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ABSTRACT

Panoptic segmentation, which unifies semantic and instance segmentation into a
single task, has witnessed considerable success on predefined tasks. However,
traditional methods tend to struggle with catastrophic forgetting and poor gener-
alization when learning from a continuous stream of new tasks. While continual
learning aims to mitigate these challenges, our study reveals that existing continual
panoptic segmentation (CPS) methods often suffer from efficiency or scalability
issues. To address these limitations, we propose an efficient adaptation framework
that incorporates attentive self-distillation and dual-decoder prediction fusion
to efficiently preserve prior knowledge while facilitating model generalization.
Specifically, we freeze the majority of model weights, enabling a shared forward
pass between the teacher and student models during distillation. Attentive self-
distillation then adaptively distills useful knowledge from the old classes with-
out being distracted from non-object regions, which effectively enhances knowl-
edge retention. Additionally, query-level fusion (QLF) is devised to seamlessly
integrate the output of the dual decoders without incurring scale inconsistency.
Our method achieves state-of-the-art performance on ADE20K and COCO bench-
marks. Code is available at https://github.com/Ze-Yang/ADAPT.

1 INTRODUCTION

Panoptic segmentation Kirillov et al. (2019b;a); Xiong et al. (2019); Wang et al. (2020); Cheng et al.
(2020); Strudel et al. (2021); Cheng et al. (2021; 2022) is a fundamental computer vision task that
provides a comprehensive understanding of visual scenes Li et al. (2024); Dong et al. (2024) by uni-
fying semantic and instance segmentation. It predicts semantic masks for stuff classes—amorphous
background regions without distinct object boundaries, such as sky, road, and grass—and instance
masks for thing classes, which are countable objects with well-defined boundaries like people,
cars, and animals. This holistic task is crucial for various applications, including autonomous driv-
ing Cordts et al. (2016), robotics Ros et al. (2015), and image editing Aksoy et al. (2018).

In real-world scenarios, models are often required to continually adapt to new classes and evolving
data distributions Yang et al. (2020; 2022). To this end, continual learning (CL) has been developed
to equip models with the capability to learn from a sequence of tasks while maintaining previously
acquired knowledge. A key challenge in CL is known as catastrophic forgetting, where the model
gradually loses information learned from previous tasks during new training stages. This issue has
been extensively studied in classification Li & Hoiem (2017); Rebuffi et al. (2017), object detec-
tion Shmelkov et al. (2017); Liu et al. (2023) and semantic segmentation Cermelli et al. (2020);
Douillard et al. (2021); Yang et al. (2023).

Despite this progress, continual panoptic segmentation (CPS) remains an under-investigated area
with existing approaches exhibiting notable limitations. Concretely, CoMFormer Cermelli et al.
(2023) finetunes the entire model on new tasks while employing knowledge distillation (KD) to
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mitigate forgetting. However, this approach presents three potential risks. First, finetuning the
entire model grants excessive plasticity, increasing the risk of overfitting. Second, although the final
outputs are constrained by the distillation loss, the substantial plasticity in the intermediate layers
can still lead to catastrophic forgetting. Lastly, updating the entire model using KD necessitates
separate forward passes for the teacher and student models, significantly raising computational costs.
Conversely, ECLIPSE Kim et al. (2024) seeks to preserve base performance by freezing most model
weights. This strategy inevitably constrains the model’s capacity to generalize to new tasks due
to restricted plasticity. Moreover, ECLIPSE continuously introduces additional learnable query
features and embeddings for each new task, which may cause scalability issues as the number of
tasks grows.

In this paper, we propose a novel approach for CPS that effectively balances base knowledge reten-
tion and learning new tasks. Building on Mask2Former Cheng et al. (2022), we freeze the image
encoder and pixel decoder to preserve base knowledge and enhance efficiency. Notably, this weight-
freezing design allows for a shared forward pass between the teacher and student models, thereby
significantly reducing computational overhead. By selectively finetuning only the cross-attention
layers and feed-forward networks in the transformer decoder, our adaptation strategy optimally
balances between plasticity (learning new information) and rigidity (retaining old knowledge). In
addition, the computational overhead of our approach remains nearly constant, regardless of the
number of continual learning steps.

To further alleviate forgetting, we develop an attentive self-distillation mechanism, inspired by
focal loss Lin et al. (2017). Existing KD methods Cermelli et al. (2020); Douillard et al. (2021); Yang
et al. (2023) often treat all entities (pixels or instances) uniformly, leading to an overemphasis on
dominant background regions that provide little benefit in preserving prior knowledge. In contrast,
our approach adaptively re-weights the contribution of each entity in the distillation loss based on the
background confidence predicted by the teacher model. This modulated distillation can effectively
concentrate on learning informative entities, enhancing the retention of previous knowledge.

Finally, recognizing that KD can still accumulate errors over successive learning steps, we propose
a dual-decoder prediction fusion paradigm, where we retain the transformer decoder trained on
the base dataset for subsequent inference. Specifically, we utilize this fixed decoder to predict base
classes while the adapted decoder predicts novel classes learned up to the current step. To com-
bine the predictions from these two decoders, we devise a robust query-level fusion (QLF) strategy
to avoid the scale inconsistency issue that occurs in another naive solution — probability-level fu-
sion (PLF). Extensive experiments on ADE20k and COCO benchmarks showcase that our method
outperforms state-of-the-art approaches in CPS.

In summary, our approach, ADAPT, offers an efficient and scalable solution to CPS. Our contribu-
tions can be summarized as follows:

• We present an efficient adaptation strategy that freezes the image encoder and pixel de-
coder, enabling a shared forward pass between the teacher and student models during dis-
tillation, significantly reducing computational overhead.

• We develop an attentive self-distillation loss, which emphasizes informative entities (or
queries) and down-weights less useful ones based on background confidence, improving
the preservation of prior knowledge.

• We devise a dual-decoder prediction fusion mechanism, dubbed as query-level fusion
(QLF), which combines the outputs of the base and adapted decoders without relying on
probability fusion, effectively preventing the scale inconsistency issue present in PLF.

• Our method outperforms current CPS approaches, achieving superior results on ADE20k
and COCO benchmarks.

2 RELATED WORKS

2.1 PANOPTIC SEGMENTATION

Panoptic segmentation, introduced by Kirillov et al. (2019b), aims to unify semantic and instance
segmentation, with Panoptic FPN Kirillov et al. (2019a) extending this concept using a feature pyra-
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mid network for both stuff and thing classes. UPSNet Xiong et al. (2019) improved efficiency by
introducing a learnable panoptic head, while Axial-DeepLab Wang et al. (2020) leveraged axial at-
tention to enhance spatial feature representation. Panoptic-DeepLab Cheng et al. (2020) streamlined
panoptic segmentation using pixel-level classification in a fully convolutional framework. Trans-
formers further advanced the field with MaskFormer Cheng et al. (2021), which introduced mask
classification, simplifying segmentation. Mask2Former Cheng et al. (2022) extended this by provid-
ing a generalized, transformer-based framework for universal segmentation tasks, achieving state-
of-the-art performance. For a fair comparison, we adopt the Mask2Former framework, consistent
with prior works on continual panoptic segmentation Cermelli et al. (2023); Kim et al. (2024).

2.2 CONTINUAL PANOPTIC SEGMENTATION

Continual panoptic segmentation remains a relatively under-explored field, with initial efforts fo-
cusing on addressing the challenge of catastrophic forgetting. Building upon the transformer-based
architecture Mask2Former Cheng et al. (2022), CoMFormer Cermelli et al. (2023) employs knowl-
edge distillation and mask-based pseudo-labeling to mitigate forgetting when finetuning the entire
model. However, this approach yields suboptimal base class performance due to error accumulation
over continual learning steps. ECLIPSE Kim et al. (2024) improves base class retention by freezing
the majority of model weights and progressively introduces learnable prompt features to handle new
tasks. While this strategy improves rigidity, it limits the model’s plasticity and raises scalability
issues as additional prompts are required for each task. To resolve these limitations, we propose a
novel approach that effectively preserves base knowledge while maintaining strong generalization
ability, without incurring scalability issues.

2.3 SELF DISTILLATION

Unlike traditional knowledge distillation Hinton et al. (2015), which typically employs larger teacher
models to guide smaller student models, self-distillation leverages the same architecture to transfer
knowledge gained in earlier stages to improve performance in later stages. This technique has
been applied across various domains to mitigate forgetting, including classification Li & Hoiem
(2017); Rebuffi et al. (2017); Zhang et al. (2021), object detection Shmelkov et al. (2017); Liu et al.
(2023), semantic segmentation Cermelli et al. (2020); Douillard et al. (2021); Yang et al. (2023),
panoptic segmentation Cermelli et al. (2023), and image generation Song et al. (2024). However,
most of these methods require separate forward passes for the teacher and student models, resulting
in considerable computational overhead. To overcome this limitation, we propose to share a single
forward pass for the majority of modules between the teacher and student models. By freezing the
model up to the pixel decoder and adapting only the final decoder, our approach achieves a double
benefit—improving efficiency and retaining base knowledge.

3 METHOD

3.1 PRELIMINARY

Problem Setting. Panoptic segmentation is a challenging task that aims to unify semantic and
instance segmentation. It predicts semantic masks for ‘stuff’ classes (amorphous, background
regions without distinct object boundaries, e.g., sky, road, grass) and instance masks for ‘thing’
classes (countable object classes with distinct boundaries, e.g., people, cars, animals). In the con-
text of continual learning, the objective is to train a model across a sequence of tasks (or steps)
t = 0, 1, 2, . . . , T . At each step t, a new training set Dt = {(xj , yj)}Nt

j=1 is available, where each
input image xj contains at least one new-class mask label, i.e., |yj | ≠ 0. Importantly, at step t,
only the current class labels yj ∈ Ct are available, while the labels from previous steps C0:t−1 or
future steps Ct+1:T are inaccessible, even though these classes may still appear in the input image.
This scenario is known as the overlapped setting Cermelli et al. (2020). Following the convention in
continual learning, the class subsets across tasks are disjoint. A special class label ∅ represents “no
object” detected for a given query, akin to the “background” class in traditional segmentation
methods Chen et al. (2017). Once all learning steps are completed, the model is evaluated on the
full set of classes C0:T encountered throughout training.

3



Published as a conference paper at ICLR 2025

Image 
Encoder

Pixel 
Decoder

Transformer 
Decoder

Transformer 
Decoder

Transformer 
Decoder

For inference only

Prediction fusion

Input Image

Queries

Queries

Queries

Attentive Self-Distillation Combined Segments

{background, sky}

{background, sky, grass}

{background, sky, grass, airplane}

Figure 1: Overview of the proposed dual-decoder framework for continual panoptic segmentation.
During training, attentive self-distillation is applied betweenMt−1

trans andMt
trans. During inference,

the fixed base decoderM0
trans predicts base classes, while the adapted decoderMt

trans handles novel
classes. We apply query-level fusion (QLF) to effectively combine the outputs of these two decoders
and preventing scale mismatches. More details can be found in Sec. 3.2 and Sec. 3.3.

Model Architecture. We adopt Mask2Former Cheng et al. (2022), a widely used transformer-
based model for universal segmentation tasks. Given an input image x, the image encoder Menc
first extracts low-resolution features. These features are then progressively upsampled by the pixel
decoderMpixel to generate high-resolution per-pixel embeddings. The transformer decoderMtrans

utilizes a set of learnable object queries Q = {qi}
Nq

i=1, which interact with the feature pyramid output
by the pixel decoder via cross-attention. For each query qi, the decoder outputs a binary mask Mi ∈
RH

s ×W
s with associated class probabilities ptx(i, c) ∈ RNc+1, where H and W denote the spatial

dimensions of the input image, s is the stride and Nc the number of classes. This architecture offers
two key advantages: (1) compared to per-pixel classification Long et al. (2015), mask classification
enables better differentiation between objects, making it ideal for panoptic segmentation, and (2)
its DETR-style Carion et al. (2020) end-to-end set prediction eliminates the need for a cumbersome
two-stage process He et al. (2017), resulting in a more efficient and streamlined framework.

3.2 ADAPTATION STRATEGY

Continual panoptic segmentation has been scarcely explored. The existing method, CoM-
Former Cermelli et al. (2023), finetunes the entire model on the new sequence of tasks, which
often leads to significant degradation in the performance of base classes. To mitigate this issue,
Kim et al. Kim et al. (2024) freeze most of the model’s weights, allowing only the newly introduced
learnable queries (or prompts) to be updated. While this mechanism helps maintain base class per-
formance (rigidity), it compromises the model’s ability to generalize to new tasks (plasticity). In
this work, we freeze the image encoderMenc and pixel decoderMpixel for efficiency and systemat-
ically investigate the effects of fine-tuning different components of the transformer decoderMtrans,
which consists of L transformer blocks each with self-attention layers {SAi}Li=1, cross-attention
layers {CAi}Li=1 and feed-forward networks {FFNi}Li=1. We observe that freezing the image en-
coderMenc and pixel decoderMpixel significantly reduces catastrophic forgetting while preserving
considerable generalization capacity. Additionally, it enables the feasibility of our self-distillation
design, which relies on the shared and frozen weights. For the transformer decoderMt

trans, we fine-
tune only the cross-attention layers and the feed-forward networks (FFN), striking an ideal balance
between rigidity and plasticity, along with high efficiency. We initialize the learnable queries Qt

from Qt−1 and follow Cermelli et al. (2023) for classifier initialization.

3.3 ATTENTIVE SELF-DISTILLATION

Even though only the transformer decoder is updated during continual learning, the forgetting issue
persists as the previous class labels C0:t−1 are no longer available. To mitigate this issue, we resort to
knowledge distillation, which penalizes the discrepancies between the predicted class probabilities
of the teacher model T and student model S given the same input. Following the prior method Yang
et al. (2023) in continual semantic segmentation, we opt to establish correct class correspondences
for knowledge distillation by modifying the old model outputs. Notably, the natural bias toward

4



Published as a conference paper at ICLR 2025

newly learned classes in continual learning results in false negatives (FN) for base classes and false
positives (FP) for novel classes, degrading both base and novel class performance. Consequently,
the key objective is to mitigate this bias using the knowledge from the previous classes C0:t−1. To
this end, we apply knowledge distillation only to the queries B that are not matched with any new
classes Ct in the bipartite matching Carion et al. (2020), which can be formulated as:

ℓθ
t

kd(x, y) = −
1

|B|
∑
i∈B

∑
c∈C0:t∪{∅}

p̂t−1
x (i, c) log ptx(i, c) , (1)

where ptx(i, c) refers to the probability of class c for query qti predicted byMt
trans, and p̂t−1

x (i, c) is
the probability pt−1

x (i, c) predicted byMt−1
trans, expanded with zero probability for the added novel

classes c ∈ Ct, formally as:

p̂t−1
x (i, c) =

{
0 if c ∈ Ct
pt−1
x (i, c) otherwise .

(2)

However, this distillation loss treats all queries equally, despite the fact that over 95% of queries
contain no object. This can cause the model to overemphasize these dominant no object
regions, which contribute little to preserving previously learned knowledge. To address this issue,
we propose adaptively re-weighting the contribution of each query within the distillation loss. In-
spired by focal loss Lin et al. (2017), we incorporate a modulating term α(1− p̂t−1

x (i, ∅))γ into the
distillation loss, resulting in our adaptive weighted version:

ℓ̄θ
t

kd(x, y) = −
1

|B|
∑
i∈B

α(1− p̂t−1
x (i, ∅))γ

∑
c∈C0:t∪{∅}

p̂t−1
x (i, c) log ptx(i, c) , (3)

where γ ≥ 0 is a tunable focusing parameter and α > 0 is a scaling factor. When γ > 1, this
modulating term down-weights queries that are predicted as no object with high confidence
(p̂t−1

x (i, ∅) → 1) by the old model. The parameter γ controls the shape of the re-weighting curve.
Specifically, the larger value of γ extends the flat range of the curve and down-weights more no
object queries with lower confidence. In addition, the scaling factor α allows the modulating
term to be greater than one, making it possible to emphasize the contribution of object queries
(p̂t−1

x (i, ∅) → 0). When γ = 0, the proposed adaptive re-weighted KD loss reduces to the standard
non-re-weighting version. We empirically observe that γ = 3 and α = 4 yields the best results.

Discussion. We highlight the distinction of our adaptive re-weighted self-distillation in three as-
pects. First, thanks to our model freezing and adaptive decoder design, the teacher model and
student model share the same weights up to the pixel decoderMpixel. Unlike traditional knowledge
distillation (KD) based methods Cermelli et al. (2023); Douillard et al. (2021), which require sepa-
rate forward passes for the teacher model and student model, our approach performs only a single
forward pass except for the final dual decoders Mt−1

trans and Mt
trans, manifesting higher efficiency.

Second, in contrast to Kim et al. (2024), which encounters scalability issues due to the continual in-
troduction of new prompt features and embeddings for each new task, our design remains invariant
to the number of tasks T or the number of classes |Ct| within each task t, allowing for greater scal-
ability. Third, distinct to Cermelli et al. (2023), which applies unbiased KD Cermelli et al. (2020)
to all queries, our approach selectively applies modulated KD only to queries that are not matched
with any new class, thereby maintaining old knowledge more effectively and efficiently.

3.4 DUAL-DECODER PREDICTION FUSION

Although knowledge distillation has been adopted to alleviate catastrophic forgetting, it tends to
accumulate errors over successive continual learning steps, devastating old knowledge learned in
the early stage. This challenge motivates us to retain the transformer decoder M0

trans trained on
the base dataset D0, as it contains precise knowledge for decoding useful information from the
feature pyramid output by the pixel decoder Mpixel. In particular, only the weights of the cross-
attention layers and the feed-forward networks need to be stored, since the self-attention layers are
fixed and shared across all learning steps. Notably, the retained base decoder does not participate
in the training phase, resulting in no additional computational overhead. During inference, the base
decoderM0

trans is used to predict masks for the base classes C0, while the adapted decoderMt
trans

handles the new classes C1:t learned up to the current step t. Following Cheng et al. (2022); Cermelli
et al. (2023), we use the Softmax activation function to calculate the final class scores.
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Figure 2: Illustration of Probability-Level Fusion (PLF) and Query-Level Fusion (QLF). Each query
predicts a segment with associated class scores. The query square and corresponding segment edge
are bolded in the same color (red or purple) to indicate their correspondence.

Probability-level fusion. As the transformer decodersM0
trans andMt

trans are responsible for predict-
ing base and novel classes respectively, an effective mechanism is needed to combine their outputs
for the final predictions. One straightforward method, which we refer to as probability-level fusion
(PLF), is to replace the base-class c ∈ C0 probability scores pti,c for each query i predicted byMt

trans

with the corresponding scores p0i,c predicted byM0
trans. For brevity, here we omit x in ptx(i, c) and

use the subscript version pti,c. After obtaining the combined class scores for each query, we need
to determine their associated binary masks. Specifically, the corresponding mask M̂ t

i for the i-th
query q̂ti is derived by selecting between the masks M0

i and M t
i , which are generated by the base

decoderM0
trans and the adapted decoderMt

trans, respectively. The selection process is determined
by the combined probability score p̂ti,c and is defined as follows:

p̂ti,c =

{
p0i,c if c ∈ C0,
pti,c otherwise,

M̂ t
i =

{
M0

i if ĉi ∈ C0,
M t

i otherwise.
(4)

Here, ĉi = argmaxc p̂ti,c denotes the class with the highest combined probability score. This
mechanism ensures that masks predicted by the base decoder are used for base classes (c ∈ C0),
while masks from the adapted decoder are utilized for novel classes (c ∈ C1:t). However, this
approach can lead to inconsistencies between the probability scales of base and novel classes, as
they are not optimized on the same data distribution. We observe that base-class probabilities tend
to have larger values than novel-class probabilities, which can lead to confusion between base and
novel classes. For instance, as shown in Fig. 2, the novel class “airplane” is misclassified as the base
class “sky” due to this discrepancy in probability-level fusion.

Query-level fusion. In light of the inconsistency issue in PLF, we propose query-level fusion (QLF)
as a simple yet effective alternative. As illustrated in Fig. 2, we discard the base-class probabili-
ties pti,c(c ∈ C0) predicted byMt

trans so that the adapted decoder only makes predictions for novel
classes. Conversely, M0

trans is solely responsible for predicting the base classes. In this way, the
“airplane”, though with high confidence in the base class “sky”, can be correctly suppressed by
the “no object” class with even higher confidence. Otherwise, the “airplane” will be misclas-
sified as “sky”, as occurred in PLF (See left side of Fig. 2). During query-level fusion, the more
accurate sky mask with a finer boundary, predicted by the base decoder, supersedes the less precise
version generated by the adapted decoder, successfully eliminating error accumulation. This pro-
cess is achieved using the standard panoptic inference procedure (see Algorithm 1 in Appendix) in
Mask2Former Cheng et al. (2022).

4 EXPERIMENTS

4.1 DATASET AND EVALUATION METRICS

We validate the effectiveness of our approach on ADE20K Zhou et al. (2017) and COCO Lin et al.
(2014) benchmarks. ADE20K consists of 25,574 training images and 2,000 validation images. This
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dataset includes a total of 150 classes, divided into 100 “thing” classes and 50 “stuff” classes. Unlike
COCO Lin et al. (2014), with an average of 7.7 instances and 3.5 classes per image, and Pascal
VOC Everingham et al. (2010), with 2.3 instances and 1.4 classes per image, ADE20K averages 19.5
instances and 9.9 classes per image. The complexity of scenes in ADE20K makes it a challenging
benchmark for continual panoptic segmentation. COCO consists of 118,287 training images and
5,000 validation images with 133 classes. We leave the COCO results in the Appendix. We adopt
the conventional Panoptic Quality (PQ) Kirillov et al. (2019b) metric used in panoptic segmentation,
which is defined as the product of Recognition Quality (RQ) and Segmentation Quality (SQ):

PQ = RQ× SQ =
|TP |

|TP |+ 1
2 |FP |+ 1

2 |FN |︸ ︷︷ ︸
Recognition Quality (RQ)

×
∑

(p,g)∈TP IoU(p, g)

|TP |︸ ︷︷ ︸
Segmentation Quality (SQ)

,

where IoU(p, g) is the Intersection-over-Union between a predicted segment p and a ground truth
segment g. TP , FP , and FN represent true positives, false positives, and false negatives, respec-
tively. RQ measures how well the model detects and classifies objects, while SQ evaluates how well
the predicted segments match the ground truth in terms of shape and overlap.

4.2 BASELINES AND CONTINUAL PROTOCOLS

We adhere to the continual panoptic segmentation protocol from ECLIPSE Kim et al. (2024), evalu-
ating both 100- n (n = 5, 10, 50) and 50- n (n = 10, 20, 50) scenarios. For instance, 100-10
refers to base training with 100 classes, followed by 5 incremental steps, each introducing 10 new
classes. Note that a smaller n results in more continual steps, making the scenario more challeng-
ing. We re-implement the representative methods MiB Cermelli et al. (2020) and PLOP Douil-
lard et al. (2021), originally developed for continual semantic segmentation, as competitive base-
lines. Additionally, we include the state-of-the-art methods CoMFormer Cermelli et al. (2023) and
ECLIPSE Kim et al. (2024), which are specifically designed for continual panoptic segmentation,
in our evaluation. Alongside these, we also evaluate the simplest baseline, FT (Fine-Tuning), which
finetunes the base model on new tasks without any specific continual learning design. All exper-
iments are conducted under the overlap setting, following the latest state-of-the-art approach Kim
et al. (2024). After the final step T , we evaluate performance on base classes (C0), novel classes
(C1:T ), and the full set of classes (C0:T , denoted as all).

4.3 IMPLEMENTATION DETAILS

Following state-of-the-art methods Cermelli et al. (2023); Kim et al. (2024), we adopt the
Mask2Former Cheng et al. (2022) model with an output stride of 4, using ResNet-50 He et al.
(2016) as the backbone, unless otherwise stated. To ensure fairness, we follow the same training
hyperparameters as our competitors Cermelli et al. (2023); Kim et al. (2024), with the exception of
using a higher learning rate, which leads to faster convergence and slightly improved performance.
For all settings, we report Panoptic Quality (PQ) results on the standard validation set. Experiments
are conducted using two NVIDIA RTX 6000 Ada GPUs on ADE20K and four on COCO. For more
details, please refer to A.5.

4.4 PERFORMANCE

As shown in Table 1, the FT baseline fails to retain previous knowledge due to the absence of
anti-forgetting mechanisms. This leads to catastrophic forgetting, not only of base class knowl-
edge but also of the new classes learned in earlier steps, resulting in poor overall performance on
novel classes. MiB Cermelli et al. (2020) and PLOP Douillard et al. (2021) demonstrate significant
improvements over FT, thanks to unbiased knowledge distillation and multi-scale local POD distil-
lation. CoMFormer Cermelli et al. (2023) improves performance further, particularly in the 100-n
settings, surpassing PLOP by +5.5 PQ on base classes in the 100-10 scenario. ECLIPSE Kim
et al. (2024) mitigates the forgetting issue by only updating newly introduced prompts, which brings
improvements on base classes, such as a +5.2 PQ gain over CoMFormer in the 100-10 setting.
Our approach, FDAS, consistently surpasses all state-of-the-art methods across all scenarios. In the
100-10 setting, FDAS outperforms CoMFormer and ECLIPSE on both base (+6.2/+1.0 PQ) and
novel (+9.2/+9.8 PQ) classes, achieving 42.2 PQ on base classes and 26.3 PQ on novel classes. In
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Method 100-5 (11 tasks) 100-10 (6 tasks) 100-50 (2 tasks)
1-100 101-150 all 1-100 101-150 all 1-100 101-150 all

FT† 0.0 1.3 0.4 0.0 2.9 1.0 0.0 25.8 8.6
MiB† Cermelli et al. (2020) 24.0 6.5 18.1 27.1 10.0 21.4 35.1 19.3 29.8

PLOP† Douillard et al. (2021) 28.1 15.7 24.0 30.5 17.5 26.1 41.0 26.6 36.2
CoMFormer† Cermelli et al. (2023) 34.4 15.9 28.2 36.0 17.1 29.7 41.1 27.7 36.7

ECLIPSE‡ Kim et al. (2024) 41.1 16.6 32.9 41.4 18.8 33.9 41.7 23.5 35.6
ECLIPSE* Kim et al. (2024) 39.5 14.7 31.2 41.2 16.5 33.0 39.9 21.1 33.6

ADAPT (Ours) 42.3 19.8 34.8 42.2 26.3 36.9 42.5 27.8 37.6
joint 43.4 32.9 39.9 43.4 32.9 39.9 43.4 32.9 39.9

(a)

Method 50-10 (11 tasks) 50-20 (6 tasks) 50-50 (3 tasks)
1-50 51-150 all 1-50 51-150 all 1-50 51-150 all

FT‡ 0.0 1.7 1.1 0.0 4.4 2.9 0.0 12.0 8.1
MiB‡ Cermelli et al. (2020) 34.9 7.7 16.8 38.8 10.9 20.2 42.4 15.5 24.4

PLOP‡ Douillard et al. (2021) 39.9 15.0 23.3 43.9 16.2 25.4 45.8 18.7 27.7
CoMFormer‡ Cermelli et al. (2023) 38.5 15.6 23.2 42.7 17.2 25.7 45.0 19.3 27.9

ECLIPSE‡ Kim et al. (2024) 45.9 17.3 26.8 46.4 19.6 28.6 46.0 20.7 29.2
ECLIPSE* Kim et al. (2024) 46.4 16.8 26.7 47.1 17.7 27.5 46.0 18.6 27.7

ADAPT (Ours) 49.5 21.3 30.7 49.7 26.2 34.0 49.8 28.7 35.7
joint 50.5 34.6 39.9 50.5 34.6 39.9 50.5 34.6 39.9

(b)

Table 1: Continual panoptic segmentation results (PQ) on the ADE20K Zhou et al. (2017) bench-
mark, with the number of base classes |C0| set to (a) 100 and (b) 50. All methods are based upon the
Mask2Former framework Cheng et al. (2022). The joint setting indicates that all classes are trained
simultaneously in an offline manner. † and ‡ indicate results are taken from Cermelli et al. (2023)
and Kim et al. (2024), respectively. * denotes results reproduced using the official code.

the more challenging 50-10 scenario, FDAS exceeds CoMFormer and ECLIPSE by +11.0/+5.7 PQ
on base classes and +3.1/+4.5 PQ on novel classes, respectively. Beyond its strong performance,
FDAS offers a computational advantage by utilizing a single-forward self-distillation design, unlike
MiB, PLOP, and CoMFormer, which require double forward passes. Compared to ECLIPSE, our
FDAS balances strong base performance with enhanced generalization capacity, made possible by
the complementary fixed and adaptive decoders combined with self-distillation.

4.5 ABLATION STUDY

Unless otherwise stated, we conducted ablation studies on the multi-step ADE20K 100-10 setting.

4.5.1 OVERALL STUDY

Building upon the baseline CoMFormer Cermelli et al. (2023), Table 2 highlights the complementary
contributions of each proposed component, demonstrating their collective impact on the overall
performance improvements. Our adaptation strategy improves both base and novel performance,
showing enhanced plasticity and rigidity in balance. Incorporating attentive self-distillation further
boosts novel class performance since the inherent bias toward new classes is alleviated. As expected,
prediction fusion substantially enhances knowledge retention, bridging up the base performance gap
with joint training. Finally, combining all three components yields the best results, demonstrating
that the proposed components are complementary to each other. In summary, our approach offers a
well-balanced and efficient solution for continual panoptic segmentation.

We fixed the weights of the image encoder and pixel decoder for two key reasons. First, finetuning
these two components does not enhance the model’s generalization capacity, yet it substantially
increases the risk of overfitting and computational cost, making it an inefficient trade-off. In contrast,
freezing the image encoder and pixel decoder helps alleviate the forgetting issue since their weights
are preserved to retain base knowledge. Interestingly, comparing the first two rows of Table 2,
the transformer decoder itself (ablated in the following paragraph) demonstrates sufficient learning
capability to generalize to new tasks. Second, this design allows a large portion of weights to be
shared between the teacher model and the student model during knowledge distillation, which we
refer to as self-distillation.
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Adaptation Attentive Self- Predition 100-10 (6 tasks)
Strategy Distillation Fusion 1-100 101-150 all

36.0 17.1 29.7
✓ 38.3 20.1 32.3
✓ ✓ 37.2 22.6 32.4
✓ ✓ 42.4 22.8 35.8
✓ ✓ ✓ 42.2 26.3 36.9

Table 2: Effect of the proposed components. Without attentive self-distillation, unbiased KD
serves as the baseline. When the adaptation strategy is omitted, weight-shared self-distillation be-
comes infeasible, and the entire old model is used as the teacher model.

FFN Self-att Cross-att Trainable 100-10 (6 tasks)
(SA) (CA) Params 1-100 101-150 all

0.29M 42.0 5.3 29.7
✓ 9.75M 42.3 23.6 36.1

✓ 2.66M 42.5 16.6 33.9
✓ 2.66M 42.6 17.2 34.1

✓ ✓ 12.12M 42.1 22.5 35.6
✓ ✓ 12.12M 42.2 26.3 36.9

✓ ✓ 5.03M 42.3 18.0 34.2
✓ ✓ ✓ 14.50M 42.4 24.3 36.4

Table 3: Impact of fine-tuning different components of the transformer decoder. FFN, Self-att
(SA), and Cross-att (CA) refer to the feed-forward network, self-attention layers, and cross-attention
layers, respectively.

4.5.2 ADAPTATION STRATEGY

Based on this, we investigate the impact of fine-tuning different components within the transformer
decoder, as presented in Table 3. Finetuning the FFN alone yields strong results (23.6 PQ) on novel
classes, while cross-attention (CA) or self-attention (SA) alone shows limited generalization ability.
It highlights the critical role of FFN in enhancing model generalization. The best performance is
achieved when both FFN and CA are finetuned together, reaching 26.3 PQ on novel classes and 36.9
PQ overall. In contrast, finetuning all components or combining FFN with SA does not lead to sub-
stantial gains, indicating that the combination of FFN and CA offers the most effective improvement
in generalization without overfitting.

4.5.3 ATTENTIVE SELF-DISTILLATION

As shown in Table 4, the effect of the attentive self-distillation is influenced by the modulation
factors α and γ. When γ = 0, the attentive self-distillation loss degrades to the uniform version,
which results in poorer performance on novel classes (e.g., PQ drops to 17.1 and 15.7 for α = 2 and
α = 4, respectively) regardless of different values of α.This can be attributed to the overwhelming
influence of the dominant no object regions, which diverts the distillation process away from
informative old class objects. As γ increases, the attentive self-distillation can effectively focus on
informative regions (old classes C0:t−1), resulting in improved novel performance. This is because,
without retention of old knowledge, the base classes will be misclassified as novel classes due to the
inherent bias in continual learning, leading to false positive predictions for novel classes and hence
lowering PQ. In contrast, these mistakes can be effectively corrected by our attentive self-distillation
with a concentration on informative old classes. Specifically, the combination of α = 4 and γ = 3
yields the highest overall PQ of 36.9, striking a balance between retaining base knowledge (42.2
PQ) and learning novel classes (26.3 PQ). This demonstrates the effectiveness of re-weighting the
contribution of queries based on no object confidence, allowing the model to concentrate on
preserving previous knowledge while efficiently learning new information.

4.5.4 DUAL-DECODER PREDICTION FUSION

As shown in Table 5, without any fusion strategy, the model struggles to retain base knowledge
due to accumulated errors over multiple learning steps. Introducing probability-level fusion (PLF),
where base-class probabilities are replaced by those from the base decoder, significantly boosts
base performance to 43.1 PQ. However, PLF negatively affects novel classes, reducing PQ from
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α γ
100-10 (6 tasks)

α γ
100-10 (6 tasks)

1-100 101-150 all 1-100 101-150 all
1 0 42.6 17.5 34.2 1 2 41.9 24.3 36.0
2 0 42.6 17.1 34.1 2 2 42.1 23.9 36.0
4 0 42.6 15.7 33.6 4 2 42.4 25.0 36.6
10 0 42.7 10.1 31.9 10 2 42.5 22.8 36.0
1 1 42.2 23.9 36.1 1 3 42.0 22.2 35.4
2 1 42.3 23.8 36.2 2 3 42.1 23.5 35.9
4 1 42.5 22.4 35.8 4 3 42.2 26.3 36.9
10 1 42.6 20.1 35.1 10 3 42.5 23.3 36.1

Table 4: Effect of α and γ in the attentive self-distillation
loss.

Fusion 100-10 (6 tasks)
Strategy 1-100 101-150 all

Without 37.2 22.6 32.4
Probability-level 43.1 20.8 35.7

Query-level 42.2 26.3 36.9

Table 5: Effect of dual-decoder pre-
diction fusion.

Method Training Inference 100-10 (6 tasks)
#Params #Iters Time FLOPs GPU Mem. Time 1-100 101-150 all

CoMFormer Cermelli et al. (2023) 44.38M 4k 3.36 hrs 97.46G 4010 MB 43.9 ms 36.0 17.1 29.7
ECLIPSE Kim et al. (2024) 0.55M 16k 3.48 hrs 99.27G 5407 MB 68.7 ms 41.2 16.5 33.0

ADAPT (Ours) 12.12M 4k 2.27 hrs 105.76G 7127 MB 48.3 ms 42.2 26.3 36.9

Table 6: Efficiency comparison on both training and inference phases. The training time is
reported using two NVIDIA RTX 6000 Ada GPUs. FLOPs, GPU memory usage, and time cost are
calculated on a per-image, per-device basis during inference with the same device setup.

22.6 to 20.8, due to scale inconsistency between the base and novel class probabilities. In contrast,
query-level fusion (QLF) resolves this inconsistency by eliminating the need for probability fusion,
resulting in a more balanced performance across both base and novel classes and yielding the highest
overall PQ of 36.9.

4.5.5 EFFICIENCY

Table 6 highlights the efficiency of our approach. During incremental training, ADAPT requires
only 2.27 hours for five training steps, representing a reduction of 34.8% and 32.4% in training time
compared to CoMFormer Cermelli et al. (2023) and ECLIPSE Kim et al. (2024), respectively. The
reduced training time can be attributed to ADAPT’s frozen- and shared-weight design between the
teacher and student models, which eliminates the need for dual-model forward passes, a key re-
quirement for knowledge distillation in CoMFormer. Additionally, our efficient adaptation strategy
enables a fourfold reduction in the number of training iterations for each step, decreasing from 16k
in ECLIPSE Kim et al. (2024) to 4k in our approach. This substantial reduction contributes to the
overall decrease in training time. In terms of inference, our method incurs a modest 6.5% increase
in FLOPs compared to ECLIPSE. However, this is accompanied by substantial performance gains,
particularly in the novel PQ, which improves from 16.5 to 26.3—a remarkable 59.4% increase. Sim-
ilar improvements are observed when compared to CoMFormer. Furthermore, the inference speed
of ADAPT remains comparable to that of CoMFormer, highlighting the efficiency and practicality
of our approach. In contrast, ECLIPSE demonstrates slower inference speeds, likely attributable to
its unoptimized implementation.

5 CONCLUSION

In this paper, we propose a novel approach for continual panoptic segmentation that effectively
balances the retention of base knowledge and learning new tasks. Concretely, we present an efficient
adaptation strategy that freezes the image encoder and pixel decoder, allowing a shared forward
pass between the teacher and student models, significantly saving computational costs. Upon this
baseline, we introduce an attentive self-distillation loss, which emphasizes informative queries and
down-weights non-object regions during distillation, to effectively enhance knowledge retention.
Additionally, we devise a query-level fusion mechanism to combine the predictions from the dual-
decoders. It successfully avoids the scale inconsistency issue as occurred in probability-level fusion.
Our method, ADAPT, demonstrates superior performance on ADE20k and COCO benchmarks,
showcasing its effectiveness and scalability in continual learning.
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A APPENDIX

A.1 CONTINUAL PANOPTIC SEGMENTATION ON THE COCO BENCHMARK

We evaluate our approach on the COCO panoptic segmentation benchmark Lin et al. (2014), which
consists of 118,287 training images and 5,000 validation images distributed across 133 classes. In
alignment with Kim et al. (2024), we use 83 base classes and incrementally add 50 additional classes.
It is important to note that the class order in COCO panoptic segmentation follows a sequence of
“things” and “stuff”. We report results based on a randomly shuffled class order as proposed by Kim
et al. (2024), given by the following sequence:

[1, 3, 10, 47, 58, 9, 88, 16, 126, 120, 17, 129, 35, 119, 59, 57, 54, 90, 75, 38, 80, 48, 131,

56, 95, 25, 43, 2, 68, 110, 32, 14, 29, 11, 7, 52, 83, 102, 84, 73, 5, 45, 117, 93, 87, 46,

118, 34, 61, 19, 77, 111, 63, 98, 130, 66, 79, 97, 33, 86, 127, 104, 64, 49, 36, 6, 91, 50,

112, 8, 65, 132, 92, 27, 122, 22, 51, 85, 115, 28, 89, 70, 62, 12, 101, 108, 125, 123, 39, 81,

20, 40, 41, 114, 128, 74, 18, 99, 100, 60, 30, 124, 69, 37, 13, 23, 116, 55, 26, 121, 71, 67,

106, 133, 42, 107, 105, 109, 82, 103, 76, 94, 24, 15, 78, 53, 21, 96, 72, 113, 44, 31, 4].

We compare our method with two baseline approaches, PLOP Douillard et al. (2021) and CoM-
Former Cermelli et al. (2023), with the ResNet-50 backbone network under the overlap setting. As
illustrated in Table 7, our approach outperforms these baselines in terms of all class performance.

Method 83-5 (11 tasks) 83-10 (6 tasks)
1-83 84-133 all 1-83 84-133 all

CoMFormer Cermelli et al. (2023) 33.5 21.9 29.1 38.3 30.7 35.5
ECLIPSE Kim et al. (2024) 44.2 18.7 34.6 44.9 21.3 36.0

ADAPT (Ours) 45.3 23.2 37.0 45.7 28.8 39.3
Joint 51.1 52.1 51.5 51.1 52.1 51.5

Table 7: Continual panoptic segmentation results (PQ) on the COCO Lin et al. (2014) benchmark
with the number of base classes set to 83 under the overlap setting.

base novel all
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Figure 3: Continual panoptic segmentation result (PQ) distributions for 10 randomly shuffled class
orders under the ADE20K Zhou et al. (2017) 100-10 scenario.

A.2 IMPACT OF CLASS ORDER SHUFFLING ON PERFORMANCE

We examine the robustness of our method with respect to randomly shuffled class orders. We con-
duct experiments on the ADE20K 100-10 scenario, utilizing the 10 randomly shuffled class orders
proposed by Kim et al. (2024) for consistency. The PQ distributions are presented in Figure 3
through boxplots. We note that the results reported in Kim et al. (2024) are affected by an evaluation
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Method 100-5 (11 tasks) 100-10 (6 tasks) 100-50 (2 tasks)
1-100 101-150 all 1-100 101-150 all 1-100 101-150 all

MiB‡ Cermelli et al. (2020) 20.5 4.3 15.1 27.7 7.1 20.8 33.7 10.5 26.0
PLOP‡ Douillard et al. (2021) 19.2 8.8 15.8 28.9 10.6 22.8 34.8 12.4 27.4

CoMFormer‡ Cermelli et al. (2023) 20.1 8.2 16.1 29.7 10.3 23.3 34.7 13.2 27.6
ECLIPSE‡ Kim et al. (2024) 34.4 8.9 25.9 34.4 10.2 26.4 35.2 13.3 27.9

ADAPT (Ours) 36.6 9.3 27.5 36.5 11.7 28.3 36.6 18.0 30.4

Table 8: Continual Panoptic Segmentation results (PQ) on ADE20K Zhou et al. (2017) under the
disjoint setting. All approaches are based on the same framework Mask2Former Cheng et al. (2022)
with the ResNet-50 He et al. (2016) backbone. ‡ indicate results are taken from Kim et al. (2024).

bug, where performance was consistently averaged over the default class order regardless of shuf-
fling. After correcting this issue, we observe that the results deviate from those originally reported
in Kim et al. (2024). Notably, our method, ADAPT, exhibits strong resilience to various shuffled
class orders, consistently outperforming alternative approaches.

A.3 CONTINUAL PANOPTIC SEGMENTATION IN THE DISJOINT SETTING

The pioneering work of Cermelli et al. (2020) introduced two distinct settings for continual learn-
ing: disjoint and overlap. Since the overlap setting is generally considered more challenging and
realistic, we focused primarily on it in our main paper. In this section, we present experimental re-
sults for continual panoptic segmentation on ADE20K Zhou et al. (2017) under the disjoint setting.
The results, as summarized in Table 8, highlight the superior performance of ADAPT over existing
methods in continual panoptic segmentation.
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Figure 4: Qualitative visualization for continual panoptic segmentation under the ADE20K Zhou
et al. (2017) 100-10 scenario.
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A.4 QUALITATIVE VISUALIZATIONS

We provide qualitative visualizations in Fig. 4 to demonstrate the superior rigidity and plasticity of
our approach. Specifically, ADAPT effectively preserves base class knowledge, such as cabinet
and door (first column), while also generalizing well to novel classes, including fan (second
column), tent (third column), trade name (last column), and trash can (last column).

A.5 MORE IMPLEMENTATION DETAILS

Following state-of-the-art methods Cermelli et al. (2023); Kim et al. (2024), we adopt the
Mask2Former Cheng et al. (2022) model with an output stride of 4, using ResNet-50 He et al.
(2016) as the backbone, unless otherwise stated. To ensure fairness, we follow the same training
hyperparameters as our competitors Cermelli et al. (2023); Kim et al. (2024), with the exception of
using a higher learning rate, which leads to faster convergence and slightly improved performance.
The initial learning rate is set to 10−4 for all steps in the 100-n settings. In the 50-n settings, we use
2 × 10−4 for the incremental steps (t > 0), while maintaining 10−4 during base training (t = 0).
We train the network for 160k iterations during base training, and for 400 iterations per class in all
subsequent steps. The batch size is consistently set to 16 across all settings. We use the AdamW
optimizer Loshchilov & Hutter (2018) with the same weight decay values as in Cheng et al. (2022).
For all settings, we report Panoptic Quality (PQ) results on the standard validation set. Experiments
are conducted using two NVIDIA RTX 6000 Ada GPUs on ADE20K and four on COCO.
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Algorithm 1 Panoptic Inference with Mask2Former

Require: query class scores: Tensor of shape [num queries, num classes+1]
Require: query masks: Tensor of shape [num queries, height, width]
Require: num classes: Number of classes
Require: threshold: Confidence threshold for selecting valid queries
Require: overlap threshold: Minimum overlap threshold for Non-Maximum Suppression (NMS)
Ensure: panoptic seg: Final panoptic segmentation mask
Ensure: segments info: Information of the detected segments

1: Initialize panoptic seg ← zeros(height, width)
2: Initialize segments info← []
3: Initialize current segment id← 0
4:
5: scores, labels← max(softmax(query class scores), dim=1)
6: query masks← sigmoid(query masks)
7: valid← (labels ̸= background) & (scores > threshold)
8: valid scores← scores[valid]
9: valid query masks← query masks[valid]

10:
11: score masks← valid scores× valid query masks ▷ [num valid queries, height, width]
12: class id masks← argmax(score masks, dim=0) ▷ [height, width]
13:
14: for each query i in valid queries do
15: pred class← valid scores[i]
16: mask area← (class id masks = i).sum()
17: original area← (valid query masks[i] > 0.5).sum()
18: mask ← (class id masks = i) & (valid query masks[i] > 0.5)
19: if mask area > 0 and original area > 0 and mask.sum() > 0 then
20: if mask area/original area > overlap threshold then
21: current segment id← current segment id+ 1
22: panoptic seg[mask]← current segment id
23: segments info.append(
24: {
25: “id”: current segment id,
26: “category id”: pred class
27: }
28: )
29: end if
30: end if
31: end for
32: return panoptic seg, segments info
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