
Graph Embedding for Neural Architecture Search with
Input-Output Information

Gabriela Suchopárová1,2 Roman Neruda1

1The Czech Academy of Sciences, Institute of Computer Science
2Charles University in Prague, Faculty of Mathematics and Physics

Abstract Graph representation learning has been widely used in neural architecture search as a part
of performance prediction models. Existing works focused mostly on neural graph similarity
without considering functionally similar networks with di�erent architectures. In this work,
we adress this issue by using meta-information of input images and output features of a
particular neural network. We extended the arch2vec model, a graph variational autoencoder
for neural architecture search, to learn from this novel kind of data in a semi-supervised
manner. We demonstrate our approach on the NAS-Bench-101 search space and the CIFAR-
10 dataset, and compare our model with the original arch2vec on a REINFORCE search task
and a performance prediction task. We also present a semi-supervised accuracy predictor,
and we discuss the advantages of both variants. The results are competitive with the original
model and show improved performance.

1 Introduction

Representation learning has been an essential part of the Neural Architecture Search (NAS) — while
some NAS systems use hand-designed encodings, other systems learn the representation of neural
graphs during the search or as a part of an unsupervised pretraining. These works focused on
architectural similarity, however, neural networks with di�erent architectures may still learn a
similar function of the input (Wei et al. (2016)). As so, including some meta-knowledge might lead
to improved representations of the search space.

In our work, we adress this problem by extending an existing model for unsupervised network
embedding, arch2vec (Yan et al. (2020)), with input-output meta-information (IO data). That is, we
learn the representation of a network and its output features on the input images. We construct
a novel IO dataset, and present a semi-supervised model that learns from this type of data. We
also compare the model with a variant that performs semi-supervised accuracy prediction. Both
models are evaluated on two NAS tasks — REINFORCE search and performance prediction on
NAS-Bench-101.

2 Related Work

Existing works used di�erent encodings for performance prediction and NAS optimization, such
as a string-based representation in PNAS, NAO and SemiNAS (Liu et al. (2018); Luo et al. (2018,
2020)), or path-based encoding in BANANAS (White et al. (2021)). Other systems used graph neural
networks to encode the architectures, for example as a performance predictor in BONAS (Shi et al.
(2020)) or GATES (Ning et al. (2020)), or in unsupervised embedding as in SVGe (Lukasik et al.
(2021)) and arch2vec (Yan et al. (2020)). We describe the arch2vec in more detail in the Appendix
(Section B). Graph neural networks have also been used as a part of surrogate benchmarks (Zela
et al. (2022)).

Some recent works used meta-information to improve the accuracy or running time of per-
formance prediction. FEAR ranks the architectures according to usefulness of extracted features

AutoML Conference 2022 Workshop Track © 2022 the authors, released under CC BY 4.0

mailto:suchoparova@cs.cas.cz
mailto:roman@cs.cas.cz
https://creativecommons.org/licenses/by/4.0/

(Dey et al. (2021)). Other work estimate the performance using scalar statistics (Philipp (2021);
Gracheva (2021)). As for meta-features related to network outputs, there exist metrics that measure
neural representation similarity, such as centered kernel alignment (CKA, Kornblith et al. (2019)).
However, to the authors’ knowledge, these have not been used in NAS yet.

3 The IO Dataset

In our work, we extend the arch2vec model, which learns from a dataset of architectures of a search
space. For our design, we introduce the IO-dataset, a set of triplets (=4C, 8=, >DC), where =4C is a
network architecture, 8= is the input image and >DC is the output obtained through passing 8= to =4C .
The >DC data can be any intermediate output of the network, e.g. feature maps or vector features.
We use the CIFAR-10 dataset and NAS-Bench-101 search space to create the dataset (Krizhevsky
(2009); Ying et al. (2019)). To reduce the training cost, we sampled 608 networks for the training
IO dataset and 77 for the validation set, and the networks were trained on the CIFAR-10 train set
(training details are in the Appendix (Section C).

The IO-dataset is created by passing input images from the CIFAR-10 validation set through
these networks. As the outputs, we use the features preceding the last dense layer (the output of
the global average pooling — a vector of size 512). We use only the top 10 most important features.

An issue with the dataset is that there is no ordering de�ned on the output features, meaning
that the output of the global average pooling of two di�erent networks may be the same, but
permuted. We propose the following preprocessing — the weights of the last dense layer determine
the feature importance of the global average pooling outputs for a target class. For an input image,
we choose the dense weights corresponding to the correct target image class. Then, we sort the
feature vector according to the weights, and we multiply the result and the weight vector. This
preprocessing ensures better comparability among the networks. It does not alleviate all shu�ing
errors — two networks may extract the same feature with a slightly di�erent importance, e.g. as
the second and third most important feature respectively. However, two very similar networks
should still have a similar response to the same image.

Figure 1: The architecture of our model.

4 The Extended Model

Now we describe how we extended the arch2vec model to learn from the IO dataset. Figure 1
shows the overall structure of the model. We will refer to our model as the IO model. We use the

2

original arch2vec VAE to encode the neural architecture into the latent matrix / . The model has
two outputs — one is the graph reconstructed from the latent matrix, the other are the predicted
output features. The second output is present only in the labeled data. Our model is trained in a
semi-supervised manner on both labeled and unlabeled data. Full training details are described
in Section F in the Appendix. For comparison purposes, we also introduce a second model — a
semi-supervised accuracy predictor. Its architecture is described in the Appendix (Section E). We
will refer to the model as the Accuracy model.

5 Output Features Analysis
To gain insight into the IO dataset, we analyzed the output features and their relation to network
test accuracy. Figures 2 and 3 visualize the features for a single network and of all networks on a
single image respectively. We can see that there is a substantial variance between network outputs
in both cases.

Figure 2: Output features of a single network on
all train images.

Figure 3: Output features of all networks on a single
image.

Figure 4: Networks clustered by output features, clusters with size larger than 2 are shown.

Next, we analyzed the relation between the output features and network test accuracy. For
pairs of networks, we computed the mean squared error (MSE) of outputs given the same image,
and used the mean of the errors as pairwise network distance. Then, we performed agglomerative
clustering with complete linkage and distance threshold 0.4. The results are depicted in Figure 4.
We can see that there is some relation between feature similarity and test accuracy — for instance,
none of the worst performing networks are in a cluster with the best performing chosen networks,

3

and there is not a cluster that would stretch across the whole range of accuraccies completely. This
indicates that along with architectural similarity, output features similarity may also correlate with
the actual performance.

6 REINFORCE and Performance Prediction on NAS-Bench-101

Figure 5: Reinforce search — 100 runs on
NAS-Bench-101.

Figure 6: Reinforce search — 100 runs on
NAS-Bench-101, time shifted by training time.

We ran the REINFORCE search on NAS-Bench-101 and CIFAR-10 dataset, and compared the
results of the IO model, Accuracy model and arch2vec. We used embeddings extracted after 10
epochs of training. Training of the IO and Accuracy model is described in the Appendix in Section
F, and details about the REINFORCE experiment are in Section G. We report the test regret, i.e.
the di�erence between the maximal accuracy of the search space and the accuracy of the best
performing network found during the search. Model 1 and model 2 denote di�erent embedding
methods also described in the Appendix. We can see that both Accuracy and IO models perform the
same as the original arch2vec when the same embedding method is used (model 1). The arch2vec
trained jointly with the IO model and the other embedding method (model 2) performs worse.

Figure 7: Pearson’s r across di�erent sample sizes. Figure 8: RMSE across di�erent sample sizes.

4

To compare the models, we repeated the performance prediction experiment from the original
arch2vec paper (Yan et al. (2020)). The experiment is described in Section H in the Appendix. We
used a random forest in place of the gaussian process used in arch2vec due to reproducibility
reasons. Figures 7 and 8 depict the distributions of Pearson’s r and RMSE respectively across the
10 seeds 1. We can see that the arch2vec is consistent across all sample sizes, while the Accuracy
and IO model increase with sample size, surpassing the arch2vec models for some sample sizes.
The second embedding method (�atten) performed better than the �rst method, and the Accuracy
model yields overall better results than the IO model. Also, the original arch2vec method does not
yield good results for smaller sample sizes, which is a suprising result.

7 Conclusion

In this work, we presented a novel approach to neural graph embedding. It is an extension of the
graph variational autoencoder arch2vec in that it learns from input-output meta-information. We
analyzed the output features and their relation to test accuracy of networks. We compared our model
with a semi-supervised accuracy predictor and the arch2vec on two NAS tasks — REINFORCE-based
search, and performance prediction with random forest. On the performance prediction task, we
outperformed the arch2vec on larger sample sizes, while in the REINFORCE tasks, we matched the
original results.

The followup work will focus on several directions. In case of the IO-dataset, an important
question is if the results improve with more labeled networks or images. Another topic is the
comparison of output features between networks, exploring di�erent strategies such as the usage of
metrics like CKA or utilizing feature maps instead of feature vectors. The work should be extended
to other common search spaces like NAS-Bench-201 or DARTS (Dong and Yang (2020); Liu et al.
(2019)), and transfer learning capabilities should be explored. Overall, we have shown that although
the original arch2vec outperformed the surrogate model trained in a supervised manner during
the NAS search task, the semi-supervised approaches may bring an additional improvement to the
results.

8 Limitations and Broader Impact Statement

The limitations of our work are mainly in the small number of labeled networks. This may explain
the validation loss results, which could improve and be more stable with a larger train set. The
instability between seeds also seemed to a�ect the results of the NAS tasks. Another possibility is
to increase the training time of the IO model.

The results of the Accuracy model in performance prediction were better that the results of the
IO model. However, it is important to note that for every IO batch, the Accuracy model receives the
accuracy label of the network that produced the output, leading to a larger supervision signal. As
so, the results should be analyzed across di�erent numbers of epochs. Extensions to other search
spaces (NAS-Bench-201 or DARTS) might provide more insight as well.

Our research falls into the machine learning techniques area. The main impact on NAS research
is the introduction of semi-supervised embedding methods that utilize meta-information. This
class of methods may help to reduce the resource needs by accurately estimating the performance
of networks, avoiding the training. This has a positive in�uence on the environmental aspect of
NAS. However, the overall cost remains relatively high.

Like all NAS and AutoML methods, the societal implications are the accessibility of better
models to wider application areas outside the machine learning community. The performance
prediction models in particular make machine learning more available to users and researchers
with less computational power than leading companies in the �eld.

1We provide the same results summarized in Tables 6 and 7 in the Appendix.

5

9 Reproducibility Checklist
1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately re�ect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]

(c) Did you discuss any potential negative societal impacts of your work? [Yes]

(d) Have you read the ethics author’s and review guidelines and ensured that your paper
conforms to them? https://automl.cc/ethics-accessibility/ [Yes]

2. If you are including theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? [N/A]

(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimen-
tal results, including all requirements (e.g., requirements.txt with explicit version), an
instructive README with installation, and execution commands (either in the supplemental
material or as a url)? [Yes]

(b) Did you include the raw results of running the given instructions on the given code and
data? [Yes]

(c) Did you include scripts and commands that can be used to generate the �gures and tables
in your paper based on the raw results of the code, data, and instructions given? [Yes]

(d) Did you ensure su�cient code quality such that your code can be safely executed and the
code is properly documented? [Yes]

(e) Did you specify all the training details (e.g., data splits, pre-processing, search spaces, �xed
hyperparameter settings, and how they were chosen)? [Yes]

(f) Did you ensure that you compared di�erent methods (including your own) exactly on
the same benchmarks, including the same datasets, search space, code for training and
hyperparameters for that code? [Yes] Comparisons with more methods and on more search
spaces will be the subject of future work. This work is the introduction of the general
concept.

(g) Did you run ablation studies to assess the impact of di�erent components of your approach?
[Yes] More extensive evaluation will also be a part of future works.

(h) Did you use the same evaluation protocol for the methods being compared? [Yes]

(i) Did you compare performance over time? [Yes] In REINFORCE, we accounted for the
training time of the models. The evaluation across the epochs should be explored in future
extensions.

(j) Did you perform multiple runs of your experiments and report random seeds? [Yes]

(k) Did you report error bars (e.g., with respect to the random seed after running experiments
multiple times)? [Yes]

(l) Did you use tabular or surrogate benchmarks for in-depth evaluations? [Yes] We used the
tabular benchmark NAS-Bench-101.

6

https://automl.cc/ethics-accessibility/

(m) Did you include the total amount of compute and the type of resources used (e.g., type of
gpus, internal cluster, or cloud provider)? [Yes] We included the training time of the models
(main paper) as well as the resources (appendix).

(n) Did you report how you tuned hyperparameters, and what time and resources this required
(if they were not automatically tuned by your AutoML method, e.g. in a nas approach; and
also hyperparameters of your own method)? [N/A] Most of the hyperparameters were kept
the same as the original arch2vec. Hyperparameter selection of our model was based on
preliminary results which were a part of the author’s thesis (anonymized).

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets. . .

(a) If your work uses existing assets, did you cite the creators? [Yes]

(b) Did you mention the license of the assets? [Yes] In the supplementary materials.

(c) Did you include any new assets either in the supplemental material or as a url? [Yes]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes] arch2vec is openly available

(e) Did you discuss whether the data you are using/curating contains personally identi�able
information or o�ensive content? [N/A] Applies to CIFAR-10 and NAS-Bench-101.

5. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if appli-
cable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board
(irb) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent
on participant compensation? [N/A]

Acknowledgements. Gabriela Suchopárová was supported by Charles University Grant Agency
project no. 246322. This research was (partially) supported by SVV project number 260 575.

Computational resources were supplied by the project "e-Infrastruktura CZ" (e-INFRA CZ
LM2018140) supported by the Ministry of Education, Youth and Sports of the Czech Republic.

References

Dey, D., Shah, S., and Bubeck, S. (2021). Ranking architectures by feature extraction capabilities. In
8th ICML Workshop on Automated Machine Learning (AutoML).

Dong, X. and Yang, Y. (2020). NAS-Bench-201: Extending the scope of reproducible neural architec-
ture search. In International Conference on Learning Representations (ICLR).

Gracheva, E. (2021). Trainless model performance estimation based on random weights initialisa-
tions for neural architecture search. Array, 12:100082.

Hong, R. (2013). Nasbench-pytorch. https://github.com/romulus0914/NASBench-PyTorch.

Kingma, D. P. and Welling, M. (2014). Auto-Encoding Variational Bayes. In 2nd International
Conference on Learning Representations, ICLR 2014, Ban�, AB, Canada, April 14-16, 2014, Conference
Track Proceedings.

7

https://github.com/romulus0914/NASBench-PyTorch

Kipf, T. N. and Welling, M. (2016). Variational graph auto-encoders. NIPS Workshop on Bayesian
Deep Learning.

Kipf, T. N. and Welling, M. (2017). Semi-supervised classi�cation with graph convolutional networks.
In International Conference on Learning Representations (ICLR).

Kornblith, S., Norouzi, M., Lee, H., and Hinton, G. (2019). Similarity of neural network representa-
tions revisited. In International Conference on Machine Learning, pages 3519–3529. PMLR.

Krizhevsky, A. (2009). Learning multiple layers of features from tiny images. Technical report.

Liu, C., Zoph, B., Neumann, M., Shlens, J., Hua, W., Li, L.-J., Fei-Fei, L., Yuille, A., Huang, J.,
and Murphy, K. (2018). Progressive neural architecture search. In Proceedings of the European
Conference on Computer Vision (ECCV).

Liu, H., Simonyan, K., and Yang, Y. (2019). Darts: Di�erentiable architecture search.

Lukasik, J., Friede, D., Zela, A., Hutter, F., and Keuper, M. (2021). Smooth variational graph
embeddings for e�cient neural architecture search. In 2021 International Joint Conference on
Neural Networks (IJCNN), pages 1–8.

Luo, R., Tan, X., Wang, R., Qin, T., Chen, E., and Liu, T.-Y. (2020). Semi-supervised neural architecture
search. ArXiv, abs/2002.10389.

Luo, R., Tian, F., Qin, T., and Liu, T.-Y. (2018). Neural architecture optimization. In NeurIPS.

Ning, X., Zheng, Y., Zhao, T., Wang, Y., and Yang, H. (2020). A generic graph-based neural
architecture encoding scheme for predictor-based nas. In Vedaldi, A., Bischof, H., Brox, T., and
Frahm, J.-M., editors, Computer Vision – ECCV 2020, pages 189–204, Cham. Springer International
Publishing.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,
N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy,
S., Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019). Pytorch: An imperative style, high-
performance deep learning library. In Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc,
F., Fox, E., and Garnett, R., editors, Advances in Neural Information Processing Systems 32, pages
8024–8035. Curran Associates, Inc.

Philipp, G. (2021). The nonlinearity coe�cient - A practical guide to neural architecture design.
CoRR, abs/2105.12210.

Shi, H., Pi, R., Xu, H., Li, Z., Kwok, J., and Zhang, T. (2020). Bridging the gap between sample-based
and one-shot neural architecture search with bonas. In Larochelle, H., Ranzato, M., Hadsell, R.,
Balcan, M. F., and Lin, H., editors, Advances in Neural Information Processing Systems, volume 33,
pages 1808–1819. Curran Associates, Inc.

Wei, T., Wang, C., Rui, Y., and Chen, C. W. (2016). Network morphism. CoRR, abs/1603.01670.

White, C., Neiswanger, W., and Savani, Y. (2021). Bananas: Bayesian optimization with neural
architectures for neural architecture search. Proceedings of the AAAI Conference on Arti�cial
Intelligence, 35(12):10293–10301.

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Yu, P. S. (2021). A comprehensive survey on
graph neural networks. IEEE Transactions on Neural Networks and Learning Systems, 32(1):4–24.

8

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. (2019). How powerful are graph neural networks? In
International Conference on Learning Representations.

Yan, S., Zheng, Y., Ao, W., Zeng, X., and Zhang, M. (2020). Does unsupervised architecture
representation learning help neural architecture search? In NeurIPS.

Ying, C., Klein, A., Christiansen, E., Real, E., Murphy, K., and Hutter, F. (2019). NAS-bench-101:
Towards reproducible neural architecture search. In Chaudhuri, K. and Salakhutdinov, R., editors,
Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings of
Machine Learning Research, pages 7105–7114. PMLR.

Zela, A., Siems, J., Zimmer, L., Lukasik, J., Keuper, M., and Hutter, F. (2022). Surrogate nas
benchmarks: Going beyond the limited search spaces of tabular nas benchmarks. In International
Conference on Learning Representations (ICLR).

9

A Graph Neural Networks

The graph neural networks have been used in performance prediction for neural architecture search
due to their ability to process neural graphs. One of the commonly used architectures is the Graph
Convolutional Network (GCN) (Kipf and Welling (2017)).

Let us denote the node features as - ∈ '=×: (= is the number of nodes, : is the dimension of
features), the matrix of node degrees as � (�88 is the number of outgoing edges from node 8), and
the adjacency matrix as � (�8 9 is 0 if there is an edge from node 8 to node 9 , otherwise 1). Moreover,
let the �lter 6\ = Θ8 9 be a matrix of learnable parameters. Then, the convolution is de�ned as
follows:

- = - ∗� 6\ = 5 (�̄-Θ), (1)

where �̄ = �= + �−
1
2��−

1
2 and 5 (·) is the activation function.

While the GCN has been successfully applied in many applications (e.g. in BONAS (Shi et al.
(2020)), Xu et al. (2019) have shown that it is unable to distinguish graphs based on the embeddings
the network learns. To alleviate this issue, the authors proposed the Graph Isomorphism Network
(GIN). In this network, we have a stack of convolutional layers, where the node features after
applying the :-th layer are computed as follows:

ℎ
(:)
E = "!% ((1 + n (:))ℎ (:−1)

E +
∑

D∈# (E)
ℎ
(:−1)
D) (2)

In this equation, ℎ (:)E are the features of node E after applying : convolutions, # (E) are neighbors
of node E , MLP is a multilayer perceptron, and n is a learnable parameter.

Similar to the variational autoencoder composed from convolutional neural networks (Kingma
and Welling (2014)), the Variational Graph Autoencoder (VGAE) was proposed (Kipf and Welling
(2016)). The encoder part consists of GCN layers, and instead of a latent vector we have a latent
matrix (dimensions are = × ; , = is the number of nodes and ; is a hyperparameter). The decoder
is simply the inner product between the rows of the latent matrix, only the adjacency matrix is
decoded — the inner product of 8-th and 9-th rows is �8 9 . Compared to VGAE, the authors of
arch2vec (Yan et al. (2020)) have used the GIN layers due to their good embedding properties, and
they decode node features as well.

More information on graph neural networks can be found in the survey by Wu et al. (2021).

B The arch2vec Model

The arch2vec is a variational graph autoencoder similar to VGAE (Kipf and Welling (2016)) with
some di�erences — it uses Graph Isomorphism Network (GIN) layers (Xu et al. (2019)) instead of
Graph Convolutional Network (GCN) layers (Kipf and Welling (2017)), and unlike VGAE , its output
is not only the decoded adjacency matrix, but the features as well. The features -̂ are decoded
using a dense layer with softmax activation, and the adjacency matrix �̂ through inner product of
latent vectors. Since -̂ and �̂ are reconstructed independently, it holds:

% (�̂, -̂ |/) = ? (-̂ |/) · % (�̂|/).

The optimised loss is the variational lower bound (Equation 3).

! = E@q (/ |-,�) [log?\ (-,�|/)] − � ! (@q (/ |-,�) | | ?\ (/)) (3)

During the training, the input matrix � is augmented to �̄ = � +�) to allow information �ow in
both directions.

10

C Pretraining Details

We sampled 608 training networks and 77 validation networks from the train and test set respectively,
using the same split of the search space as in arch2vec. Figure 9 shows the distribution of test losses
of the chosen networks — the majority of all NAS-Bench-101 networks has an accuracy higher
than 0.9, so the distribution is skewed. From the CIFAR-10 dataset, we split o� a validation set of
size 1 000, and pretrained the networks on the rest of the train set.

Figure 9: Accuracy distribution of the 608
networks selected for the la-
beled train set.

The training was done according to the NAS-Bench-
101 paper (Ying et al. (2019)) with some di�erences. Since
arch2vec is implemented in PyTorch (Paszke et al. (2019)),
we did not use the original TensorFlow implementa-
tion of NAS-Bench-101, but a PyTorch implementation
(NASBench-PyTorch2 (Hong (2013)). We used the same
augmentation techniques and most of the hyperparameters,
although we had to alter some settings due to resource lim-
its (batch size 128, 12 training epochs, batch normalization
and learning rate set to default values).

We performed the training on a cluster with the follow-
ing resources per training process:

• 16 GB GPU (nVidia Tesla T4)

• 4 core CPU (Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz,
total 16 cores)

• 16 GB RAM

Table 1 summarizes the hyperparameters used for network pretraining on the CIFAR-10 dataset.

Table 1: Pretraining hyperparameters for NAS-Bench-101 networks — our settings.

hyperparameters
batch size 128
initial convolution �lters 128
validation size 1000
num_workers 4
num_epochs 12
gradient clipping norm 5
optimizer SGD
initial learning rate 0.025
�nal learning rate 0.0
momentum 0.9
weight_decay 10−4

learning rate schedule cosine annealing

D Labeled Datasets

The train set was created by passing training CIFAR-10 images (or seen images) through training
networks. Furthermore, there are two validation datasets — one with seen images and unseen
(validation) networks, the second with unseen images and seen (training) networks. The latter is
created from a fraction of the test set — we selected 2 000 random images from the CIFAR-10 test

2Used with kind permission of the author, Romulus Hong.

11

set (denoted test_2k), and evaluated train networks on it. We used the results of 0.1 of training
networks (61 networks) to create the aforementioned validation set, and the remaining networks
to create the test set. The second test set are then unseen networks evaluated on unseen images
from test_2k. Table 2 lists the datasets along with the number of examples.

Table 2: Division into train/validation/test datasets according to source dataset types.

labeled networks CIFAR-10 dataset size
train train validation 608 000
validation validation validation 77 000
validation 0.1 train test_2k 122 000
test 0.9 train test_2k 1 094 000
test validation test_2k 154 000

E Accuracy Model

In this Section, we describe the Accuracy model. Its architecture is similar to the IO model (Figure
1), but instead of processing images, it only passes the �attened embedding through the series of
dense layers. In other words, looking at Figure 1, the layers from input image to concat are excluded,
and the Z vector is connected directly to the two dense – dropout – ReLU layers. The Accuracy
model is trained on the same batches as the IO model, but it predicts test accuracy of networks
instead of their output features.

F Training Details

As there is more labeled than unlabeled data, we interchangeably train on 300 labeled batches
followed by 200 unlabeled batches. For unlabeled batches, we optimize the original loss — variational
lower bound with gaussian prior. The loss for labeled batches is the sum of the unlabeled loss and
L1 loss between the predicted and original output features.

Table 3: Default model hyperparameters

hyperparameter

latent dimension 16
adjacency activation sigmoid
operations activations softmax
reconstruction loss binary crossentropy
dropout 0.3
GIN MLP layers 2
GIN MLP features 128
GIN iterations per layer 5

batch size 32
epochs 10
labeled loss MSE
seeds 1, 2, 3

optimizer Adam
learning rate 10−3

betas [0.9, 0.999]
eps 10−8

Table 3 summarizes the training hyperparameters used. Most of them are the same as in
arch2vec, only the number of epochs is larger (originally 8 epochs). The preprocessing of neural

12

architectures is the same as in the arch2vec implementation (Section B). The training was performed
using the following resources:

• 8 GB GPU (nVidia GeForce RTX 2070)

• 16 core CPU (Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz)

• 32 GB RAM

Figure 10: Train and validation losses (unseen networks
and unseen images) of the IO model.

Figure 11: Train and validation loss of
the Accuracy model.

We trained the models from Section 4 on the IO-dataset for 10 epochs on 3 di�erent seeds.
Figures 10 and 11 show the train and validation losses for both models. In case of the IO model, we
also compute the baseline — we take the mean vector of the output features in the dataset, and we
compute the corresponding MSE loss between the examples and the mean. We report the mean
of the losses and its 95% con�dence interval. While the IO model seems to improve on unseen
images during the training, the unseen networks are challenging — although the loss is below
the baseline, it does not improve during the training. The validation loss for the Accuracy model
slightly decreases, but �uctuates. After the training, the IO model was evaluated on the two test
sets, the results are below the baseline and summarized in Table 5. Table 4 summarizes the main
metrics for both models — validity, uniqueness and reconstruction accuraccies — which however
do not di�er from the original arch2vec.

Table 4: Metrics after epoch 10 (validity, uniqueness and reconstruction accuracies).

model validity uniqueness operators accuracy adjacency accuracy running time

arch2vec 0.467 0.994 0.978 0.986 -*

Accuracy Model 0.466 0.993 0.978 0.983 3544 s
IO Model 0.474 0.993 0.978 0.985 9310 s*

*IO Model and arch2vec were trained together and ran for 9310 seconds total.

Table 5: MSE loss of the IO model on the labeled test sets.

test set loss mean loss std baseline 0.95 ci

unseen nets, unseen images 0.0279 0.0002 0.0319 0.0001
seen nets, unseen images (0.9)* 0.0299 0.0002 0.0361 0.0001
*The other 0.1 of this test set was used as the validation set.

13

G REINFORCE Experiment Details
For REINFORCE and performance prediction experiments, network embeddings have to be extracted
using the trained models. For IO and Accuracy models, the embeddings are extracted in two di�erent
ways — the �rst method is the same as in the original arch2vec (Yan et al. (2020)), namely the mean
of the latent node representations (denoted model 1), the second is the output of the �atten layer
(see Figure 1) just before applying ReLU (denoted model 2). In case of arch2vec, we evaluate the
arch2vec trained on the same batches as the IO model, as well as ‘arch2vec original’ trained as in
the original paper (for 8 epochs).

We ran the REINFORCE search 100 times for all models, and we used the same run settings as
in the original arch2vec paper — estimated 106 seconds limit per one run (via querying NAS–Bench-
101). Additionally, we report results with time shifted by the training time of the 608 networks used
for IO and Accuracy model training (Figure 6) — to each timepoint, the sum of network training
times (approximately 1.3 · 105 seconds) is added. This way, we account for the pretraining time
that is not necessary in case of arch2vec.

H Performance Prediction Experiment Details
In this section, we descibe the performance prediction experiment from the original arch2vec paper,
and how we modi�ed it. The authors trained a gaussian process regressor on 250 randomly chosen
latent features for 10 di�erent seeds, and then predicted the performance of the other architectures.
The evaluation was done only for networks with accuracy larger than 0.8. The authors reported
two metrics, Pearson’s correlation coe�cient r (0.67 ± 0.02) and RMSE (0.018 ± 0.001), for the test
accuracy prediction task.

Table 6: Pearson’s r across di�erent sample sizes.

608 2 500 10 000
Accuracy Model 1 0.669 ± 0.004 0.724 ± 0.012 0.758 ± 0.005
Accuracy Model 2 0.683 ± 0.004 0.679 ± 0.015 0.686 ± 0.010
IO Model 1 0.686 ± 0.005 0.713 ± 0.011 0.732 ± 0.009
IO Model 2 0.653 ± 0.011 0.685 ± 0.017 0.690 ± 0.008
arch2vec 0.699 ± 0.005 0.688 ± 0.011 0.701 ± 0.008
arch2vec original 0.615 ± 0.011 0.660 ± 0.015 0.688 ± 0.009

We used the same embeddings as in the previous experiment, and we tried di�erent train set
sizes. Unfortunately, we were not able to reproduce the results, since the authors did not report the
exact settings for the gaussian process. As so, we used a random forest (with 200 estimators and
max features 4), since it yielded the best results from other common regressors.

Table 7: RMSE across di�erent sample sizes.

608 2 500 10 000
Accuracy Model 1 0.0164 ± 0.0001 0.0174 ± 0.0010 0.0177 ± 0.0006
Accuracy Model 2 0.0174 ± 0.0002 0.0203 ± 0.0013 0.0211 ± 0.0010
IO Model 1 0.0167 ± 0.0001 0.0184 ± 0.0012 0.0191 ± 0.0008
IO Model 2 0.0201 ± 0.0007 0.0208 ± 0.0016 0.0214 ± 0.0009
arch2vec 0.0170 ± 0.0002 0.0204 ± 0.0013 0.0209 ± 0.0009
arch2vec original 0.0183 ± 0.0003 0.0197 ± 0.0012 0.0201 ± 0.0009

Tables 6 and 7 summarize the results of the performance prediction experiment (same results
as in Figures 7 and 8). The Accuracy model is signi�cantly better than the other models in most of
the cases, but the IO model signi�cantly surpasses the arch2vec in Pearson’s r on larger sample
sizes as well.

14

	Introduction
	Related Work
	The IO Dataset
	The Extended Model
	Output Features Analysis
	REINFORCE and Performance Prediction on NAS-Bench-101
	Conclusion
	Limitations and Broader Impact Statement
	Reproducibility Checklist
	Graph Neural Networks
	The arch2vec Model
	Pretraining Details
	Labeled Datasets
	Accuracy Model
	Training Details
	REINFORCE Experiment Details
	Performance Prediction Experiment Details

