

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

DEEP LEARNING FOR SUBSPACE REGRESSION

Anonymous authors

Paper under double-blind review

ABSTRACT

It is often possible to perform reduced order modelling by specifying linear subspace which accurately captures the dynamics of the system. This approach becomes especially appealing when linear subspace explicitly depends on parameters of the problem. A practical way to apply such a scheme is to compute subspaces for a selected set of parameters in the computationally demanding offline stage and in the online stage approximate subspace for unknown parameters by interpolation. For realistic problems the space of parameters is high dimensional, which renders classical interpolation strategies infeasible or unreliable. We propose to relax the interpolation problem to regression, introduce several loss functions suitable for subspace data, and use a neural network as an approximation to high-dimensional target function. To further simplify a learning problem we introduce redundancy: in place of predicting subspace of a given dimension we predict larger subspace. We show theoretically that this strategy decreases the complexity of the mapping for elliptic eigenproblems with constant coefficients and makes the mapping smoother for general smooth function on the Grassmann manifold. Empirical results also show that accuracy significantly improves when larger-than-needed subspaces are predicted. With the set of numerical illustrations we demonstrate that subspace regression can be useful for a range of tasks including parametric eigenproblems, deflation techniques, relaxation methods, optimal control and solution of parametric partial differential equations.

1 INTRODUCTION

The goal of reduced order modelling (ROM) is to identify uninformative degrees of freedom and discard them (Bai et al., 2005). The result is a simplified system that is easier to analyse and simulate. This program is computationally demanding and only justified in the setting when many related problems are repeatedly solved and it is possible to use information from encountered problems to build a reduced model for the problems to come. Typical examples are parametric models for partial and ordinary differential equations (PDEs and ODEs), and usual applications are optimisation, sensitivity analysis, uncertainty quantification and control.

As an illustration consider proper orthogonal decomposition (POD) for time-dependent PDEs (Volkwein, 2013), (Hesthaven et al., 2022). To apply POD, one computes solutions for a representative set of parameters and builds a reduced basis for spatial variables by the best low-rank approximation. When new parameters arrive, a computed basis is used to discretise PDE that is solved at reduced cost. In global POD this basis is the same for all incoming parameters and in local POD basis explicitly depends on new parameters. As one may expect, local POD is more expressive than global POD, but can be more challenging to arrange.

POD is an example of the general class of techniques where linear subspace parametrises useful degrees of freedom. While nonlinear ROM techniques exist, linear methods are better understood theoretically, easier to apply in practice, and provide sufficiently well approximation, especially when local versions are available (Franco et al., 2024). In this setting the main challenge is to construct reliable approximation to the function that maps new parameters to linear subspaces.

We analyse this problem under the following assumptions: (i) the set of parameters of interest is specified in form of probability distribution, (ii) it is known how to compute good or optimal linear subspace for each parameter, (iii) the numerically stable method to construct reduced problem from basis is available. In short, we consider regression on grassmannian. We approach the regression

054 problem by specifying loss function and using neural networks as parametric models to accommodate
 055 high-dimensional parameter spaces pervasive in practical problems.
 056

057 More specifically, our main contributions are:

058

- 059 1. Mathematical formulation of subspace regression problem and examples of applications,
 060 including eigenspace approximation, local POD, learning basis for deflation and two-grid
 061 method, approximating balanced-truncation basis for optimal control problems.
- 062 2. Several loss functions, suitable for neural network training, including the stochastic one
 063 that scales well with the increase of subspace size.
- 064 3. Embedding technique: a strategy to learn a larger subspace containing the target one. Em-
 065 pirically, this technique significantly improves accuracy for subspace learning.
- 066 4. Two theoretical justification of embedding technique: derivative of smooth function on
 067 Grassmann manifold can be reduced by embedding; complexity of the subspace regression
 068 problem for elliptic eigenproblem with constant coefficients.
- 069 5. Empirical evaluation of proposed techniques on a diverse set of problems including com-
 070 parisons with neural surrogates, kernel methods and classical interpolation in normal coor-
 071 dinates.

072

074 2 SUBSPACE REGRESSION

075

076 In this section we formulate precisely what we mean by subspace regression and describe several
 077 applications.
 078

079 2.1 DEFINITION OF SUBSPACE REGRESSION PROBLEM

080

081 In linear space \mathbb{R}^n we define k -dimensional subspace $\mathcal{S}(W) = \{W\alpha, \alpha \in \mathbb{R}^k\}$ by specifying tall
 082 full rank matrix $W \in \mathbb{R}^{n \times k}$. Matrices W_1 and W_2 represent the same subspace if there is an invert-
 083 ible matrix G such that $W_1 = W_2G$. The equivalence class of such matrices is denoted by $[W]$. The
 084 set of all k -dimensional subspace of n -dimensional space $\text{Gr}(k, n)$ is known as Grassmann manifold
 085 or grassmannian (Ciaramella et al., 2025), (Bendokat et al., 2024).

086 Let $V : \mathbb{R}^p \rightarrow \text{Gr}(k, n)$ be a function that maps the space of parameters $r \in \mathbb{R}^p$ to the subset of
 087 grassmannian represented as the set of tall full rank matrices $V(r)$. We assume that parameters r
 088 are sampled from distribution $r \sim p_r$ and that dataset $\mathcal{D} = \{(r_1, V_1), \dots, (r_m, V_m)\}$ of m i.i.d.
 089 samples is available. For a given parametric model $\mathcal{Y}_\theta : \mathbb{R}^p \rightarrow \text{Gr}(r, n)$, $r \geq k$ we want to identify
 090 parameters θ^* such that $\mathcal{Y}_{\theta^*}(r)$ approximates $V(r)$ ¹. We formulate this task as optimisation problem

091

$$092 \theta^* = \arg \min_{\theta} \left(\mathbb{E}_{r \sim p_r} [L(\mathcal{Y}_\theta(r), V(r))] \right) \simeq \arg \min_{\theta} \left(\frac{1}{m} \sum_{i=1}^m L(\mathcal{Y}_\theta(r_i), V_i) \right). \quad (1)$$

093

094 Loss function for subspace regression problem is assumed to have two properties:
 095

$$096 \begin{aligned} L(A, B) &= L(\tilde{A}, \tilde{B}) \text{ for arbitrary } \tilde{A} \in [A], \tilde{B} \in [B]; \\ 097 L(A, B) &> 0 \text{ and } L(A, B) = 0 \text{ iff } \mathcal{S}(B) \subset \mathcal{S}(A). \end{aligned} \quad (2)$$

098

099 In Section 3 we provide explicit expression for loss functions with these properties.
 100

101 Aside from unusual invariance requirement (2), optimisation problem (1) is a standard machine
 102 learning formulation of regression problems which can be solved with stochastic optimisation for
 103 arbitrary model $\mathcal{Y}_\theta(r)$ that admits efficient evaluation of gradients.
 104

105

106 ¹Note, that we allow \mathcal{Y}_θ to have more columns than target V . In this context approximation is understood
 107 in terms of subspace inclusion $\mathcal{S}(V) \subset \mathcal{S}(W_\theta)$. As we explain later, redundancy introduced this way can
 significantly improve accuracy.

108
109

2.2 EXAMPLES OF SUBSPACE REGRESSION PROBLEM

110

Approximate eigenspaces. Consider eigenproblem for Schrödinger equation111
112

$$-\Delta\psi(x) + U(x)\psi(x) = E\psi(x), \|\psi\|_2 < \infty, \quad (3)$$

113
114
115
116
117
118
119
120
121
122
123
124

where $U(x)$ is potential energy and E is energy of the system. One way to find eigenpairs is to approximate $\psi(x)$ by a finite series $\psi(x) = \sum_{i=1}^K \alpha_i \phi_i(x)$ and enforce Petrov-Galerkin condition that residual is orthogonal to all $\phi_i(x)$. Continuous problem (3) reduces to eigenproblem for Hermitian matrix and can be solved in $O(K^3)$ operations (Trefethen & Bau, 2022). For eigenproblems we are typically interested only in extremal eigenspaces corresponding to either smallest or largest eigenvalues. In this case it is desirable to select a small number of basis functions $\phi_i(x)$ that approximate sufficiently well the subspace of interest. When eigenproblem (3) is solved repeatedly for many potential functions $U(x)$ this lead us to subspace regression problem (1) used to approximate the mapping $U(x) \rightarrow \{f(x) : f(x) = \sum_{i=1}^K \alpha_i \phi_i(x), \alpha_i \in \mathbb{C}\}$.² That is, we wish to predict subspace spanned by first K eigenvectors. When this mapping is learned from a set of examples, eigenproblems for unobserved potentials U can be solved efficiently, since low-dimensional candidate subspace for eigenfunctions is available.

125
126**Intrusive POD for time-dependent PDEs.** As an example of time-dependent PDE we use Burgers equation

127

$$\frac{\partial u(x, t)}{\partial t} + u(x, t) \frac{\partial u(x, t)}{\partial x} = \frac{\partial}{\partial x} \left(\nu(x) \frac{\partial u(x, t)}{\partial x} \right), u(0, t) = u(1, t) = 0, u(x, 0) = u_0(x). \quad (4)$$

130
131
132
133
134
135
136
137
138

One starts with spatial discretisation which reduces equation (4) to the set of ODEs and define inner product $\langle \cdot, \cdot \rangle_W$ for discretised $u(t)$ that approximates L_2 inner product. For this set of ODEs the reduced degrees of freedom ψ_i are defined as solution to optimisation problems $\min \int_0^T dt \|u(t) - \langle \psi_i, u(t) \rangle_W \psi_i\|_W^2$ subject to $\langle \psi_i, \psi_j \rangle = 0, j < i, \langle \psi_i, \psi_i \rangle = 1$. When discretised, this scheme lead to optimal basis computed with SVD from snapshot matrix (Volkwein, 2013). This basis can only be computed when equation (4) is integrated, so POD is justified only in situation when many related problems are solved. We apply subspace regression with POD to learn the function that maps PDE data to the subspace formed by reduced basis $\{\psi_1, \dots, \psi_k\}$ for some small k . Notably, this allows us to apply local POD to high-dimensional parametric problems.

139
140**Coarse grid correction for iterative methods.** Consider stationary diffusion equation with Dirichlet boundary conditions141
142

$$-\operatorname{div} k(x) \operatorname{grad} \phi(x) = f(x), x \in \Gamma, \phi(x)|_{\partial\Gamma} = 0. \quad (5)$$

143
144
145
146
147
148
149
150
151
152
153
154

When equation (5) is discretised with finite difference or finite element method, it reduces to linear problem $A\phi = f$, where A is large sparse matrix and ϕ, f are discretised solution and right-hand side of (5). To exploit sparsity of A one can solve linear equation with relaxation method. General relaxation method split matrix additively $A = D + C$, where D is regular with known inverse (Saad, 2003). Given the split, if iteration scheme $x^{n+1} = x^n + D^{-1}(b - Ax^n)$ is convergent, steady state is exact solution $x = A^{-1}b$. Convergence is linear and its rate is defined by spectral radius of error propagation matrix $I - D^{-1}A$. To improve convergence rate, one can augment iterative method with coarse-grid correction (Trottenberg et al., 2001). This techniques allows one to remove influence of leading subspace formed by columns of matrix V of $I - D^{-1}A$ by solving small reduced linear system for error equation $V^\top A V e = r$, where e and r are error and residual in the subspace $\mathcal{S}(V)$. Naturally, subspace regression (1) for this problem approximates the mapping $A \rightarrow \mathcal{S}(V)$ or $k(x) \rightarrow \mathcal{S}(V)$ for linear systems resulting from equation (5).

155
156
157
158
159
160
161**Deflation for conjugate gradient.** Krylov subspace methods provide a more systematic way to solve large sparse linear systems (Saad, 2003). For linear system with symmetric positive definite matrix A resulting from discretisation of equation (5), the method of choice is conjugate gradient (CG) (Hestenes et al., 1952). Similar to other Krylov methods, on step r , CG identify optimal solution within Krylov subspace $\mathcal{K}_r = \operatorname{span} \{b, Ab, \dots, A^{r-1}b\}$, where span refers to the subspace formed by linear combinations of vectors in the set. Since powers of A are involved, the most readily available vectors are from the subspaces with large eigenvalues (Saad, 2011). To improve

²Suitable discretisation of parametrisation of both ϕ and U is assumed.

convergence of method it is reasonable to include eigenspaces V with small eigenvalues to the approximation space \mathcal{K}_r . The resulting method is deflated CG and the approximation space is $\mathcal{K}_r \cup \mathcal{S}(V)$ (Saad et al., 2000). In analogy with previous example, the subspace regression problem considered approximates $A \rightarrow \mathcal{S}(V)$ or $k(x) \rightarrow \mathcal{S}(V)$, but this time V spans eigenspaces with small eigenvalues of matrix A .

Balanced-truncation for linear-quadratic control. Suppose we want to solve the following linear quadratic control problem

$$\begin{aligned} \dot{y}(t) &= Ay(t) + Bu(t), \quad z(t) = Cy(t), \\ J &= \int dt \left((z(t))^\top Qz(t) + (u(t))^\top Ru(t) \right) + (z(T))^\top Mz(T), \end{aligned} \quad (6)$$

where $y(t)$ is state variable, $u(t)$ is control, $z(t)$ is observable, A, B, C, Q, R, M are matrices of appropriate sizes, R is symmetric positive definite, Q and M are symmetric positive semidefinite. The goal is to find a control signal $u(t), t \in [0, T]$ that minimises cost function J .

In the situation when number of state variables $y(t)$ is large, one may want to apply ROM to compute optimal control at a reduced cost. An established way to do that is balanced truncation (Moore, 2003). Roughly speaking, balanced truncation compute a special coordinate system $y(t) = \mathcal{T}\tilde{y}(t)$ that discounts variables that are both unobservable and uncontrollable, so only a few first columns of matrix \mathcal{T} can be used to accurately model (6). This is done by finding coordinate system that simultaneously diagonalises observability gramian G_o and controlability gramian G_c defined as solutions of Lyapunov equations $A^\top W_o + W_o A + C^\top C = 0$, $AW_c + W_c A^\top + BB^\top = 0$ (Moore, 2003), (Volkwein, 2013). In this case the goal of subspace regression (1) is to approximate the mapping $A, B, C \rightarrow \mathcal{S}(\overline{\mathcal{T}})$, where $\overline{\mathcal{T}}$ is tall matrix assembled from first few columns of \mathcal{T} .

3 THEORETICAL RESULTS

We proceed by characterising loss functions, introducing the subspace embedding technique and providing its theoretical justification.

3.1 LOSS FUNCTIONS

Requirements (2) that allow loss function to work with $\text{Gr}(k, n)$ data enforce right $\text{GL}(k)$ invariance. As a consequence all loss functions introduced below are all based on orthogonal projectors.

Theorem 1. Let $A \in \mathbb{R}^{n \times k}$, $B \in \mathbb{R}^{n \times p}$, $p \leq k$ be tall full rank matrices.

1. Loss function $L_1(A, B) = p - \|Q_B^\top Q_A\|_F^2$ satisfies requirements (2), where $A = Q_A R_A$, $B = Q_B R_B$ are reduced QR decompositions of A and B , $\|\cdot\|_F$ is Frobenius norm³.
2. Let $z \in \mathbb{R}^k$ be a random variable with zero mean and identity covariance matrix. Loss functions $L_2(A, B; z) = \min_u \|Au - Q_B z\|_2^2$ does not depend on the choice of A from $[A]$, where $B = Q_B R_B$ is QR decomposition.
3. On average L_2 equals L_1 , i.e., $\mathbb{E}_z [L_2(A, B; z)] = L_1(A, B)$.

Proof. Appendix A. □

Loss L_1 is essentially the same as the difference of orthogonal projectors. Note, that $L_1(A, B) \geq 0$ with equality reached if and only if matrices A and B share the same columns space, since in this case $\|Q_B^\top Q_A\|_F^2 = p$. Loss L_2 introduces two modifications: (i) projector in Riemannian distance is replaced with error of least squares problem; (ii) to remove second projector, stochastic Hutchinson trace estimation is used. Reformulation with least square problem allows one to use normal equation, and various tools from randomised numerical linear algebra, e.g., randomised

³Reduced QR decomposition of tall full rank matrix $A \in \mathbb{R}^{n \times k}$ is a factorisation $A = Q_A R_A$, where $Q_A \in \mathbb{R}^{n \times k}$ has orthonormal columns, $R_A \in \mathbb{R}^{k \times k}$ is upper triangular with nonzero elements on the diagonal.

216 preconditioned Cholesky-QR (Garrison & Ipsen, 2024), blendenpik solver (Avron et al., 2010), and
 217 sketching (Woodruff et al., 2014). We will see in Section 4, that loss function $L_2(A, B)$ based on
 218 normal equation scales better than $L_1(A, B)$ with the increase of subspace size.
 219

220 **3.2 SUBSPACE EMBEDDING**
 221

222 In the definition of subspace regression problem (1) we allow to approximate function $\mathbb{R}^p \rightarrow$
 223 $\text{Gr}(k, n)$ by function $\mathbb{R}^p \rightarrow \text{Gr}(r, n)$ where $r \geq k$. We call this strategy subspace embedding.
 224 It is justified because of two unique properties of regression and interpolation on grassmannian: (i)
 225 inclusion of vector subspaces is well-defined; (ii) **subspace, predicted by regression model or inter-**
 226 **polated by standard techniques, is used to construct a reduced model.** From the latter property one
 227 may expect similar or improved accuracy when the predicted subspace from $\text{Gr}(r, n)$ contains target
 228 subspace from $\text{Gr}(k, n)$.
 229

230 We will show empirically in Section 4 that subspace embedding significantly improves accuracy and
 231 generalisation gap. Here we argue that prediction of larger-than-needed subspaces align well with
 232 inductive bias of neural networks known as f-principle or spectral bias (Xu et al., 2019). F-principle
 233 is an observation that neural networks tend to learn smoothed versions of the target functions. As
 234 we show below, embedding techniques may improve smoothness of learned function.
 235

236 **Theorem 2.** *Let $V : \mathbb{R} \rightarrow \text{Gr}(k, n)$ be continuously differentiable on $t \in [0, T]$, $V(t)^\top V(t) =$
 237 I_k . It is always possible to construct piecewise continuous function $W : \mathbb{R} \rightarrow \text{Gr}(r, n)$, $r >$
 238 k , $W(t)^\top W(t) = I_r$ such that $\frac{1}{2} \|W(t)W(t)^\top - V(t)V(t)^\top\|_F^2 - \frac{r-k}{2}$ is arbitrary small and
 $\|\dot{W}(t)\|_F^2 \leq \|\dot{V}(t)\|_F^2$, where inequality is strict for all points where $\|\dot{V}(t)\|_F^2 \neq 0$.*
 239

240 *Proof.* Appendix B; See Appendix C for subspace embedding example. \square
 241

242 Theorem 2 implies that, by increasing the subspace size, one can always approximate continuously
 243 differentiable functions arbitrarily well and simultaneously reduce its derivative. F-principle sug-
 244 gests that the latter property makes learning easier for neural networks.
 245

246 **3.3 COMPLEXITY OF PARAMETRIC EIGENPROBLEM**
 247

248 To illustrate difficulties one may encounter and to further justify embedding technique we consider
 249 complexity of subspace regression problem for parametric elliptic eigenproblem with constant co-
 250 efficient

$$251 - \sum_{i=1}^D a_i \frac{\partial^2 \phi_{i_1, \dots, i_D}(x_1, \dots, x_D)}{\partial x_i^2} = \lambda_{i_1, \dots, i_D} \phi_{i_1, \dots, i_D}(x_1, \dots, x_D), \quad (7)$$

253 where $a_i > 0$, $x_i \in [0, 1]$ and Dirichlet boundary conditions are assumed.
 254

255 For problem (7) general eigenfunction is $\phi_{i_1, \dots, i_D}(x_1, \dots, x_D) = \prod_{j=1}^D \sin(\pi i_j x_j)$ and the set
 256 of eigenfunctions does not depend on coefficients a_i . Observe that $\lambda_{i_1, \dots, i_D} = \sum_{j=1}^D a_j (\pi i_j)^2$,
 257 so coefficients a_i define the order of eigenvectors. Below we formally characterise mapping from
 258 coefficients to k -th eigenvector and eigenspace.

259 **Theorem 3.** *Suppose eigenvectors of (7) are ordered according to the increase of eigenvalues. Let
 260 ϕ_k be an eigenvector on position k , let V_k be an eigenspace spanned by vectors on positions up to
 261 k . Consider mappings $F_k : a_1, \dots, a_D \rightarrow \phi_k$ and $G_k : a_1, \dots, a_D \rightarrow V_k$.*
 262

- 263 1. *F_k, G_k are piecewise constant functions that map real numbers to elements of sets
 S_{F_k}, S_{G_k} . Sets S_{F_k}, S_{G_k} are finite with $\#_{F_k}(k, D), \#_{G_k}(k, D)$ distinct elements.*
 264
- 265 2. *Let $W_l, l > 1$ be a subspace obtained by union of V_l for distinct a_1, \dots, a_D . Number of
 266 vectors in W_l is $\#_{F_k}(l, D) + 1$.*
 267
- 268 3. *$\#_{F_k}(k, D) \sim \frac{1}{(D-1)!} k (\log k)^{D-1}$ for fixed D and large k .*
 269
4. *$\#_{F_k}(k, D) \leq k D^{\log_2 k}$ for fixed k and large D .*

270 5. $\#\mathbf{G}_k(k, D) \geq \frac{1}{(D-1)!} k^{D-1}$ for fixed D and large k .
 271
 272 6. $\#\mathbf{G}_k(k, D) \geq \frac{1}{(k-1)!} D^{k-1}$ for fixed k and large D .
 273

274 Where \sim is asymptotic expansion and \geq, \leq are lower and upper bound on leading asymptotic.
 275

276 *Proof.* Appendix D; See Appendix E for examples. \square
 277

278 Theorem 3 [suggests](#) that for problem (7) mappings from coefficient to k -th eigenvector ϕ_k or sub-
 279 space V_k are piecewise constant functions with rapidly growing number of constant regions when
 280 either k or D increases. The complexity (the number of regions) of the subspace prediction prob-
 281 lem exceeds the complexity of k -th eigenvector prediction. However, results also suggest that the
 282 number of unique eigenvectors within V_k grows at the same rate as the number of eigenvectors on
 283 position k . This means, the large number of distinct regions in G comes from a large number of
 284 possible combinations of an asymptotically small number of vectors. Given that, the complexity
 285 of mapping from coefficients to subspace decreases, if one predicts subspace of larger dimension
 286 $\tilde{V}_k \supseteq V_k$. For example, if one is willing to predict subspace of dimension $\#_F(k, D)$ in place of V_k
 287 of dimension k , the mapping $a_1, \dots, a_D \rightarrow \tilde{V}_k \supseteq V_k$ may be chosen to have constant value.
 288

289 4 NUMERICAL EXPERIMENTS

290 We present several numerical experiments to corroborate our theoretical findings. The discussion
 291 of control problems appears in Appendix I. [All numerical results are reported as single-run metrics](#)
 292 [without explicit error bars](#). To study sensitivity to train-test split we perform several dedicated ex-
 293 periments. Results suggest that variance is low and does not affect main conclusions. The details
 294 are available in Appendix J. For most problems we report relative error measured in percents. For
 295 predicted quantity \tilde{v} and ground truth value v it reads $100\% \times \|v - \tilde{v}\|_2 / \|v\|_2$. For eigenvalue prob-
 296 lems the numerator is \mathbb{Z}_2 adjusted as explained below. For iterative methods we report convergence
 297 plots for relative error, without additional factor 100%.
 298

300 4.1 EIGENSPACE PREDICTION

301 We considered several eigenvalue problems: (i) $D = 1$ eigenproblem with Schrödinger operator (3)
 302 with parametric family of expanded Morse oscillator (Le Roy et al., 2006), (ii) $D = 2$ Schrödinger
 303 operator (3) with parametric family of two expanded Morse oscillators (Carpenter et al., 2018),
 304 (iii) $D = 2$ two datasets, $k_1 = k_2$ and $k_1 \neq k_2$, for elliptic eigenproblem (5) (left-hand side of
 305 the equation) with contrast coefficient sampled from gaussian random field, (iv) $D = 3$ dataset
 306 for elliptic eigenproblem with diffusion coefficient $k_1 = k_2$. In all experiments we used FFNO
 307 architecture (Tran et al., 2021), a modification of FNO (Li et al., 2020), and performed extensive
 308 hyperparameter grid search. Details on dataset generation and training protocol are available in
 309 Appendix F. To contextualise subspace regression we provide results for two baselines.

310 **Regression with \mathbb{Z}_2 adjusted l_2 loss.** Eigenvectors are defined up to a sign, so in place of subspace
 311 losses specified in Theorem 1 one can try to directly predict eigenvectors with \mathbb{Z}_2 adjusted l_2 loss
 312 $l_{\mathbb{Z}_2}(v, u) = \min_{\pm} \|v \pm u\|_2$.

313 **Interpolation in Riemannian normal coordinate system.** A standard technique of manifold in-
 314 terpolation applied to grassmannian (Amsallem, 2010), (Ciaramella et al., 2025), (Zimmermann,
 315 2019). For a given query, k closest points are selected from the training set. One point supplies
 316 common tangent space, i.e., it is used to compute logarithms for the remaining points. Since log-
 317 arithms lay in the same tangent space they can be interpolated with any techniques desirable (we
 318 use RKHS (Bishop & Nasrabadi, 2006)). After interpolation of logarithms, the exponential map is
 319 computed.

320 Additional results are available in Appendix F. Here we highlight several interesting trends.
 321

322 **Subspace losses are unsuccessful without subspace embedding technique.** Figure 1b contains
 323 results of learning subspace spanned by first 10 eigenvectors for $D = 2$ on grid 100×100 elliptic
 eigenproblem with $L_2(A, B; z)$ (loss $L_1(A, B)$ leads to the same accuracy). Neural network predicts

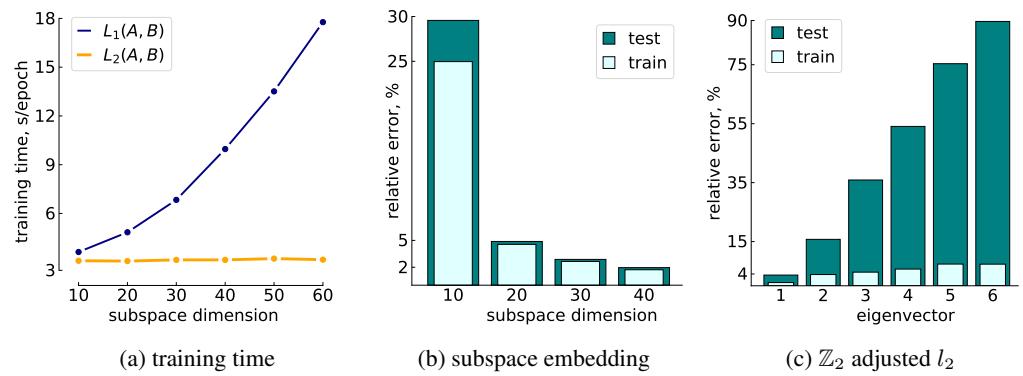


Figure 1: Selected results for eigenspace prediction: (a) Comparison of training time for losses $L_1(A, B)$, $L_2(A, B; z)$ from Theorem 1. On $D = 2$ grid $N_x = N_y = 100$ we observe $L_2(A, B; z)$ scales better with dimension size; (b) Illustration of subspace embedding technique from Section 3.2 for $D = 2$ elliptic eigenproblem, prediction of first 10 eigenvectors. Prediction of larger subspace manifestly improves accuracy and reduces generalisation gap; (c) Relative error for individual eigenvector predictions for the same problem as in (b) but trained with \mathbb{Z}_2 -adjusted l_2 loss. Similarly to results of Theorem 3 we observe a steep increase of problem complexity with eigenvector number. See Section 4.1 for details.

subspace of sizes 10, 20, 30, 40 according to subspace embedding strategy Section 3.2. Results demonstrate subspace embedding is efficient in decreasing test error from 30% for subspace of dimension 10, to test error 2% for subspace of dimension 40 (0.4% of the total number of degrees of freedom). It is less clear from Figure 1b, but the generalisation gap also systematically improves, suggesting that complexity of the problem decreases. Similar conclusions are valid for $D = 2$ QM and $D = 3$ eigenproblems.

Classical interpolation is not competitive. In Table 1 we gather results (best for each method) for one $D = 1$ and two $D = 2$ QM problems. Classical interpolation is reasonably accurate only on the simplest problem in $D = 1$, but $L_{\mathbb{Z}_2}$ loss still results in better accuracy. The reason is likely classical interpolation struggles in high-dimensional subspaces because observations are too sparse to naively approximate tangent space in the region of interest by finding nearest neighbours. On QM datasets accuracy of subspace regression is consistently better than for other approaches.

Loss without QR scales much better for larger subspace sizes. In Figure 1a we demonstrate wall clock training time for $L_1(A, B)$ and $L_2(A, B; z)$ (least squares problem is solved with normal equation) per epoch on the same hardware for the same FFNO architectures. For small subspace sizes the training time the methods are roughly on par, but with the increase of subspace size QR starts to drastically slow down training with L_1 loss.

Training with loss $L_{\mathbb{Z}_2}$ is reasonable only for several first eigenvectors. In Figure 1c we present results for learning individual eigenvectors (a separate network is trained for each eigenvector) for $D = 2$ elliptic eigenproblem. Train error is reasonably small for all eigenvectors, which imply neural networks can successfully approximate them. Rapid growth of the test error with eigenvector number indicates the increase of problem complexity in agreement with Theorem 3.

Neural networks trained with subspace embedding technique learn smoother maps. Theorem 2 suggests it is possible to decrease derivative by embedding of geodesics into a larger space. This provides only a circumstantial evidence that the same may happen when neural networks are trained with subspace embedding technique. In Appendix F we gather empirical results that support such conclusion. The results are based on several “smoothness indicators”: the error of linear model,

Table 1: Relative errors for QM problems.

dataset	interp.	$L_{\mathbb{Z}_2}$	$L_1(A, B)$
$D = 1$	4.69%	2.33%	0.09%
$D = 2, a$	31.9%	19.52%	0.65%
$D = 2, b$	92.64%	48.56%	15.58%

378 Frobenius norm of derivative, and mean cosine of angles between subspaces at nearby points. We
 379 refer interested readers to Appendix F.5.
 380

381 **Subspace regression can speed-up classical iterative eigensolvers.** As an example of hybrid ap-
 382 proach we consider combination of subspace regression and LOBPCG (Knyazev, 2001). LOBPCG
 383 is a classical iterative matrix-free eigensolver that can approximate extremal eigenspaces. To apply
 384 it in combination with subspace regression we use trained neural network to predict subspace, and
 385 initialise LOBPCG with solution of reduced eigenproblem. Note, that the cost of such initialisa-
 386 tion is negligible small comparing to the full cost of LOBPCG iterations. We observe 2 to 3 times
 387 faster converges and 2 orders lower relative error on average when subspace regression is used for
 388 initialisation. More details are available in Appendix F.6.

389 **Loss $L_2(A, B; z)$ may become unstable.**

390 From results summarised in Figure 1a one
 391 can assume that $L_2(A, B; z)$ is always
 392 preferable. Results for $D = 3$ problem (el-
 393 liptic eigenproblem, grid $30 \times 30 \times 30$, pre-
 394 diction of first 3 eigenvectors) summarised
 395 in Table 2 reveal a more nuanced picture.
 396 Loss $L_2(A, B; z)$ clearly performs worse
 397 than $L_1(A, B)$ and even fails for subspace
 398 size 24. The reason for that is numerical
 399 instability of solvers based on the normal
 400 equation. To stabilize $L_2(A, B; z)$ we apply Cholesky-QR2 (Yamamoto et al., 2015). The results
 401 for stabilised loss shows that accuracy becomes comparable to $L_1(A, B)$ and even slightly better for
 402 larger subspace dimensions.

Table 2: Accuracy for $D = 3$ elliptic eigenproblem.

N_{sub}	$L_1(A, B)$	$L_2(A, B; z)$	$L_2^{\text{stab}}(A, B; z)$
6	24.77%	31.46%	28.28%
12	13.69%	17.12%	15.88%
24	9.71%	—	9.49%
48	7.54%	16.3%	7.4%

402 **4.2 PARAMETRIC PDE PROBLEMS**

404 We considered two PDEs: (i) $D = 1 + 1$ viscous Burgers equation, related to benchmark from (Li
 405 et al., 2020); (ii) $D = 2$ elliptic problems (5). Our main operator is FFNO and the solutions strategy
 406 we use is classical intrusive POD⁴. For datasets description and training details see Appendix G. We
 407 compare subspace regression with several methods.

408 **Regression with FFNO.** We apply FFNO, an extension of Fourier Neural Operator, to parametric
 409 PDEs in a standard way similar to (Tran et al., 2021).

411 **Regression with DeepONet.** Classical architecture based on the universal approximation theorem
 412 of operators (Lu et al., 2019). DeepONet can be understood as end-to-end training of non-intrusive
 413 POD with basis functions parametrised by implicit neural representation or physics-informed neural
 414 networks (Sitzmann et al., 2020), (Lagaris et al., 1998), (Raissi et al., 2019).

415 **Intrusive POD with DeepONet/FFNO basis.** When DeepONet is trained, learned spatial or spa-
 416 tiotemporal basis functions can be used to extract basis (by method directly related to POD) suitable
 417 for spectral methods or intrusive POD (Meuris et al., 2021), (Meuris et al., 2023). As suggested in
 418 the discussion section of (Meuris et al., 2021), the same can be done with FNO.

419 **Deep POD.** Projector-based loss is used directly to extract basis from available snapshot matrices or
 420 steady-state solutions (Franco et al.). In the referenced publication this approach is combined with
 421 PCA-Net described below.

422 **Kernel methods.** A non-parametric technique where the RKHS method is used for encoder, pro-
 423 cessor and decoder (Battile et al., 2024).

425 **PCA-Net.** A non-intrusive technique with classical POD used as both encoder and decoder, and
 426 feedforward network served as processor (Hesthaven & Ubbiali, 2018), (Bhattacharya et al., 2021).

427 **POD and oracle.** Two POD-based baselines. POD is an intrusive variant of global POD (Volkwein,
 428 2013). Oracle is an intrusive variant of local POD computed with optimal subspace. In problems we
 429 consider, error achieved by oracle is the best possible for a given number of basis vectors.

431 ⁴Recall, that when coefficients in the reduced basis expansion are predicted by some model we have non-
 432 intrusive POD. When basis is used to generate reduced ODE that is later integrated we have intrusive POD.

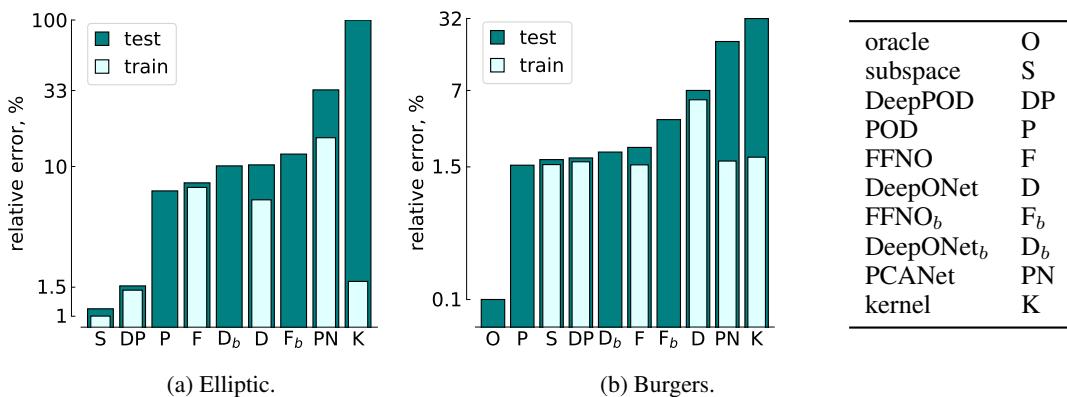


Figure 2: Relative errors for selected baselines. Label ‘‘subspace’’ refers to subspace regression. For the elliptic problem (a) subspace dimension of ROM methods is bounded by 100, and for DeepPOD, and subspace regression – by 40. Oracle is omitted for the elliptic problem because it has perfect accuracy with 10 basis functions. For Burgers equation subspace dimensions for all methods ≤ 50 . FFNO_b and DeepONet_b refer to an intrusive ROM with bases extracted from FFNO and DeepONet.

Additional results are available in Appendix G. Here we highlight the most important findings.

Subspace regression leads to competitive accuracy. In Figure 2a and Figure 2b we observe that subspace regression performs similar or better than DeepPOD. Among other intrusive methods only classical POD leads to comparable accuracy. Bases extracted from FFNO and DeepONet are worse than global POD in all experiments. Pure regression approaches – FFNO, DeepONet, PCANet – appear to be less accurate. PCANet similar to kernel methods shows significant overfitting on our problems, likely resulting from poor inductive bias of the architecture. Note however, that regression approaches are not directly comparable with intrusive techniques, since they do not require a solution of reduced model.

Representations learned by neural networks are highly non-optimal. Representation of all neural networks are inefficient if one compares them with the oracle. For example, by construction of an elliptic dataset, a subspace of dimension 10 is enough for perfect accuracy. Both DeepPOD and subspace regression reach error about $< 1.5\%$ with subspaces of dimension 40, DeepONet needs to have > 200 basis functions to reach comparable accuracy, and FFNO with 64 basis functions in the last hidden layer lead to 10% relative error. Basis functions built from FFNO and DeepONet are similarly inefficient. The same observations hold for Burger’s equation.

4.3 ITERATIVE METHODS FOR LINEAR SYSTEMS

We illustrate subspace regression for iterative methods using $D = 2$ elliptic problems (5). Said iterative methods are deflated CG and two-grid correction for the Jacobi method introduced in Section 2 and explained in more detail in Appendix H. Figure 3a and Figure 3b shows average convergence curves on test set and Appendix H contains the rest of relevant data.

Iterative methods are less sensitive to subspace quality. On the training stage, neural networks were presented with data only on first 10 eigenvectors. Despite that, neural networks trained with subspace embedding nearly match the performance of deflated CG with exact eigenspaces of larger size, for coarse-grid corrected Jacobi method convergence speed with learned subspaces is even slightly better. One possible explanation hinted by Theorem 3 is that from distribution of subspaces some information about nearby vectors can be recovered.

Seemingly minor variations in problem setting can lead to substantial variations in the complexity of the learning problem. Initially for the Jacobi method we posed a subspace regression problem as an approximation of leading eigenspaces of error propagation matrix $I - D^{-1}A$, where D is diagonal of A . Neural networks with and without subspace embedding completely failed to learn. After inspection of the dataset we found that the leading eigenspace contains a complicated mixture of functions with low and high frequencies. Since the learning problem appeared to be completely

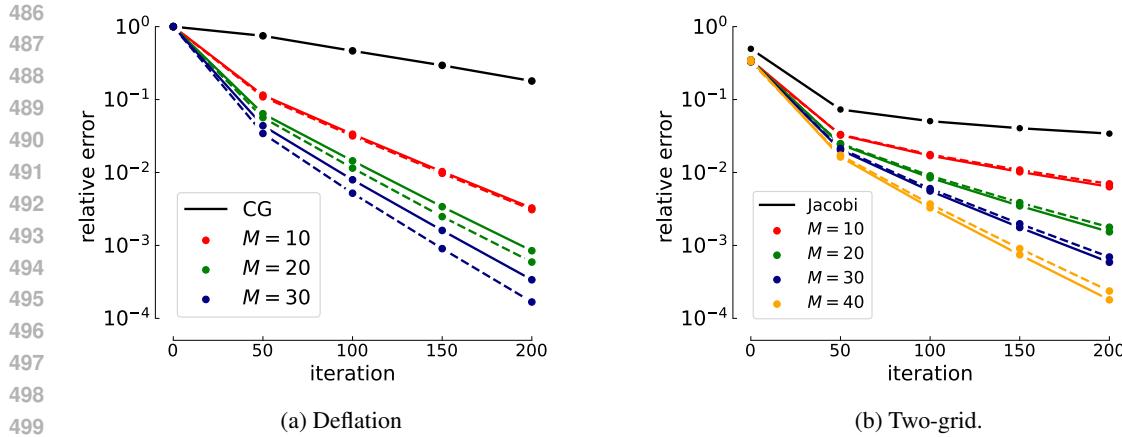


Figure 3: Convergence results for iterative methods. Learned methods are marked with solid lines, and dashed lines correspond to iterative methods with optimal deflation and coarse-grid spaces, M refers to subspace size.

hopeless, we reformulated subspace regression using error propagation matrix of damped Jacobi iteration $I - \omega D^{-1}A$ with $\omega = 0.9$. In contrast to the standard Jacobi method, the damped version leads to subspaces formed by low frequency functions. As evident from Figure 3b the resulting mapping is easily learnable. A more detailed report can be found in Appendix H.

5 CONCLUSION

Subspace regression – a prediction of subspace from available data – is an interesting problem with a variety of applications including reduced order modelling for partial differential equations, approximation of eigenspaces for eigenproblems, construction of iterative methods for linear problems and optimal control. We formalise subspace regression as a statistical learning problem and introduce several loss functions that are suitable for subspace data. For most of the applications considered we observe that the learning problem is too complicated even when a specialised loss function is used. To simplify learning we propose to approximate a given subspace with a subspace of larger dimension. The resulting technique, called subspace embedding, significantly improves accuracy and generalisation gap. The idea of subspace embedding is that redundancy typically simplifies the learning process and leads to more robust performance. Even though this strategy clearly helps, it introduces a large gap between dimensions of optimal and learned subspaces. The same gap is observed for the classical operator learning problems, when the neural network is trained to approximate solution mapping for parametric PDE. In this case the learned basis can be extracted from the last hidden layer. This neural basis is far from optimal, requiring an excessive number of basis vectors to be used for reaching comparable accuracy. Whether this inefficiency in representation can be resolved, remains an open problem.

6 REPRODUCIBILITY STATEMENT

Code used for training, evaluation and dataset generation along with all trained models and generated datasets will be available in the unanonymized version of the paper. In the current version detailed description of architectures, hyperparameters, dataset generation and training details appear in Appendix I, Appendix H, Appendix G, Appendix F.

REFERENCES

David Amsallem. *Interpolation on manifolds of CFD-based fluid and finite element-based structural reduced-order models for on-line aeroelastic predictions*. Stanford University, 2010.

540 Haim Avron, Petar Maymounkov, and Sivan Toledo. Blendenpik: Supercharging lapack’s least-
 541 squares solver. *SIAM Journal on Scientific Computing*, 32(3):1217–1236, 2010.
 542

543 Zhaojun Bai, Patrick M Dewilde, and Roland W Freund. Reduced-order modeling. *Handbook of*
 544 *numerical analysis*, 13:825–895, 2005.

545 Pau Batlle, Matthieu Darcy, Bamdad Hosseini, and Houman Owhadi. Kernel methods are competi-
 546 tive for operator learning. *Journal of Computational Physics*, 496:112549, 2024.
 547

548 Thomas Bendokat, Ralf Zimmermann, and P-A Absil. A grassmann manifold handbook: Basic
 549 geometry and computational aspects. *Advances in Computational Mathematics*, 50(1):6, 2024.
 550

551 Kaushik Bhattacharya, Bamdad Hosseini, Nikola B Kovachki, and Andrew M Stuart. Model reduc-
 552 tion and neural networks for parametric pdes. *The SMAI journal of computational mathematics*,
 553 7:121–157, 2021.

554 Christopher M Bishop and Nasser M Nasrabadi. *Pattern recognition and machine learning*, vol-
 555 ume 4. Springer, 2006.
 556

557 Ake Björck and Gene H Golub. Numerical methods for computing angles between linear subspaces.
 558 *Mathematics of computation*, 27(123):579–594, 1973.

559 Barry K Carpenter, Gregory S Ezra, Stavros C Farantos, Zeb C Kramer, and Stephen Wiggins.
 560 Dynamics on the double morse potential: a paradigm for roaming reactions with no saddle points.
 561 *Regular and Chaotic Dynamics*, 23(1):60–79, 2018.
 562

563 Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi Dong,
 564 Thang Luong, Cho-Jui Hsieh, Yifeng Lu, et al. Symbolic discovery of optimization algorithms.
 565 *Advances in neural information processing systems*, 36:49205–49233, 2023.

566 Gabriele Ciaramella, Martin J Gander, and Tommaso Vanzan. A gentle introduction to interpolation
 567 on the grassmann manifold. 2025.
 568

569 Nicola Rares Franco, Andrea Manzoni, Paolo Zunino, and Jan S Hesthaven. Deep orthogonal
 570 decomposition: a continuously adaptive neural network approach to model order reduction of
 571 parametrized partial differential equations.
 572

573 Nicola Rares Franco, Andrea Manzoni, Paolo Zunino, and Jan S Hesthaven. Deep orthogonal
 574 decomposition: a continuously adaptive data-driven approach to model order reduction. *arXiv*
 575 *preprint arXiv:2404.18841*, 2024.

576 James E Garrison and Ilse CF Ipsen. A randomized preconditioned cholesky-qr algorithm. *arXiv*
 577 *preprint arXiv:2406.11751*, 2024.
 578

579 Magnus R Hestenes, Eduard Stiefel, et al. Methods of conjugate gradients for solving linear systems.
 580 *Journal of research of the National Bureau of Standards*, 49(6):409–436, 1952.

581 Jan S Hesthaven and Stefano Ubbiali. Non-intrusive reduced order modeling of nonlinear problems
 582 using neural networks. *Journal of Computational Physics*, 363:55–78, 2018.
 583

584 Jan S Hesthaven, Cecilia Pagliantini, and Gianluigi Rozza. Reduced basis methods for time-
 585 dependent problems. *Acta Numerica*, 31:265–345, 2022.
 586

587 Donald E Kirk. *Optimal control theory: an introduction*. Courier Corporation, 2004.

588 Andrew V Knyazev. Toward the optimal preconditioned eigensolver: Locally optimal block pre-
 589 conditioned conjugate gradient method. *SIAM journal on scientific computing*, 23(2):517–541,
 590 2001.
 591

592 Isaac E Lagaris, Aristidis Likas, and Dimitrios I Fotiadis. Artificial neural networks for solving
 593 ordinary and partial differential equations. *IEEE transactions on neural networks*, 9(5):987–1000,
 1998.

594 Robert J Le Roy, Yiye Huang, and Calvin Jary. An accurate analytic potential function for ground-
 595 state n2 from a direct-potential-fit analysis of spectroscopic data. *The Journal of chemical physics*,
 596 125(16), 2006.

597

598 Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
 599 drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
 600 equations. *arXiv preprint arXiv:2010.08895*, 2020.

601

602 Lu Lu, Pengzhan Jin, and George Em Karniadakis. Deeponet: Learning nonlinear operators for iden-
 603 tifying differential equations based on the universal approximation theorem of operators. *arXiv
 604 preprint arXiv:1910.03193*, 2019.

605

606 Brek Meuris, Saad Qadeer, and Panos Stinis. Machine-learning custom-made basis functions for
 607 partial differential equations. *arXiv preprint arXiv:2111.05307*, 2021.

608

609 Brek Meuris, Saad Qadeer, and Panos Stinis. Machine-learning-based spectral methods for partial
 610 differential equations. *Scientific Reports*, 13(1):1739, 2023.

611

612 Bruce Moore. Principal component analysis in linear systems: Controllability, observability, and
 613 model reduction. *IEEE transactions on automatic control*, 26(1):17–32, 2003.

614

615 Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
 616 deep learning framework for solving forward and inverse problems involving nonlinear partial
 617 differential equations. *Journal of Computational physics*, 378:686–707, 2019.

618

619 Yousef Saad. *Iterative methods for sparse linear systems*. SIAM, 2003.

620

621 Yousef Saad. *Numerical methods for large eigenvalue problems: revised edition*. SIAM, 2011.

622

623 Yousef Saad, Manshun Yeung, Jocelyne Erhel, and Frédéric Guyomarc'h. A deflated version of the
 624 conjugate gradient algorithm. *SIAM Journal on Scientific Computing*, 21(5):1909–1926, 2000.

625

626 Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Im-
 627 plicit neural representations with periodic activation functions. *Advances in neural information
 628 processing systems*, 33:7462–7473, 2020.

629

630 Alasdair Tran, Alexander Mathews, Lexing Xie, and Cheng Soon Ong. Factorized fourier neural
 631 operators. *arXiv preprint arXiv:2111.13802*, 2021.

632

633 Lloyd N Trefethen and David Bau. *Numerical linear algebra*. SIAM, 2022.

634

635 Ulrich Trottenberg, Cornelius W Oosterlee, and Anton Schuller. *Multigrid methods*. Academic
 636 press, 2001.

637

638 Stefan Volkwein. Proper orthogonal decomposition: Theory and reduced-order modelling. *Lecture
 639 Notes, University of Konstanz*, 4(4):1–29, 2013.

640

641 David P Woodruff et al. Sketching as a tool for numerical linear algebra. *Foundations and Trends®
 642 in Theoretical Computer Science*, 10(1–2):1–157, 2014.

643

644 Zhi-Qin John Xu, Yaoyu Zhang, Tao Luo, Yanyang Xiao, and Zheng Ma. Frequency principle:
 645 Fourier analysis sheds light on deep neural networks. *arXiv preprint arXiv:1901.06523*, 2019.

646

647 Yusaku Yamamoto, Yuji Nakatsukasa, Yuka Yanagisawa, and Takeshi Fukaya. Roundoff error anal-
 648 ysis of the choleskyqr2 algorithm. *Electron. Trans. Numer. Anal.*, 44(01):306–326, 2015.

649

650 Ralf Zimmermann. Manifold interpolation and model reduction. *arXiv preprint arXiv:1902.06502*,
 651 2019.

648 A PROOF OF THEOREM 1
649650 1. To show that $L_1(A, B)$ does not depend on the chosen representative we observe that
651

652
$$L_1(A, B) = p - \|Q_B^\top Q_A\|_F^2 = \frac{1}{2} \|P_B - P_A\|_F^2 - \frac{k-p}{2}, \quad (8)$$

653

654 where $P_A = A(A^\top A)^{-1}A^\top$, $P_B = B(B^\top B)^{-1}B^\top$ are orthogonal projectors on the
655 columns spaces of A and B . When QR decompositions $A = Q_A R_A$, $B = Q_B R_B$ are
656 available, projectors become $P_A = Q_A Q_A^\top$, $P_B = Q_B Q_B^\top$ and identity (8) can be verified
657 by algebraic manipulations
658

659
$$\begin{aligned} \frac{1}{2} \|P_B - P_A\|_F^2 - \frac{k-p}{2} &= \frac{1}{2} \text{tr}((Q_B Q_B^\top - Q_A Q_A^\top)(Q_B Q_B^\top - Q_A Q_A^\top)) - \frac{k-p}{2} \\ 660 &= \frac{1}{2} \text{tr}(Q_B Q_B^\top) + \frac{1}{2} \text{tr}(Q_A Q_A^\top) - \|Q_B^\top Q_A\|_F^2 - \frac{k-p}{2} = p - \|Q_B^\top Q_A\|_F^2. \end{aligned} \quad (9)$$

661

662 From the equivalent form of loss $L_1(A, B)$ given in equation (8) one can immediately con-
663 clude that $L_1(A, B)$ does not depend on the representatives A, B chosen from $[A], [B]$.
664 The reason is projectors are invariant under right GL transformations. For example,
665 $P_A = P_{\tilde{A}}$, where $\tilde{A} = AG$ and G is arbitrary non-degenerate matrix $G \in \mathbb{R}^{k \times k}$
666

667
$$\begin{aligned} \tilde{A} \left(\tilde{A}^\top \tilde{A} \right)^{-1} \tilde{A}^\top &= AG (G^\top A^\top AG)^{-1} G^\top A^\top \\ 668 &= AGG^{-1} (A^\top A)^{-1} (G^\top)^{-1} G^\top A^\top = A (A^\top A)^{-1} A^\top. \end{aligned} \quad (10)$$

669

670 Now, when we know that $L_1(A, B)$ does not depend on the chosen representatives, it is
671 easy to show that the minimal value of loss is 0 and it is reached when $\mathcal{S}(B) \subset \mathcal{S}(A)$.
672 To see this, select representatives such that $Q_A = (\tilde{Q}_B \quad \tilde{Q}_B^\perp)$, where \tilde{Q}_B is block matrix
673 formed from subset of columns of Q_B and columns of \tilde{Q}_B^\perp are all orthogonal to Q_B . This
674 selection is always possible since $(I - Q_B Q_B^\top) + Q_B Q_B^\top = I$. Representatives selected in
675 this form give
676

677
$$L_1(A, B) = p - \|Q_B^\top \tilde{Q}_B\|_F^2 = p - q \geq 0, \quad (11)$$

678

679 where $\tilde{Q}_B \in \mathbb{R}^{n \times q}$, $q \leq p$. The last identity follows by construction: \tilde{Q}_B is composed
680 from columns of Q_B . Loss becomes zero only if $p = q$, or, equivalently, $\mathcal{S}(B) \subset \mathcal{S}(A)$.
681682 2. We first show that
683

684
$$L_2(A, B; z) = \min_u \|Au - Q_B z\|_2^2 = \|(I - P_A) Q_B z\|_2^2, \quad (12)$$

685

686 where $P_A = A(A^\top A)^{-1}A^\top$ is orthogonal projector on the columns space of A . Using
687 $I = (I - P_A) + P_A$, and $A(I - P_A) = (I - P_A)A = 0$ we obtain
688

689
$$\begin{aligned} \min_u \|Au - Q_B z\|_2^2 &= \min_u \|Au - P_A Q_B z - (I - P_A) Q_B z\|_2^2 \\ 690 &= \min_u \|Au - P_A Q_B z\|_2^2 + \|(I - P_A) Q_B z\|_2^2 = \|(I - P_A) Q_B z\|_2^2. \end{aligned} \quad (13)$$

691

692 The last equality holds since $P_A Q_B$ and A share the same columns space. Given that P_A
693 does not depend on representative A from $[A]$, and that $L_2(A, B; z)$ depends on A only
694 via P_A , we conclude that the same is true for $L_2(A, B; z)$.
695696 3. From equation (12) we find
697

698
$$\begin{aligned} \mathbb{E}_z [L_2(A, B; z)] &= \mathbb{E}_z \left[\|(I - P_A) Q_B z\|_2^2 \right] = \mathbb{E}_z [z^\top (Q_B^\top (I - P_A) Q_B) z] \\ 699 &= \mathbb{E}_z [\text{tr}((Q_B^\top Q_B - Q_B^\top Q_A Q_A^\top Q_B) z z^\top)] = \text{tr}((Q_B^\top Q_B - Q_B^\top Q_A Q_A^\top Q_B) \mathbb{E}_z [z z^\top]) \\ 700 &= p - \|Q_B^\top Q_A\|_F^2 = L_1(A, B). \end{aligned} \quad (14)$$

701

702 **B PROOF OF THEOREM 2**
 703

704 We provide two comments before proceeding with the proof.
 705

706 In most parts of the text we assumed working with the non-compact Stiefel manifold and in this
 707 theorem we have data on the compact Stiefel manifold (see (Amsallem, 2010) for definitions). We
 708 specify how one can compute Q_A and \dot{Q}_A having A and \dot{A} . One may start from any stable version
 709 of Cholesky QR, e.g., (Garrison & Ipsen, 2024), (Yamamoto et al., 2015), and obtain

710
$$Q_A = AR^{-1}, \quad (15)$$

 711

712 where R is Cholesky factorization of Gram matrix $A^\top A$, i.e., $A^\top A = R^\top R$ where R is a lower
 713 triangular square invertible matrix. To find the derivative of Q_A we need to know the derivative
 714 $\frac{d}{dt}R^{-1}$. Derivative \dot{R} can be computed as a solution to Lyapunov equation

715
$$\dot{R}^\top R + R^\top \dot{R} = \dot{A}^\top A + A^\top \dot{A}, \quad (16)$$

 716

717 after that $\frac{d}{dt}R^{-1}$ can be found from Jacobi identity $\frac{d}{dt}R^{-1} = -R^{-1}\dot{R}R^{-1}$.
 718

719 In Theorem 2 we use $\frac{1}{2}\|W(t)W(t)^\top - V(t)V(t)^\top\|_F^2 - \frac{r-k}{2}$ to measure the quality of approxima-
 720 tion. It follows from the proof in Appendix A that
 721

722
$$\frac{1}{2}\|W(t)W(t)^\top - V(t)V(t)^\top\|_F^2 - \frac{r-k}{2} = L_1(W(t), V(t)), \quad (17)$$

 723

724 where $L_1(W(t), V(t))$ is a loss function defined in Theorem 1. We can alternatively rewrite
 725

726
$$\frac{1}{2}\|W(t)W(t)^\top - V(t)V(t)^\top\|_F^2 - \frac{r-k}{2} = \sum_{i=1}^k \sin^2(\theta_i) \quad (18)$$

 727

728 using the definition of principle angles θ_i between column spaces of matrices $W(t)$ and
 729 $V(t)$ (Björck & Golub, 1973). Given the later form, it is clear that small values of
 730 $\frac{1}{2}\|W(t)W(t)^\top - V(t)V(t)^\top\|_F^2 - \frac{r-k}{2}$ correspond to better aligned subspaces.
 731

732 To demonstrate the main result of Theorem 2 we first prove a supplementary statement.
 733

734 **Lemma 1.** *Let $A(t)$ be geodesic on $Gr(k_1, n)$, $A(t)^\top A(t) = I_{k_1}$. One can always construct
 735 geodesic $B(t)$, $B(t)^\top B(t) = I_{k_2}$ on $Gr(k_2, n)$, $k_2 > k_1$ such that $\|\dot{B}(t)\|_F^2 \leq \|\dot{A}(t)\|_F^2$, where
 736 inequality is strict unless $\|\dot{A}(t)\|_F^2 \neq 0$.*
 737

738 *Proof.* Since $A(t)$ is geodesic we can write $A(t) = A(0)Y \cos(\Sigma t)Y^\top + U \sin(\Sigma t)Y^\top$, where
 739 $U \sin(\Sigma t)Y^\top$ is singular value decomposition of $\dot{A}(0)$. Using orthogonality of $\dot{A}(0)$ and $A(0)$ we
 740 find $\|\dot{A}(t)\|_F^2 = \text{tr}(\Sigma)$. Without loss of generality we assume that $\Sigma_{11} \neq 0$. Consider
 741

742
$$\begin{aligned} B(t) &= \begin{pmatrix} A(0) & | & u_1 \\ & | & | \\ & 0 & | \end{pmatrix} \begin{pmatrix} y_1 y_1^\top + \sum_{i=2}^{k_1} \cos(\sigma_i t) y_i y_i^\top & 0 \\ 0 & 1 \end{pmatrix} + \sum_{i=2}^{k_1} \sin(\sigma_i t) u_i \begin{pmatrix} y_i \\ 0 \end{pmatrix}^\top \\ &= \begin{pmatrix} A(0)Y \cos(\tilde{\Sigma} t)Y^\top + U \sin(\tilde{\Sigma} t)Y^\top & | & u_1 \\ & | & | \end{pmatrix}, \end{aligned} \quad (19)$$

 743

744 where y_i are columns of Y , u_i are columns of U , σ_i are diagonal elements of Σ , $\tilde{\Sigma} = \Sigma - (\sigma_1 - 1)e_1 e_1^\top$, that is, $\tilde{\Sigma}$ can be obtained from Σ by replacing $\Sigma_{11} = \sigma_1$ by 1. Clearly $B(t)$ is geodesic
 745 and $\|\dot{B}(t)\|_F^2 = \|\dot{A}(t)\|_F^2 - \sigma_1 < \|\dot{A}(t)\|_F^2$. Next we show that principal angles between $A(t)$ and
 746

756 $B(t)$ are all zero. To see this we observe that
 757

$$\begin{aligned}
 758 \quad A^\top(t)B(t) &= \begin{pmatrix} Y \left(\cos(\Sigma t) \cos(\tilde{\Sigma} t) + \sin(\Sigma t) \sin(\tilde{\Sigma} t) \right) Y^\top & y_1 \sin(\sigma_1 t) \\ & \vdots \end{pmatrix} \\
 759 \quad &= \begin{pmatrix} Y \left(I - (1 - \cos(\sigma_1 t))e_1 e_1^\top \right) Y^\top & y_1 \sin(\sigma_1 t) \\ & \vdots \end{pmatrix}. \quad (20)
 \end{aligned}$$

760 From the identity above Frobenius norm reads
 761

$$762 \quad \|A^\top(t)B(t)\|_F^2 = \sum_{i=1}^{k_1} \sin^2(\theta_i) = \text{tr} \left(\cos^2(\sigma_1 t) y_1 y_1^\top + \sum_{i=2}^{k_1} y_i y_i^\top + y_1 y_1^\top \sin^2(\sigma_1 t) \right) = k_1, \quad (21)$$

763 and we conclude that $\theta_i = 0$ for all $i = 1, \dots, k_1$. \square
 764

765 Lemma 1 also implies that for two such geodesics $\frac{1}{2} \|A(t)A(t)^\top - B(t)B(t)^\top\|_F^2 - \frac{k_2 - k_1}{2} = 0$.
 766

767 Now we are ready to show the main result of Theorem 2. We split interval of interest $t \in [0, T]$
 768 on subintervals $[t_i, t_{i+1}]$ of length Δt . On each subinterval we consider three curves: (i) original
 769 continuously differentiable curve $V(t) \in \text{Gr}(k, n)$, (ii) approximation of $V(t)$ by geodesic $Z(t) \in$
 770 $\text{Gr}(k, n)$ passing through $V(t_i)$ with derivative $\dot{V}(t_i)$, (iii) embedding of $Z(t)$ by geodesic $W(t)$
 771 on $\text{Gr}(r, n)$, $r > k$ selected as explained in Lemma 1. We start by showing that principle angles
 772 between $W(t)$ and $V(t)$ can be made arbitrary small
 773

$$\begin{aligned}
 774 \quad &\frac{1}{2} \|V(t)V(t)^\top - W(t)W(t)^\top\|_F^2 - \frac{r-k}{2} \\
 775 \quad &= \frac{1}{2} \|V(t)V(t)^\top - Z(t)Z(t)^\top + Z(t)Z(t)^\top - W(t)W(t)^\top\|_F^2 - \frac{r-k}{2} \\
 776 \quad &\leq \frac{1}{2} \|V(t)V(t)^\top - Z(t)Z(t)^\top\|_F^2 + \frac{1}{2} \|Z(t)Z(t)^\top - W(t)W(t)^\top\|_F^2 - \frac{r-k}{2} \\
 777 \quad &= \frac{1}{2} \|V(t)V(t)^\top - Z(t)Z(t)^\top\|_F^2.
 \end{aligned} \quad (22)$$

778 Now we know that on each interval the distance between $V(t)$ and $W(t)$ is bounded by the distance
 779 from $V(t)$ to the geodesics that passes through $V(t_i)$ with speed $\dot{V}(t_i)$. Since interval is assumed
 780 to be small, we expand geodesic $Z(t)$ in Taylor series keeping terms proportional to $(\Delta t)^0$ and Δt
 781 and for $V(t)$ we use Lagrange remainder $V(t) = V(t_i) + \dot{V}(\tilde{t})(t - t_i)$, $t \in [t_i, t_{i+1}]$, $\tilde{t} \in [t_i, t]$:
 782

$$783 \quad \frac{1}{2} \|V(t)V(t)^\top - Z(t)Z(t)^\top\|_F^2 \simeq 2(t - t_i)^2 \|\dot{V}(\tilde{t}) - \dot{V}(t_i)\|_F^2. \quad (23)$$

784 By assumption $V(t)$ is continuously differentiable, meaning the expression above can be made ar-
 785 bitrary small by selecting sufficiently small intervals $[t_i, t_{i+1}]$.
 786

787 To show that derivative of $W(t)$ can be made smaller than $V(t)$ observe that $\|\dot{W}(t)\|_F^2 < \|\dot{Z}(t)\|_F^2$
 788 on each subinterval where $\|\dot{Z}(t_i)\|_F^2 \neq 0$. Since $\|\dot{Z}(t)\|_F^2 = \|\dot{Z}(t_i)\|_F^2 = \|\dot{V}(t_i)\|_F^2$ and $\dot{V}(t)$ is
 789 continuous function, we, again, can select sufficiently small intervals such that deviation of $\|\dot{V}(t)\|_F^2$
 790 from $\|\dot{V}(t_i)\|_F^2$ on each interval is small enough for $\|\dot{W}(t)\|_F^2 < \|\dot{V}(t)\|_F^2$ to hold.
 791

804 C SUBSPACE EMBEDDING EXAMPLE

805 The proof of Theorem 2 is constructive, meaning we can compute $W(t)$ given $V(t)$ and $\dot{V}(t)$ or its
 806 estimation. We select
 807

$$808 \quad V(t) = \gamma_1(t) = \begin{pmatrix} \sin(\theta(t)) \sin(\phi(t)) \\ \cos(\theta(t)) \sin(\phi(t)) \\ \cos(\phi(t)) \end{pmatrix}, \theta(t) = 7\pi \cos(2\pi t), \phi(t) = \pi/2 + \pi/4 \cos(2\pi t). \quad (24)$$

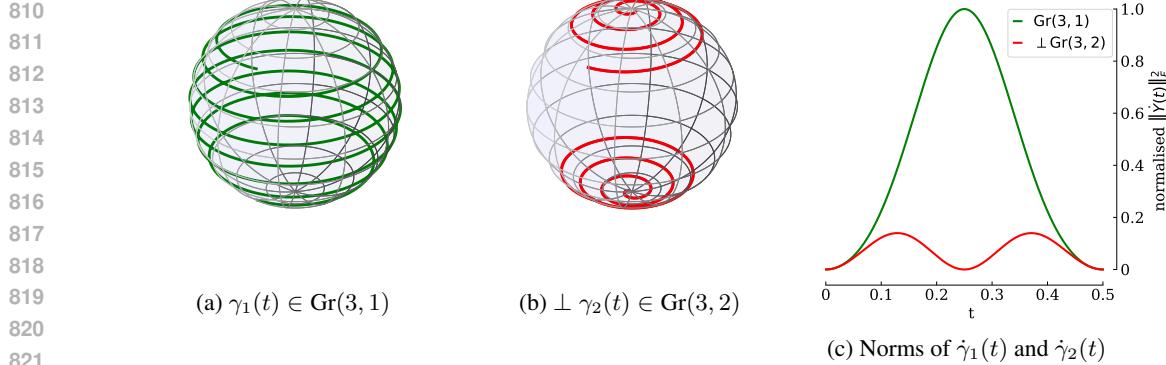


Figure 4: Example of subspace embedding detailed in Appendix C.

Curve $\gamma_1(t) \in \text{Gr}(1, 3)$ is illustrated in Figure 4a. We next estimate derivatives by splitting t on a set of subintervals and taking logarithm on each interval. This derivative is used as explained in Lemma 1 to define $W(t) \in \text{Gr}(2, 3)$. Since $\frac{1}{2} \|\dot{P}_W\|_F^2 = \|\dot{W}(t)\|_F^2 = \frac{1}{2} \|\frac{d}{dt}(I - P_W)\|_F^2$ we plot $\gamma_2(t) \perp W(t)$ in Figure 4b. Curve $\gamma_2(t)$ appears to be discontinuous, but actually it is continuous owing to \mathbb{Z}_2 symmetry of compact Stiefel manifold $\text{St}(1, 3)$. Norms of derivative are compared in Figure 4c: curve γ_2 is manifestly smoother than γ_1 .

D PROOF OF THEOREM 3

In the proof we will write F ad G in place of F_k and G_k assuming that k is fixed and the value of k is evident from the context.

D.1 PARTS 1. AND 2.

We order eigenvectors in the increase of eigenvalue $E(i_1, \dots, i_D) := \lambda_{i_1, \dots, i_D} = \sum_{j=1}^D a_j i_j^2$, which we will also call energy in this section. To understand how eigenvectors and subspaces are selected for different coefficients a_1, \dots, a_D we introduce continuous relaxation of energy $E(z_1, \dots, z_D) = \sum_{j=1}^D a_j z_j^2$, where $z_j \in \mathbb{R}_+$. In continuous form, surfaces with constant energies are (hyper)ellipsoids of dimension $D - 1$, so the process of selecting k -th eigenvector or constructing subspace of dimension k can be understood through the following informal algorithm:

1. Select a_1, \dots, a_D and $c = 0$.
2. Gradually increase c and track ellipsoid $\sum_{j=1}^D a_j z_j^2 = c$.
3. While increasing c add each standard positive lattice point (point with positive integer coordinates) that fall inside the ellipsoids.
4. The order at which lattice points cross an inflating ellipsoid define which eigenvector appears on position k and which vectors form eigenspace of dimension k .

To illustrate this process, consider $E(z_1, \dots, z_D) = a_1 z_1^2 + a_2 z_2^2$, where $a_2 \gg a_1$. If we follow procedure outlined above we will see that first lattice points encountered are $(1, 1), (2, 1), (3, 1), (4, 1), \dots$. So for considered a_1, a_2 the subspace of first 3 eigenvectors is a span of $\phi_{1,1}, \phi_{2,1}, \phi_{3,1}$, and the eigenvector that appears on position 3 is ϕ_3 . To describe the map from a_1, \dots, a_D to ϕ_k or V_k , this procedure needs to be repeated for all possible positive values of real coefficients a_1, \dots, a_D .

From the algorithm above one can deduce that for given a_1, \dots, a_D the first time eigenvector with indices i_1, \dots, i_D appears in the sequence of eigenvectors is the first time ellipsoid crosses i_1, \dots, i_D . The position k of this eigenvector will be proportional to the normalised volume of the ellipsoid $V_e(a_1, \dots, a_D)/V_s$, where $V_e(a_1, \dots, a_D)$ is a volume of D dimensional ellipsoid with semi-axes a_1, \dots, a_D and V_s is a volume of D dimensional sphere with radius 1.

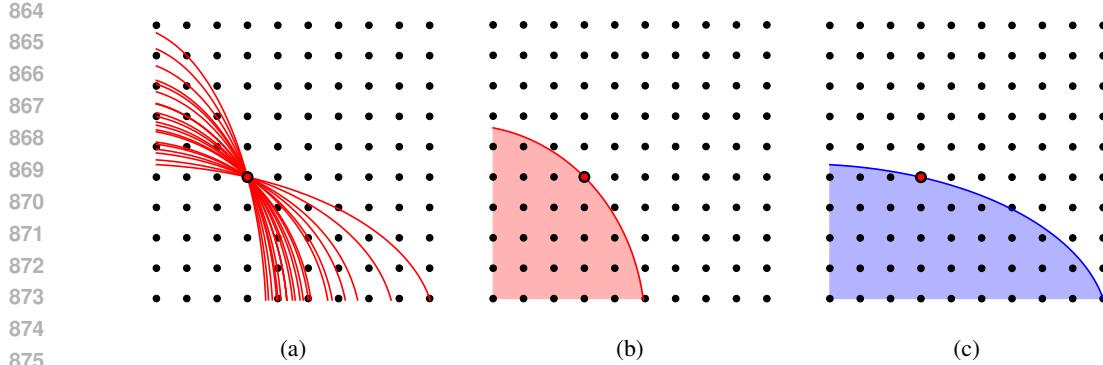


Figure 5: (a) Parametric family of ellipsoids passing through point $(4, 5)$. (b) Ellipsoid of minimal volume passing through $(4, 5)$. Note that the number of standard lattice points inside is approximately $4 \times 5 = 20$, the error of approximation (5 in this case) is asymptotically small for ellipsoids of large volume. (c) Example of non-minimal ellipsoid passing through $(4, 5)$. In the non-minimal case, the number of standard lattice points inside an ellipsoid passing through a given point can be made arbitrarily large.

The first immediate consequence is that a_1, \dots, a_D is a piecewise constant function. Indeed, it is clear a_1, \dots, a_D can always be perturbed with no change in filling order and the change of $-1 < V_e(a_1, \dots, a_D)/V_s < 1$, so the eigenvector on position k does not change. That proves the first part of the first statement. Next, we need to show that the set of all possible eigenvectors on position k is finite.

To see that, we answer the following question: what is the minimal number of lattice points one ought to cover with an ellipsoid to reach a given lattice point i_1, \dots, i_D ? For example, point $(1, 1)$ is always reached first. On the other hand, point $(2, 1)$ can be reached arbitrarily late, because one may consider ellipsoids with arbitrary large semi-axis along the second dimension. The position of the point i_1, \dots, i_D is known to be the ratio of volumes, so we need to find an ellipsoid with minimal volume that passes through i_1, \dots, i_D . A parametric family of ellipsoids in question and its volume are

$$\sum_{i=1}^D z_i^2 \frac{a_i^2}{\left(\sum_{k=1}^D a_k^2 i_k^2\right)^{\frac{1}{2}}} = 1, \quad V_e = \frac{\pi^{\frac{D}{2}}}{\Gamma\left(\frac{D}{2} + 1\right)} \frac{\left(\sum_{k=1}^D a_k^2 i_k^2\right)^{\frac{D}{2}}}{\left(\prod_{j=1}^D a_j^2\right)^{\frac{1}{2}}}. \quad (25)$$

See Figure 5a for example of a parametric family in $D = 2$ passing through lattice point $(4, 5)$. In the expression above we used a_i^2 to remove positivity constraints. To find minimal volume we take derivative with respect to a_k

$$\frac{\partial V_e}{\partial a_k} = 0 \Rightarrow D a_k^2 i_k^2 - \sum_{j=1}^D a_j^2 i_j^2 = 0. \quad (26)$$

To find a_i^2 we need to compute the nullspace of the linear operator above. It is easy to see that the solution is $a_k^2 = \frac{\alpha}{i_k^2}$ for arbitrary $\alpha \in \mathbb{R}$. The example of minimal ellipsoid appears in Figure 5b.

The volume does not depend on multiplicative constant so we take $\alpha = 1$ and obtain normalised minimal volume

$$\frac{\min V_e(i_1, \dots, i_D)}{V_s} = \prod_{j=1}^D i_j. \quad (27)$$

From the considerations above we can conclude that: (i) eigenvector i_1, \dots, i_D can not appear on position k unless $\prod_{j=1}^D i_j < k$, (ii) if eigenvector i_1, \dots, i_D , excluding $1, \dots, 1$, appears on position k , it can also appear on any position $l > k$. Statement (ii) is correct because parametric family of ellipsoids passing through i_1, \dots, i_D contain ellipsoids of arbitrary large volumes unless $i_j = 1$ for all $j = 1, \dots, D$. The example of a non-minimal ellipsoid is in Figure 5c.

918 Statement (ii) directly leads to point 2. of Theorem 3. Indeed, since any eigenvector appeared on
 919 position k can reappear on arbitrary position $l > k$, the number of unique vectors that can form
 920 low-energy subspace of dimension l is the number of eigenvectors on position l plus eigenvector
 921 $1, \dots, 1$. That finished the proof of point 1. and 2. of Theorem 3.

922 Note, that the validity of most of the statements in this section is based on assumptions that we can
 923 use continuous relaxation on the problem. In particular, we assumed that the position of the eigen-
 924 vector is proportional to the volume of the ellipsoid. Of course in completely discrete formulation
 925 this is not strictly the case, but since all statements on the number of eigenvectors and eigenspaces
 926 are asymptotic, they will remain valid.

928 **D.2 PART 3.**

930 From the previous section we know the minimal position eigenvector i_1, \dots, i_D can appear at. Be-
 931 sides that we know that once i_1, \dots, i_D is unlocked, it can appear on all positions $l > k$. Give that,
 932 the number of eigenvectors on position k reads

$$933 \quad \#_F(k, D) = \sum_{i_1=1}^{\infty} \dots \sum_{i_D=1}^{\infty} \text{Ind} \left[\prod_{j=1}^D i_j \leq k \right], \quad (28)$$

936 where $\text{Ind}[\cdot]$ is an indicator function. We are interested in asymptotic expansion for large k and fixed
 937 D , so the sums above can be approximated by the Euler–Maclaurin formula.

938 To find asymptotic expansion we will derive recurrence relations for $\#_F(k, D)$. We start by intro-
 939 ducing a slightly modified function

$$941 \quad \tilde{\#}_F(\alpha, D) = \frac{1}{\alpha} \sum_{i_1=1}^{\infty} \dots \sum_{i_D=1}^{\infty} \text{Ind} \left[\prod_{j=1}^D i_j \leq \alpha \right]. \quad (29)$$

944 Clearly $\#_F(k, D) = k \tilde{\#}_F(k, D)$ so if we know how to compute $\tilde{\#}_F(\alpha, D)$, we can recover
 945 $\#_F(k, D)$. For $D = 2$ with the help of Euler–Maclaurin formula we obtain

$$947 \quad \tilde{\#}_F(\alpha, 2) = \frac{1}{\alpha} \sum_{i_1=1}^{\infty} \text{Ind} [i_1 \leq \alpha] \sum_{i_2=1}^{\frac{\alpha}{i_1}} 1 = \frac{1}{\alpha} \sum_{i_1=1}^{\alpha} \frac{\alpha}{i_1} \sim \frac{1}{\alpha} \left(\int_1^{\alpha} dx \frac{\alpha}{x} + \frac{\alpha+1}{2} \right) = \log \alpha + \frac{1}{2} + \frac{1}{2\alpha}. \quad (30)$$

950 Next we find recurrence relation

$$952 \quad \tilde{\#}_F(\alpha, D+1) = \frac{1}{\alpha} \sum_{i_{D+1}=1}^{\alpha} \frac{1}{i_{D+1}} \sum_{i_D=1}^{\frac{\alpha}{i_{D+1}}} \frac{1}{i_D} \dots \sum_{i_D=1}^{\frac{\alpha}{i_{D+1} \dots i_2}} \frac{1}{i_2} \\ 955 \quad = \sum_{i_{D+1}=1}^{\alpha} \frac{\tilde{\#}_F \left(\frac{\alpha}{i_{D+1}}, D \right)}{i_{D+1}} \sim \int_1^{\alpha} dx \frac{\tilde{\#}_F \left(\frac{\alpha}{x}, D \right)}{x} + \frac{1}{2} \left(\frac{\tilde{\#}_F(1, D)}{\alpha} + \tilde{\#}_F(\alpha, D) \right). \quad (31)$$

958 It is not hard to show that, starting from $D = 2$, recurrence relation can only produce three type of
 959 terms: $\log^p(\alpha)$, constant term $c, \frac{1}{\alpha}$. This can be seen as follows

$$961 \quad \log^p(\alpha) \rightarrow \int_1^{\alpha} \frac{\log^p(\alpha/x)}{x} + \frac{1}{2} \log^p(\alpha) = \frac{1}{p+1} \log^{p+1}(\alpha) + \frac{1}{2} \log^p(\alpha), \\ 963 \quad c \rightarrow \int_1^{\alpha} dx \frac{c}{x} + \frac{c}{2} \left(\frac{1}{\alpha} + 1 \right) = c \log(k) + \frac{c}{2\alpha} + \frac{c}{2}, \\ 966 \quad \frac{1}{\alpha} \rightarrow \int_1^{\alpha} \frac{dx}{\alpha} + \frac{1}{\alpha} = 1. \quad (32)$$

968 Given that, starting from $\tilde{\#}_F(\alpha, 2)$ and applying recurrence relations $D - 2$ times we obtain leading
 969 term

$$970 \quad \tilde{\#}_F(\alpha, D) \sim \frac{1}{(D-1)!} \log(\alpha)^{D-1} \Rightarrow \#_F(k, D) \sim \frac{k}{(D-1)!} \log(k)^{D-1}, \quad (33)$$

971 where last identity follows from the definition of $\tilde{\#}_F(\alpha, D)$.

972 D.3 PART 4.
973974 We cannot apply the Euler–Maclaurin formula when k is fixed and D is large. To count states under
975 specified conditions we will use factorisation on prime numbers. For positive integer p we can write
976

977
$$p = q_1(p)^{a_1(p)} \cdots q_{m_p}(p)^{a_{m_p}(p)}, \quad (34)$$

978 where $q_i(p)$ are prime factors and $a_i(p)$ are their multiplicities. Given this factorisation we can find
979 the number of ways positive integer p can be represented as products of D positive integers. All
980 products of D integers correspond to some rearrangement of products in the factorisation of prime
981 factors. The number of such rearrangements is
982

983
$$\tau(p, D) = \prod_{r=1}^{m_p} \frac{(a_r(p) + D - 1)!}{(D - 1)! a_r(p)!}. \quad (35)$$

984

985 This expression is easy to understand if one considers forming the product of D numbers by dis-
986 tributing $q_r(p)$ to selected $a_r(p)$ among D factors for each prime factor $q_r(p), r = 1, \dots, m_p$.
987988 From the expression above, the number of states on position k reads
989

990
$$\#(k, D) = \sum_{p=1}^D \tau(p, D). \quad (36)$$

991

992 If D is large
993

994
$$\tau(p, D) = \prod_{r=1}^{m_p} \frac{(a_r(p) + D - 1)!}{(D - 1)! a_r(p)!} \sim \prod_{r=1}^{m_p} \frac{D^{a_r(p)}}{a_r(p)!} = \frac{D^{\sum_{r=1}^{m_p} a_r(p)}}{\prod_{r=1}^{m_p} a_r(p)!} = \frac{D^{\Omega(p)}}{\prod_{r=1}^{m_p} a_r(p)!}, \quad (37)$$

995

996 where $\Omega(p)$ is the prime (big) omega function.
997998 Leading asymptotic expansion of the sum is the fastest growing term
999

1000
$$\#(k, D) \sim D^{\max_{p \leq k} \Omega(p)} \sum_{l \in \arg \max_{p \leq k} \Omega(p)} \frac{1}{\prod_{r=1}^{m_l} a_r(l)!}. \quad (38)$$

1001

1002 In the main body of the text we provide a simplified upper bound of this asymptotic expansion. It
1003 can be derived using two upper bounds. First, prime omega function can be bounded from above
1004

1005
$$p = q_1(p)^{a_1(p)} \cdots q_{m_p}(p)^{a_{m_p}(p)} \geq 2^{a_1(p) + \cdots + a_{m_p}(p)} = 2^{\Omega(p)} \rightarrow \Omega(p) \leq \log_2(p). \quad (39)$$

1006

1007 Next, the remaining sum can be bounded from above

1008
$$\sum_{l \in \arg \max_{p \leq k} \Omega(p)} \frac{1}{\prod_{r=1}^{m_l} a_r(l)!} \leq \sum_{l=1}^k \frac{1}{\prod_{r=1}^{m_l} a_r(l)!} \leq k. \quad (40)$$

1009

1010 These two upper bound combined gives us
1011

1012
$$\#(k, D) \leq k D^{\log_2(k)}. \quad (41)$$

1013

1014 D.4 PART 5.
10151016 We were unable to compute exact asymptotic expansions for the number of subspaces, so our strat-
1017 egy in this and next section will be to derive sufficiently strong lower bound by counting selected
1018 ways subspaces can be formed.
10191020 Consider $D = 2$ and $k = 4$. Since surfaces with constant energies are ellipsoids, we can select
1021 $a_1 = 1$ large a_2 and by gradual decrease of a_2 we will observe three distinct subspaces:
1022

1023
$$\{\phi_{1,1}, \phi_{1,2}, \phi_{1,3}, \phi_{1,4}\} \rightarrow \{\phi_{2,1}, \phi_{1,1}, \phi_{1,2}, \phi_{1,3}\} \rightarrow \{\phi_{2,1}, \phi_{2,2}, \phi_{1,1}, \phi_{1,2}\}. \quad (42)$$

1024

1025 Similarly, starting from $a_2 = 1$ and large a_1 decrease of a_1 lead to the sequence of subspaces

1026
$$\{\phi_{1,1}, \phi_{2,1}, \phi_{3,1}, \phi_{4,1}\} \rightarrow \{\phi_{1,2}, \phi_{1,1}, \phi_{2,1}, \phi_{3,1}\} \rightarrow \{\phi_{1,2}, \phi_{2,2}, \phi_{1,1}, \phi_{2,1}\}. \quad (43)$$

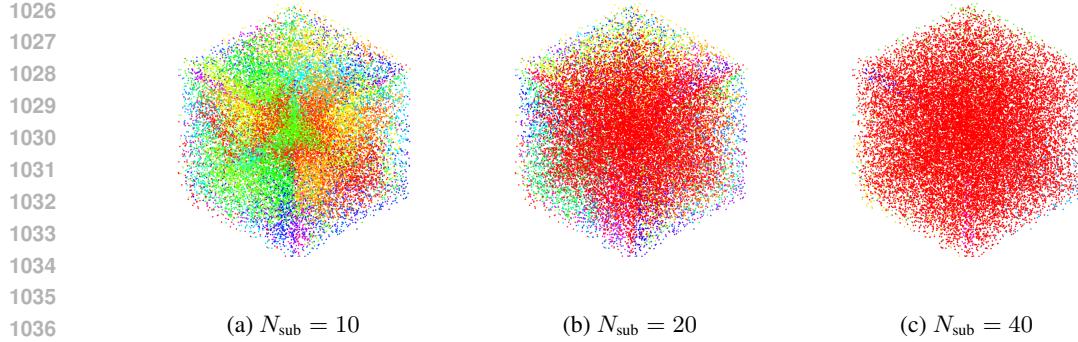


Figure 6: Illustration of simple greedy subspace embedding technique for elliptic eigenproblem with constant coefficients. See Appendix E for details.

Sequences above can be understood as systematic fillings of lattice points along second and first dimensions. First sequence corresponds to filling $(0, 4), (1, 3), (2, 2)$ points, and second to $(4, 0), (3, 1), (2, 2)$. In $D = 2$ the number of distinct subspaces V_k constructed in this way equals the number of unordered pairs $k_1, k_2 \geq 0$ such that $k_1 + k_2 = k$.

In arbitrary D similarly constructed states can be counted as the number of unordered tuples (k_1, \dots, k_D) of non-negative integers such that $\sum_{i=1}^D k_i = k$. This is a standard counting problem with the answer

$$\frac{(k + D - 1)!}{(D - 1)!k!} \sim \frac{k^{D-1}}{(D - 1)!}. \quad (44)$$

This provides a lower bound on asymptotic expansion because our way to select subspaces is not exhaustive.

D.5 PART 6.

For fixed k and large D we consider eigenvectors with indices $(1, \dots, 1), (1, 2, 1, \dots, 1), \dots, (1, \dots, 1, 2, 1)$. It is clear that the first eigenvector has indices $(1, \dots, 1)$ and the rest of them can appear in arbitrary order. This gives us at least $\frac{D(D-1)\dots(D-k+1)}{(k-1)!} \sim \frac{1}{(k-1)!} D^{k-1}$ subspaces.

E MONTE CARLO EXPERIMENTS FOR EIGENPROBLEM WITH CONSTANT COEFFICIENTS

To illustrate consequences of Theorem 3 we perform simple Monte Carlo experiment. For the case $D = 3$, we generate a_1, a_2, a_3 from uniform distribution on $[0, 1]$ repeatedly and record distinct subspaces of dimension $k = 10$. We select unique colour for each subspace and draw them for each point a_1, a_2, a_3 on the plane perpendicular to $(1 \ 1 \ 1)^\top$. This illustration appears in Figure 6a. Theorem 3 suggest that the large number of distinct subspaces is a result of selection of k vectors among a small number of candidates. This suggests we may decrease complexity of the function from coefficients to subspaces by predicting excessive number of vectors. In our experiments with neural networks this redundant mapping is learned, here we build the mapping with simple greedy strategy. In place of function $a_1, a_2, a_3 \rightarrow V_{10}$ we consider $a_1, a_2, a_3 \rightarrow \bar{V}_{10} \cup \{v_1, \dots, v_k\}$ where v_1, \dots, v_k are first k most abundant eigenvectors. By appending additional vectors we decrease the number of distinct subspaces. The result of this greedy simplification appear in Figure 6b with 10 additional vectors and in Figure 6c with 20 additional vectors. As we see the number of distinct subspaces rapidly decreasing.

1080 **F DETAILS ON NUMERICAL EXPERIMENTS FOR EIGENPROBLEMS**

1081 **F.1 DATASETS**

1082 We generated two datasets for $D = 2$ elliptic eigenproblem with uniform Dirichlet boundary conditions

1083
$$\operatorname{div} k \cdot \operatorname{grad} \phi_i = \lambda_i \phi_i, \|\phi_i\|_2 = 1, x \in [0, 1]^2. \quad (45)$$

1084 For both datasets we used uniform grid 100×100 and finite-difference discretisation. Components
1085 of diffusion coefficients were generated from the same distribution for both datasets. Diffusion
1086 coefficient is generated as follows:

1087 1. Gaussian random field ψ is generated from $\mathcal{N}(0, (\operatorname{id} - \gamma \Delta)^r)$, $\gamma = \frac{1}{20\pi}$, $r = \frac{1}{2}$.
1088 2. Diffusion coefficient is computed as $a = \alpha + (\beta - \alpha) (\tanh(s\psi) + 1) / 2$ with $\alpha = 1$,
1089 $\beta = 50$, $s = 1$.

1090 For one $D = 2$ dataset $k_1 = k_2$ and for another $k_1 \neq k_2$ but both are i.i.d. random fields generated
1091 as described above. In the main text only results for $k_1 = k_2$ are reported.

1092 For $D = 3$ elliptic eigenproblem we use setup analogous to $D = 2$ but grid of size $30 \times 30 \times 30$
1093 and $k_1 = k_2 = k_3$ generated the same way as explained above with parameters $\gamma = \frac{1}{100}$, $r = \frac{3}{2}$,
1094 $\alpha = 50$, $\beta = 1$, $s = 2$.

1095 For QM problems datasets are defined by distributions for potential functions.

1096 For $D = 1$ we use

1097
$$V(r) = d \left(1 - \exp \left(-\frac{\frac{r}{r_e} - 1}{\frac{r}{r_e} + 1} p(r) \right) \right)^2, p(r) = \begin{cases} q_1 \left(\frac{r}{r_e} \right), & r < r_e \\ q_2 \left(\frac{r}{r_e} \right), & r \geq r_e \end{cases}, \quad (46)$$

1098 where

1099
$$q_1(x) = \left(1 - \frac{x - 1}{x + 1} \right) \tilde{q}_1(x) + c \frac{x - 1}{x + 1}, \quad (47)$$

1100 and $\tilde{q}_1(x)$ is a polynomial of degree \deg . Polynomial $q_2(x)$ has the same form.

1101 In $D = 1$ dataset is by selecting uniform grid with 100 points on the interval $[0, 10]$, r_e is sampled
1102 from uniform distribution on the interval $[1, 8]$, d is sampled from uniform distribution on the interval
1103 $[10, 40]$, both q_1 and q_2 has order 10, for q_1 all coefficients (including c) are sampled from uniform
1104 distribution on $[0, 5]$, for q_2 coefficients of \tilde{q}_2 are sampled from uniform distribution on $[0, 10]$ and c
1105 is sampled from uniform distribution on the interval $[1, 11]$.

1106 For $D = 2$

1107
$$V(x, y) = V_1 \left(\sqrt{(x - cu)^2 + (y - cv)^2} \right) + V_2 \left(\sqrt{(x + cu)^2 + (y + cv)^2} \right), \quad (48)$$

1108 where u, v are component of random normalised vector, $c = \sqrt{2}r_e$. Potentials V_1 and V_2 are i.i.d.
1109 with parameters: order of polynomial is 2, r_e is uniformly distributed on $[1, 5]$, d is uniformly
1110 distributed on $[10, 40]$, coefficients of \tilde{q} are sampled from uniform distribution on $[0, 3]$ and c is
1111 sampled from uniform distribution on $[10, 13]$. To discretise the problem we use finite difference
1112 and uniform 100×100 grid on $[-7, 7]^2$.

1113 **F.2 ARCHITECTURES AND TRAINING**

1114 In all cases we used FFNO architecture, with GELU activation functions, that is completely specified
1115 by: number of layers N_{layers} , numbers of features in hidden layer N_{features} , number of Fourier modes
1116 in spectral convolution N_{modes} . Since all our loss functions are scale-invariant, the output of FFNO
1117 architecture was normalised.

1118 We use Lion optimiser (Chen et al., 2023), with weight decay. Parameters of the optimiser are
1119 learning rate lr, rate decay factor γ_{decay} and number of transition steps N_{decay} .

1120 For $D = 2$, eigenvalue and QM problems, and also $D = 1$ QM problem we perform grid search with
1121 parameters: $N_{\text{layers}} \in [3, 4, 5]$, $N_{\text{features}} = 64$, $N_{\text{modes}} \in [10, 14, 16]$, $\text{lr} \in [10^{-3}, 10^{-4}]$, $\gamma_{\text{decay}} = 0.5$,

1134 $N_{\text{decay}} \in [100, 200]$, batch size was fixed to 100, number of train samples is 4000, number of test
 1135 samples is 1000. Architecture is training to approximate subspace spanned by first 10 eigenvectors.
 1136 Number of epoch is 1000. When architecture is trained to predict individual eigenvectors, the same
 1137 grid search applies.

1138 For $D = 3$ grid search is not practical, so we select $N_{\text{layers}} = 4$, $N_{\text{features}} = 128$, $N_{\text{modes}} = 16$,
 1139 $\text{lr} = 10^{-3}$, $\gamma_{\text{decay}} = 0.5$, $N_{\text{decay}} = 100$. The size of the train set is 800, the size of test set is 200.
 1140 The number of epochs is 1000. Architecture is training to approximate subspace spanned by first 3
 1141 eigenvectors.

1142 **F.3 ADDITIONAL RESULTS FOR ELLIPTIC EIGENPROBLEMS**

1143 Additional results are available in Table 3, Table 4, Table 5. Results in brackets indicate worst and
 1144 best observed result among three best grid search runs.

1145

1146 Table 3: Comparison of $L_1(A, B)$ and $L_2(A, B; z)$ loss functions for $k_1 = k_2$

1147

N_{sub}	$L_1(A, B)$			$L_2(A, B; z)$		
	E_{train}	E_{test}	$t_{\text{train}}, \text{s}$	E_{train}	E_{test}	$t_{\text{train}}, \text{s}$
10	[0.216, 0.235]	[0.292, 0.314]	4124 ± 443	[0.244, 0.252]	[0.296, 0.302]	3895 ± 524
20	[0.038, 0.048]	[0.046, 0.052]	5962 ± 93	[0.046, 0.052]	[0.049, 0.058]	4074 ± 215
30	[0.024, 0.029]	[0.028, 0.033]	7902 ± 85	[0.026, 0.033]	[0.029, 0.037]	3973 ± 515
40	[0.018, 0.025]	[0.021, 0.029]	10842 ± 570	[0.017, 0.024]	[0.02, 0.027]	4270 ± 95

1148

1149

1150 Table 4: Comparison of $L_1(A, B)$ and $L_2(A, B; z)$ loss functions for $k_1 \neq k_2$

1151

N_{sub}	$L_1(A, B)$			$L_2(A, B; z)$		
	E_{train}	E_{test}	$t_{\text{train}}, \text{s}$	E_{train}	E_{test}	$t_{\text{train}}, \text{s}$
10	[0.305, 0.377]	[0.407, 0.421]	4035 ± 295	[0.312, 0.335]	[0.386, 0.389]	3661 ± 308
20	[0.066, 0.089]	[0.09, 0.105]	5817 ± 219	[0.092, 0.092]	[0.103, 0.103]	4262 ± 0
30	[0.05, 0.05]	[0.063, 0.063]	7966 ± 84	[0.042, 0.05]	[0.052, 0.059]	3991 ± 168
40	[0.035, 0.036]	[0.045, 0.047]	11019 ± 252	[0.034, 0.038]	[0.041, 0.046]	4238 ± 112

1152

1153

1154 Table 5: \mathbb{Z}_2 -adjusted L_2 loss.

1155

N_{eig}	$k_1 = k_2$			$k_1 \neq k_2$		
	E_{train}	E_{test}	$t_{\text{train}}, \text{s}$	E_{train}	E_{test}	$t_{\text{train}}, \text{s}$
0	[0.009, 0.012]	[0.036, 0.038]	3666 ± 476	[0.014, 0.028]	[0.068, 0.07]	3280 ± 60
1	[0.038, 0.042]	[0.158, 0.165]	3312 ± 77	[0.031, 0.033]	[0.196, 0.218]	3956 ± 162
2	[0.046, 0.048]	[0.359, 0.373]	4168 ± 82	[0.045, 0.053]	[0.553, 0.563]	4140 ± 87
3	[0.046, 0.057]	[0.541, 0.555]	4168 ± 81	[0.054, 0.066]	[0.747, 0.779]	4101 ± 87
4	[0.068, 0.084]	[0.754, 0.769]	4007 ± 204	[0.072, 0.078]	[0.945, 0.97]	4101 ± 87
5	[0.073, 0.075]	[0.897, 0.905]	4041 ± 264	[0.084, 0.094]	[1.087, 1.098]	4090 ± 83

1156

1157

1158 **F.4 GENERALISATION TO DIFFERENT GRID SIZE**

1159

1160

1161

1162 For all subspace regression problems we use FFNO. Since FFNO is neural operator it should be
 1163 discretisation agnostic. Here we report results for model trained on grid 100 on $D = 1$ quantum
 1164 mechanics eigenproblem and tested on grids of higher resolution. For each grid we generated new
 1165 test set from the same distribution as specified in Appendix F.1.

1166

1188 The results are available in Table 6. We see approximately linear increase of relative error with
 1189 resolution. Owing to good initial accuracy on grid $N_x = 100$ the relative error remains under 10%
 1190 for grid with $N_x = 500$.
 1191

1192 **F.5 SMOOTHNESS OF NEURAL NETWORKS TRAINED WITH SUBSPACE EMBEDDING
 1193 TECHNIQUE**

1194 To empirically measure smoothness of learned map, we introduce several “smoothness indicators”:

1195 **1. Taylor indicator**

$$1199 T[f_1, f_2; l] = \frac{\|\mathcal{N}(f_1 + lf_2) - \mathcal{N}(f_1) - \frac{d}{dl}\mathcal{N}(f_1 + lf_2)|_{l=0} l\|_2}{\|\mathcal{N}(f_1 + lf_2)\|_2}. \quad (49)$$

1200 Taylor indicator is a relative error of linear model. One expect that: (i) unless \mathcal{N} is a linear
 1201 function, when l increases relative error also increases; (ii) when smoothness increases
 1202 Taylor indicator decreases.
 1203

1204 **2. Average cosine**

$$1206 C[f_1, f_2; l] = \frac{1}{D} \sum_{i=1}^D \cos_i(\mathcal{N}(f_1 + lf_2), t_1). \quad (50)$$

1207 where $\cos_i(A, B)$ are cosines of principle angles (Björck & Golub, 1973) and t_1 is target
 1208 at point f_1 . For smoother maps average cosine increases until it reaches maximal value of
 1209 1.
 1210

1211 **3. Frobenius norm of the directional derivative**

$$1214 F[f_1, f_2; l] = \frac{1}{D} \left\| \frac{d}{dl} \mathcal{N}(f_1 + lf_2) \right\|_F, \quad (51)$$

1215 where D is the subspace size. The magnitude of the directional derivative is computed by
 1216 automatic differentiation and it is expected to decrease when smoothness increases.
 1217

1218 Each indicator depends on two features f_1 and f_2
 1219 and real number $l \in [0, 1]$. Results are reported for
 1220 neural network trained to predict eigenspaces for
 1221 elliptic eigenproblem with $k_1 = k_2$ and $k_1 \neq k_2$
 1222 (see Appendix F.1 for description) with loss function
 1223 $L_2(A, B; z)$. For each indicator we provide
 1224 values for several l averaged over 1000 randomly
 1225 selected feature pairs f_1, f_2 . Results are reported
 1226 in Table 7, Table 8, Table 9.
 1227

1228 All indicators clearly demonstrate the improve in
 1229 smoothness when the size of embedding N_{subspace}
 1230 increases. Results for average cosine indicator (50)
 1231 indicate that learned mapping effectively average
 1232 information about subspaces for distinct features. It becomes especially clear if one compares results
 1233 for $l = 1.0$ with average cosines computed between targets $\frac{1}{D} \sum_{i=1}^D \cos_i(t_1, t_2)$: for $k_1 = k_2$
 1234 average cosine is 0.51; for $k_1 \neq k_2$ average cosine is 0.53.
 1235

Table 7: Frobenius norm of the directional derivative smoothness indicator (51).

N_{subspace}	$k_1 = k_2$	$k_1 \neq k_2$
10	10.73	8.26
20	9.72	8.15
30	8.78	8.14
40	8.26	6.88

Table 6: Network is trained on resolution $N_x = 100$ for $D = 1$ QM problem and evaluated on grids with increased resolution.

N_x	100	150	200	250	300	350	400	450	500
test error, %	0.83	1.37	2.12	2.95	3.96	4.32	5.33	5.32	6.79

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
Table 8: Taylor smoothness indicator (49).

N_{subspace}	$k_1 = k_2$				$k_1 \neq k_2$			
	$l = 0.25$	$l = 0.5$	$l = 0.75$	$l = 1.0$	$l = 0.25$	$l = 0.5$	$l = 0.75$	$l = 1.0$
10	2.41	5.1	7.48	10.71	1.8	3.87	5.99	8.21
20	2.12	4.57	7.05	9.68	1.72	3.77	5.86	8.08
30	1.88	4.09	6.34	8.73	1.71	3.77	5.87	8.08
40	1.76	3.84	5.98	8.22	1.42	3.15	4.94	6.8

Table 9: Average cosine indicator (50).

N_{subspace}	$k_1 = k_2$				$k_1 \neq k_2$			
	$l = 0.25$	$l = 0.5$	$l = 0.75$	$l = 1.0$	$l = 0.25$	$l = 0.5$	$l = 0.75$	$l = 1.0$
10	0.81	0.74	0.67	0.51	0.82	0.74	0.67	0.53
20	0.94	0.88	0.82	0.68	0.94	0.88	0.83	0.72
30	0.97	0.93	0.88	0.78	0.97	0.93	0.89	0.81
40	0.98	0.95	0.91	0.82	0.99	0.96	0.93	0.87

F.6 SUBSPACE REGRESSION COMBINED WITH LOBPCG

Subspace regression can be also used to improve results for classical iterative eigensolvers. We demonstrate this for LOBPCG, which is a matrix-free iterative eigensolver that can approximate extremal eigenspaces (Knyazev, 2001). A notable feature of LOBPCG is a possibility of hot start: when approximation to eigenspace of interest is available, it can be used at the initialisation to speed up convergence. In Table 10 we report such speed up for elliptic eigenproblems described in Appendix F.1. Metrics in Table 10 are computed for test set, and maximal number of iterations for LOBPCG is set to 1000. Convergence plots are available in Figure 7a and Figure 7b. It is evident that initialisation by subspace regression lead to both smaller number of iteration and better final error. Note, that the overall cost of method is dominated by the cost of iterations.

Table 10: Performance of LOBPCG with initialisation by subspace regression compared with random initialisation, N_{it} number of iterations until convergence.

initialisation	N_{subspace}	$k_1 = k_2$		$k_1 \neq k_2$	
		N_{it}	relative error \pm std	N_{it}	relative error \pm std
subspace regression	10	410 ± 245	0.093 ± 1.109	332 ± 213	0.028 ± 0.179
subspace regression	20	288 ± 197	0.159 ± 4.12	249 ± 174	0.02 ± 0.087
subspace regression	30	274 ± 209	0.047 ± 0.554	227 ± 172	0.022 ± 0.119
subspace regression	40	263 ± 200	0.131 ± 3.218	221 ± 160	0.02 ± 0.089
random		685 ± 265	7.86 ± 30.16	609 ± 231	11.42 ± 35.49

G DETAILS ON NUMERICAL EXPERIMENTS FOR PARAMETRIC PDEs

G.1 DATASETS

For the $D = 2$ stationary diffusion equation we reused datasets described in Appendix F. To generate forcing terms for each k we select 10 eigenvectors $\psi_i, i = 1, \dots, 10$ corresponding to smallest eigenvalues and compute exact solution as $u = \sum_i \phi_i z_i$ where $z_i \sim N(0, 1)$. Forcing term $f(x)$ corresponding to this solution is $f = \sum_i \frac{1}{\lambda_i} \phi_i z_i$.

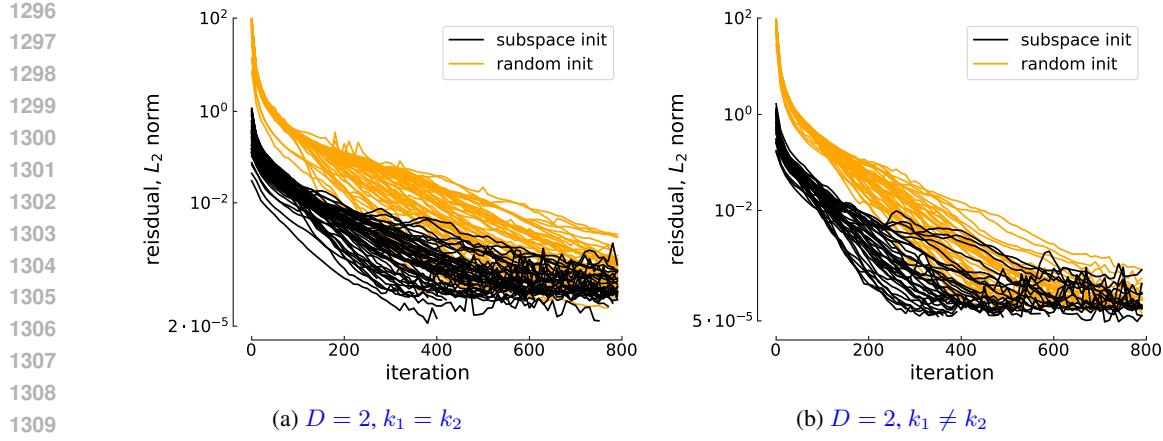


Figure 7: Convergence plots for LOBPCG with and without initialisation by subspace regression.

For $D = 1 + 1$ Burgers equation (4) we sample random diffusion coefficient $\nu(x)$ and initial condition $u_0(x)$. In both cases we first sample Gaussian random field from $\mathcal{N}(0, (\text{id} - \alpha\Delta)^s)$. To sample random field $\psi(x)$ for diffusion coefficient we use $\alpha = 40$, $s = 4$. Diffusion coefficient is computed as $\nu = 5 \cdot 10^{-3} + (1 + \tanh(30\psi))/20$. For initial conditions we use random field with $\alpha = 10$, $s = 2$. Uniform grid is used to discretise equation with 128 points for x and 64 points for t . Time interval is $[0, 10^{-1}]$ and $x \in [0, 1]$.

G.2 ARCHITECTURES AND TRAINING DETAILS

We performed grid search for all methods that involve learning. We start by describing hyperparameters of architectures.

FFNO is used for subspace regression, standard regression, DeepPOD, and for intrusive techniques with basis extraction. Parameters of FFNO used for grid search are described in Appendix F.

DeepONet is used for standard regression, and the intrusive technique with bases extracted from branch net. As a branch net of DeepONet we select a classical convolution network with downsampling by factor of 2 along each dimension and the increase of the number of hidden features by factor of 2. Branch net is defined by the number of features after encoder $N_{e,b}$, kernel size of convolution k_b , and number of layers N_b . Trunk net is MLP which is defined by the number of hidden neurons $N_{f,t}$, number of layers N_t and the size of basis on the output layer N_ϕ . In out grid searches we used $N_{e,b} \in [4, 5]$, $k_b \in [3, 7]$, $N_b = 4$, $N_{f,t} = N_\phi \in [100, 200]$, $N_t \in [3, 4]$.

PCANet is defined by the number of POD basis functions used to compress feature and targets $N_{p,f}$ and $N_{p,t}$. Number of MLP layers N_{MLP} and hidden units $N_{p,MLP}$. In our experiments we use $N_{p,f} \in [100, 200, 300, 400, 500]$ for elliptic equation and $N_{p,f} \in [50, 80, 100]$ for Burgers equation, $N_{p,t} \in [100, 200, 300, 400]$ for elliptic equation and $N_{p,t} \in [100, 150, 400]$ for Burgers equation, $N_{MLP} \in [3, 4, 5, 6]$ for elliptic equation and $N_{MLP} \in [3, 5, 7]$ for Burgers equation, $N_{p,MLP} \in [100, 200, 300, 400, 500]$ for elliptic and $N_{p,MLP} \in [100, 300, 500]$ for Burgers equation.

Hyperparameters of kernel methods are the type of kernel and the number of POD basis functions used to compress features and targets $N_{p,f}$ and $N_{p,t}$. We use Matern and RBF kernel and $N_{p,f} \in [50, 100, 150, 200]$, $N_{p,t} \in [50, 100, 150, 200]$.

To train neural network we used Lion optimiser with $\text{lr} \in [5 \cdot 10^{-5}, 10^{-4}]$ for FFNO and $\text{lr} \in [10^{-3}, 10^{-4}]$ for all other architectures, $\gamma_{\text{decay}} = 0.5$, $N_{\text{decay}} \in [100, 200]$. We use batch size 10, train PCANet for 3000 epoch and other networks for 1000 epoch.

G.3 ADDITIONAL RESULTS

We provide two additional results. For elliptic equations we compare optimality of learned bases. The results are in Figure 8a and Figure 8b. Interestingly, global POD leads to a better basis than

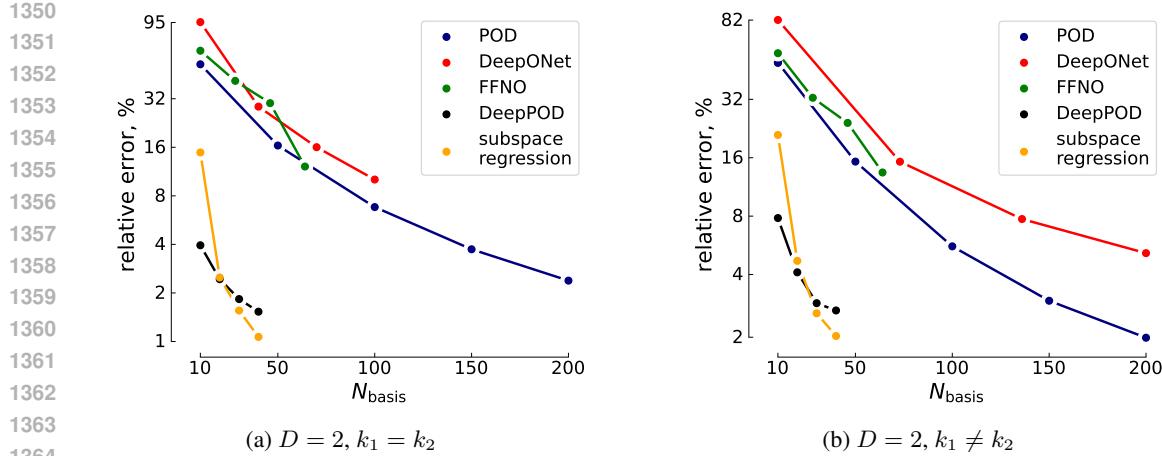


Figure 8: Relative errors for two stationary diffusion equations depending on the number of basis functions for several basis construction methods. Bases constructed with DeepPOD and subspace regression lead to the most accurate intrusive methods.

both FFNO and DeepONet. For DeepONet this is expected, since trunk net does not depend on parameters of PDE. For FFNO the result is more surprising, because the basis is extracted from the last hidden layer, so it explicitly depends on parameters. Bases of DeepPOD and subspace regression are the most optimal one, still they are highly non-optimal when compared with local POD. For the Burgers equation we compare DeepPOD and two variants of subspace regression in Table 11. SubReg(10) is a subspace regression trained to approximate subspace spanned by first 10 local POD basis functions and SubReg(5) was trained with 5 local POD basis functions. DeepPOD is an unsupervised method and was trained with the whole trajectory. This implies methods are sorted from left to right in the decrease of information they receive about solutions. Interestingly, the SubReg(5) – method, learning the smallest subspace – performs better almost uniformly. A possible explanation is that an optimal subspace of dimension 5 leads to good enough accuracy and is easier to learn than larger subspaces.

Table 11: Relative errors for Burgers equation. Target for SubReg(n) is subspace of dimension n .

N_{subspace}	DeepPOD	SubReg(10)	SubReg(5)
10	16.37%	22.79%	14.34%
20	10.0%	11.73%	10.68%
30	5.42%	6.29%	5.03%
40	2.57%	3.46%	3.01%
50	1.8%	2.49%	1.74%

H DETAILS ON NUMERICAL EXPERIMENTS FOR ITERATIVE METHODS

H.1 DEFLATION

Since for a deflation problem one needs to approximate eigenspace spanned by eigenvectors with small eigenvalues, we reused dataset and network trained for elliptic eigenproblem. The description of training and datasets is available in Appendix F. Results in the main text are for $k_1 = k_2$, for $k_1 \neq k_2$ convergence plots are given in Figure 9.

H.2 TWO-GRID METHOD

Elliptic equation dataset We consider a 2D elliptic equation on the unit square $\Omega = (0, 1)^2$ with homogeneous Dirichlet boundary conditions (5). We aim to learn mapping $k(x) \rightarrow \mathcal{S}(V)$. Variability of the dataset comes from the spatially heterogeneous coefficient function $k(x)$.

Each sampled coefficient function is a strictly positive random field built in three steps:

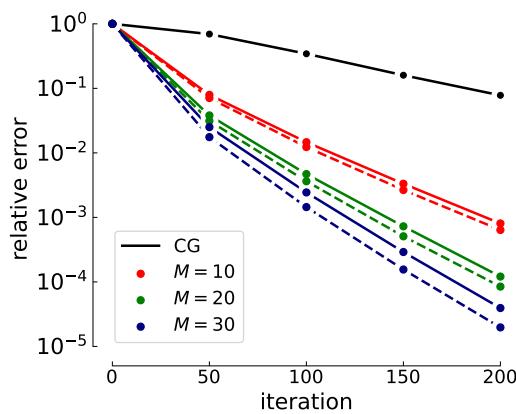


Figure 9: Convergence results for deflated CG, elliptic dataset $D = 2$ with $k_1 \neq k_2$. Learned methods are marked with solid lines, and dashed lines correspond to iterative methods with optimal deflation space, M refers to subspace size.

1. Draw i.i.d. Fourier coefficients on a square index set $\mathcal{K} = \{0, \dots, M-1\}^2$ and form a real field by summing complex exponentials. We additionally introduce a Fourier-space weight $w_k = (1 + \lambda_1 \|k\|_2^2)^{-1}$ to control the high-frequency components.
2. Multiply the real field from the previous step by λ_2 , then apply a hyperbolic tangent function to control the contrast of the coefficient field values.
3. Rescale the field to the prescribed interval $[\alpha, \beta]$ to ensure strict positivity and enforce a controlled contrast ratio of β/α .

Exact procedure to generate the 2D field is:

$$s_0(x, y) = \operatorname{Re} \left[\sum_{k \in \{0, \dots, M-1\}^2} c_k \frac{e^{i(k_1 x + k_2 y)}}{1 + \lambda_1 \|k\|_2^2} \right], \quad c_k \sim \mathcal{N}(0, 1),$$

$$s(x, y) = \tanh(\lambda_2 \cdot s_0(x, y)),$$

$$k(x, y) = \alpha + (\beta - \alpha) \frac{s(x, y) + 1}{2}, \quad k(x, y) \in [\alpha, \beta].$$

The equation is discretized on a uniform grid with a 5-point finite-difference stencil, yielding a sparse, symmetric positive-definite matrix. One can observe a sampled normalized coefficient function in Figure 10.

Target subspace We aim to predict a coarse-grid subspace for the two-grid method, which applies a coarse-grid correction

$$x \leftarrow x + V(V^\top A V)^{-1} V^\top (b - Ax)$$

with weighted Jacobi smoothing

$$x \leftarrow x + \omega D^{-1} (b - Ax)$$

before and after. This coarse projection V is learned as a problem-specific subspace from the coefficient field. In this setup, our projection matrix V spans the leading eigenspace of the error propagation matrix $I - \omega D^{-1} A$. While the relaxation parameter ω is used to quickly dampen the fast modes, the coarse-grid projection removes the low-frequency components, resulting in rapid overall convergence. Thus, our target subspace for regression consists of the first few eigenvectors of $I - \omega D^{-1} A$, sorted by the absolute values of their eigenvalues.

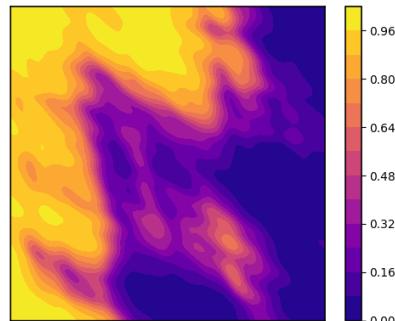


Figure 10: Sample coefficient function.

1458
 1459 **Subspace relaxation** Initially, we experiment with no under-relaxation (i.e. $\omega = 1.0$) in the
 1460 Jacobi smoother. As expected, this leads to a target subspace that contains both high- and low-
 1461 frequency modes. Neural networks are known to have a spectral bias towards low frequencies. In
 1462 FNO-type models, this spectral bias is especially pronounced because these models truncate high-
 1463 frequency modes in the Fourier domain. We address this by reducing the relaxation parameter to $\omega =$
 1464 0.9, which makes the leading subspace components dominated by slow modes. It is worth noting
 1465 that this adjustment is consistent with the respective roles of smoothing and coarse-grid correction
 1466 discussed above. In Figure 11 one can observe the first five eigenvectors of the target subspace for a
 1467 representative sample under both relaxation settings ($\omega = 1.0$ and $\omega = 0.9$).



1481
 1482 Figure 11: First five eigenvectors of the error propagation matrix $I - \omega D^{-1} A$. Top: $\omega = 1.0$.
 1483 Bottom: $\omega = 0.9$.

1484
 1485 **Subspace prediction** Before applying the neural network’s predicted subspace, we perform a QR
 1486 decomposition on the predicted matrix W to obtain an orthonormal basis Q_W . We assess the quality
 1487 of the predicted coarse subspace in the two-grid method using three metrics:

1488
 1489 1. Cosine angles between the true subspace V and the predicted subspace, computed as the
 1490 singular values of $Q_W^\top V$. A value closer to 1 indicates better subspace alignment.
 1491 2. Relative reconstruction error $e = \min_u \|V - Wu\|_2$ for each true basis vector V , computed
 1492 as $\|(I - Q_W Q_W^\top) V\|_2$. A smaller value indicates that the predicted subspace reconstructs
 1493 V_i more accurately.
 1494 3. Two-grid convergence rate, measured by the spectral radius ρ of the two-grid iteration
 1495 operator T . We estimate ρ via the power method by repeatedly applying T to a vector:

$$v_{k+1} = \frac{Tv_k}{\|Tv_k\|}.$$

1496
 1497 A smaller spectral radius indicates faster asymptotic convergence.
 1498

1499
 1500 In Table 12, we report these metrics for the best-performing models and for the ground-truth target
 1501 subspace. Across all experiments, the predicted coarse subspaces achieve slightly better two-grid
 1502 convergence (i.e., lower spectral radius) than the ground-truth subspace. These results are partic-
 1503 ularly interesting since smaller subspaces yield rather high cosines and reconstruction errors. The
 1504 increase of size of the predicted subspace improves the quality of the reconstruction and does not
 1505 degrade in effect on iteration compared to true exact subspace. It is also worth noting that both
 1506 training objectives yield similarly effective subspaces.

1507
 1508 **Data and training details** We generate two different datasets with 32 and 100 interior grid points.
 1509 Both datasets use $M = 100$ Fourier modes, $\lambda_1 = 0.1$, $\lambda_2 = 1$, interval $[\alpha, \beta] = [1, 50]$, and $\omega = 0.9$
 1510 in error propagation matrix. Each dataset contains 1,000 training and 200 test samples. While a
 1511 neural network predicts subspace of sizes $\{10, 20, 30, 40\}$, target subspace always contains 10 basis
 1512 functions.

1512 Table 12: Subspace prediction metrics for two-grid method and Jacobi iterations. We report av-
 1513 eraged values over the test set. Methods’ column values: *Exact subspace* uses the exact leading
 1514 eigenvectors of error propagation matrix (ground truth). L_1 loss and L_2 loss denote subspaces pre-
 1515 dicted by F-FNO trained with the respective objectives. The Jacobi baseline reports the spectral
 1516 radius with no coarse correction ($\omega = 1.0$).

Subspace size	Method	Cosine	Rec. error	Spectral radius
—	Jacobi	—	—	0.9976
	Exact subspace	—	—	0.9917
10	L_1 loss	0.845	0.411	0.9910
	L_2 loss	0.859	0.392	0.9908
	Exact subspace	—	—	0.9858
20	L_1 loss	0.960	0.222	0.9852
	L_2 loss	0.962	0.217	0.9852
	Exact subspace	—	—	0.9799
30	L_1 loss	0.986	0.140	0.9790
	L_2 loss	0.986	0.139	0.9790
	Exact subspace	—	—	0.9745
40	L_1 loss	0.994	0.097	0.9730
	L_2 loss	0.994	0.097	0.9731

1539 We train the Factorized Fourier Neural Operator (F-FNO) model (Tran et al., 2021). We first conduct
 1540 an extensive hyperparameter search on the 32 dataset with:

- 1541 • Number of retained modes: $\{10, 14, 16\}$.
- 1542 • Number of processor layers: $\{3, 4, 5\}$.
- 1543 • Learning rate: $\{10^{-3}, 10^{-4}\}$.
- 1544 • Step-decay every $\{100, 200\}$ epochs.

1545 By default, the batch size is 64, training runs for 1,000 epochs, and each processor layer has
 1546 64 features. We repeat this search for both L_1 and L_2 losses and for predicted subspace sizes
 1547 $\{10, 20, 30, 40\}$. We then select the top-3 hyperparameter configurations per subspace size and loss
 1548 (by two-grid spectral radius) and train on the dataset with 100 grid points. Throughout the paper, we
 1549 report results for the best configuration on the dataset with 100 grid points.

I SUBSPACE REGRESSION FOR OPTIMAL CONTROL

1555 We consider optimal control of $D = 1 + 1$ heat equation with homogeneous Dirichlet boundary
 1556 conditions

$$\begin{aligned}
 \frac{\partial \phi(x, t)}{\partial t} &= \operatorname{div} k \cdot \operatorname{grad} \phi(x, t) - b(x) + \sum_{i=1}^k w_i(x) u_i(t), \\
 y_i &= (\psi_i, \phi) \\
 \min_u L &= \frac{1}{2} y(T)^\top y(T) + \frac{\lambda}{2} \int_0^T u(t)^\top u(t).
 \end{aligned} \tag{52}$$

1564 The problem has a simple interpretation. With no control for sufficiently large T system reaches
 1565 steady-state, which can be computed as a solution of the linear system $\operatorname{div} k \cdot \operatorname{grad} \phi(x, t) = b(x)$.
 1566 The objective function contains the term $\frac{1}{2} y(T)^\top y(T) \geq 0$. Optimal control minimises amplitude

1566 of $y(T)$. Given that $y(t)$ is a projection of state variable ϕ on vectors ψ_i , the result of optimal control
 1567 is to reach ϕ with $\phi - \sum_i (\phi, \tilde{\psi}_i) \tilde{\psi}_i$ where $\tilde{\psi}_i$ is any basis in subspace spanned by ψ_i .
 1568

1569 Control problem (52) is not a linear-quadratic regulator in its standard form since $b(x)$ is present. To
 1570 get rid of $b(x)$ and use exact solution for linear-quadratic regulator we first discretise PDE (52) and
 1571 after that introduce additional (constant) variable

$$1572 \frac{d}{dt} \begin{pmatrix} \phi(t) \\ \tilde{\phi}(t) \end{pmatrix} = \begin{pmatrix} A & -I \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \phi(t) \\ \tilde{\phi}(t) \end{pmatrix} + \begin{pmatrix} W \\ 0 \end{pmatrix} u, \begin{pmatrix} \phi(0) \\ \tilde{\phi}(0) \end{pmatrix} = \begin{pmatrix} \phi_0 \\ b(x) \end{pmatrix}, \quad (53)$$

$$1575 \min_u L = \frac{1}{2} \phi(T)^\top \Psi \Psi^\top \phi(T) + \frac{\lambda}{2} \int_0^T u(t)^\top u(t).$$

1576 Problem (53) is a standard linear-quadratic regulator, so the exact form of value function is known
 1577 (Kirk, 2004). Optimal control can be computed as follows
 1578

$$1579 \begin{aligned} \dot{C}_{12} - C_{11} + AC_{12} - \lambda^{-1} C_{11} WW^\top C_{12} &= 0, \quad C_{12}(T) = 0, \\ \dot{C}_{11} + C_{11}A + AC_{11} - \lambda^{-1} C_{11} WW^\top C_{11} &= 0, \quad C_{11}(T) = \Psi \Psi^\top, \\ u(t) &= -\lambda^{-1} W^\top (C_{11}\phi + C_{12}b(x)). \end{aligned} \quad (54)$$

1580 As model reduction method we apply balanced truncation closely following (Moore, 2003): (i) solve
 1581 Lyapunov equations to find controllability and observability Gramians, (ii) find eigendecomposition
 1582 of controllability Gramian and select coordinates system where controllability Gramian is identity
 1583 matrix, (iii) find eigendecomposition of observability Gramian and select coordinate system where
 1584 controllability and observability Gramians coincide, (iv) from the composition of two coordinate
 1585 transformations build degrees of freedom corresponding to largest eigenvalues of both controllability
 1586 and observability Gramians.
 1587

1588 I.1 DATASET

1589 We use random gaussian random field $\mathcal{N}(0, (\text{id} - \alpha\Delta)^s)$ to generate $w_i(x), \psi_i(x)$, diffusion coefficient
 1590 $k(x)$, initial conditions $u_0(x)$ and forcing $b(x)$. For $w_i, \psi_i, u_0(x), b(x)$ we take $\alpha = 5$ and
 1591 $n = 4$, ψ and w_i are further orthogonalised with QR, 30 i.i.d. w_i and ψ_i are generated for each
 1592 dataset sample; for diffusion coefficient we use $\alpha = 6$, $n = 4$ and process generated random field
 1593 χ similarly to Burgers equation $k(x) = 5 \times 10^{-3} + (1 + \tanh(5\chi))/10$. Equation is discretised
 1594 on uniform grid 128×128 , $x \in [0, 1]$, $t \in [0, 5]$. Dataset consists of 1200 samples, 1000 for train,
 1595 100 for validation and 100 for test. Optimal reduction by balanced truncation is computed for each
 1596 sample and later used for subspace regression.
 1597

1598 I.2 ARCHITECTURE AND TRAINING DETAILS

1599 We use FFNO and precisely the same grid search as for the Burgers equation.
 1600

1601 I.3 RESULTS

1602 Results are summarised in Table 13. We train a neural network with two subspace regression losses
 1603 on first 10 basis vectors obtained with balanced truncation. As metrics we use relative observation
 1604 error E_o at time T and relative full state error E_s at time T . One can observe that subspace
 1605 embedding techniques improve accuracy for both loss functions. Interestingly, L_2 leads to slightly
 1606 better error for small subspace sizes. Overall accuracy is acceptable but does not reach optimal
 1607 performance reported in the first columns.
 1608

1609 J SENSITIVITY TO TRAIN-TEST SPLIT AND THE CHOICE OF 1610 HYPERPARAMETERS

1611 All results in the main text are reported without error bars, that are usually computed by varying random
 1612 initialisation or train-test split. All our experiments involve extensive hyperparameter search,
 1613 so computing statistics for distinct initialisations or train-test split would require order of magnitude
 1614

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

Table 13: Results for control.

N _{basis}	exact		L ₁ (A, B)		L ₂ (A, B; z)	
	E _s	E _o	E _s	E _o	E _s	E _o
10	4.16%	4.07%	12.56%	12.21%	10.91%	10.59%
20			8.8%	8.47%	7.96%	7.65%
30			9.49%	8.94%	8.74%	8.42%
40			7.26%	6.99%	7.41%	7.15%
50			7.2%	6.94%	7.09%	6.88%

more compute. Here we demonstrate for elliptic eigenproblem (Appendix F.1) and Burgers equation (Appendix G.1) that sensitivity to train-test split is relatively small and not significant to main conclusions reached by analysis of “single-run” results.

For both Burgers and elliptic equations we randomly split dataset on train and test set 5 times and report mean metrics and standard deviation. Networks are trained for hyperparameters found by grid search. The results are available in Table 14. Variability is clearly present, but it is not pronounced enough.

Table 14: Sensitivity to train-test split for elliptic eigenproblem and Burgers equation, subspace regression trained with $L_2(A, B; z)$ loss function.

N _{subspace}	elliptic, $k_1 = k_2$		Burgers	
	train error \pm std, %	test error \pm std, %	train error \pm std, %	test error \pm std, %
10	24.37 \pm 1.47	30.38 \pm 1.34	25.5 \pm 1.17	25.71 \pm 1.72
20	5.69 \pm 0.53	6.46 \pm 0.26	11.15 \pm 1.2	11.0 \pm 1.43
30	3.34 \pm 0.26	3.79 \pm 0.35	7.04 \pm 0.35	7.01 \pm 0.64
40	1.84 \pm 0.12	2.12 \pm 0.11	4.56 \pm 0.32	4.72 \pm 0.61

Variability to train-test split should be compared to sensitivity to the selection of hyperparameters reported in Table 15. We see that for certain cases the span of best and worse performance reaches 100% which is much higher than variability to train-test split. Note that for elliptic equation grid search was performed on downsampled dataset with 32×32 grid.

Table 15: Sensitivity to train-test split for elliptic eigenproblem and Burgers equation, subspace regression trained with $L_2(A, B; z)$ loss function.

N _{subspace}	elliptic, $k_1 = k_2$		Burgers	
	train error [min, max], %	test error [min, max], %	train error [min, max], %	test error [min, max], %
10	[23.81, 37.8]	[28.67, 39.05]	[22.01, 32.64]	[23.79, 34.62]
20	[4.74, 100.0]	[5.51, 100.0]	[9.53, 20.14]	[10.06, 21.05]
30	[2.77, 8.6]	[3.33, 9.06]	[5.58, 21.81]	[5.84, 21.7]
40	[2.06, 7.05]	[2.31, 7.34]	[4.3, 47.43]	[4.31, 283.33]