, setting the distillation
target to the minimal noise scale, differs from ours that using the linear probing timestep, proven
more effective in ablation.

Relation to REPA. REPA [Yu et al.| (2025)) is a concurrent work that accelerates DiT [Peebles &
Xie| (2023)) training through representation enhancement. It argues that aligning the intermediate
features in diffusion models with powerful representations can significantly ease training. This
“representation-for-better-generation” idea is similar to ours, but it uses an external large-scale pre-
trained encoder as the teacher, rather than leveraging the diffusion models themselves. Additionally,
REPA employs MLP heads and similarity functions, such as cross-entropy, to align features, similar
to our MoCo v3-based method. However, it does not introduce two views for contrastive learning,
as it is fundamentally a knowledge distillation process rather than a self-supervised one.

D QUALITATIVE RESULTS

To visualize the generation quality, we present randomly generated samples in Fig. [7| (CIFAR-100)
and Fig. [] (ImageNet1k-256x256) using the same set of initial noise inputs.

E ADDITIONAL INFORMATION

E.1 LIMITATIONS AND FUTURE RESEARCH DIRECTIONS

Although we conduct extensive experiments to prove our claim that it is possible to enhance both
generative and discriminative performance simultaneously through our approaches, our evaluations
are limited to datasets up to the ImageNet1k-256x256 scale and models up to the DiT-Base scale.
We did not investigate larger datasets with higher resolutions or larger models, such as DiT-XL, due
to high computational costs inherently for generative models.
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Figure 7: Generate samples on CIFAR-100 using UViT-S. Our proposed methods gradually im-
prove the overall structure, semantics, and details (e.g., see the motorbike, chair and bugs).

Unconditional baseline (FID=29.69) Class-conditional baseline (1S=188.13)
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Figure 8: Generate samples on ImageNet1k-256x256 using DiT-B. Our method also improves the
overall structure and details in latent-space unconditional (e.g., see the human face and the dog) and
class-conditional generation (e.g., see the lawn mower and the tripod).

Moreover, some results indicate that our approaches may rely on careful choice of data augmentation
strategies, which might require tuning when dataset changes. A key remaining challenge for inte-
grating generative and discriminative learning, we believe, is the development of effective strategies
to organize and identify multiple views of the same instance, meriting future research.

Finally, though our work provides initial insights into the formation, distribution, and enhancement
of internal representations within diffusion models, the precise dynamics governing how these repre-
sentations evolve throughout the training remain largely unexplored. Moreover, the consequences of
potential misalignment between the layers designated for self-conditioning and those where optimal
features naturally arise warrant further investigation.

E.2 SOCIETAL IMPACTS

Although we focus on exploring the frontiers in unconditional (or class-conditional) image genera-
tion and representation learning, on datasets that contain natural images (instead of human portraits
or faces), our method still brings an improvement in the quality of generative models, which could
be used to generate fake images for disinformation. However, the images generated by our models,
restricted by the unconditional (or class-conditional) nature, are not as high-fidelity and photoreal-
istic as those in the text-to-image synthesis. Therefore, the potential risk of negative impact is very
low.
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