
A Hardware-Aware Framework for Accelerating Neural
Architecture Search Across Modalities

Daniel Cummings1 Anthony Sarah1 Sharath Nittur Sridhar1 Maciej Szankin1

J. Pablo Muñoz1 Sairam Sundaresan1

1
Intel Labs, Intel Corporation

Abstract Recent advances in Neural Architecture Search (NAS) such as one-shot NAS offer the abil-

ity to extract specialized hardware-aware sub-network configurations from a task-specific

super-network. While considerable effort has been employed towards improving the first

stage, namely, the training of the super-network, the search for derivative high-performing

sub-networks is still under-explored. We propose a flexible search framework that auto-

matically and efficiently finds sub-networks that are optimized for different performance

metrics and hardware configurations. Specifically, we demonstrate how various evolutionary

algorithms when paired with lightly trained objective predictors can accelerate architecture

search in a multi-objective setting for various modalities including machine translation,

recommendation, and image classification.

1 Introduction

Artificial intelligence researchers are continually pushing the state-of-the-art in deep learning

model performance across many application domains. Neural architecture search (NAS) has become

an increasingly popular technique to achieve these performance gains with results that often

outperform hand-designed architectures. In many cases, the deep neural network (DNN) design

and evaluation process is tied to the hardware platform available to the researcher at the time (e.g.,

GPU). Furthermore, the researcher may have only been interested in a single performance objective

such as accuracy when evaluating the network. Therefore, the network is inherently optimized

for a specific hardware platform and specific objective. However, users wanting to solve the same

problem for which the network was designed may have different hardware platforms available and

may be interested in multiple performance metrics (e.g., accuracy and latency). To address this, we

present a generalizable NAS framework that offers an assortment of search algorithms in a variety

of objective optimization settings across several modalities. Additionally, we demonstrate how

pairing evolutionary algorithms in an iterative fashion with lightly trained performance predictors

can yield an accelerated and less costly exploration of a DNN architectural design space across the

modalities of machine translation, recommendation, and image classification.

2 Methodology

Super-network or one-shot approaches to NAS have continued to grow in popularity for their

training efficiency and the large range of inherent sub-networks configurations that make them

attractive for hardware-aware latency optimization tasks. We focus this work on the sub-network

search problem and describe a flexible search framework in Figure 1. For an arbitrary super-network

reference architecture, modality, and task, our system flow automates the DNN architecture search

process and discovers sub-networks that are optimal for a set of one or more performance objectives

(e.g., accuracy, latency, MACs, etc.). Our framework includes both the pymoo (Blank and Deb,

2020) and Optuna (Akiba et al., 2019) optimization libraries for reproducibility and ease of future

algorithmic enablement. The framework can efficiently interact with other NAS solutions for

AutoML Conference 2022 © 2022 the authors, released under CC BY 4.0

mailto:daniel.j.cummings@intel.com
mailto:anthony.sarah@intel.com
mailto:sharath.nittur.sridhar@intel.com
mailto:maciej.szankin@intel.com
mailto:pablo.munoz@intel.com
mailto:sairam.sundaresan@intel.com
https://creativecommons.org/licenses/by/4.0/

One-shot
Training

Sub-network
Search

Reference DNN
Architecture

Domain
& Task

Super-network

Fine-tune
(optional)

Dataset

Train / re-train
predictors with all

validated
sub-networks

Run search
algorithm

with
predictors

Sample and
validate initial

small population of
sub-networks

Select best
sub-networks

Hardware
Platform &

Configuration

Lightweight
Iterative NAS

(LINAS) method

Train predictors
from large sample

of validated
sub-networks

Run search
algorithm

with
predictors

Sample and
validate large
population of
sub-networks

Select best
sub-networks

Run
search

algorithm

Select best
sub-networks

while loop

Validate best
predicted

sub-networks

Validate small
sample of best

predicted
sub-networks

One-shot
predictor
method

(Our work)

Validation only
method

Validate all
architectures

selected
during search

Figure 1: Generalizable framework for accelerating super-network type neural architecture search.

super-network generation and training (Munoz et al., 2022). The simplest validation only search

method performs a validation measurement for sub-networks identified by the search algorithm of

choice. However, even in the super-network NAS context, a validation measurement still requires

a non-trivial amount of time and computational resources. A primary goal of this framework is to

reduce the number of validation measurements (not predictions) that are required to find optimal

DNN architectures given a set of performance objectives and a hardware platform. To this end,

the framework also offers a one-shot predictor approach to reduce the validation cost overhead

as described in existing work (Cai et al., 2019). Additionally, we describe a lightweight iterative

NAS (LINAS) method in Appendix B that builds on the idea that lightly trained predictors can

yield useful information for ranking sub-network configurations. The LINAS method increases the

probability that optimal architectures will be identified in early stages of the search and avoids the

upfront validation cost of the one-shot predictor approach. A short summary of LINAS (as in Figure

1) is as follows: using small validation populations (e.g., 10-50), we measure the objectives and store

the results for each sub-network. These results are combined with any previous validation results

and are used to train the objective predictors. We run a multi-objective algorithm search with

a user defined evolutionary algorithm using that iteration’s trained predictors and then use the

Pareto optimal results to inform the next iterations population. Thus, as the search progresses, the

predictors continue to improve, and the validated sub-networks quickly approach a more optimal

multi-objective region.

The majority of NAS research efforts have focused on the computer vision task of image

classification and only recently have other modalities, such as the rapidly growing field of language

modeling or language translation, been investigated in detail (Feng et al., 2021; H. Wang et al.,

2020; X. Zhang and Duh, 2020). Subsequently, understanding how NAS approaches generalize

across modalities has not been studied in depth. In the study of our framework, our experiments

encompass the modalities of image classification, machine translation, and recommendation as

shown in Table 1. Additional details for each super-network are provided in Appendix D.

3 Experiments & Results

The main goal of our framework is to reduce the number of validation measurements required to

find optimal DNN architectures in a multi-objective setting for any modality or domain-specific

task. Specifically, we want to efficiently discover architectures with optimal trade-offs in high

top-1 accuracy/BLEU/HR@10 and low latency. In the hardware-aware NAS context, latency is a

2

Table 1: Summary of super-networks and associated design search spaces used in the experiments.

Super-Network Task Dataset

Number

Format

Objectives

Search Space Size

(unique DNNs)

MobileNetV3

Image

Classification

ImageNet FP32

Top-1 Accuracy,

Latency

∼ 10
19

ResNet50

Image

Classification

ImageNet FP32

Top-1 Accuracy,

Latency

∼ 10
13

Transformer

Machine

Translation

WMT 2014

En-De

FP32

BLEU Score,

Latency

∼ 10
15

NCF Recommendation Pinterest-20 FP32

HR@10,

Latency

∼ 10
7

highly important optimization objective since it directly relates to the real-time performance of a

hardware system. Often MACs, FLOPs, or model parameter counts are used as an approximation

of latency but do not guarantee correlation. We use the term "hardware-aware" to emphasize the

focus on using latency as one of our main objectives but do not use any hardware architectural

information to inform the search process. In this work we experiment on CPU, GPU, and mobile

device platforms for evaluating our framework and we discuss the transferability of NAS results

between CPU and GPU platforms in Appendix G.

Our framework makes extensive use of predictors to accelerate the discovery of optimal sub-

networks, particularly when applying LINAS. Since validation evaluations of performance objec-

tives, such as top-1 accuracy and latency, require a large amount of time, we follow the work in

(Cai et al., 2019) and (H. Wang et al., 2020) and employ predictors. More specifically, we predict

top-1 accuracy of sub-networks derived from MobileNetV3 and ResNet50 super-networks, hit ratio

(HR@10) of sub-networks derived from NCF super-networks, bilingual evaluation understudy

(BLEU) (Papineni et al., 2002) score of sub-networks derived from Transformer super-networks and

latency of sub-networks derived from all super-networks.

Unlike prior work which use multi-layer perceptrons (MLPs) to perform prediction, we employ

much simpler methods such as ridge regression, support vector machine regression (SVR) and

stacked regression predictors. The authors of (Lu, Sreekumar, et al., 2021) and (Laube et al., 2022)

have found that MLPs are inferior to other methods of prediction for low training example counts.

We have found that these simpler methods converge more quickly and require both fewer training

examples andmuch less hyper-parameter optimization thanMLPs. The combination of performance

objective prediction via simple predictors allows us to significantly accelerate the selection of sub-

networks with minimal prediction error. As shown in Figure 2, the analysis of simple predictors is

performed over a number of different trials to account for variance in the results. In each trial, the

data set for each predictor is first split into train and test sets. Subsets of the train data set within

the range of 100 to 1000 examples are used to train the predictor. For a given trial, the same test

set with 500 examples is used to compute the prediction mean absolute percentage error (MAPE).

This process is repeated for a total of 100 trials and the results averaged to compute the MAPE. See

Section C for a detailed analysis of predictors for various objectives.

We start our experimental analysis using the MobileNetV3 super-network since it offers the

largest search space size. It is crucial to note that a wide variety of evolutionary algorithms can be

employed in our framework. These algorithms and other ablation studies are explored in Appendix

G. However, for this section, the popular NSGA-II (Deb, Pratap, et al., 2002) algorithm is used as a

baseline for both the validation-only and LINAS search approaches. Figures 3a and 3b illustrate

the differences in how LINAS (with NSGA-II for the internal predictor loop), random search, and

NSGA-II progress in the multi-objective search space. For the same evaluation count of 250, while

NSGA-II begins progressing towards an optimal trade-off region, the LINAS results show how the

3

Figure 2: MAPE of predictors performing top-1 accuracy, BLEU score and HR@10 prediction versus

the number of training examples for sub-networks derived from the super-networks shown

in Table 1.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Latency (normalized)

72

73

74

75

76

77

To
p-

1
Ac

cu
ra

cy
 (%

)

LINAS+NSGA-II Pareto front
Random search boundary
LINAS Discovered DNN Model 0

50

100

150

200

250
 Evaluation

 Count

(a) LINAS Search.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Latency (normalized)

72

73

74

75

76

77

To
p-

1
Ac

cu
ra

cy
 (%

)

LINAS+NSGA-II Pareto front
Random search boundary
NSGA-II Discovered DNN Model 0

50

100

150

200

250
 Evaluation

 Count

(b) NSGA-II Search. (c) Hypervolume example.

Figure 3: Search results in the MobileNetV3 search space (Titan-V GPU, batch size = 128) comparing (a):

LINAS, and (b): NSGA-II approaches (algorithm settings in Table 5). Sub-figure (c) illustrates

the hypervolume indicator.

exploration can be accelerated. Moreover, one can see how both approaches perform better than

random search. In our experiments we use the term evaluation to refer to an actual validation

measurement, not a predicted measurement. Since we are interested in evaluating the performance

of various search algorithms in the multi-objective setting, we use the hypervolume indicator

(Zitzler and Thiele, 1999) as shown in Figure 3c. When measuring two objectives, the hypervolume

term represents the dominated area of the Pareto front.

A benefit of LINAS is that it can be used to run an accelerated NAS process without any prior

knowledge of the latency range and we note that hardware platforms have very unique DNN

latency characteristics. Figure 4 shows a consistent behavior for LINAS across GPU, CPU and

mobile hardware settings. Depending on which region of the Pareto front is most important,

an end-user would be more likely to identify optimal architectures in fewer evaluations with

LINAS. Evaluation (validation measurement) counts directly correlate to the search time since the

evolutionary algorithm runtime component is far smaller than evaluation runtimes (compute time

breakdown given in Appendix F). When considering the performance of LINAS across various

modalities as shown in Figure 5, a key observation is how differently LINAS accelerates to a

better hypervolume versus the baseline NSGA-II and random search. Given the characteristics

of the Transformer and NCF objective spaces, the LINAS result is less differentiated than in the

image classification cases. We found that since the distribution of the sub-networks in these super-

networks is both more constrained in range and occurs closer to an optimal region, one would be

more likely to randomly find a good performing sub-network than in the MobileNetV3 or ResNet50

search spaces. Specifically, NCF is heavily biased towards matrix factorization as described by

Rendle et al. (2020) and we discuss this effect in Appendix D.

4

0 500 1000 1500
Evaluation Count

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
Hy

pe
rv

ol
um

e
(n

or
m

al
ize

d)

Tesla A100
(GPU)

LINAS + NSGA-II
NSGA-II
Random

0 500 1000 1500
Evaluation Count

Titan V
(GPU)

LINAS + NSGA-II
NSGA-II
Random

0 500 1000 1500
Evaluation Count

Xeon Platinum 8180
(Server CPU)

LINAS + NSGA-II
NSGA-II
Random

0 500 1000 1500
Evaluation Count

Xeon Platinum 8280
(Server CPU)

LINAS + NSGA-II
NSGA-II
Random

0 500 1000 1500 2000
Evaluation Count

Note10
(Mobile CPU)

LINAS + NSGA-II
NSGA-II
Random

Figure 4: MobileNetV3 super-network search algorithm comparison on various hardware platforms.

Shaded regions = standard error for 5 trials. Search parameter settings in Table 5.

200 400 600 800 1000
Evaluation Count

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Hy
pe

rv
ol

um
e

(n
or

m
al

ize
d)

LINAS + NSGA-II
NSGA-II
Random Search

(a) ResNet50

100 200 300 400 500 600
Evaluation Count

0.94

0.95

0.96

0.97

0.98

0.99

1.00

1.01

Hy
pe

rv
ol

um
e

(n
or

m
al

ize
d)

LINAS + NSGA-II
NSGA-II
Random Search

(b) Transformer

20 40 60 80 100 120 140 160
Evaluation Count

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Hy
pe

rv
ol

um
e

(n
or

m
al

ize
d)

LINAS + NSGA-II
NSGA-II
Random Search

(c) NCF

Figure 5: Search algorithm comparison across modalities (Titan-V GPU).

4 Limitations and Broader Impact

From a framework perspective, our focus is limited to accelerating the post-training sub-network

search process, not the optional fine-tuning stage. After promising DNN architectures are discovered

with NAS, a user may achieve state-of-the-art performance for a particular performance bound (e.g.,

top-1 accuracy for a specific latency or MACs range) by finding the right combination of fine-tuning

tactics or by completely re-training the sub-network from scratch (Wu et al., 2021). Moreover, we

only focus on demonstrating evolutionary algorithm (EA) approaches that are known to pair well

with weight-sharing-based search spaces. Genetic algorithms, a subset of EA, have been broadly

applied for image classification NAS problems in both single-objective implementations (Guo et al.,

2020) and in multi-objective approaches such as NSGA-Net (Lu, Whalen, et al., 2019). We note that

reinforcement learning (RL) and gradient optimization have found success in the NAS field as well

but do not evaluate the search performance of these methods (Liu, Simonyan, Vinyals, et al., 2017;

Ren et al., 2021).

From a broader impact perspective, we do not anticipate that our work will have negative

societal impacts. Our work leverages the one-shot weight sharing NAS paradigm which inherently

provides massive DNN training savings in computation resources resulting in lower CO2 emissions

(Cai et al., 2019). Moreover, the computational cost (i.e., energy consumption) is further reduced by

our approach to accelerate the architecture search process although it remains non-trivial.

5 Conclusion

We have proposed and demonstrated a flexible NAS framework that efficiently finds diverse sets of

sub-networks in the hardware-aware multi-objective setting using super-networks from various

modalities. As NAS research continues to gain momentum, we highlight the need to continue to

investigate the generalizability of NAS approaches in modalities and tasks outside of computer

vision. Future work will include extending the experiments to a larger variety of hardware platforms

and DNN application domains.

5

References

Akiba, T. et al. (2019). “Optuna: A Next-generation Hyperparameter Optimization Framework”. In:

Proceedings of the 25rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining.

Bender, G. et al. (July 2018). “Understanding and Simplifying One-Shot Architecture Search”. In:

Proceedings of the 35th International Conference on Machine Learning. Ed. by J. Dy and A.

Krause. Vol. 80. Proceedings of Machine Learning Research. PMLR, pp. 550–559. url: https:
//proceedings.mlr.press/v80/bender18a.html.

Blank, J. and K. Deb (2020). “pymoo: Multi-Objective Optimization in Python”. In: IEEE Access 8,
pp. 89497–89509.

Blank, J., K. Deb, et al. (2021). “Generating Well-Spaced Points on a Unit Simplex for Evolutionary

Many-Objective Optimization”. In: IEEE Transactions on Evolutionary Computation 25.1, pp. 48–

60.

Cai, H. et al. (2019). “Once-for-all: Train one network and specialize it for efficient deployment”. In:

arXiv preprint arXiv:1908.09791.
Deb, K., A. Pratap, et al. (2002). “A fast and elitist multiobjective genetic algorithm: NSGA-II”. In:

IEEE transactions on evolutionary computation 6.2, pp. 182–197.

Deb, K. and J. Sundar (2006). “Reference Point Based Multi-Objective Optimization Using Evolu-

tionary Algorithms”. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary
Computation. GECCO ’06. Seattle, Washington, USA: Association for Computing Machinery,

pp. 635–642. url: https://doi.org/10.1145/1143997.1144112.
Deng, J. et al. (2009). “ImageNet: A large-scale hierarchical image database”. In: 2009 IEEE Conference

on Computer Vision and Pattern Recognition, pp. 248–255.
Elsken, T., J. H. Metzen, and F. Hutter (2019).Neural Architecture Search: A Survey. arXiv: 1808.05377

[stat.ML].
Feng, B., D. Liu, and Y. Sun (2021). “Evolving Transformer Architecture for Neural Machine

Translation”. In: Proceedings of the Genetic and Evolutionary Computation Conference Com-
panion. New York, NY, USA: Association for Computing Machinery, pp. 273–274. url: https:
//doi.org/10.1145/3449726.3459441.

Guo, Z. et al. (2020). Single Path One-Shot Neural Architecture Search with Uniform Sampling. arXiv:
1904.00420 [cs.CV].

He, K. et al. (June 2016). “Deep Residual Learning for Image Recognition”. In: 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). url: http://dx.doi.org/10.1109/cvpr.
2016.90.

He, X. et al. (2017). “Neural collaborative filtering”. In: Proceedings of the 26th international conference
on world wide web, pp. 173–182.

Howard, A. et al. (2019). “Searching for mobilenetv3”. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 1314–1324.

Laube, K. A., M. Mutschler, and A. Zell (2022). What to expect of hardware metric predictors in NAS.
url: https://openreview.net/forum?id=2DJn3E7lXu.

Li, K. et al. (2019). “Two-Archive Evolutionary Algorithm for Constrained Multiobjective Optimiza-

tion”. In: IEEE Transactions on Evolutionary Computation 23.2, pp. 303–315.

Liu, H., K. Simonyan, O. Vinyals, et al. (2017). “Hierarchical Representations for Efficient Architecture

Search”. In: CoRR abs/1711.00436. arXiv: 1711.00436. url: http://arxiv.org/abs/1711.
00436.

Liu, H., K. Simonyan, and Y. Yang (2018). “DARTS: Differentiable Architecture Search”. In: CoRR
abs/1806.09055. arXiv: 1806.09055. url: http://arxiv.org/abs/1806.09055.

Lu, Z., K. Deb, et al. (2020). NSGANetV2: Evolutionary Multi-Objective Surrogate-Assisted Neural
Architecture Search. arXiv: 2007.10396 [cs.CV].

6

https://proceedings.mlr.press/v80/bender18a.html
https://proceedings.mlr.press/v80/bender18a.html
https://doi.org/10.1145/1143997.1144112
https://arxiv.org/abs/1808.05377
https://arxiv.org/abs/1808.05377
https://doi.org/10.1145/3449726.3459441
https://doi.org/10.1145/3449726.3459441
https://arxiv.org/abs/1904.00420
http://dx.doi.org/10.1109/cvpr.2016.90
http://dx.doi.org/10.1109/cvpr.2016.90
https://openreview.net/forum?id=2DJn3E7lXu
https://arxiv.org/abs/1711.00436
http://arxiv.org/abs/1711.00436
http://arxiv.org/abs/1711.00436
https://arxiv.org/abs/1806.09055
http://arxiv.org/abs/1806.09055
https://arxiv.org/abs/2007.10396

Lu, Z., G. Sreekumar, et al. (Sept. 2021). “Neural Architecture Transfer”. In: IEEE Transactions on
Pattern Analysis and Machine Intelligence 43.9, pp. 2971–2989. url: http://dx.doi.org/10.
1109/TPAMI.2021.3052758.

Lu, Z., I. Whalen, et al. (2019). NSGA-Net: Neural Architecture Search using Multi-Objective Genetic
Algorithm. arXiv: 1810.03522 [cs.CV].

Munoz, J. P. et al. (2022). “Automated Super-Network Generation for Scalable Neural Architecture

Search”. In: First Conference on Automated Machine Learning (Main Track). url: https://
openreview.net/forum?id=HK-zmbTB8gq.

Muñoz, J. P. et al. (2021). “Enabling NAS with Automated Super-Network Generation”. In: CoRR
abs/2112.10878. arXiv: 2112.10878. url: https://arxiv.org/abs/2112.10878.

Ozaki, Y. et al. (2020). “Multiobjective Tree-Structured Parzen Estimator for Computationally Expen-

sive Optimization Problems”. In: Proceedings of the 2020 Genetic and Evolutionary Computation
Conference. GECCO ’20. Cancún, Mexico: Association for Computing Machinery, pp. 533–541.

url: https://doi.org/10.1145/3377930.3389817.
Panichella, A. (2019). “An Adaptive Evolutionary Algorithm Based on Non-Euclidean Geometry for

Many-Objective Optimization”. In: Proceedings of the Genetic and Evolutionary Computation
Conference. GECCO ’19. Prague, Czech Republic: Association for ComputingMachinery, pp. 595–

603. url: https://doi.org/10.1145/3321707.3321839.
Papineni, K. et al. (Oct. 2002). “BLEU: a Method for Automatic Evaluation of Machine Translation”.

In: Proceedings of the 40th annual meeting of the Association for Computational Linguistics,
pp. 311–318.

Ren, P. et al. (2021). A Comprehensive Survey of Neural Architecture Search: Challenges and Solutions.
arXiv: 2006.02903 [cs.LG].

Rendle, S. et al. (2020). “Neural collaborative filtering vs. matrix factorization revisited”. In: Fourteenth
ACM conference on recommender systems, pp. 240–248.

Vaswani, A. et al. (2017). Attention Is All You Need. arXiv: 1706.03762 [cs.CL].
Wang, H. et al. (2020). “Hat: Hardware-aware transformers for efficient natural language processing”.

In: arXiv preprint arXiv:2005.14187.
Wu, J. et al. (2021). Stronger NAS with Weaker Predictors. arXiv: 2102.10490 [cs.LG].
Zhang, Q. and H. Li (2007). “MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decom-

position”. In: IEEE Transactions on Evolutionary Computation 11.6, pp. 712–731.

Zhang, X. and K. Duh (2020). “Reproducible and Efficient Benchmarks for Hyperparameter Op-

timization of Neural Machine Translation Systems”. In: Transactions of the Association for
Computational Linguistics 8, pp. 393–408. url: https://aclanthology.org/2020.tacl-1.26.

Zitzler, E. and L. Thiele (1999). “Multiobjective evolutionary algorithms: a comparative case study

and the strength Pareto approach”. In: IEEE transactions on Evolutionary Computation 3.4,

pp. 257–271.

7

http://dx.doi.org/10.1109/TPAMI.2021.3052758
http://dx.doi.org/10.1109/TPAMI.2021.3052758
https://arxiv.org/abs/1810.03522
https://openreview.net/forum?id=HK-zmbTB8gq
https://openreview.net/forum?id=HK-zmbTB8gq
https://arxiv.org/abs/2112.10878
https://arxiv.org/abs/2112.10878
https://doi.org/10.1145/3377930.3389817
https://doi.org/10.1145/3321707.3321839
https://arxiv.org/abs/2006.02903
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2102.10490
https://aclanthology.org/2020.tacl-1.26

A Additional Background and Related Work

The computational overhead of evaluating DNN architectures during NAS can be very costly

due to the training and validation cycles. To address the training overhead, novel weight-sharing

approaches known as one-shot or super-networks (Bender et al., 2018; Cai et al., 2019; Liu, Simonyan,

and Yang, 2018) have offered a way to mitigate the training overhead by reducing training times

from thousands to a few GPU days (Elsken et al., 2019). These approaches train a task-specific

super-network architecture with a weight-sharing mechanism that allows the sub-networks to

be treated as unique individual architectures. This enables sub-network model extraction and

validation without a separate training cycle. However, the validation component still comes with a

high overhead since there are many possible sub-networks which may be found from large super-

networks (e.g., search space size of ∼ 10
19
) and the validation step itself comes with a computational

cost, especially for larger datasets such as ImageNet (Deng et al., 2009). One popular way to mitigate

the validation cost in one-shot networks is to train predictors for objectives such as inference time

(a.k.a. latency) and accuracy from a training set with thousands of sampled architectures (Cai et al.,

2019).

Similar to the LINAS formulation, there are approaches that iterate training and search in order

to fine-tune the super-network during training (Lu, Sreekumar, et al., 2021). However, the fine-

tuning of these approaches is influenced by the hardware platform used during search which could

require training to be redone if the resulting super-network were deployed on a different platform

(e.g., trained on GPU, deployed onto Raspberry Pi which has very different latency characteristics.).

Similarly, work by Wu et al. (2021) uses a simple Bayesian optimization paired with predictors to

iteratively direct the search. We highlight the feedback from an external reviewer following the

submission of this work that the LINAS formulation has strong similarities to NSGANetV2-MSuNAS

from Lu, Deb, et al. (2020) to which the authors were unaware of at the time. This work extends

past the scope of NSGANetV2 in that we evaluate many evolutionary algorithms, add additional

modalities, and run new ablations that give additional insight into this paradigm of NAS.

B LINAS Algorithm

One of the primary goals for our framework is to reduce the number of validation measurements

that are required to find optimal DNN architectures in a multi-objective search space that works

well across modalities. While related work shows that using trained predictors can speed up the

DNN architecture search process, there remains a substantial cost to training the predictors since

the number of validated training samples can range between 1000 and 16,000. Interestingly, as

discussed in detail in Appendix C, simple accuracy predictors can achieve acceptable mean absolute

percentage error (MAPE) with far fewer training samples. We build on this insight that lightly

trained predictors can offer a useful surrogate signal during search. Algorithm 1 describes our

generalizable Lightweight Iterative NAS (LINAS) method. We first randomly sample the architecture

search space to serve as the initial validation population. For each sub-network in the validation

population, we measure each objective and store the result. These results are combined with all

previous validation results and are used to train the objective predictors. For each iteration, we run

a multi-objective algorithm search using that iteration’s trained predictors for a high number of

generations (e.g., > 100) to allow the algorithm to explore the predicted objective space sufficiently.

This predictor-based search runs very quickly since no validation measurements occur. Finally, we

select the most optimal population of diverse DNN architectures from the predictor-based search

to add to the next validation population, which then informs the next round of predictor training.

This cycle continues until the iteration count limit is met or an end-user decides a sufficient set

of architectures has been discovered. We note that the LINAS approach can be applied with any

single-, multi-, or many-objective evolutionary algorithms (EA) and generalizes to work with any

8

super-network framework. Additionally, it allows for the interchanging of algorithms, tuning

parameters (e.g., crossover, mutation, population), and predictor types for each iteration.

Algorithm 1 Generalizable Lightweight Iterative Neural Architecture Search (LINAS)

Input: Objectives 𝑓𝑚 , super-network with weights W and configurations Ω, predictor model

for each objective 𝑌𝑚 , LINAS population 𝑃 size 𝑛, number of LINAS iterations 𝐼 , evolutionary

algorithm E with number of evaluations 𝐽 .

𝑃𝑖=0 ← {𝜔𝑛} ∈ Ω // sample 𝑛 sub-networks for first population

while 𝑖 + + < 𝐼 do
𝐷𝑖,𝑚 ← 𝑓𝑚 (𝑃𝑖 ∈ Ω;W) // measure objectives 𝑓𝑚 , store data 𝐷𝑖,𝑚

𝐷𝑎𝑙𝑙,𝑚 ← 𝐷𝑎𝑙𝑙,𝑚 ∪ 𝐷𝑖,𝑚

𝑌𝑚,𝑝𝑟𝑒𝑑 ← 𝑌𝑚,𝑡𝑟𝑎𝑖𝑛 (𝐷𝑎𝑙𝑙,𝑚) // train predictors for each objective

while 𝑗 + + < 𝐽 do
𝑃E𝑗
← E (𝑌𝑚,𝑝𝑟𝑒𝑑 , 𝑗) // run E for 𝐽 evaluations

end while
𝑃𝑖 ← 𝑃E,𝑏𝑒𝑠𝑡_𝑢𝑛𝑖𝑞𝑢𝑒 ∈ 𝑃E𝐽 // retrieve optimal and unique population of sub-networks

end while
Output: All validated sub-networks configurations 𝑃𝐼 , predictor search results 𝑃E𝐼 ,𝐽 , and validation
data 𝐷𝑎𝑙𝑙,𝑚 .

C Predictors

As described in Figure 1, our work makes extensive use of predictors to accelerate the selection

of sub-networks, particularly when applying LINAS. Since validation evaluations of performance

objectives, such as top-1 accuracy and latency, require a large amount of time, we follow the work

in (Cai et al., 2019) and (H. Wang et al., 2020) and employ predictors. More specifically, we predict

top-1 accuracy of sub-networks derived from MobileNetV3 and ResNet50 super-networks, hit ratio

(HR@10) of sub-networks derived from NCF super-networks, bilingual evaluation understudy

(BLEU) (Papineni et al., 2002) score of sub-networks derived from Transformer super-networks and

latency of sub-networks derived from all super-networks. Predictors are necessary since performing

actual measurements of performance objectives such as accuracy or latency would be prohibitively

slow. In light of their importance, a better understanding of their performance is needed.

The analysis of predictors is performed over a number of different trials to account for variance

in the results. In each trial, the data set for each predictor is first split into train and test sets. Subsets

of the train data set within the range of 100 to 1000 examples are used to train the predictor. For a

given trial, the same test set with 500 examples is used to compute the prediction mean absolute

percentage error (MAPE). This process is repeated for a total of 100 trials and the results averaged

to compute the MAPE shown in Figure 6.

The top row of Figure 6 shows the MAPE of different predictors for each super-network type in

Table 1. The stacked predictor is a combination of ridge and SVR (RBF) regressors which "stacks" the

predictions from each of these two regressors and uses them as the input to a final ridge regressor.

The bottom row shows the correlation between actual and predicted values after training the

stacked predictor with 1000 examples. Note that the Kendall rank correlation coefficient 𝜏 is also

shown for each case. In all cases, these simple predictors provide small error (maximum MAPE of

0.91%) and high correlation (minimum 𝜏 of 0.8348) with actual values.

The analysis of latency prediction is performed similarly to the top-1 accuracy, BLEU score and

HR@10 approach with the results shown in Figure 7. The top row shows the MAPE of different

predictors for each super-network type. The bottom row shows the correlation between actual and

9

Figure 6: MAPE of predictors performing top-1 accuracy, BLEU score and HR@10 prediction versus the

number of training examples for sub-networks derived from the super-networks shown in

Table 1 (top row). Correlation and Kendall 𝜏 coefficient between actual and predicted values

after training the stacked predictor with 1000 examples (bottom row). The ideal correlation

is shown by the green line.

predicted latencies after training the stacked predictor with 1000 examples. Note that the Kendall

rank correlation coefficient 𝜏 is also shown for each case.

D Super-network Details

For the modality of image classification, we leverage two super-networks derived fromMobileNetV3

(Howard et al., 2019) and ResNet50 (K. He et al., 2016) which are described in Once-for-all (OFA)

(Cai et al., 2019). OFA employs a progressive shrinking method during super-network training

resulting in elastic design parameters that can represent the full architectural search space. For

additional variety in this domain, we use recent work by Munoz et al. (2022) and Muñoz et al. (2021),

called BootstrapNAS, and discuss the sub-network search process for the quantized INT8 space in

the Appendix G.5.

Super-network approaches have recently been applied in the domain of Natural Language

Processing (NLP). Hardware-aware Transformers (HAT) (H. Wang et al., 2020) achieve this goal

by extending the network elasticity type of weight sharing approach to this domain. In HAT, the

authors introduce arbitrary encoder-decoder attention, to break the information bottleneck between

the encoder and decoder layers in Transformers (Vaswani et al., 2017). Additionally, they propose

heterogenous transformer layers to allow for different layers to have different parameters.

Neural Collaborative Filtering (NCF) (X. He et al., 2017), a popular method for recommendation

problems, combines the benefits of traditional matrix factorization and fully connected neural

networks. We adapt this model architecture into an elastic training framework similar to HAT

wherein each embedding layer and dense layer is fully elastic.

D.1 Search Space Encoding

A key consideration of the super-network NAS process is encoding a representation of the archi-

tectural design variables in a way that is useful for the search algorithms. For illustration, we

10

Figure 7: MAPE of predictors performing latency prediction versus the number of training examples

for sub-networks derived from the super-networks shown in Table 1 (top row). Correlation

and Kendall 𝜏 coefficient between actual and predicted latencies after training the stacked

predictor with 1000 examples (bottom row). The ideal correlation is shown by the green line.

(a) MobileNetV3 design variable encoding.

Encoder
Layer i

Encoder Layer 1

Decoder Layer 1
Edim
640

HDim
(2048)

Decoder
Layer j

SelfAttn
(8)

concat

512 8 1024 4 2048

EDim Embedding Dimension = {512, 640}
HDim Hidden Dimension = {1024, 2048, 3072}
SelfAttn Self-Attention Heads = {4, 8}
EnDeAttn Encoder-Decoder Attention Heads = {4, 8}
ArbEnDeAttn Arbitrary Encoder-Decoder Attn. = {1,2,3}

EDim
(640)

SelfAttn
(4)

EnDeAttn
(4)

HDim
(1024)

EDim
(512)

Encoder
Layer 1

Encoder
Layer 2

EDim

640 4 4 2048

Decoder
Layer 1

EDim

8 2048

Encoder
Layer 6

8 8 3072

Decoder
Layer j

ArbEnDeAttn

Encoder Layers = {6}
Decoder Layers = {1,2,3,4,5,6}

(b) Transformer design variable encoding.

Figure 8: Super-network encoding strategies for MobileNetV3 and Transformer each having 45 and 40

design variables respectively.

summarize our encoding strategy for the MobileNetV3 and Transformer super-networks in Figure

8. By mapping each super-network architecture design variable to several integer options, this

search space encoding offers a compatible interface for the evolutionary operators (e.g., mutation,

crossover, etc.).

D.2 MobileNetV3 Details

For the image classification task with MobileNetV3, we experiment on the ImageNet val-

idation dataset (Deng et al., 2009) and use the pre-trained super-network weights from

ofa_mbv3_d234_e346_k357_w1.01, trained with progressive shrinking. For the architecture de-

sign variables, we allow for an elastic layer depth chosen from [2, 3, 4], an elastic width expansion

ratio chosen from [3, 4, 6], an elastic kernel size chosen from [3, 5, 7], and use an input image

resolution of 224x224. The layer depth can affect the mapping of the kernel size and expansion

ratio design variables as shown in Figure 8(a). For more details on this super-network please refer

to the work by Cai et al. (2019).

1
https://github.com/mit-han-lab/once-for-all

11

D.3 ResNet50 Details

For the image classification task with ResNet50, we use the ImageNet validation

dataset (Deng et al., 2009) and use the pre-trained super-network weights from

ofa_resnet50_d=0+1+2_e=0.2+0.25+0.35_w=0.65+0.8+1.01, trained with progressive shrinking

for our experiments. For the architecture design variables, we allow for an elastic layer depth

chosen from [0, 1, 2], an elastic width expansion ratio chosen from [0.65, 0.8, 1.0], an elastic

expansion ratio chosen from [0.2, 0.25, 0.35], and use an input image resolution of 224x224.

D.4 Transformer Details

For the machine translation task, we mainly experiment on the WMT 2014 En-De data set. We

follow a similar pre-processing technique proposed in (H. Wang et al., 2020) for the data. Similar

to (H. Wang et al., 2020), we use the search space with an embedding dimension chosen from

[512, 640] , hidden dimension from [1024, 2048, 3072] , attention head number from [4, 8], decoder

layer number from [1, 2, 3, 4, 5, 6] and a constant encoder layer number of [6]. In (H. Wang et al.,

2020), although the authors use the inherited weights from the Transformer super-network, for the

evolutionary search, they re-train the sub-networks from scratch in the final results. In our results,

we do not re-train these networks from scratch. Additionally, we train the predictor directly on the

bilingual evaluation understudy (BLEU) (Papineni et al., 2002) score. For the BLEU score evaluation,

we use a beam size of 5 and a length penalty of 0.6.

D.5 NCF Details

For the recommendation task, we experiment on the Pinterest-20 dataset and follow a similar

pre-processing technique used in (X. He et al., 2017) . We use the Neural Matrix Factorization
(NeuMF) model from (X. He et al., 2017), which is a fusion of Generalized Matrix Factorization
(GMF) and Multi-Layer Perceptron (MLP). We create an elastic NCF super-network model with the

embedding dimension for MLP and GMF layers sampled from [8, 16,32,64, 128], MLP layer number

from [1,2,3,4,5,6], and MLP hidden sizes from [8, 16, 32, 64, 128, 256, 512, 1024]. We train the NCF

super-network by uniformly sampling different sub-networks for each mini-batch of training.

In our experiments we see that when the matrix factorization module of the NCF sub-network

was sufficiently large, the results of the subnetwork were dominated by it versus the MLP module.

Rendle et al. (2020) substantiate this hypothesis in their paper by showing that a well-tuned matrix

factorization approach can substantially outperform proposed learned similarities such as an

MLP. We thus attribute the diminished improvement in the performance of LINAS on NCF to the

degeneracies in the search space caused by a more powerful matrix factorization module which

strongly dominates the HR@10.

E Latency Measurements

Since our experiments measure latency values from different manufacturers and there are possible

proprietary issues in sharing what could be perceived as official benchmark data, we normalize

latency results to be within [0, 1]. More specifically, the normalized latency
ˆ𝑙 is given by

ˆ𝑙 =
𝑙−𝑙𝑚𝑖𝑛

𝑙𝑚𝑎𝑥
∈

[0, 1] where 𝑙 is the unnormalized latency, 𝑙𝑚𝑖𝑛 is the minimum unnormalized latency and 𝑙𝑚𝑎𝑥 is

the maximum unnormalized latency. Using normalized latency does not change the underlying

search results that are demonstrated. For comparative latency performance metrics related to our

test platforms, we point the reader to the MLCommons
2
benchmark suite.

2
https://mlcommons.org

12

F Test Platforms and Compute Time

We use both CPU and GPU platforms for running our experiments. The hardware platforms and

their characteristics are shown in Table 2. For the Note10 mobile CPU experiment shown in Figure

4, we use a latency look-up table provided by Cai et al., 2019 since we did not have direct access to

that platform.

Table 2: Hardware platforms used for NAS experimentation.

Name Memory

Thread Count

(Host CPU)

Microarchitecture

(Host CPU)

Intel
®
Xeon

®
Platinum 8180 192 GB 56 Skylake (SKX)

Intel
®
Xeon

®
Platinum 8280 192 GB 56 Cascade Lake (CLX)

NVIDIA
®
Titan V

®
32 GB 32 Cascade Lake (CLX)

NVIDIA
®
Tesla

®
V100 32 GB 32 Skylake (SKX)

NVIDIA
®
Tesla

®
A100 32 GB 32 Cascade Lake (CLX)

In terms of GPU wall clock time required to perform search, we note that there is a wide

range of results that would be dependent on the supporting hardware platform configuration. For

example, for MobileNetV3, a sub-network search with 2000 evaluations would take approximately

9.5 GPU hours with an evolutionary algorithm run time on the order of minutes. Because the

evolutionary algorithm run times are extremely small when compared to validation measurement

run times, we view the evaluation count (e.g., Figure 5) as a more universal metric of search time

efficiency in this work.

To provide more insights into time complexity of presented algorithms, an extensive set of

tests was performed to measure wall-clock time of each algorithm needed to achieve a certain

hypervolume threshold on each of the search spaces presented in this work. For each super-

network, the hypervolume thresholds were selected based on the maximum hypervolume achieved

by random search and NSGA-II for a given search space, respectively. In the latter case, the results

for random search are not shown as it never achieved the given hypervolume level within a set

number of evaluations. Table 3 shows detailed information on how much time was spent on the

model evaluation and the search process itself.

G Additional Results

G.1 One-Shot Predictor Comparison

Since MobileNetV3 is a Once-for-All (OFA) super-network, we run the genetic algorithm (GA)

search as used in the OFA paper and show the results in Figure 9 for comparison. This approach

follows the one-shot predictor method as shown in Figure 1 where predictors for the objectives are

trained with 1000 samples before the search starts in this setup. The search then runs a large amount

of predictor-based evaluations in the latency range of interest. The intent of the OFA GA search

algorithm is to maximize the accuracy for a particular latency constraint. In the multi-objective

setting this has a few limitations such as needing prior knowledge of the latency space and requiring

a user to manually define separate search groups across the known latency range that are unique to

each hardware platform. In our Figure 9 example we define four search groups (each with unique

latency constraints) and note that LINAS only requires 250 evaluations to find a more diverse

Pareto front compared to the GA search from the OFA paper which uses 1000 evaluations to build

predictors. A key takeaway is that LINAS can be used to extend the search capabilities of any

super-network or weight-sharing NAS framework in the multi-objective setting.

13

Table 3: Comparison of algorithms and their average run time on all presented search spaces to a

given normalized hypervolume (HV) threshold based on a platform with NVIDIA
®
Titan V

®

(evaluation) and Intel
®
Xeon

®
Platinum 8280 (search).

Super-Network Search Algorithm Evaluations

Evaluation Cost

(GPU Hours)

Search Cost

(CPU Hours)

Total Cost

(Hours)

MobileNetV3

Normalized HV = 0.810

LINAS + NSGA-II 100 0.479 0.0095 0.489

NSGA-II 260 1.247 0.0014 1.248

Random 2000 9.593 0.0017 9.594

Normalized HV = 0.955

LINAS + NSGA-II 346 1.746 0.0331 1.779

NSGA-II 2000 9.593 0.0017 9.594

Random — — — —

ResNet50

Normalized HV = 0.800

LINAS + NSGA-II 57 0.545 0.0047 0.549

NSGA-II 255 2.438 0.0014 2.439

Random 1000 9.559 0.0016 9.560

Normalized HV = 0.925

LINAS + NSGA-II 155 1.481 0.0142 1.496

NSGA-II 1000 9.559 0.0016 9.560

Random — — — —

Transformer

Normalized HV = 0.967

LINAS + NSGA-II 111 1.886 0.0035 1.890

NSGA-II 191 3.246 0.0014 3.248

Random 600 10.197 0.0015 10.199

Normalized HV = 0.997

LINAS + NSGA-II 465 7.903 0.0156 7.918

NSGA-II 600 10.197 0.0015 10.199

Random — — — —

NCF

Normalized HV = 0.965

LINAS + NSGA-II 87 2.884 0.0138 2.898

NSGA-II 89 2.950 0.0014 2.952

Random 160 5.304 0.0014 5.305

Normalized HV = 0.989

LINAS + NSGA-II 148 4.906 0.0241 4.930

NSGA-II 160 5.304 0.0014 5.305

Random — — — —

G.2 LINAS Ablation Studies

LINAS offers a great deal of flexibility in terms predictor and algorithm options for the internal

loop. Figure 10a shows a LINAS specific ablation study using the various EA algorithms (discussed

in Appendix H.2) for the internal predictor loop including the performance of various algorithms

without LINAS. We find that Pareto based MOEAs such as NSGA-II (Deb, Pratap, et al., 2002) and

AGE-MOEA (Panichella, 2019) and the indicator based U-NSGA-III (Deb and Sundar, 2006) perform

well for this task. MOTPE Ozaki et al. (2020) by itself finds good sub-networks in the very early

stage of the search process but suffers from very high run-times for evaluation counts above 500.

This limits the ability of MOTPE to efficiently be used in the LINAS internal predictor loop since it

will not approach the near-optimal Pareto region in the predictor space.

14

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Latency (normalized)

72

73

74

75

76

77

To
p-

1
Ac

cu
ra

cy
 (%

)
Group A

Group B

Group C

Group D

LINAS+NSGA-II Pareto front
OFA-type GA search
discovered DNN Model

Figure 9: Results for the GA approach used in the OFA paper that uses predictors trained from 1000

evaluations where we run four different latency constrained searches. Triangle symbols

represent predicted performance whereas the dotted red line represent the actual Pareto

front from a LINAS+NSGA-II with 250 evaluations.

100 1000
Evaluation Count

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Hy
pe

rv
ol

um
e

(n
or

m
al

ize
d)

non-LINAS
Results

LINAS + NSGA-II
LINAS + AGE-MOEA
LINAS + U-NSGA-III
LINAS + C-TAEA
LINAS + MOEA/D

(a) LINAS comparison for various EAs in the pre-

dictor loop.

100 1000
Evaluation Count

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Hy
pe

rv
ol

um
e

(n
or

m
al

ize
d)

NSGA-II
AGE-MOEA
U-NSGA-III
C-TAEA
MOTPE
MOEA/D
Random

(b) Search algorithm comparison without using

LINAS.

Figure 10: Comparison of search algorithms in the MobileNetV3 design space for hypervolume (top-1

accuracy and latency) versus evaluation count. Shaded regions show the standard error for

5 trials with different random seeds. Search parameter settings in Appendix H.2.

Figure 11a highlights that the choice of the underlying predictor algorithm has little impact

on the performance of LINAS. Next, in Figure 11b we compare various LINAS runs with different

population sizes where a population of 50 gives the best performance for the MobileNetV3 super-

network. Finally, we note that while the intent of LINAS is to run for the fewest number of

evaluations as possible, an extended run shows that it would take NSGA-II a significant amount of

evaluations to catch up with the LINAS hypervolume at 20,000 evaluations. For the subsequent

experiments and consistency, we compare LINAS (with NSGA-II for the internal predictor loop)

against validation-onlymeasurements from a random search that uniformly samples the architecture

space and NSGA-II itself using the algorithm and the predictor settings in Table 5.

15

100 1000
Evaluation Count

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Hy
pe

rv
ol

um
e

(n
or

m
al

ize
d)

LINAS + NSGA-II (Stacked)
LINAS + NSGA-II (Ridge)
LINAS + NSGA-II (SVR Linear)
LINAS + NSGA-II (SVR RBF)

(a) Predictor ablation study.

100 1000
Evaluation Count

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Hy
pe

rv
ol

um
e

(n
or

m
al

ize
d)

LINAS+NSGA-II (Pop=20)
LINAS+NSGA-II (Pop=50)
LINAS+NSGA-II (Pop=100)

(b) Population size study.

100 1000 10000 100000
Evaluation Count

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Hy
pe

rv
ol

um
e

(n
or

m
al

ize
d)

LINAS + NSGA-II
NSGA-II
Random Search

(c) Extended run example

Figure 11: Hypervolume ablations studies on MobileNetV3 (Titan-V GPU, batch=128). Shaded regions

show the standard error for 5 trials with different random seeds.

G.3 Hardware Platform Transferability

One of the key goals of our framework is to accelerate the sub-network search process to address

the issue that every hardware platform and/or configuration has unique latency characteristics

and therefore unique optimal sub-networks in their respective multi-objective search spaces. To

illustrate this behavior, we use the MobileNetV3 super-network where Figure 12 shows that an

optimal set of sub-networks found on a CPU platform may not transfer to the optimal objective

region on a GPU platform and vice versa. Furthermore, within a hardware platform, Figure 13

shows that sub-network configurations found to be optimal to one CPU hardware configuration

(e.g., batch size = 1, thread count = 1), do not transfer optimally to other hardware batch size and

thread count configurations.

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Latency (Normalized)

72

73

74

75

76

77

78

Pr
ed

ict
ed

 T
op

-1
 A

cc
ur

ac
y

(%
)

GPU (V100)

CPU Pareto
front subnets
GPU Pareto
front subnets

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Latency (Normalized)

CPU (CLX8280)

CPU Pareto
front subnets
GPU Pareto
front subnets

Figure 12: MobileNetV3 Pareto fronts specialized to GPU (V100) and CPU (CLX) showing that optimal

sub-network configurations found on one hardware platform do not translate to the optimal

sub-networks for another. Batch size was 128.

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Latency (Normalized)

72

73

74

75

76

77

78

Pr
ed

ict
ed

 T
op

-1
 A

cc
ur

ac
y

(%
)

batch size = 1, thread count = 1

CLX (b=1,thr=1)
Pareto front subnets

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Latency (Normalized)

72

73

74

75

76

77

78
batch size = 8, thread count = 14

Optimal Pareto Front
CLX (b=1,thr=1)
Pareto front subnets

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Latency (Normalized)

72

73

74

75

76

77

78
batch size = 32, thread count = 28

Optimal Pareto Front
CLX (b=1,thr=1)
Pareto front subnets

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Latency (Normalized)

72

73

74

75

76

77

78
batch size = 64, thread count = 56

Optimal Pareto Front
CLX (b=1,thr=1)
Pareto front subnets

Figure 13: MobileNetV3 Pareto fronts with CLX for specialized thread counts/batch sizes, and the

non-specialized configurations for comparison.

16

G.4 Multiply-Accumulates to Latency

In addition to evaluating search performance on the latency, accuracy (Top-1), and BLEU score

objectives, we looked at the search trends in terms of multiply-accumulates (MACs) and accuracy

as shown in Figure 14a using the fvcore
3
library. Often, multiply-accumulates (MACs) or floating

point operations per second (FLOPs) are used to approximate latency. However, we note that

the transferrability between these metrics has its limitations. For example, Figure 14b highlights

that optimal sub-networks identified during a lengthy (e.g., run search until the Pareto front is

saturated with sub-network options) multi-objective MACs and top-1 accuracy NSGA-II search

do not translate to the most optimal sub-networks identified during a latency-based NSGA-II

search. One benefit of a MACs search is that the best Pareto front population would be ideal for

a warm-start population on subsequent searches for a given super-network. Another option in

our framework would be to perform a many-objective search (e.g., U-NSGA-III) to find optimal

sub-networks in the latency, accuracy, and MACs search space.

200 300 400 500
MACs (M)

72

73

74

75

76

77

78

Pr
ed

ict
ed

 T
op

-1
 A

cc
ur

ac
y

(%
)

2000 gen front
200 gen search

ol
d

->
 n

ew
 g

en
er

at
io

ns

(a) NSGA-II search progression in the MACs

versus top-1 accuracy objective space.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Actual Latency (Normalized)

74.0

74.5

75.0

75.5

76.0

76.5

77.0

77.5

Ac
tu

al
 T

op
-1

 A
cc

ur
ac

y
(%

)
Optimal sub-networks found
Latency vs. Top1 search
Optimal sub-networks found
in MACs vs. Top1 search

(b) MACs-based optimal sub-networks placed

in the latency space. CLX CPU with

batch=128, threads=56.

Figure 14: Comparison between latency and MACs-based NSGA-II searches using the MobileNetV3

super-network showing that the best Pareto front sub-networks from a MACs-based search

do not always translate optimally to the latency objective space.

G.5 LINAS Performance for Quantized Super-Networks

In addition to searching for optimal configurations using the OFA image classification super-

networks (based in FP32 number format), we also experimented with finding optimal INT8 models

from the novel BootstrapNAS (BNAS) ResNet50 super-network (Munoz et al., 2022; Muñoz et al.,

2021). BNAS transforms a single reference pre-trained DNN architecture into a super-network and

streamlines the sub-network search process in the quantized INT8 space. Specifically, we leverage a

BNAS ResNet50 super-network (BNAS-ResNet50Q) that has a different design space, specified with

different values for the search design variables, than the Once-for-all ResNet50 model discussed in

Section D.3. In this setup, the elastic layer depth chosen from [0, 1], an elastic width expansion

ratio chosen from [0.65, 0.8, 1.0] and an elastic expansion ratio chosen from [0.2, 0.25].

Our experiment follows the steps outlined in Figure 1 with an additional weight conversion

from FP32 to INT8 and standardized fine-tuning of the INT8 model in the last step. As shown on

the Figure 15, LINAS offers improvements in terms of hypervolume progression and in the time

required to find diverse models in the Pareto front. NSGA-II under-performs in early stages of the

search when compared to random search, which could be explained by the characteristics of the

BootstrapNAS super-network, and its smaller selection of elastic parameters that have been limited

to those promising better performance for the extracted sub-networks. As shown on the Figure 16,

3
https://github.com/facebookresearch/fvcore

17

the overall distribution of the randomly sampled configurations is closer to the optimal region of the

objective space, which may be the cause of random search yielding comparable results in the early

stages of the search process. This result is likely due to the nature of BNAS’ process for selecting

promising elastic design parameters and also that the search space derived by BNAS-ResNet50Q

(∼ 10
7
) is much smaller than OFA’s ResNet-50 (∼ 10

13
).

Figure 15: Hypervolume comparison of LINAS, NSGA-II and Random Sampling searchmethods applied

to the quantized model (INT8) of BootstrapNAS ResNet50 super-network. Shaded regions

show the standard error for 5 trials with different random seeds.

(a) LINAS Search (b) NSGA-II Search

Figure 16: Search results in the BootstrapNAS ResNet50 INT8 search space (CLX, batch size = 128)

comparing (a): LINAS, and (b): NSGA-II approaches.

H Search Algorithm Details

H.1 Overview
The foundational goal of NAS is to find DNN architectures that are optimal for one or more

performance objectives. In the context of weight-sharing super-networks, consider a pre-trained

super-network with weights𝑊 , a set of sub-network architectural configurations Ω derived from

the super-network and 𝑚 competing objectives 𝑓1(𝜔 ;𝑊), . . . , 𝑓𝑚 (𝜔 ;𝑊) where 𝜔 ∈ Ω. Each of

the sub-network configurations 𝜔 is a valid set of parameters used during training of the super-

network. For example, a given 𝜔 will contain values for each design parameter (e.g., depth and

kernel size) used during super-network training. Our system aims to minimize a subset of objectives

𝑆𝑖 ⊆ {𝑓1(𝜔 ;𝑊), . . . , 𝑓𝑚 (𝜔 ;𝑊)} to discover the near-optimal sub-network 𝜔∗𝑖 . In other words,

𝜔∗𝑖 = argmin

𝜔 ∈Ω

(
𝑆𝑖
)

(1)

18

An objective can be negated to transform a minimization objective into a maximization objective

(e.g., accuracy is a maximization objective). During optimization, multiple architectures 𝜔∗𝑖 ∈ Ω
will be scored in the objective space allowing for the identification of a Pareto front, as illustrated in
Figure 3c.

H.2 Search Algorithm Settings

In this work we focus on examining random search, multi-objective sequential model-based op-

timization (SMBO), and multi-objective evolutionary algorithm (MOEA) approaches to the sub-

network search problem. From a hardware-aware standpoint, we evaluate in the multi-objective

(a.k.a. bi-objective) setting as we are focused on finding a highly diverse set of near-optimal archi-

tectures across the accuracy and latency trade-off (Pareto front) region. However, we note that

our framework works with any number of objectives. To test a SMBO algorithm in our framework

we employ the multi-objective tree-structured parzen estimator (MOTPE) as proposed by Ozaki

et al. (2020). From the Pareto-based MOEA category, the framework supports the popular NSGA-II

(Deb, Pratap, et al., 2002) algorithm and a similar approach called AGE-MOEA (Panichella, 2019).

For indicator- and decomposition-based MOEAs we support U-NSGA-II (Deb and Sundar, 2006),

MOEA/D (Q. Zhang and H. Li, 2007), and CTAEA (K. Li et al., 2019).

For the search algorithm comparison study in Section 3, we evaluate the performance of various

evolutionary algorithms, a SMBO multi-objective tree-structured parzen estimator (MOTPE), and a

random search using the MobileNetV3 super-network. The evolutionary algorithm settings used

for the experiments are shown in Table 4. Evolutionary algorithms that support two or more

objectives typically fall in the categories of indicator- or decomposition-based algorithms where the

latter often use a predefined set of reference directions on a unit simplex to create objective space

partitions. For generating a well-spaced set of reference points from the objective space origin we

use the Riesz s-Energy approach (Blank, Deb, et al., 2021). For the MOTPE parameters, we use the

recommended settings provided by the authors Akiba et al. (2019) including a prior weight of 1.0

and number of candidate samples used to calculate the expected hypervolume improvement equal

to 24.

For the LINAS and NSGA-II experiments across different modalities (Figures 3, 4, 5, 11) we

show parameter settings in Table 5. In our ablation studies, cross-over rates between 0.9 and 1.0

performed nearly the same, smaller populations work well with smaller search space sizes, and

a mutation rate equal to the inverse of the population size as recommended by (Blank and Deb,

2020) gives the best search performance for NSGA-II. The same settings were used for the LINAS

inner-loop predictor search which also often uses NSGA-II in this work. An important note is that

NSGA-II and AGE-MOEA are not compatible with three or more objectives and that the other

many-objective EA approaches, such as U-NSGA-III would need to be considered in that setting.

19

Table 4: Evolutionary algorithm parameter settings for the comparison study in Figure 10. Settings

generally follow those recommended by Blank and Deb (2020) for each algorithm.

Evolutionary Algorithm

NSGA-II AGE-MOEA U-NSGA-III C-TAEA MOEA/D

Number of

supported

objectives

2 2 ≥ 2 ≥ 2 ≥ 2

Population

size

50 50 50 - -

Mutation

probability

0.02 0.02 0.02 0.05 -

Crossover

probability

0.9 0.9 0.9 1.0 -

Reference

direction

method

- -

Riesz s-Energy

(20 partitions)

Riesz s-Energy

(20 partitions)

Riesz s-Energy

(20 partitions)

Number of

neighbors

- - - - 20

Neighbor

mating

probability

- - - - 0.9

Table 5: Experiment settings for the LINAS (with NSGA-II internal loop) and NSGA-II comparison

studies in Figures 3, 4, 5, 11. The predictor types apply only to the LINAS setup.

Super-Network

(Modality)

Transformer

(Machine Translation)

MobileNetV3, ResNet50

(Image Classification)

NCF

(Recommendation)

Accuracy Predictor SVR w/ RBF kernel Ridge SVR w/ RBF kernel

Latency Predictor Ridge Ridge SVR w/ Linear kernel

Search Space 10
15

10
19

10
7

Population 50 50 10

Crossover 0.9 0.9 0.1

Mutation 0.02 0.02 0.02

LINAS evaluations

(Predictor)

20000 20000 2000

20

	Introduction
	Methodology
	Experiments & Results
	Limitations and Broader Impact
	Conclusion
	Additional Background and Related Work
	LINAS Algorithm
	Predictors
	Super-network Details
	Search Space Encoding
	MobileNetV3 Details
	ResNet50 Details
	Transformer Details
	NCF Details

	Latency Measurements
	Test Platforms and Compute Time
	Additional Results
	One-Shot Predictor Comparison
	LINAS Ablation Studies
	Hardware Platform Transferability
	Multiply-Accumulates to Latency
	LINAS Performance for Quantized Super-Networks

	Search Algorithm Details
	Overview
	Search Algorithm Settings

