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ABSTRACT

It is often possible to perform reduced order modelling by specifying linear sub-
space which accurately captures the dynamics of the system. This approach be-
comes especially appealing when linear subspace explicitly depends on parame-
ters of the problem. A practical way to apply such a scheme is to compute sub-
spaces for a selected set of parameters in the computationally demanding offline
stage and in the online stage approximate subspace for unknown parameters by
interpolation. For realistic problems the space of parameters is high dimensional,
which renders classical interpolation strategies infeasible or unreliable. We pro-
pose to relax the interpolation problem to regression, introduce several loss func-
tions suitable for subspace data, and use a neural network as an approximation
to high-dimensional target function. To further simplify a learning problem we
introduce redundancy: in place of predicting subspace of a given dimension we
predict larger subspace. We show theoretically that this strategy decreases the
complexity of the mapping for elliptic eigenproblems with constant coefficients
and makes the mapping smoother for general smooth function on the Grassmann
manifold. Empirical results also show that accuracy significantly improves when
larger-than-needed subspaces are predicted. With the set of numerical illustrations
we demonstrate that subspace regression can be useful for a range of tasks includ-
ing parametric eigenproblems, deflation techniques, relaxation methods, optimal
control and solution of parametric partial differential equations.

1 INTRODUCTION

The goal of reduced order modelling (ROM) is to identify uninformative degrees of freedom and
discard them (Bai et al., 2005). The result is a simplified system that is easier to analyse and simu-
late. This program is computationally demanding and only justified in the setting when many related
problems are repeatedly solved and it is possible to use information from encountered problems to
build a reduced model for the problems to come. Typical examples are parametric models for par-
tial and ordinary differential equations (PDEs and ODEs), and usual applications are optimisation,
sensitivity analysis, uncertainty quantification and control.

As an illustration consider proper orthogonal decomposition (POD) for time-dependent PDEs (Volk-
wein, 2013), (Hesthaven et al., 2022). To apply POD, one computes solutions for a representative set
of parameters and builds a reduced basis for spatial variables by the best low-rank approximation.
When new parameters arrive, a computed basis is used to discretise PDE that is solved at reduced
cost. In global POD this basis is the same for all incoming parameters and in local POD basis ex-
plicitly depends on new parameters. As one may expect, local POD is more expressive than global
POD, but can be more challenging to arrange.

POD is an example of the general class of techniques where linear subspace parametrises useful
degrees of freedom. While nonlinear ROM techniques exist, linear methods are better understood
theoretically, easier to apply in practice, and provide sufficiently well approximation, especially
when local versions are available (Franco et al., 2024). In this setting the main challenge is to
construct reliable approximation to the function that maps new parameters to linear subspaces.

We analyse this problem under the following assumptions: (i) the set of parameters of interest is
specified in form of probability distribution, (ii) it is known how to compute good or optimal linear
subspace for each parameter, (iii) the numerically stable method to construct reduced problem from
basis is available. In short, we consider regression on grassmannian. We approach the regression
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problem by specifying loss function and using neural networks as parametric models to accommo-
date high-dimensional parameter spaces pervasive in practical problems.

More specifically, our main contributions are:

1. Mathematical formulation of subspace regression problem and examples of applications,
including eigenspace approximation, local POD, learning basis for deflation and two-grid
method, approximating balanced-truncation basis for optimal control problems.

2. Several loss functions, suitable for neural network training, including the stochastic one
that scales well with the increase of subspace size.

3. Embedding technique: a strategy to learn a larger subspace containing the target one. Em-
pirically, this technique significantly improves accuracy for subspace learning.

4. Two theoretical justification of embedding technique: derivative of smooth function on
Grassmann manifold can be reduced by embedding; complexity of the subspace regression
problem for elliptic eigenproblem with constant coefficients.

5. Empirical evaluation of proposed techniques on a diverse set of problems including com-
parisons with neural surrogates, kernel methods and classical interpolation in normal coor-
dinates.

2 SUBSPACE REGRESSION

In this section we formulate precisely what we mean by subspace regression and describe several
applications.

2.1 DEFINITION OF SUBSPACE REGRESSION PROBLEM

In linear space Rn we define k-dimensional subspace S(W ) =
{
Wα,α ∈ Rk

}
by specifying tall

full rank matrix W ∈ Rn×k. Matrices W1 and W2 represent the same subspace if there is an invert-
ible matrixG such thatW1 =W2G. The equivalence class of such matrices is denoted by ⌈W ⌉. The
set of all k-dimensional subspace of n-dimensional space Gr(k, n) is known as Grassmann manifold
or grassmanian (Ciaramella et al., 2025), (Bendokat et al., 2024).

Let V : Rp → Gr(k, n) be a function that maps the space of parameters r ∈ Rp to the subset of
grassmanian represented as the set of tall full rank matrices V (r). We assume that parameters r
are sampled from distribution r ∼ pr and that dataset D = {(r1, V1) , . . . , (rm, Vm)} of m i.i.d.
samples is available. For a given parametric model Yθ : Rp → Gr(r, n), r ≥ k we want to identify
parameters θ⋆ such that Yθ⋆(r) approximates V (r)1. We formulate this task as optimisation problem

θ⋆ = argmin
θ

(
E

r∼pr

[L (Yθ(r), V (r))]

)
≃ argmin

θ

(
1

m

m∑
i=1

L (Yθ(ri), Vi)

)
. (1)

Loss function for subspace regression problem is assumed to have two properties:

L(A,B) = L(Ã, B̃) for arbitrary Ã ∈ ⌈A⌉, B̃ ∈ ⌈B⌉;
L(A,B) > 0 and L(A,B) = 0 iff S(B) ⊂ S(A).

(2)

In Section 3 we provide explicit expression for loss functions with these properties.

Aside from unusual invariance requirement (2), optimisation problem (1) is a standard machine
learning formulation of regression problems which can be solved with stochastic optimisation for
arbitrary model Yθ(r) that admits efficient evaluation of gradients.

1Note, that we allow Yθ to have more columns than target V . In this context approximation is understood
in terms of subspace inclusion S (V ) ⊂ S (Wθ). As we explain later, redundancy introduced this way can
significantly improve accuracy.
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2.2 EXAMPLES OF SUBSPACE REGRESSION PROBLEM

Approximate eigenspaces. Consider eigenproblem for Schrödinger equation

−∆ψ(x) + U(x)ψ(x) = Eψ(x), ∥ψ∥2 <∞, (3)

where U(x) is potential energy and E is energy of the system. One way to find eigenpairs is to ap-
proximate ψ(x) by a finite series ψ(x) =

∑K
i=1 αiϕi(x) and enforce Petrov-Galerkin condition that

residual is orthogonal to all ϕi(x). Continuous problem (3) reduces to eigenproblem for Hermitian
matrix and can be solved in O

(
K3
)

operations (Trefethen & Bau, 2022). For eigenproblems we are
typically interested only in extremal eigenspaces corresponding to either smallest or largest eigen-
values. In this case it is desirable to select a small number of basis functions ϕi(x) that approximate
sufficiently well the subspace of interest. When eigenproblem (3) is solved repeatedly for many
potential functions U(x) this lead us to subspace regression problem (1) used to approximate the
mapping U(x) →

{
f(x) : f(x) =

∑K
i=1 αiϕi(x), αi ∈ C

}
.2 That is, we wish to predict subspace

spanned by firstK eigevectors. When this mapping is learned from a set of examples, eigenproblems
for unobserved potentials U can be solved efficiently, since low-dimensional candidate subspace for
eigenfunctions is available.

Intrusive POD for time-dependent PDEs. As an example of time-dependent PDE we use Burgers
equation

∂u(x, t)

∂t
+ u(x, t)

∂u(x, t)

∂x
=

∂

∂x

(
ν(x)

∂u(x, t)

∂x

)
, u(0, t) = u(1, t) = 0, u(x, 0) = u0(x). (4)

One starts with spatial discretisation which reduces equation (4) to the set of ODEs and de-
fine inner product ⟨·, ·⟩W for discretised u(t) that approximates L2 inner product. For this set
of ODEs the reduced degrees of freedom ψi are defined as solution to optimisation problems
min

∫ T

0
dt ∥u(t)− ⟨ψi, u(t)⟩W ψi∥2W subject to ⟨ψi, ψj⟩ = 0, j < i, ⟨ψi, ψi⟩ = 1. When dis-

cretised, this scheme lead to optimal basis computed with SVD from snapshot matrix (Volkwein,
2013). This basis can only be computed when equation (4) is integrated, so POD is justified only in
situation when many related problems are solved. We apply subspace regression with POD to learn
the function that maps PDE data to the subspace formed by reduced basis {ψ1, . . . , ψk} for some
small k. Notably, this allows us to apply local POD to high-dimensional parametric problems.

Coarse grid correction for iterative methods. Consider stationary diffusion equation with Dirich-
let boundary conditions

−div k(x) grad ϕ(x) = f(x), x ∈ Γ, ϕ(x)|∂Γ = 0. (5)

When equation (5) is discretised with finite difference or finite element method, it reduces to linear
problem Aϕ = f , where A is large sparse matrix and ϕ, f are discretised solution and right-hand
side of (5). To exploit sparsity of A one can solve linear equation with relaxation method. General
relaxation method split matrix additively A = D + C, where D is regular with known inverse
(Saad, 2003). Given the split, if iteration scheme xn+1 = xn + D−1 (b−Axn) is convergent,
steady state is exact solution x = A−1b. Convergence is linear and its rate is defined by spectral
radius of error propagation matrix I − D−1A. To improve convergence rate, one can augment
iterative method with coarse-grid correction (Trottenberg et al., 2001). This techniques allows one
to remove influence of leading subspace formed by colums of matrix V of I − D−1A by solving
small reduced linear system for error equation V ⊤AV e = r, where e and r are error and residual in
the subspace S(V ). Naturally, subspace regression (1) for this problem approximates the mapping
A→ S(V ) or k(x)→ S(V ) for linear systems resulting from equation (5).

Deflation for conjugate gradient. Krylov subspace methods provide a more systematic way to
solve large sparse linear systems (Saad, 2003). For linear system with symmetric positive definite
matrix A resulting from discretisation of equation (5), the method of choice is conjugate gradient
(CG) (Hestenes et al., 1952). Similar to other Krylov methods, on step r, CG identify optimal
solution within Krylov subspace Kr = span

{
b, Ab, . . . , Ar−1b

}
, where span refers to the subspace

formed by linear combinations of vectors in the set. Since powers of A are involved, the most
readily available vectors are from the subspaces with large eigenvalues (Saad, 2011). To improve

2Suitable discretisation of parametrisation of both ϕ and U is assumed.
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convergence of method it is reasonably to include eigenspaces V with small eigenvalues to the
approximation space Kr. The resulting method is deflated CG and the approximation space is Kr ∪
S(V ) (Saad et al., 2000). In analogy with previous example, the subspace regression problem
considered approximates A → S(V ) or k(x) → S(V ), but this time V spans eigenspaces with
small eigenvalues of matrix A.

Balanced-truncation for linear-quadratic control. Suppose we want to solve the following linear
quadratic control problem

ẏ(t) = Ay(t) +Bu(t), z(t) = Cy(t),

J =

∫
dt
(
(z(t))

⊤
Qz(t) + (u(t))

⊤
Ru(t)

)
+ (z(T ))

⊤
Mz(T ),

(6)

where y(t) is state variable, u(t) is control, z(t) is observable, A,B,C,Q,R,M are matrices of
appropriate sizes, R is symmetric positive definite, Q and M are symmetric positive semidefinite.
The goal is to find a control signal u(t), t ∈ [0, T ] that minimises cost function J .

In the situation when number of state variables y(t) is large, one may want to apply ROM to compute
optimal control at a reduced cost. An established way to do that is balanced truncation (Moore,
2003). Roughly speaking, balanced truncation compute a special coordinate system y(t) = T ỹ(t)
that discounts variables that are both unobservable and uncontrollable, so only a few first columns
of matrix T can be used to accurately model (6). This is done by finding coordinate system that
simultaneously diagonalises observability gramian Go and controlability gramian Gc defined as
solutions of Lyapunov equations A⊤Wo +WoA+C⊤C = 0, AWc +WcA

⊤ +BB⊤ = 0 (Moore,
2003), (Volkwein, 2013). In this case the goal of subspace regression (1) is to approximate the
mapping A,B,C → S

(
T
)
, where T is tall matrix assembled from first few columns of T .

3 THEORETICAL RESULTS

We proceed by characterising loss functions, introducing the subspace embedding technique and
providing its theoretical justification.

3.1 LOSS FUNCTIONS

Requirements (2) that allow loss function to work with Gr(k, n) data enforce right GL(k) invariance.
As a consequence all loss functions introduced below are all based on orthogonal projectors.
Theorem 1. Let A ∈ Rn×k, B ∈ Rn×p, p ≤ k be tall full rank matrices.

1. Loss function L1(A,B) = p −
∥∥Q⊤

BQA

∥∥2
F

satisfies requirements (2), where A =

QARA, B = QBRB are reduced QR decompositions of A and B, ∥·∥F is Frobenius
norm3.

2. Let z ∈ Rk be a random variable with zero mean and identity covariance matrix. Loss
functions L2(A,B; z) = minu ∥Au−QBz∥22 does not depend on the choice of A from
⌈A⌉, where B = QBRB is QR decomposition.

3. On average L2 equals L1, i.e., Ez [L2(A,B; z)] = L1(A,B).

Proof. Appendix A.

Loss L1 is essentially the same as the difference of orthogonal projectors. Note, that L1(A,B) ≥ 0
with equality reached if and only if matrices A and B share the same columns space, since in
this case

∥∥Q⊤
BQA

∥∥2
F

= p. Loss L2 introduces two modifications: (i) projector in Riemannian
distance is replaced with error of least squares problem; (ii) to remove second projector, stochastic
Hutchinson trace estimation is used. Reformulation with least square problem allows one to use
normal equation, and various tools from randomised numerical linear algebra, e.g., randomised

3Reduced QR decomposition of tall full rank matrix A ∈ Rn×k is a factorisation A = QARA, where
QA ∈ Rn×k has orthonormal columns, RA ∈ Rk×k is upper triangular with nonzero elements on the diagonal.
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preconditioned Cholesky-QR (Garrison & Ipsen, 2024), blendenpik solver (Avron et al., 2010), and
sketching (Woodruff et al., 2014). We will see in Section 4, that loss function L2(A,B) based on
normal equation scales better than L1(A,B) with the increase of subspace size.

3.2 SUBSPACE EMBEDDING

In the definition of subspace regression problem (1) we allow to approximate function Rp →
Gr(k, n) by function Rp → Gr(r, n) where r ≥ k. We call this strategy subspace embedding.
It is justified because of two unique properties of regression and interpolation on grassmanian: (i)
inclusion of vector subspaces is well-defined; (ii) subspace, predicted by regression model or inter-
polated by standard techniques, is used to construct a reduced model. From the latter property one
may expect similar or improved accuracy when the predicted subspace from Gr(r, n) contains target
subspace from Gr(k, n).

We will show empirically in Section 4 that subspace embedding significantly improves accuracy and
generalisation gap. Here we argue that prediction of larger-than-needed subspaces align well with
inductive bias of neural networks known as f-principle or spectral bias (Xu et al., 2019). F-principle
is an observation that neural networks tend to learn smoothed versions of the target functions. As
we show below, embedding techniques may improve smoothness of learned function.
Theorem 2. Let V : R → Gr(k, n) be continuously differentiable on t ∈ [0, T ], V (t)⊤V (t) =
Ik. It is always possible to construct piecewise continuous function W : R → Gr(r, n), r >

k, W (t)⊤W (t) = Ir such that 1
2

∥∥W (t)W (t)⊤ − V (t)V (t)⊤
∥∥2
F
− r−k

2 is arbitrary small and∥∥∥Ẇ (t)
∥∥∥2
F
≤
∥∥∥V̇ (t)

∥∥∥2
F

, where inequality is strict for all points where
∥∥∥V̇ (t)

∥∥∥2
F
̸= 0.

Proof. Appendix B; See Appendix C for subspace embedding example.

Theorem 2 implies that, by increasing the subspace size, one can always approximate continuously
differentiable functions arbitrarily well and simultaneously reduce its derivative. F-principle sug-
gests that the latter property makes learning easier for neural networks.

3.3 COMPLEXITY OF PARAMETRIC EIGENPROBLEM

To illustrate difficulties one may encounter and to further justify embedding technique we consider
complexity of subspace regression problem for parametric elliptic eigenproblem with constant co-
efficient

−
D∑
i=1

ai
∂2ϕi1,...,iD (x1, . . . , xD)

∂x2i
= λi1,...,iDϕi1,...,iD (x1, . . . , xD), (7)

where ai > 0, xi ∈ [0, 1] and Dirichlet boundary conditions are assumed.

For problem (7) general eigenfunction is ϕi1,...,iD (x1, . . . , xD) =
∏D

j=1 sin(πijxj) and the set

of eigenfunctions does not depend on coefficients ai. Observe that λi1,...,iD =
∑D

j=1 aj (πij)
2,

so coefficients ai define the order of eigenvectors. Below we formally characterise mapping from
coefficients to k-th eigenvector and eigenspace.
Theorem 3. Suppose eigenvectors of (7) are ordered according to the increase of eigenvalues. Let
ϕk be an eigenvector on position k, let Vk be an eigenspace spanned by vectors on positions up to
k. Consider mappings Fk : a1, . . . , aD → ϕk and Gk : a1, . . . , aD → Vk.

1. Fk, Gk are piecewise constant functions that map real numbers to elements of sets
SFk

, SGk
. Sets SFk

, SGk
are finite with #Fk

(k,D),#Gk
(k,D) distinct elements.

2. Let Wl, l > 1 be a subspace obtained by union of Vl for distinct a1, . . . , aD. Number of
vectors in Wl is #Fk

(l,D) + 1.

3. #Fk
(k,D) ∼ 1

(D−1)!k (log k)
D−1 for fixed D and large k .

4. #Fk
(k,D) ≤ kDlog2 k for fixed k and large D.

5
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5. #Gk
(k,D) ≥ 1

(D−1)!k
D−1 for fixed D and large k.

6. #Gk
(k,D) ≥ 1

(k−1)!D
k−1 for fixed k and large D.

Where ∼ is asymptotic expansion and ≥,≤ are lower and upper bound on leading asymptotic.

Proof. Appendix D; See Appendix E for examples.

Theorem 3 suggests that for problem (7) mappings from coefficient to k-th eigenvector ϕk or sub-
space Vk are piecewise constant functions with rapidly growing number of constant regions when
either k or D increases. The complexity (the number of regions) of the subspace prediction prob-
lem exceeds the complexity of k-th eigenvector prediction. However, results also suggest that the
number of unique eigenvectors within Vk grows at the same rate as the number of eigenvectors on
position k. This means, the large number of distinct regions in G comes from a large number of
possible combinations of an asymptotically small number of vectors. Given that, the complexity
of mapping from coefficients to subspace decreases, if one predicts subspace of larger dimension
Ṽk ⊇ Vk. For example, if one is willing to predict subspace of dimension #F (k,D) in place of Vk
of dimension k, the mapping a1, . . . , aD → Ṽk ⊇ Vk may be chosen to have constant value.

4 NUMERICAL EXPERIMENTS

We present several numerical experiments to corroborate our theoretical findings. The discussion
of control problems appears in Appendix I. All numerical results are reported as single-run metrics
without explicit error bars. To study sensitivity to train-test split we perform several dedicated ex-
periments. Results suggest that variance is low and does not affect main conclusions. The details
are available in Appendix J. For most problems we report relative error measured in percents. For
predicted quantity ṽ and ground truth value v it reads 100%×∥v − ṽ∥2

/
∥v∥2. For eigenvalue prob-

lems the numerator is Z2 adjusted as explained below. For iterative methods we report convergence
plots for relative error, without additional factor 100%.

4.1 EIGENSPACE PREDICTION

We considered several eigenvalue problems: (i) D = 1 eigenproblem with Schrödinger operator (3)
with parametric family of expanded Morse oscillator (Le Roy et al., 2006), (ii) D = 2 Schrödinger
operator (3) with parametric family of two expanded Morse oscillators (Carpenter et al., 2018),
(iii) D = 2 two datasets, k1 = k2 and k1 ̸= k2, for elliptic eigenproblem (5) (left-hand side of
the equation) with contrast coefficient sampled from gaussian random field, (iv) D = 3 dataset
for elliptic eigenproblem with diffusion coefficient k1 = k2. In all experiments we used FFNO
architecture (Tran et al., 2021) , a modification of FNO (Li et al., 2020), and performed extensive
hyperparameter grid search. Details on dataset generation and training protocol are available in
Appendix F. To contextualise subspace regression we provide results for two baselines.

Regression with Z2 adjusted l2 loss. Eigenvectors are defined up to a sign, so in place of subspace
losses specified in Theorem 1 one can try to directly predict eigenvectors with Z2 adjusted l2 loss
lZ2

(v, u) = min± ∥v ± u∥2.

Interpolation in Riemannian normal coordinate system. A standard technique of manifold in-
terpolation applied to grassmannian (Amsallem, 2010), (Ciaramella et al., 2025), (Zimmermann,
2019). For a given query, k closest points are selected from the training set. One point supplies
common tangent space, i.e., it is used to compute logarithms for the remaining points. Since log-
arithms lay in the same tangent space they can be interpolated with any techniques desirable (we
use RKHS (Bishop & Nasrabadi, 2006)). After interpolation of logarithms, the exponential map is
computed.

Additional results are available in Appendix F. Here we highlight several interesting trends.

Subspace losses are unsuccessful without subspace embedding technique. Figure 1b contains
results of learning subspace spanned by first 10 eigenvectors for D = 2 on grid 100 × 100 elliptic
eigenproblem withL2(A,B; z) (lossL1(A,B) leads to the same accuracy). Neural network predicts

6
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Figure 1: Selected results for eigenspace prediction: (a) Comparison of training time for losses
L1(A,B), L2(A,B; z) from Theorem 1. On D = 2 grid Nx = Ny = 100 we observe L2(A,B; z)
scales better with dimension size; (b) Illustration of subspace embedding technique from Section 3.2
for D = 2 elliptic eigenproblem, prediction of first 10 eigenvectors. Prediction of larger subspace
manifestly improves accuracy and reduces generalisation gap; (c) Relative error for individual eigen-
vector predictions for the same problem as in (b) but trained with Z2-adjusted l2 loss. Similarly to
results of Theorem 3 we observe a steep increase of problem complexity with eigenvector number.
See Section 4.1 for details.

subspace of sizes 10, 20, 30, 40 according to subspace embedding strategy Section 3.2. Results
demonstrate subspace embedding is efficient in decreasing test error from 30% for subspace of
dimension 10, to test error 2% for subspace of dimension 40 (0.4% of the total number of degrees
of freedom). It is less clear from Figure 1b, but the generalisation gap also systematically improves,
suggesting that complexity of the problem decreases. Similar conclusions are valid for D = 2 QM
and D = 3 eigenproblems.

Table 1: Relative errors for QM problems.

dataset interp. LZ2
L1(A,B)

D = 1 4.69% 2.33% 0.09%
D = 2, a 31.9% 19.52% 0.65%
D = 2, b 92.64% 48.56% 15.58%

Classical interpolation is not competitive. In Ta-
ble 1 we gather results (best for each method) for
one D = 1 and two D = 2 QM problems. Clas-
sical interpolation is reasonably accurate only on
the simplest problem in D = 1, but LZ2

loss still
results in better accuracy. The reason is likely clas-
sical interpolation struggles in high-dimensional
subspaces because observations are too sparse to
naively approximate tangent space in the region
of interest by finding nearest neighbours. On QM
datasets accuracy of subspace regression is consistently better than for other approaches.

Loss without QR scales much better for larger subspace sizes. In Figure 1a we demonstrate
wall clock training time for L1(A,B) and L2(A,B; z) (least squares problem is solved with normal
equation) per epoch on the same hardware for the same FFNO architectures. For small subspace
sizes the training time the methods are roughly on par, but with the increase of subspace size QR
starts to drastically slow down training with L1 loss.

Training with loss LZ2
is reasonable only for several first eigenvectors. In Figure 1c we present

results for learning individual eigenvectors (a separate network is trained for each eigenvector) for
D = 2 elliptic eigenproblem.Train error is reasonably small for all eigenvectors, which imply neu-
ral networks can successfully approximate them. Rapid growth of the test error with eigenvector
number indicates the increase of problem complexity in agreement with Theorem 3.

Neural networks trained with subspace embedding technique learn smoother maps. Theorem 2
suggests it is possible to decrease derivative by embedding of geodesics into a larger space. This
provides only a circumstantial evidence that the same may happen when neural networks are trained
with subspace embedding technique. In Appendix F we gather empirical results that support such
conclusion. The results are based on several “smoothness indicators”: the error of linear model,
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Frobenius norm of derivative, and mean cosine of angles between subspaces at nearby points. We
refer interested readers to Appendix F.5.

Subspace regression can speed-up classical iterative eigensolvers. As an example of hybrid ap-
proach we consider combination of subspace regression and LOBPCG (Knyazev, 2001). LOBPCG
is a classical iterative matrix-free eigensolver that can approximate extremal eigenspaces. To apply
it in combination wit hsubspace regression we use trained neural network to predict subspace, and
initialise LOBPCG with solution of reduced eigenproblem. Note, that the cost of such initialisa-
tion is negligible small comparing to the full cost of LOBPCG iterations. We observe 2 to 3 times
faster converges and 2 orders lower relative error on average when subspace regression is used for
initialisation. More details are available in Appendix F.6.

Table 2: Accuracy for D = 3 elliptic eigenproblem.

Nsub L1(A,B) L2(A,B; z) Lstab
2 (A,B; z)

6 24.77% 31.46% 28.28%
12 13.69% 17.12% 15.88%
24 9.71% − 9.49%
48 7.54% 16.3% 7.4%

Loss L2(A,B; z) may become unstable.
From results summarised in Figure 1a one
can assume that L2(A,B; z) is always
preferable. Results for D = 3 problem (el-
liptic eigenproblem, grid 30× 30× 30, pre-
diction of first 3 eigenvectors) summarised
in Table 2 reveal a more nuanced picture.
Loss L2(A,B; z) clearly performs worse
than L1(A,B) and even fails for subspace
size 24. The reason for that is numerical
instability of solvers based on the normal
equation. To stabilize L2(A,B; z) we apply Cholesky-QR2 (Yamamoto et al., 2015). The results
for stabilised loss shows that accuracy becomes comparable to L1(A,B) and even slightly better for
larger subspace dimensions.

4.2 PARAMETRIC PDE PROBLEMS

We considered two PDEs: (i) D = 1 + 1 viscous Burgers equation, related to benchmark from (Li
et al., 2020); (ii) D = 2 elliptic problems (5). Our main operator is FFNO and the solutions strategy
we use is classical intrusive POD4. For datasets description and training details see Appendix G. We
compare subspace regression with several methods.

Regression with FFNO. We apply FFNO, an extension of Fourier Neural Operator, to parametric
PDEs in a standard way similar to (Tran et al., 2021).

Regression with DeepONet. Classical architecture based on the universal approximation theorem
of operators (Lu et al., 2019). DeepONet can be understood as end-to-end training of non-intrusive
POD with basis functions parametrised by implicit neural representation or physics-informed neural
networks (Sitzmann et al., 2020), (Lagaris et al., 1998), (Raissi et al., 2019).

Intrusive POD with DeepONet/FFNO basis. When DeepONet is trained, learned spatial or spa-
tiotemporal basis functions can be used to extract basis (by method directly related to POD) suitable
for spectral methods or intrusive POD (Meuris et al., 2021), (Meuris et al., 2023). As suggested in
the discussion section of (Meuris et al., 2021), the same can be done with FNO.

Deep POD. Projector-based loss is used directly to extract basis from available snapshot matrices or
steady-state solutions (Franco et al.). In the referenced publication this approach is combined with
PCA-Net described below.

Kernel methods. A non-parametric technique where the RKHS method is used for encoder, pro-
cessor and decoder (Batlle et al., 2024).

PCA-Net. A non-intrusive technique with classical POD used as both encoder and decoder, and
feedforward network served as processor (Hesthaven & Ubbiali, 2018), (Bhattacharya et al., 2021).

POD and oracle. Two POD-based baselines. POD is an intrusive variant of global POD (Volkwein,
2013). Oracle is an intrusive variant of local POD computed with optimal subspace. In problems we
consider, error achieved by oracle is the best possible for a given number of basis vectors.

4Recall, that when coefficients in the reduced basis expansion are predicted by some model we have non-
intrusive POD. When basis is used to generate reduced ODE that is later integrated we have intrusive POD.
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Figure 2: Relative errors for selected baselines. Label “subspace” refers to subspace regression. For
the elliptic problem (a) subspace dimension of ROM methods is bounded by 100, and for DeepPOD,
and subspace regression – by 40. Oracle is omitted for the elliptic problem because it has perfect
accuracy with 10 basis functions. For Burgers equation subspace dimensions for all methods ≤ 50.
FFNOb and DeepONetb refer to an intrusive ROM with bases extracted from FFNO and DeepONet.

Additional results are available in Appendix G. Here we highlight the most important findings.

Subspace regression leads to competitive accuracy. In Figure 2a and Figure 2b we observe that
subspace regression performs similar or better than DeepPOD. Among other intrusive methods only
classical POD leads to comparable accuracy. Bases extracted from FFNO and DeepONet are worse
than global POD in all experiments. Pure regression approaches – FFNO, DeepONet, PCANet –
appear to be less accurate. PCANet similar to kernel methods shows significant overfitting on our
problems, likely resulting from poor inductive bias of the architecture. Note however, that regression
approaches are not directly comparable with intrusive techniques, since they do not require a solution
of reduced model.

Representations learned by neural networks are highly non-optimal. Representation of all neu-
ral networks are inefficient if one compares them with the oracle. For example, by construction of
an elliptic dataset, a subspace of dimension 10 is enough for perfect accuracy. Both DeepPOD and
subspace regression reach error about < 1.5% with subspaces of dimension 40, DeepONet needs
to have > 200 basis functions to reach comparable accuracy, and FFNO with 64 basis functions in
the last hidden layer lead to 10% relative error. Basis functions built from FFNO and DeepONet are
similarly inefficient. The same observations hold for Burger’s equation.

4.3 ITERATIVE METHODS FOR LINEAR SYSTEMS

We illustrate subspace regression for iterative methods using D = 2 elliptic problems (5). Said iter-
ative methods are deflated CG and two-grid correction for the Jacobi method introduced in Section 2
and explained in more detail in Appendix H. Figure 3a and Figure 3b shows average convergence
curves on test set and Appendix H contains the rest of relevant data.

Iterative methods are less sensitive to subspace quality. On the training stage, neural networks
were presented with data only on first 10 eigenvectors. Despite that, neural networks trained with
subspace embedding nearly match the performance of deflated CG with exact eigenspaces of larger
size, for coarse-grid corrected Jacobi method convergence speed with learned subspaces is even
slightly better. One possible explanation hinted by Theorem 3 is that from distribution of subspaces
some information about nearby vectors can be recovered.

Seemingly minor variations in problem setting can lead to substantial variations in the com-
plexity of the learning problem. Initially for the Jacobi method we posed a subspace regression
problem as an approximation of leading eigenspaces of error propagation matrix I−D−1A, whereD
is diagonal of A. Neural networks with and without subspace embedding completely failed to learn.
After inspection of the dataset we found that the leading eigenspace contains a complicated mixture
of functions with low and high frequencies. Since the learning problem appeared to be completely
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Figure 3: Convergence results for iterative methods. Learned methods are marked with solid lines,
and dashed lines correspond to iterative methods with optimal deflation and coarse-grid spaces, M
refers to subspace size.

hopeless, we reformulated subspace regression using error propagation matrix of damped Jacobi
iteration I − ωD−1A with ω = 0.9. In contrast to the standard Jacobi method, the damped version
leads to subspaces formed by low frequency functions. As evident from Figure 3b the resulting
mapping is easily learnable. A more detailed report can be found in Appendix H.

5 CONCLUSION

Subspace regression – a prediction of subspace from available data – is an interesting problem with a
variety of applications including reduced order modelling for partial differential equations, approxi-
mation of eigenspaces for eigenproblems, construction of iterative methods for linear problems and
optimal control. We formalise subspace regression as a statistical learning problem and introduce
several loss functions that are suitable for subspace data. For most of the applications considered
we observe that the learning problem is too complicated even when a specialised loss function is
used. To simplify learning we propose to approximate a given subspace with a subspace of larger
dimension. The resulting technique, called subspace embedding, significantly improves accuracy
and generalisation gap. The idea of subspace embedding is that redundancy typically simplifies the
learning process and leads to more robust performance. Even though this strategy clearly helps,
it introduces a large gap between dimensions of optimal and learned subspaces. The same gap is
observed for the classical operator learning problems, when the neural network is trained to approx-
imate solution mapping for parametric PDE. In this case the learned basis can be extracted from
the last hidden layer. This neural basis is far from optimal, requiring an excessive number of basis
vectors to be used for reaching comparable accuracy. Whether this inefficiency in representation can
be resolved, remains an open problem.

6 REPRODUCIBILITY STATEMENT

Code used for training, evaluation and dataset generation along with all trained models and gen-
erated datasets will be available in the unanonymized version of the paper. In the current version
detailed description of architectures, hyperparameters, dataset generation and training details appear
in Appendix I, Appendix H, Appendix G, Appendix F.
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A PROOF OF THEOREM 1

1. To show that L1(A,B) does not depend on the chosen representative we observe that

L1(A,B) = p−
∥∥Q⊤

BQA

∥∥2
F
=

1

2
∥PB − PA∥2F −

k − p
2

, (8)

where PA = A
(
A⊤A

)−1
A⊤, PB = B

(
B⊤B

)−1
B⊤ are orthogonal projectors on the

columns spaces of A and B. When QR decompositions A = QARA, B = QBRB are
available, projectors become PA = QAQ

⊤
A, PB = QBQ

⊤
B and identity (8) can be verified

by algebraic manipulations

1

2
∥PB − PA∥2F −

k − p
2

=
1

2
tr
((
QBQ

⊤
B −QAQ

⊤
A

) (
QBQ

⊤
B −QAQ

⊤
A

))
− k − p

2

=
1

2
tr
(
QBQ

⊤
B

)
+

1

2
tr
(
QAQ

⊤
A

)
−
∥∥Q⊤

BQA

∥∥2
F
− k − p

2
= p−

∥∥Q⊤
BQA

∥∥2
F
. (9)

From the equivalent form of loss L1(A,B) given in equation (8) one can immediately con-
clude that L1(A,B) does not depend on the representatives A,B chosen from ⌈A⌉, ⌈B⌉.
The reason is projectors are invariant under right GL transformations. For example,
PA = PÃ, where Ã = AG and G is arbitrary non-degenerate matrix G ∈ Rk×k

Ã
(
Ã⊤Ã

)−1

Ã⊤ = AG
(
G⊤A⊤AG

)−1
G⊤A⊤

= AGG−1
(
A⊤A

)−1 (
G⊤)−1

G⊤A⊤ = A
(
A⊤A

)−1
A⊤. (10)

Now, when we know that L1(A,B) does not depend on the chosen representatives, it is
easy to show that the minimal value of loss is 0 and it is reached when S(B) ⊂ S(A).
To see this, select representatives such that QA =

(
Q̃B Q̃⊥

B

)
, where Q̃B is block matrix

formed from subset of columns of QB and columns of Q̃⊥
B are all orthogonal to QB . This

selection is always possible since (I −QBQ
⊤
B) +QBQ

⊤
B = I . Representatives selected in

this form give

L1(A,B) = p−
∥∥∥Q⊤

BQ̃B

∥∥∥2
F
= p− q ≥ 0, (11)

where Q̃B ∈ Rn×q, q ≤ p. The last identity follows by construction: Q̃B is composed
from columns of QB . Loss becomes zero only if p = q, or, equivalently, S(B) ⊂ S(A).

2. We first show that

L2(A,B; z) = min
u
∥Au−QBz∥22 = ∥(I − PA)QBz∥22 , (12)

where PA = A
(
A⊤A

)−1
A⊤ is orthogonal projector on the columns space of A. Using

I = (I − PA) + PA, and A (I − PA) = (I − PA)A = 0 we obtain

min
u
∥Au−QBz∥22 = min

u
∥Au− PAQBz − (I − PA)QBz∥22

= min
u
∥Au− PAQBz∥22 + ∥(I − PA)QBz∥22 = ∥(I − PA)QBz∥22 . (13)

The last equality holds since PAQB and A share the same columns space. Given that PA

does not depend on representative A from ⌈A⌉, and that L2(A,B; z) depends on A only
via PA, we conclude that the same is true for L2(A,B; z).

3. From equation (12) we find

Ez [L2(A,B; z)] = Ez

[
∥(I − PA)QBz∥22

]
= Ez

[
z⊤
(
Q⊤

B (I − PA)QB

)
z
]

= Ez

[
tr
((
Q⊤

BQB −Q⊤
BQAQ

⊤
AQ

⊤
B

)
zz⊤

)]
= tr

((
Q⊤

BQB −Q⊤
BQAQ

⊤
AQ

⊤
B

)
Ez

[
zz⊤

])
= p−

∥∥Q⊤
BQA

∥∥2
F
= L1(A,B). (14)
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B PROOF OF THEOREM 2

We provide two comments before proceeding with the proof.

In most parts of the text we assumed working with the non-compact Stiefel manifold and in this
theorem we have data on the compact Stiefel manifold (see (Amsallem, 2010) for definitions). We
specify how one can compute QA and Q̇A having A and Ȧ. One may start from any stable version
of Cholesky QR, e.g., (Garrison & Ipsen, 2024), (Yamamoto et al., 2015), and obtain

QA = AR−1, (15)

where R is Cholesky factorization of Gram matrix A⊤A, i.e., A⊤A = R⊤R where R is a lower
triangular square invertible matrix. To find the derivative of QA we need to know the derivative
d
dtR

−1. Derivative Ṙ can be computed as a solution to Lyapunov equation

Ṙ⊤R+R⊤Ṙ = Ȧ⊤A+A⊤Ȧ, (16)

after that d
dtR

−1 can be found from Jacobi identity d
dtR

−1 = −R−1ṘR−1.

In Theorem 2 we use 1
2

∥∥W (t)W (t)⊤ − V (t)V (t)⊤
∥∥2
F
− r−k

2 to measure the quality of approxima-
tion. It follows from the proof in Appendix A that

1

2

∥∥W (t)W (t)⊤ − V (t)V (t)⊤
∥∥2
F
− r − k

2
= L1(W (t), V (t)), (17)

where L1(W (t), V (t)) is a loss function defined in Theorem 1. We can alternatively rewrite

1

2

∥∥W (t)W (t)⊤ − V (t)V (t)⊤
∥∥2
F
− r − k

2
=

k∑
i=1

sin2(θi) (18)

using the definition of principle angles θi between column spaces of matrices W (t) and
V (t) (Björck & Golub, 1973). Given the later form, it is clear that small values of
1
2

∥∥W (t)W (t)⊤ − V (t)V (t)⊤
∥∥2
F
− r−k

2 correspond to better aligned subspaces.

To demonstrate the main result of Theorem 2 we first prove a supplementary statement.

Lemma 1. Let A(t) be geodesic on Gr(k1, n), A(t)⊤A(t) = Ik1 . One can always construct

geodesic B(t), B(t)⊤B(t) = Ik2
on Gr(k2, n), k2 > k1 such that

∥∥∥Ḃ(t)
∥∥∥2
F
≤
∥∥∥Ȧ(t)∥∥∥2

F
, where

inequality is strict unless
∥∥∥Ȧ(t)∥∥∥2

F
̸= 0.

Proof. Since A(t) is geodesic we can write A(t) = A(0)Y cos(Σt)Y ⊤ + U sin(Σt)Y ⊤, where
U sin(Σt)Y ⊤ is singular value decomposition of Ȧ(0). Using orthogonality of Ȧ(0) and A(0) we

find
∥∥∥Ȧ(t)∥∥∥2

F
= tr(Σ). Without loss of generality we assume that Σ11 ̸= 0. Consider

B(t) =

( |
A(0) u1

|

)(
y1y

⊤
1 +

∑k1

i=2 cos(σit)yiy
⊤
i 0

0 1

)
+

k1∑
i=2

sin(σit)ui

(
yi
0

)⊤

=

 |
A(0)Y cos

(
Σ̃t
)
Y ⊤ + U sin

(
Σ̃t
)
Y ⊤ u1

|

 , (19)

where yi are columns of Y , ui are columns of U , σi are diagonal elements of Σ, Σ̃ = Σ − (σ1 −
1)e1e

⊤
1 , that is, Σ̃ can be obtained from Σ by replacing Σ11 = σ1 by 1. Clearly B(t) is geodesic

and
∥∥∥Ḃ(t)

∥∥∥2
F
=
∥∥∥Ȧ(t)∥∥∥2

F
− σ1 <

∥∥∥Ȧ(t)∥∥∥2
F

. Next we show that principal angles between A(t) and

14
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B(t) are all zero. To see this we observe that

A⊤(t)B(t) =

 |
Y
(
cos (Σt) cos

(
Σ̃t
)
+ sin (Σt) sin

(
Σ̃t
)
)
)
Y ⊤ y1 sin(σ1t)

|


=

 |
Y
(
I − (1− cos(σ1t))e1e

⊤
1

)
Y ⊤ y1 sin(σ1t)

|

 . (20)

From the identity above Frobenius norm reads∥∥A⊤(t)B(t)
∥∥2
F
=

k1∑
i=1

sin2(θi) = tr

(
cos2(σ1t)y1y

⊤
1 +

k1∑
i=2

yiy
⊤
i + y1y

⊤
1 sin2(σ1t)

)
= k1, (21)

and we conclude that θi = 0 for all i = 1, . . . , k1.

Lemma 1 also implies that for two such geodesics 1
2

∥∥A(t)A(t)⊤ −B(t)B(t)⊤
∥∥2
F
− k2−k1

2 = 0.

Now we are ready to show the main result of Theorem 2. We split interval of interest t ∈ [0, T ]
on subintervals [ti, ti+1] of length ∆t. On each subinterval we consider three curves: (i) original
continuously differentiable curve V (t) ∈ Gr(k, n), (ii) approximation of V (t) by geodesic Z(t) ∈
Gr(k, n) passing through V (ti) with derivative V̇ (ti), (iii) embedding of Z(t) by geodesic W (t)
on Gr(r, n), r > k selected as explained in Lemma 1. We start by showing that principle angles
between W (t) and V (t) can be made arbitrary small

1

2

∥∥V (t)V (t)⊤ −W (t)W (t)⊤
∥∥2
F
− r − k

2

=
1

2

∥∥V (t)V (t)⊤ − Z(t)Z(t)⊤ + Z(t)Z(t)⊤ −W (t)W (t)⊤
∥∥2
F
− r − k

2

≤ 1

2

∥∥V (t)V (t)⊤ − Z(t)Z(t)⊤
∥∥2
F
+

1

2

∥∥Z(t)Z(t)⊤ −W (t)W (t)⊤
∥∥2
F
− r − k

2

=
1

2

∥∥V (t)V (t)⊤ − Z(t)Z(t)⊤
∥∥2
F
.

(22)

Now we know that on each interval the distance between V (t) and W (t) is bounded by the distance
from V (t) to the geodesics that passes through V (ti) with speed V̇ (ti). Since interval is assumed
to be small, we expand geodesic Z(t) in Taylor series keeping terms proportional to (∆t)

0 and ∆t

and for V (t) we use Lagrange reminder V (t) = V (ti) + V̇ (t̃)(t− ti), t ∈ [ti, ti+1], t̃ ∈ [ti, t]:
1

2

∥∥V (t)V (t)⊤ − Z(t)Z(t)⊤
∥∥2
F
≃ 2(t− ti)2

∥∥∥V̇ (t̃)− V̇ (ti)
∥∥∥2
F
. (23)

By assumption V (t) is continuously differentiable, meaning the expression above can be made ar-
bitrary small by selecting sufficiently small intervals [ti, ti+1].

To show that derivative of W (t) can be made smaller than V (t) observe that
∥∥∥Ẇ (t)

∥∥∥2
F
<
∥∥∥Ż(t)∥∥∥2

F

on each subinterval where
∥∥∥Ż(ti)∥∥∥2

F
̸= 0. Since

∥∥∥Ż(t)∥∥∥2
F

=
∥∥∥Ż(ti)∥∥∥2

F
=
∥∥∥V̇ (ti)

∥∥∥2
F

and V̇ (t) is

continuous function, we, again, can select sufficiently small intervals such that deviation of
∥∥∥V̇ (t)

∥∥∥2
F

from
∥∥∥V̇ (ti)

∥∥∥2
F

on each interval is small enough for
∥∥∥Ẇ (t)

∥∥∥2
F
<
∥∥∥V̇ (t)

∥∥∥2
F

to hold.

C SUBSPACE EMBEDDING EXAMPLE

The proof of Theorem 2 is constructive, meaning we can compute W (t) given V (t) and V̇ (t) or its
estimation. We select

V (t) = γ1(t) =

(
sin(θ(t)) sin(ϕ(t))
cos(θ(t)) sin(ϕ(t))

cos(ϕ(t))

)
, θ(t) = 7π cos(2πt), ϕ(t) = π/2 + π/4 cos(2πt). (24)
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(a) γ1(t) ∈ Gr(3, 1) (b) ⊥ γ2(t) ∈ Gr(3, 2) 0 0.1 0.2 0.3 0.4 0.5
t

0

0.2

0.4

0.6

0.8

1.0

no
rm

al
is

ed
 

Y(
t)

2 F

Gr(3, 1)
Gr(3, 2)

(c) Norms of γ̇1(t) and γ̇2(t)

Figure 4: Example of subspace embedding detailed in Appendix C.

Curve γ1(t) ∈ Gr(1, 3) is illustrated in Figure 4a. We next estimate derivatives by splitting t on
a set of subintervals and taking logarithm on each interval. This derivative is used as explained in

Lemma 1 to define W (t) ∈ Gr(2, 3). Since 1
2

∥∥∥ṖW

∥∥∥2
F
=
∥∥∥Ẇ (t)

∥∥∥2
F
= 1

2

∥∥ d
dt (I − PW )

∥∥2
F

we plot

γ2(t) ⊥ W (t) in Figure 4b. Curve γ2(t) appears to be discontinuous, but actually it is continuous
owning to Z2 symmetry of compact Stiefel manifold St(1, 3). Norms of derivative are compared in
Figure 4c: curve γ2 is manifestly smoother than γ1.

D PROOF OF THEOREM 3

In the proof we will write F ad G in place of Fk and Gk assuming that k is fixed and the value of k
is evident from the context.

D.1 PARTS 1. AND 2.

We order eigenvectors in the increase of eigenvalue E(i1, . . . , iD) := λi1,...,iD =
∑D

j=1 aji
2
j ,

which we will also call energy in this section. To understand how eigenvectors and subspaces
are selected for different coefficients a1, . . . , aD we introduce continuous relaxation of energy
E(z1, . . . , zD) =

∑D
j=1 ajz

2
j , where zj ∈ R+. In continuous form, surfaces with constant en-

ergies are (hyper)ellipsoids of dimension D − 1, so the process of selecting k-th eigenvector or
constructing subspace of dimension k can be understood through the following informal algorithm:

1. Select a1, . . . , aD and c = 0.

2. Gradually increase c and track ellipsoid
∑D

j=1 ajz
2
j = c.

3. While increasing c add each standard positive lattice point (point with positive integer co-
ordinates) that fall inside the ellipsoids.

4. The order at which lattice points cross an inflating ellipsoid define which eigenvector ap-
pears on position k and which vectors form eigenspace of dimension k.

To illustrate this process, consider E(z1, . . . , zD) = a1z
2
1 + a2z

2
2 , where a2 ≫ a1. If

we follow procedure outlined above we will see that first lattice points encountered are
(1, 1), (2, 1), (3, 1), (4, 1), . . . . So for considered a1, a2 the subspace of first 3 eigenvectors is a
span of ϕ1,1, ϕ2,1, ϕ3,1, and the eigenvector that appears on position 3 is ϕ3. To describe the map
from a1, . . . , aD to ϕk or Vk, this procedure needs to be repeated for all possible positive values of
real coefficients a1, . . . , aD.

From the algorithm above one can deduce that for given a1, . . . , aD the first time eigenvector with in-
dices i1, . . . , iD appears in the sequence of eigenvectors is the first time ellipsoid crosses i1, . . . , iD.
The position k of this eigenvector will be proportional to the normalised volume of the ellipsoid
Ve(a1, . . . , aD)

/
Vs, where Ve(a1, . . . , aD) is a volume of D dimensional ellipsoid with semi-axes

a1, . . . , aD and Vs is a volume of D dimensional sphere with radius 1.
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(a) (b) (c)

Figure 5: (a) Parametric family of ellipsoids passing through point (4, 5). (b) Ellipsoid of minimal
volume passing through (4, 5). Note that the number of standard lattice points inside is approxi-
mately 4× 5 = 20, the error of approximation (5 in this case) is asymptotically small for ellipsoids
of large volume. (c) Example of non-minimal ellipsoid passing through (4, 5). In the non-minimal
case, the number of standard lattice points inside an ellipsoid passing through a given point can be
made arbitrarily large.

The first immediate consequence is that a1, . . . , aD is a piecewise constant function. Indeed, it is
clear a1, . . . , aD can always be perturbed with no change in filling order and the change of −1 <
Ve(a1, . . . , aD)

/
Vs < 1, so the eigenvector on position k does not change. That proves the first part

of the first statement. Next, we need to show that the set of all possible eigenvectors on position k is
finite.

To see that, we answer the following question: what is the minimal number of lattice points one
ought to cover with an ellipsoid to reach a given lattice point i1, . . . , iD? For example, point (1, 1)
is always reached first. On the other hand, point (2, 1) can be reached arbitrarily late, because one
may consider ellipsoids with arbitrary large semi-axis along the second dimension. The position of
the point i1, . . . , iD is known to be the ratio of volumes, so we need to find an ellipsoid with minimal
volume that passes through i1, . . . , iD. A parametric family of ellipsoids in question and its volume
are

D∑
i=1

z2i
a2i(∑D

k=1 a
2
ki

2
k

) 1
2

= 1, Ve =
π

D
2

Γ
(
D
2 + 1

)
(∑D

k=1 a
2
ki

2
k

)D
2

(∏D
j=1 a

2
j

) 1
2

. (25)

See Figure 5a for example of a parametric family in D = 2 passing through lattice point (4, 5). In
the expression above we used a2i to remove positivity constraints. To find minimal volume we take
derivative with respect to ak

∂Ve
∂ak

= 0⇒ Da2ki
2
k −

D∑
j=1

a2j i
2
j = 0. (26)

To find a2i we need to compute the nullspace of the linear operator above. It is easy to see that the
solution is a2k = α

i2k
for arbitrary α ∈ R. The example of minimal ellipsoid appears in Figure 5b.

The volume does nod depend on multiplicative constant so we take α = 1 and obtain normalised
minimal volume

minVe (i1, . . . , iD)

Vs
=

D∏
j=1

ij . (27)

From the considerations above we can conclude that: (i) eigenvector i1, . . . , iD can not appear on
position k unless

∏D
j=1 ij < k, (ii) if eigenvector i1, . . . , iD, excluding 1, . . . , 1, appears on position

k, it can also appear on any position l > k. Statement (ii) is correct because parametric family of
ellipsoids passing through i1, . . . , iD contain ellipsoids of arbitrary large volumes unless ij = 1 for
all j = 1, . . . , D. The example of a non-minimal ellipsoid is in Figure 5c.
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Statement (ii) directly leads to point 2. of Theorem 3. Indeed, since any eigenvector appeared on
position k can reappear on arbitrary position l > k, the number of unique vectors that can form
low-energy subspace of dimension l is the number of eigenvectors on position l plus eigenvector
1, . . . , 1. That finished the proof of point 1. and 2. of Theorem 3.

Note, that the validity of most of the statements in this section is based on assumptions that we can
use continuous relaxation on the problem. In particular, we assumed that the position of the eigen-
vector is proportional to the volume of the ellipsoid. Of course in completely discrete formulation
this is not strictly the case, but since all statements on the number of eigenvectors and eigenspaces
are asymptotic, they will remain valid.

D.2 PART 3.

From the previous section we know the minimal position eigenvector i1, . . . , iD can appear at. Be-
sides that we know that once i1, . . . , iD is unlocked, it can appear on all positions l > k. Give that,
the number of eigenvectors on position k reads

#F (k,D) =

∞∑
i1=1

· · ·
∞∑

iD=1

Ind

 D∏
j=1

ij ≤ k

 , (28)

where Ind[·] is an indicator function. We are interested in asymptotic expansion for large k and fixed
D, so the sums above can be approximated by the Euler–Maclaurin formula.

To find asymptotic expansion we will derive recurrence relations for #F (k,D). We start by intro-
ducing a slightly modified function

#̃F (α,D) =
1

α

∞∑
i1=1

· · ·
∞∑

iD=1

Ind

 D∏
j=1

ij ≤ α

 . (29)

Clearly #F (k,D) = k#̃F (k,D) so if we know how to compute #̃F (α,D), we can recover
#F (k,D). For D = 2 with the help of Euler–Maclaurin formula we obtain

#̃F (α, 2) =
1

α

∞∑
i1=1

Ind [i1 ≤ α]

α
i1∑

i2=1

1 =
1

α

α∑
i1=1

α

i1
∼ 1

α

(∫ α

1

dx
α

x
+
α+ 1

2

)
= logα+

1

2
+

1

2α
.

(30)

Next we find recurrence relation

#̃F (α,D + 1) =
1

α

α∑
iD+1=1

1

iD+1

α
iD+1∑
iD=1

1

iD
· · ·

α
iD+1iD···i2∑

iD=1

1

i2

=
α∑

iD+1=1

#̃F

(
α

iD+1
, D
)

iD+1
∼
∫ α

1

dx
#̃
(
α
x , D

)
x

+
1

2

(
#̃ (1, D)

α
+ #̃ (α,D)

)
. (31)

It is not hard to show that, starting from D = 2, recurrence relation can only produce three type of
terms: logp(α), constant term c, 1

α . This can be seen as follows

logp(α)→
∫ α

1

logp(α/x)

x
+

1

2
logp(α) =

1

p+ 1
logp+1(α) +

1

2
logp(α),

c→
∫ α

1

dx
c

x
+
c

2

(
1

α
+ 1

)
= c log(k) +

c

2α
+
c

2
,

1

α
→
∫ α

1

dx

α
+

1

α
= 1.

(32)

Given that, starting from #̃F (α, 2) and applying recurrence relations D−2 times we obtain leading
term

#̃F (α,D) ∼ 1

(D − 1)!
log(α)D−1 ⇒ #F (k,D) ∼ k

(D − 1)!
log(k)D−1, (33)

where last identity follows from the definition of #̃F (α,D).
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D.3 PART 4.

We cannot apply the Euler–Maclaurin formula when k is fixed and D is large. To count states under
specified conditions we will use factorisation on prime numbers. For positive integer p we can write

p = q1(p)
a1(p) · · · qmp

(p)amp (p), (34)

where qi(p) are prime factors and ai(p) are their multiplicities. Given this factorisation we can find
the number of ways positive integer p can be represented as products of D positive integers. All
products of D integers correspond to some rearrangement of products in the factorisation of prime
factors. The number of such rearrangements is

τ(p,D) =

mp∏
r=1

(ar(p) +D − 1)!

(D − 1)! ar(p)!
. (35)

This expression is easy to understand if one considers forming the product of D numbers by dis-
tributing qr(p) to selected ar(p) among D factors for each prime factor qr(p), r = 1, . . . ,mp.

From the expression above, the number of states on position k reads

#(k,D) =

D∑
p=1

τ(p,D). (36)

If D is large

τ(p,D) =

mp∏
r=1

(ar(p) +D − 1)!

(D − 1)! ar(p)!
∼

mp∏
r=1

Dar(p)

ar(p)!
=
D

∑mp
r=1 ar(p)∏mp

r=1 ar(p)!
=

DΩ(p)∏mp

r=1 ar(p)!
, (37)

where Ω(p) is the prime (big) omega function.

Leading asymptotic expansion of the sum is the fastest growing term

#(k,D) ∼ Dmaxp≤k Ω(p)
∑

l∈argmaxp≤k Ω(p)

1∏ml

r=1 ar(l)!
. (38)

In the main body of the text we provide a simplified upper bound of this asymptotic expansion. It
can be derived using two upper bounds. First, prime omega function can be bounded from above

p = q1(p)
a1(p) · · · qmp

(p)amp (p) ≥ 2a1(p)+···+amp (p) = 2Ω(p) → Ω(p) ≤ log2(p). (39)

Next, the remaining sum can be bounded from above∑
l∈argmaxp≤k Ω(p)

1∏ml

r=1 ar(l)!
≤

k∑
l=1

1∏ml

r=1 ar(l)!
≤ k. (40)

These two upper bound combined gives us

#(k,D) ≤ kDlog2(k). (41)

D.4 PART 5.

We were unable to compute exact asymptotic expansions for the number of subspaces, so our strat-
egy in this and next section will be to derive sufficiently strong lower bound by counting selected
ways subspaces can be formed.

Consider D = 2 and k = 4. Since surfaces with constant energies are ellipsoids, we can select
a1 = 1 large a2 and by gradual decrease of a2 we will observe three distinct subspaces:

{ϕ1,1, ϕ1,2, ϕ1,3, ϕ1,4} → {ϕ2,1, ϕ1,1, ϕ1,2, ϕ1,3} → {ϕ2,1, ϕ2,2, ϕ1,1, ϕ1,2} . (42)

Similarly, starting from a2 = 1 and large a1 decrease of a1 lead to the sequence of subspaces

{ϕ1,1, ϕ2,1, ϕ3,1, ϕ4,1} → {ϕ1,2, ϕ1,1, ϕ2,1, ϕ3,1} → {ϕ1,2, ϕ2,2, ϕ1,1, ϕ2,1} . (43)
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(a) Nsub = 10 (b) Nsub = 20 (c) Nsub = 40

Figure 6: Illustration of simple greedy subspace embedding technique for elliptic eigenproblem with
constant coefficients. See Appendix E for details.

Sequences above can be understood as systematic fillings of lattice points along second and first
dimensions. First sequence corresponds to filling (0, 4), (1, 3), (2, 2) points, and second to (4, 0),
(3, 1), (2, 2). In D = 2 the number of distinct subspaces Vk constructed in this way equals the
number of unordered pairs k1, k2 ≥ 0 such that k1 + k2 = k.

In arbitrary D similarly constructed states can be counted as the number of unordered tuples
(k1, . . . , kD) of non-negative integers such that

∑D
i=1 ki = k. This is a standard counting prob-

lem with the answer

(k +D − 1)!

(D − 1)!k!
∼ kD−1

(D − 1)!
. (44)

This provides a lower bound on asymptotic expansion because our way to select subspaces is not
exhaustive.

D.5 PART 6.

For fixed k and large D we consider eigenvectors with indices (1, . . . , 1), (1, 2, 1, . . . , 1), . . . ,
(1, . . . , 1, 2, 1). It is clear that the first eigenvector has indices (1, . . . , 1) and the rest of them can
appear in arbitrary order. This gives us at least D(D−1)···(D−k+1)

(k−1)! ∼ 1
(k−1)!D

k−1 subspaces.

E MONTE CARLO EXPERIMENTS FOR EIGENPROBLEM WITH CONSTANT
COEFFICIENTS

To illustrate consequences of Theorem 3 we perform simple Monte Carlo experiment. For the case
D = 3, we generate a1, a2, a3 from uniform distribution on [0, 1] repeatedly and record distinct
subspaces of dimension k = 10. We select unique colour for each subspace and draw them for each
point a1, a2, a3 on the plane perpendicular to (1 1 1)

⊤. This illustration appears in Figure 6a.
Theorem 3 suggest that the large number of distinct subspaces is a result of selection of k vectors
among a small number of candidates. This suggests we may decrease complexity of the function
from coefficients to subspaces by predicting excessive number of vectors. In our experiments with
neural networks this redundant mapping is learned, here we build the mapping with simple greedy
strategy. In place of function a1, a2, a3 → V10 we consider a1, a2, a3 → V10 ∪ {v1, . . . , vk} where
v1, . . . , vk are first k most abundant eigenvectors. By appending additional vectors we decrease the
number of distinct subspaces. The result of this greedy simplification appear in Figure 6b with 10
additional vectors and in Figure 6c with 20 additional vectors. As we see the number of distinct
subspaces rapidly decreasing.
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F DETAILS ON NUMERICAL EXPERIMENTS FOR EIGENPROBLEMS

F.1 DATASETS

We generated two datasets for D = 2 elliptic eigenproblem with uniform Dirichlet boundary condi-
tions

div k · grad ϕi = λiϕi, ∥ϕi∥2 = 1, x ∈ [0, 1]2. (45)
For both datasets we used uniform grid 100× 100 and finite-difference discretisation. Components
of diffusion coefficients were generated from the same distribution for both datasets. Diffusion
coefficient is generated as follows:

1. Gaussian random field ψ is generated from N (0, (id− γ∆)
r
), γ = 1

20π , r = 1
2 .

2. Diffusion coefficient is computed as a = α + (β − α) (tanh (sψ) + 1) /2 with α = 1,
β = 50, s = 1.

For one D = 2 dataset k1 = k2 and for another k1 ̸= k2 but both are i.i.d. random fields generated
as described above. In the main text only results for k1 = k2 are reported.

For D = 3 elliptic eigenproblem we use setup analogous to D = 2 but grid of size 30 × 30 × 30
and k1 = k2 = k3 generated the same way as explained above with parameters γ = 1

100 , r = 3
2 ,

α = 50, β = 1, s = 2.

For QM problems datasets are defined by distributions for potential functions.

For D = 1 we use

V (r) = d

(
1− exp

(
−

r
re
− 1

r
re

+ 1
p (r)

))2

, p(r) =

q1
(

r
re

)
, r < re

q2

(
r
re

)
, r ≥ re

, (46)

where

q1(x) =

(
1− x− 1

x+ 1

)
q̃1(x) + c

x− 1

x+ 1
, (47)

and q̃1(x) is a polynomial of degree deg. Polynomial q2(x) has the same form.

In D = 1 dataset is by selecting uniform grid with 100 points on the interval [0, 10], re is sampled
from uniform distribution on the interval [1, 8], d is sampled from uniform distribution on the interval
[10, 40], both q1 and q2 has order 10, for q1 all coefficients (including c) are sampled from uniform
distribution on [0, 5], for q2 coefficients of q̃2 are sampled from uniform distribution on [0, 10] and c
is sampled from uniform distribution on the interval [1, 11].

For D = 2

V (x, y) = V1

(√
(x− cu)2 + (y − cv)2

)
+ V2

(√
(x+ cu)2 + (y + cv)2

)
, (48)

where u, v are component of random normalised vector, c =
√
2re. Potentials V1 and V2 are i.i.d.

with parameters: order of polynomial is 2, re is uniformly distributed on [1, 5], d is uniformly
distributed on [10, 40], coefficients of q̃ are sampled from uniform distribution on [0, 3] and c is
sampled from uniform distribution on [10, 13]. To discretise the problem we use finite difference
and uniform 100× 100 grid on [−7, 7]2.

F.2 ARCHITECTURES AND TRAINING

In all cases we used FFNO architecture, with GELU activation functions, that is completely specified
by: number of layers Nlayers, numbers of features in hidden layer Nfeatures, number of Fourier modes
in spectral convolution Nmodes. Since all our loss functions are scale-invariant, the output of FFNO
architecture was normalised.

We use Lion optimiser (Chen et al., 2023), with weight decay. Parameters of the optimiser are
learning rate lr, rate decay factor γdecay and number of transition steps Ndecay.

ForD = 2, eigenvalue and QM problems, and alsoD = 1 QM problem we perform grid search with
parameters: Nlayers ∈ [3, 4, 5], Nfeatures = 64, Nmodes ∈ [10, 14, 16], lr ∈ [10−3, 10−4], γdecay = 0.5,
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Ndecay ∈ [100, 200], batch size was fixed to 100, number of train samples is 4000, number of test
samples is 1000. Architecture is training to approximate subspace spanned by first 10 eigenvectors.
Number of epoch is 1000. When architecture is trained to predict individual eigenvectors, the same
grid search applies.

For D = 3 grid search is not practical, so we select Nlayers = 4, Nfeatures = 128, Nmodes = 16,
lr = 10−3, γdecay = 0.5, Ndecay = 100. The size of the train set is 800, the size of test set is 200.
The number of epochs is 1000. Architecture is training to approximate subspace spanned by first 3
eigenvectors.

F.3 ADDITIONAL RESULTS FOR ELLIPTIC EIGENPROBLEMS

Additional results are available in Table 3, Table 4, Table 5. Results in brackets indicate worst and
best observed result among three best grid search runs.

Table 3: Comparison of L1(A,B) and L2(A,B; z) loss functions for k1 = k2

L1(A,B) L2(A,B; z)

Nsub Etrain Etest ttrain, s Etrain Etest ttrain, s

10 [0.216, 0.235] [0.292, 0.314] 4124± 443 [0.244, 0.252] [0.296, 0.302] 3895±524
20 [0.038, 0.048] [0.046, 0.052] 5962± 93 [0.046, 0.052] [0.049, 0.058] 4074±215
30 [0.024, 0.029] [0.028, 0.033] 7902± 85 [0.026, 0.033] [0.029, 0.037] 3973±515
40 [0.018, 0.025] [0.021, 0.029] 10842± 570 [0.017, 0.024] [0.02, 0.027] 4270±95

Table 4: Comparison of L1(A,B) and L2(A,B; z) loss functions for k1 ̸= k2

L1(A,B) L2(A,B; z)

Nsub Etrain Etest ttrain, s Etrain Etest ttrain, s

10 [0.305, 0.377] [0.407, 0.421] 4035± 295 [0.312, 0.335] [0.386, 0.389] 3661±308
20 [0.066, 0.089] [0.09, 0.105] 5817± 219 [0.092, 0.092] [0.103, 0.103] 4262±0
30 [0.05, 0.05] [0.063, 0.063] 7966± 84 [0.042, 0.05] [0.052, 0.059] 3991±168
40 [0.035, 0.036] [0.045, 0.047] 11019± 252 [0.034, 0.038] [0.041, 0.046] 4238±112

Table 5: Z2-adjusted L2 loss.

k1 = k2 k1 ̸= k2

Neig Etrain Etest ttrain, s Etrain Etest ttrain, s

0 [0.009, 0.012] [0.036, 0.038] 3666± 476 [0.014, 0.028] [0.068, 0.07] 3280± 60
1 [0.038, 0.042] [0.158, 0.165] 3312± 77 [0.031, 0.033] [0.196, 0.218] 3956± 162
2 [0.046, 0.048] [0.359, 0.373] 4168± 82 [0.045, 0.053] [0.553, 0.563] 4140± 87
3 [0.046, 0.057] [0.541, 0.555] 4168± 81 [0.054, 0.066] [0.747, 0.779] 4101± 87
4 [0.068, 0.084] [0.754, 0.769] 4007± 204 [0.072, 0.078] [0.945, 0.97] 4101± 87
5 [0.073, 0.075] [0.897, 0.905] 4041± 264 [0.084, 0.094] [1.087, 1.098] 4090± 83

F.4 GENERALISATION TO DIFFERENT GRID SIZE

For all subspace regression problems we use FFNO. Since FFNO is neural operator it should be
discretisation agnostic. Here we report results for model trained on grid 100 on D = 1 quantum
mechanics eigenproblem and tested on grids of higher resolution. For each grid we generated new
test set from the same distribution as specified in Appendix F.1.
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The results are available in Table 6. We see approximately linear increase of relative error with
resolution. Owning to good initial accuracy on grid Nx = 100 the relative error remains under 10%
for grid with Nx = 500.

F.5 SMOOTHNESS OF NEURAL NETWORKS TRAINED WITH SUBSPACE EMBEDDING
TECHNIQUE

To empirically measure smoothness of learned map, we introduce several “smoothness indicators”:

1. Taylor indicator

T [f1, f2; l] =

∥∥N (f1 + lf2)−N (f1)− d
dlN (f1 + lf2)

∣∣
l=0

l
∥∥
2

∥N (f1 + lf2)∥2
. (49)

Taylor indicator is a relative error of linear model. One expect that: (i) unlessN is a linear
function, when l increases relative error also increases; (ii) when smoothness increases
Taylor indicator decreases.

2. Average cosine

C[f1, f2; l] =
1

D

D∑
i=1

cosi(N (f1 + lf2), t1). (50)

where cosi(A,B) are cosines of principle angles (Björck & Golub, 1973) and t1 is target
at point f1. For smoother maps average cosine increases until it reaches maximal value of
1.

3. Frobenius norm of the directional derivative

F [f1, f2; l] =
1

D

∥∥∥∥ ddlN (f1 + lf2)

∣∣∣∣
l=0

∥∥∥∥
F

, (51)

where D is the subspace size. The magnitude of the directional derivative is computed by
automatic differentiation and it is expected to decrease when smoothness increases.

Table 7: Frobenius norm of the directional
derivative smoothness indicator (51).

Nsubspace k1 = k2 k1 ̸= k2

10 10.73 8.26
20 9.72 8.15
30 8.78 8.14
40 8.26 6.88

Each indicator depends on two features f1 and f2
and real number l ∈ [0, 1]. Results are reported for
neural network trained to predict eigenspaces for
elliptic eigenproblem with k1 = k2 and k1 ̸= k2
(see Appendix F.1 for description) with loss func-
tion L2(A,B; z). For each indicator we provide
values for several l averaged over 1000 randomly
selected feature pairs f1, f2. Results are reported
in Table 7, Table 8, Table 9.

All indicators clearly demonstrate the improve in
smoothness when the size of embedding Nsubspace
increases. Results for average cosine indicator (50)
indicate that learned mapping effectively average
information about subspaces for distinct features. It becomes especially clear if one compares results
for l = 1.0 with average cosines computed between targets 1

D

∑D
i=1 cosi(t1, t2): for k1 = k2

average cosine is 0.51; for k1 ̸= k2 average cosine is 0.53.

Table 6: Network is trained on resolution Nx = 100 for D = 1 QM problem and evaluated on grids
with increased resolution.

Nx 100 150 200 250 300 350 400 450 500
test error, % 0.83 1.37 2.12 2.95 3.96 4.32 5.33 5.32 6.79
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Table 8: Taylor smoothness indicator (49).

k1 = k2 k1 ̸= k2

Nsubspace l = 0.25 l = 0.5 l = 0.75 l = 1.0 l = 0.25 l = 0.5 l = 0.75 l = 1.0

10 2.41 5.1 7.48 10.71 1.8 3.87 5.99 8.21
20 2.12 4.57 7.05 9.68 1.72 3.77 5.86 8.08
30 1.88 4.09 6.34 8.73 1.71 3.77 5.87 8.08
40 1.76 3.84 5.98 8.22 1.42 3.15 4.94 6.8

Table 9: Average cosine indicator (50).

k1 = k2 k1 ̸= k2

Nsubspace l = 0.25 l = 0.5 l = 0.75 l = 1.0 l = 0.25 l = 0.5 l = 0.75 l = 1.0

10 0.81 0.74 0.67 0.51 0.82 0.74 0.67 0.53
20 0.94 0.88 0.82 0.68 0.94 0.88 0.83 0.72
30 0.97 0.93 0.88 0.78 0.97 0.93 0.89 0.81
40 0.98 0.95 0.91 0.82 0.99 0.96 0.93 0.87

F.6 SUBSPACE REGRESSION COMBINED WITH LOBPCG

Subspace regression can be also used to improve results for classical iterative eigensolvers. We
demonstrate this for LOBPCG, which is a matrix-free iterative eigensolver that can approximate
extremal eigenspaces (Knyazev, 2001). A notable feature of LOBPCG is a possibility of hot start:
when approximation to eigenspace of interest is available, it can be used at the initialisation to
speed up convergence. In Table 10 we report such speed up for elliptic eigenproblems described in
Appendix F.1. Metrics in Table 10are computed for test set, and maximal number of iterations for
LOBPCG is set to 1000. Convergence plots are available in FIgure 7a and Figure 7b. It is evident
that initialisation by subspace regression lead to both smaller number of iteration and better final
error. Note, that the overall cost of method is dominated by the cost of iterations.

Table 10: Performance of LOBPCG with initialisation by subspace regression compared with ran-
dom initialisation, Nit number of iterations until convergence.

k1 = k2 k1 ̸= k2

initialisation Nsubspace Nit relative error ± std Nit relative error ± std

subspace regression 10 410± 245 0.093± 1.109 332± 213 0.028± 0.179
subspace regression 20 288± 197 0.159± 4.12 249± 174 0.02± 0.087
subspace regression 30 274± 209 0.047± 0.554 227± 172 0.022± 0.119
subspace regression 40 263± 200 0.131± 3.218 221± 160 0.02± 0.089
random 685± 265 7.86± 30.16 609± 231 11.42± 35.49

G DETAILS ON NUMERICAL EXPERIMENTS FOR PARAMETRIC PDES

G.1 DATASETS

For theD = 2 stationary diffusion equation we reused datasets described in Appendix F. To generate
forcing terms for each k we select 10 eigenvectors ψi, i = 1, . . . , 10 corresponding to smallest
eigenvalues and compute exact solution as u =

∑
i ϕizi where zi ∼ N(0, 1). Forcing term f(x)

corresponding to this solution is f =
∑

i
1
λi
ϕizi.
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Figure 7: Convergence plots for LOBPCG with and without initialisation by subspace regression.

For D = 1+ 1 Burgers equation (4) we sample random diffusion coefficient ν(x) and initial condi-
tion u0(x). In both cases we first sample Gaussian random field fromN (0, (id− α∆)

s
). To sample

random field ψ(x) for diffusion coefficient we use α = 40, s = 4. Diffusion coefficient is computed
as ν = 5 · 10−3 + (1 + tanh(30ψ))/20 For initial conditions we use random field with α = 10,
s = 2. Uniform grid is used to discretise equation with 128 points for x and 64 points for t. Time
interval is

[
0, 10−1

]
and x ∈ [0, 1].

G.2 ARCHITECTURES AND TRAINING DETAILS

We performed grid search for all methods that involve learning. We start by describing hyperparam-
eters of architectures.

FFNO is used for subspace regression, standard regression, DeepPOD, and for intrusive techniques
with basis extraction. Parameters of FFNO used for grid search are described in Appendix F.

DeepONet is used for standard regression, and the intrusive technique with bases extracted from
branch net. As a branch net of DeepONet we select a classical convolution network with downsam-
pling by factor of 2 along each dimension and the increase of the number of hidden features by factor
of 2. Branch net is defined by the number of features after encoder Ne,b, kernel size of convolution
kb, and number of layers Nb. Trunk net is MLP which is defined by the number of hidden neurons
Nf,t, number of layers Nt and the size of basis on the output layer Nϕ. In out grid searches we used
Ne,b ∈ [4, 5], kb ∈ [3, 7], Nb = 4, Nf,t = Nϕ ∈ [100, 200], Nt ∈ [3, 4].

PCANet is defined by the number of POD basis functions used to compress feature and targets Np,f

and Np,t. Number of MLP layers NMLP and hidden units Np,MLP . In our experiments we use
Np,f ∈ [100, 200, 300, 400, 500] for elliptic equation andNp,f ∈ [50, 80, 100] for Burgers equation,
Np,t ∈ [100, 200, 300, 400] for elliptic equation and Np,t ∈ [100, 150, 400] for Burgers equation,
NMLP ∈ [3, 4, 5, 6] for elliptic equation and NMLP ∈ [3, 5, 7] for Burgers equation, Np,MLP ∈
[100, 200, 300, 400, 500] for elliptic and Np,MLP ∈ [100, 300, 500] for Burgers equation.

Hyperparameters of kernel methods are the type of kernel and the number of POD basis functions
used to compress features and targets Np,f and Np,t. We use Matern and RBF kernel and Np,f ∈
[50, 100, 150, 200], Np,t ∈ [50, 100, 150, 200]

To train neural network we used Lion optimiser with lr ∈ [5 · 10−5, 10−4] for FFNO and lr ∈
[10−3, 10−4] for all other architectures, γdecay = 0.5, Ndecay ∈ [100, 200]. We use batch size 10,
train PCANet for 3000 epoch and other networks for 1000 epoch.

G.3 ADDITIONAL RESULTS

We provide two additional results. For elliptic equations we compare optimality of learned bases.
The results are in Figure 8a and Figure 8b. Interestingly, global POD leads to a better basis than
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Figure 8: Relative errors for two stationary diffusion equations depending on the number of basis
functions for several basis construction methods. Bases constructed with DeepPOD and subspace
regression lead to the most accurate intrusive methods.

both FFNO and DeepONet. For DeepONet this is expected, since trunk net does not depend on
parameters of PDE. For FFNO the result is more surprising, because the basis is extracted from the
last hidden layer, so it explicitly depends on parameters. Bases of DeepPOD and subspace regres-
sion are the most optimal one, still they are highly non-optimal when compared with local POD.

Table 11: Relative errors for Burgers equation. Target
for SubReg(n) is subspace of dimension n.

Nsubspace DeepPOD SubReg(10) SubReg(5)

10 16.37% 22.79% 14.34%
20 10.0% 11.73% 10.68%
30 5.42% 6.29% 5.03%
40 2.57% 3.46% 3.01%
50 1.8% 2.49% 1.74%

For the Burgers equation we compare Deep-
POD and two variants of subspace regres-
sion in Table 11. SubReg(10) is a subspace
regression trained to approximate subspace
spanned by first 10 local POD basis func-
tions and SubReg(5) was trained with 5 lo-
cal POD basis functions. DeepPOD is an
unsupervised method and was trained with
the whole trajectory. This implies meth-
ods are sorted from left to right in the de-
crease of information they receive about
solutions. Interestingly, the SubReg(5) –
method, learning the smallest subspace –
performs better almost uniformly. A possible explanation is that an optimal subspace of dimen-
sion 5 leads to good enough accuracy and is easier to learn than larger subspaces.

H DETAILS ON NUMERICAL EXPERIMENTS FOR ITERATIVE METHODS

H.1 DEFLATION

Since for a deflation problem one needs to approximate eigenspace spanned by eigenvectors with
small eigenvalues, we reused dataset and network trained for elliptic eigenproblem. The description
of training and datasets is available in Appendix F. Results in the main text are for k1 = k2, for
k1 ̸= k2 convergence plots are given in Figure 9.

H.2 TWO-GRID METHOD

Elliptic equation dataset We consider a 2D elliptic equation on the unit square Ω = (0, 1)2

with homogeneous Dirichlet boundary conditions (5). We aim to learn mapping k(x) → S(V ).
Variability of the dataset comes from the spatially heterogeneous coefficient function k(x).

Each sampled coefficient function is a strictly positive random field built in three steps:
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Figure 9: Convergence results for deflated CG, elliptic dataset D = 2 with k1 ̸= k2. Learned
methods are marked with solid lines, and dashed lines correspond to iterative methods with optimal
deflation space, M refers to subspace size.

1. Draw i.i.d. Fourier coefficients on a square index setK = {0, . . . ,M −1}2 and form a real
field by summing complex exponentials. We additionally introduce a Fourier-space weight
wk = (1 + λ1|k|22)−1 to control the high-frequency components.

2. Multiply the real field from the previous step by λ2, then apply a hyperbolic tangent func-
tion to control the contrast of the coefficient field values.

3. Rescale the field to the prescribed interval [α, β] to ensure strict positivity and enforce a
controlled contrast ratio of β/α.

Exact procedure to generate the 2D field is:

s0(x, y) = Re

 ∑
k∈{0,...,M−1}2

ck
ei(k1x+k2y)

1 + λ1 ∥k∥22

 , ck ∼ N (0, 1),

s(x, y) = tanh
(
λ2 · s0(x, y)

)
,

k(x, y) = α+ (β − α) s(x, y) + 1

2
, k(x, y) ∈ [α, β].

Figure 10: Sample coefficient function.

The equation is descritized on a uniform grid with a 5-
point finite-difference stencil, yielding a sparse, symmet-
ric positive-definite matrix. One can observe a sampled
normalized coefficient function in Figure 10.

Target subspace We aim to predict a coarse-grid sub-
space for the two-grid method, which applies a coarse-
grid correction

x← x+ V (V ⊤AV )−1V ⊤(b−Ax)
with weighted Jacobi smoothing

x← x+ ωD−1(b−Ax)
before and after. This coarse projection V is learned as a
problem-specific subspace from the coefficient field. In this setup, our projection matrix V spans
the leading eigenspace of the error propagation matrix I −ωD−1A. While the relaxation parameter
ω is used to quickly dampen the fast modes, the coarse-grid projection removes the low-frequency
components, resulting in rapid overall convergence. Thus, our target subspace for regression consists
of the first few eigenvectors of I − ωD−1A, sorted by the absolute values of their eigenvalues.
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Subspace relaxation Initially, we experiment with no under-relaxation (i.e. ω = 1.0) in the
Jacobi smoother. As expected, this leads to a target subspace that contains both high- and low-
frequency modes. Neural networks are known to have a spectral bias towards low frequencies. In
FNO-type models, this spectral bias is especially pronounced because these models truncate high-
frequency modes in the Fourier domain. We address this by reducing the relaxation parameter to ω =
0.9, which makes the leading subspace components dominated by slow modes. It is worth noting
that this adjustment is consistent with the respective roles of smoothing and coarse-grid correction
discussed above. In Figure 11 one can observe the first five eigenvectors of the target subspace for a
representative sample under both relaxation settings (ω = 1.0 and ω = 0.9).

Figure 11: First five eigenvectors of the error propagation matrix I − ωD−1A. Top: ω = 1.0.
Bottom: ω = 0.9.

Subspace prediction Before applying the neural network’s predicted subspace, we perform a QR
decomposition on the predicted matrixW to obtain an orthonormal basisQW . We assess the quality
of the predicted coarse subspace in the two-grid method using three metrics:

1. Cosine angles between the true subspace V and the predicted subspace, computed as the
singular values of Q⊤

WV . A value closer to 1 indicates better subspace alignment.
2. Relative reconstruction error e = minu ∥V −Wu∥2 for each true basis vector V , computed

as ∥(I −QWQ⊤
W )V ∥2. A smaller value indicates that the predicted subspace reconstructs

Vi more accurately.
3. Two-grid convergence rate, measured by the spectral radius ρ of the two-grid iteration

operator T . We estimate ρ via the power method by repeatedly applying T to a vector:

vk+1 =
Tvk
∥Tvk∥

.

A smaller spectral radius indicates faster asymptotic convergence.

In Table 12, we report these metrics for the best-performing models and for the ground-truth target
subspace. Across all experiments, the predicted coarse subspaces achieve slightly better two-grid
convergence (i.e., lower spectral radius) than the ground-truth subspace. These results are partic-
ularly interesting since smaller subspaces yield rather high cosines and reconstruction errors. The
increase of size of the predicted subspace improves the quality of the reconstruction and does not
degrade in effect on iteration compared to true exact subspace. It is also worth noting that both
training objectives yield similarly effective subspaces.

Data and training details We generate two different datasets with 32 and 100 interior grid points.
Both datasets use M = 100 Fourier modes, λ1 = 0.1, λ2 = 1, interval [α, β] = [1, 50], and ω = 0.9
in error propagation matrix. Each dataset contains 1, 000 training and 200 test samples. While a
neural network predicts subspace of sizes {10, 20, 30, 40}, target subspace always contains 10 basis
functions.
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Table 12: Subspace prediction metrics for two-grid method and Jacobi iterations. We report av-
eraged values over the test set. Methods’ column values: Exact subspace uses the exact leading
eigenvectors of error propagation matrix (ground truth). L1 loss and L2 loss denote subspaces pre-
dicted by F-FNO trained with the respective objectives. The Jacobi baseline reports the spectral
radius with no coarse correction (ω = 1.0).

Subspace size Method Cosine Rec. error Spectral radius

− Jacobi − − 0.9976

10

Exact subspace − − 0.9917

L1 loss 0.845 0.411 0.9910

L2 loss 0.859 0.392 0.9908

20

Exact subspace − − 0.9858

L1 loss 0.960 0.222 0.9852

L2 loss 0.962 0.217 0.9852

30

Exact subspace − − 0.9799

L1 loss 0.986 0.140 0.9790

L2 loss 0.986 0.139 0.9790

40

Exact subspace − − 0.9745

L1 loss 0.994 0.097 0.9730

L2 loss 0.994 0.097 0.9731

We train the Factorized Fourier Neural Operator (F-FNO) model (Tran et al., 2021). We first conduct
an extensive hyperparameter search on the 32 dataset with:

• Number of retained modes: {10, 14, 16}.
• Number of processor layers: {3, 4, 5}.
• Learning rate: {10−3, 10−4}.
• Step-decay every {100, 200} epochs.

By default, the batch size is 64, training runs for 1, 000 epochs, and each processor layer has
64 features. We repeat this search for both L1 and L2 losses and for predicted subspace sizes
{10, 20, 30, 40}. We then select the top-3 hyperparameter configurations per subspace size and loss
(by two-grid spectral radius) and train on the dataset with 100 grid points. Throughout the paper, we
report results for the best configuration on the dataset with 100 grid points.

I SUBSPACE REGRESSION FOR OPTIMAL CONTROL

We consider optimal control of D = 1 + 1 heat equation with homogeneous Dirichlet boundary
conditions

∂ϕ(x, t)

∂t
= div k · grad ϕ(x, t)− b(x) +

k∑
i=1

wi(x)ui(t),

yi = (ψi, ϕ)

min
u
L =

1

2
y(T )⊤y(T ) +

λ

2

∫ T

0

u(t)⊤u(t).

(52)

The problem has a simple interpretation. With no control for sufficiently large T system reaches
steady-state, which can be computed as a solution of the linear system div k · grad ϕ(x, t) = b(x).
The objective function contains the term 1

2y(T )
⊤y(T ) ≥ 0. Optimal control minimises amplitude
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of y(T ). Given that y(t) is a projection of state variable ϕ on vectors ψi, the result of optimal control
is to reach ϕ with ϕ−

∑
i

(
ϕ, ψ̃i

)
ψ̃i where ψ̃i is any basis in subspace spanned by ψi.

Control problem (52) is not a linear-quadratic regulator in its standard form since b(x) is present. To
get rid of b(x) and use exact solution for linear-quadratic regulator we first discretise PDE (52) and
after that introduce additional (constant) variable

d

dt

(
ϕ(t)

ϕ̃(t)

)
=

(
A −I
0 0

)(
ϕ(t)

ϕ̃(t)

)
+

(
W
0

)
u,

(
ϕ(0)

ϕ̃(0)

)
=

(
ϕ0
b(x)

)
,

min
u
L =

1

2
ϕ(T )⊤ΨΨ⊤ϕ(T ) +

λ

2

∫ T

0

u(t)⊤u(t).

(53)

Problem (53) is a standard linear-quadratic regulator, so the exact form of value function is known
(Kirk, 2004). Optimal control can be computed as follows

Ċ12 − C11 +AC12 − λ−1C11WW⊤C12 = 0, C12(T ) = 0,

Ċ11 + C11A+AC11 − λ−1C11WW⊤C11 = 0, C11(T ) = ΨΨ⊤,

u(t) = −λ−1W⊤ (C11ϕ+ C12b(x)) .

(54)

As model reduction method we apply balanced truncation closely following (Moore, 2003): (i) solve
Lyapunov equations to find controllability and observability Gramians, (ii) find eigendecomposition
of controllability Gramian and select coordinates system where controllability Gramian is identity
matrix, (iii) find eigendecomposition of observability Gramian and select coordinate system where
controllability and observability Gramians coincide, (iv) from the composition of two coordinate
transformations build degrees of freedom corresponding to largest eigenvalues of both controllability
and observability Gramians.

I.1 DATASET

We use random gaussian random field N (0, (id− α∆)
s
) to generate wi(x), ψi(x), diffusion coef-

ficient k(x), initial conditions u0(x) and forcing b(x). For wi, ψi, u0(x), b(x) we take α = 5 and
n = 4, ψ and wi are further orthogonalised with QR, 30 i.i.d. wi and ψi are generated for each
dataset sample; for diffusion coefficient we use α = 6, n = 4 and process generated random field
χ similarly to Burgers equation k(x) = 5 × 10−3 + (1 + tanh(5χ))/10. Equation is discretised
on uniform grid 128 × 128, x ∈ [0, 1], t ∈ [0, 5]. Dataset consists of 1200 samples, 1000 for train,
100 for validation and 100 for test. Optimal reduction by balanced truncation is computed for each
sample and later used for subspace regression.

I.2 ARCHITECTURE AND TRAINING DETAILS

We use FFNO and precisely the same grid search as for the Burgers equation.

I.3 RESULTS

Results are summarised in Table 13. We train a neural network with two subspace regression losses
on first 10 basis vectors obtained with balanced truncation. As metrics we use relative observa-
tion error Eo at time T and relative full state error Es at time T . One can observe that subspace
embedding techniques improve accuracy for both loss functions. Interestingly, L2 leads to slightly
better error for small subspace sizes. Overall accuracy is acceptable but does not reach optimal
performance reported in the first columns.

J SENSITIVITY TO TRAIN-TEST SPLIT AND THE CHOICE OF
HYPERPARAMETERS

All results in the main text are reported without error bars, that are usually computed by varying ran-
dom initialisation or train-test split. All our experiments involve extensive hyperparameter search,
so computing statistics for distinct initialisations or train-test split would require order of magnitude
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Table 13: Results for control.

Nbasis exact L1(A,B) L2(A,B; z)

Es Eo Es Eo Es Eo

10 4.16% 4.07% 12.56% 12.21% 10.91% 10.59%
20 8.8% 8.47% 7.96% 7.65%
30 9.49% 8.94% 8.74% 8.42%
40 7.26% 6.99% 7.41% 7.15%
50 7.2% 6.94% 7.09% 6.88%

more compute. Here we demonstrate for elliptic eigenproblem (Appendix F.1) and Burgers equa-
tion (Appendix G.1) that sensetivity to train-test split is relatively small and not significant to main
conclusions reached by analysis of “single-run” results.

For both Burgers and elliptic equations we randomly split dataset on train and test set 5 times and
report mean metrics and standard deviation. Networks are trained for hyperparameters found by grid
search. The results are available in Table 14. Variability is clearly present, but it is not pronounced
enough.

Table 14: Sensitivity to train-test split for elliptic eigenproblem and Burgers equation, subspace
regression trained with L2(A,B; z) loss function.

elliptic, k1 = k2 Burgers

Nsubspace train error ± std, % test error ± std, % train error ± std, % test error ± std, %

10 24.37± 1.47 30.38± 1.34 25.5± 1.17 25.71± 1.72
20 5.69± 0.53 6.46± 0.26 11.15± 1.2 11.0± 1.43
30 3.34± 0.26 3.79± 0.35 7.04± 0.35 7.01± 0.64
40 1.84± 0.12 2.12± 0.11 4.56± 0.32 4.72± 0.61

Variability to train-test split should be compared to sensitivity to the selection of hyperparameters
reported in Table 15. We see that for certain cases the span of best and worse performance reaches
100% which is much higher than variability to train-test split. Note that for elliptic equation grid
search was performed on downsampled dataset with 32× 32 grid.

Table 15: Sensitivity to train-test split for elliptic eigenproblem and Burgers equation, subspace
regression trained with L2(A,B; z) loss function.

elliptic, k1 = k2 Burgers

Nsubspace

train error
[min,max], %

test error
[min,max], %

train error
[min,max], %

test error
[min,max], %

10 [23.81, 37.8] [28.67, 39.05] [22.01, 32.64] [23.79, 34.62]
20 [4.74, 100.0] [5.51, 100.0] [9.53, 20.14] [10.06, 21.05]
30 [2.77, 8.6] [3.33, 9.06] [5.58, 21.81] [5.84, 21.7]
40 [2.06, 7.05] [2.31, 7.34] [4.3, 47.43] [4.31, 283.33]

31


	Introduction
	Subspace regression
	Definition of subspace regression problem
	Examples of subspace regression problem

	Theoretical results
	Loss functions
	Subspace embedding
	Complexity of parametric eigenproblem

	Numerical experiments
	Eigenspace prediction
	Parametric PDE problems
	Iterative methods for linear systems

	Conclusion
	Reproducibility statement
	Proof of Theorem 1
	Proof of Theorem 2
	Subspace embedding example
	Proof of Theorem 3
	Parts 1. and 2.
	Part 3.
	Part 4.
	Part 5.
	Part 6.

	Monte Carlo experiments for eigenproblem with constant coefficients
	Details on numerical experiments for eigenproblems
	Datasets
	Architectures and training
	Additional results for elliptic eigenproblems
	Generalisation to different grid size
	Smoothness of neural networks trained with subspace embedding technique
	Subspace regression combined with LOBPCG

	Details on numerical experiments for parametric PDEs
	Datasets
	Architectures and training details
	Additional results

	Details on numerical experiments for iterative methods
	Deflation
	Two-grid method

	Subspace regression for optimal control
	Dataset
	Architecture and training details
	Results

	Sensitivity to train-test split and the choice of hyperparameters

