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Abstract

The success of modern deep learning hinges on the ability to train neural networks
at scale. Through clever reuse of intermediate information, backpropagation
facilitates training through gradient computation at a total cost roughly proportional
to running the function, rather than incurring an additional factor proportional to
the number of parameters – which can now be in the trillions. Naively, one
expects that quantum measurement collapse entirely rules out the reuse of quantum
information as in backpropagation. But recent developments in shadow tomography,
which assumes access to multiple copies of a quantum state, have challenged that
notion. Here, we investigate whether parameterized quantum models can train as
efficiently as classical neural networks. We show that achieving backpropagation
scaling is impossible without access to multiple copies of a state. With this added
ability, we introduce an algorithm with foundations in shadow tomography that
matches backpropagation scaling in quantum resources while reducing classical
auxiliary computational costs to open problems in shadow tomography. These
results highlight the nuance of reusing quantum information for practical purposes
and clarify the unique difficulties in training large quantum models, which could
alter the course of quantum machine learning.
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Figure 1: Quantum backpropagation algorithm. Our proposal for quantum backpropagation
consists of an online shadow tomography protocol, coupled with a threshold search procedure [Aaron-
son et al., 2018, Bădescu and O’Donnell, 2021]. The algorithm is executed in batches of size
O(polylog(M)), of which roughly n batches are needed, where ρ is an n qubit quantum state. A
classically constructed hypothesis state σ is also necessary for the algorithm. Crucially, quantum
states and the hypothesis state are rotated before each threshold check, to rotate through the layers
of a quantum neural network F (θ), θ ∈ RM and reuse information for gradients. This enables a
cost reduction from O(M2 · polylogM) to O(M · polylog(M)) to compute the full gradient. For
convenience, we suppress precision factors which scale as O(1/ε4) for this proposal.

1 Introduction

Computing gradients through backpropagation is crucial to the success of modern deep neural net-
works. Rather than a naive manifestation of the chain rule to compute gradients, backpropagation
leverages white-box knowledge of a computational graph, as well as intermediate values, to asymptot-
ically improve run times [Goodfellow et al., 2016, Rumelhart et al., 1986, LeCun et al., 2015, 1989,
Bengio et al., 2014]. Remarkably, computing the gradient of, say, a neural network function with
respect to all its parameters, can be done at a total cost roughly proportional to running the function,
instead of incurring an additional factor proportional to the number of parameters. This relative
scaling, owed to backpropagation, has facilitated the training of very deep networks, with parameter
counts now in order of 1010 – accompanied with unparalleled empirical success [Goodfellow et al.,
2016, Szegedy et al., 2017, Iandola et al., 2016, Wu et al., 2019]. When considering the number
of function calls required to compute gradients, backpropagation in classical circuits remains expo-
nentially more efficient with respect to the number of parameters, than the best known algorithms
for determining gradients of parameterized quantum circuits – with or without the aid of a quantum
computer [Gilyén et al., 2019, Van Apeldoorn et al., 2020, Brandão et al., 2017, Jordan, 2005, Schuld
and Killoran, 2022]. Nevertheless, the allure of large-scale models inspires the need for efficient
training of parameterized quantum models [Kandala et al., 2017, Farhi et al., 2014, Cerezo et al.,
2021], which frequently arise in fields like quantum machine learning and quantum chemistry. But if
backpropagation scaling cannot be matched, practically reaching overparameterized regimes may be
impossible, even before accounting for additional challenges like barren plateaus [McClean et al.,
2018, Wang et al., 2021, Cerezo et al., 2020]. Since trainability influences the power and applicability
of a model, this could radically shift the current trajectory of preferred quantum models.

In this work, we provide an operational definition of backpropagation, and subsequently determine
its feasibility for parameterized quantum models. We investigate learning algorithms with and
without quantum memory, where the former is able to store a product of multiple copies of a
particular state, perform joint quantum operations followed by an entangled measurement. Whereas, a
learning algorithm without quantum memory can only perform operations on each copy, implement a
(conditional) measurement, and use the resulting classical data. Without access to multiple copies, we
highlight that all known methods to compute gradients of simple variational models, do not achieve
an overhead in line with backpropagation, unless one considers very special cases. Interestingly,
closely related probabilistic classical analogues can exhibit backpropagation scaling, which points out
that the barrier in the quantum setting is due to quantum phenomena. In an attempt to mimic classical
backpropagation, which leverages information reuse to produce a favourable scaling, we lean on a
similar concept in a quantum setting, namely gentle measurements [Aaronson, 2019, Aaronson and
Rothblum, 2019, Bădescu and O’Donnell, 2021]. When combined with online learning [Aaronson
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et al., 2018], this technique has proven useful in problems like shadow tomography as it aims to
conserve quantum resources, but has yet to be explored in the context of backpropagation. In an
information-theoretic sense, when access to multiple copies of a state is provided, a modification of
existing shadow tomography routines enables backpropagation scaling if one restricts costs to the
quantum overhead and ignores the classical cost incurred to implement known shadow tomography
schemes. We present our proposed quantum backpropagation algorithm in Figure 1 which highlights
the reduction in quantum resources due to the ability to exploit structure in a quantum neural
network and reuse information through gentle measurement. Unfortunately, the true computational
efficiency of our scheme remains an open question and we rule out a general strategy based on
gentle measurement alone, by linking to computational models known to be more powerful than
those contained in the complexity class of BQP [Aaronson et al., 2016]. Despite failure to achieve
backpropagation scaling in this general setting, the construction is suggestive of approximate or
restricted models that may yield the desired scaling without violating complexity-theoretic bounds.
This avenue remains rich for future work. We hope that these results illustrate the difficulty of
replicating backpropagation scaling in parameterized quantum circuits and inspires the development
of alternative quantum models that can train at scale.

2 Backpropagation scaling

A comprehensive overview of gradient evaluation, given by automatic differentiation on classical
computers, can be found in Griewank and Walther [2008]. The key advantage, however, can be
summarized in one sentence: computational and memory resources employed to compute gradients
of a function are bounded multiples of those used to compute the function. We use this bound to
define the requirements for backpropagation scaling.
Definition 1 (Backpropagation scaling). Given a parameterized function F (θ), θ ∈ RM , let F ′(θ)
be an estimate of the gradient vector accurate to within some constant ε in the infinity norm. The
total computational cost incurred to obtain F ′(θ) with backpropagation is bounded such that

TIME(F ′(θ)) ≤ ct · TIME(F (θ)), (1)

and

MEMORY(F ′(θ)) ≤ cm ·MEMORY(F (θ)), (2)

where ct, cm = polylog(M), and TIME(·) and MEMORY(·) capture the time and space complexity
respectively, for either computing the function F or its gradient F ′.

As a further specification of backpropagation scaling in Definition 1, one can specify whether one
achieves this scaling in quantum resources, classical resources, or all resources. While it is, of course,
the goal to achieve this scaling in all resources, the distinction remains relevant due to the ability to
leverage classical resources in order to improve the scaling in quantum resources, which we elaborate
on in Section 5. In purely classical models, like neural networks, the overhead for both time and
memory can be constant, and typically by a small factor. This efficiency has been instrumental for
training very large models and is arguably the main contributor to the success of modern day machine
learning. Given that variational quantum models, which utilize parameterized quantum circuits, are
believed to be the most promising candidates to solve quantum machine learning tasks, we investigate
their ability to reproduce this scaling.

3 Variational quantum models

Variational algorithms have become a go-to approach when looking to solve various optimization and
machine learning problems on quantum devices [Cerezo et al., 2021]. We present a slightly restricted
model for ease of analysis which still covers a very broad range of practical scenarios. Notably, if
backpropagation scaling cannot be achieved in this simplified setting, it is unlikely to succeed in a
more sophisticated one.
Definition 2 (Simple variational model). Consider an initial quantum state ρ and a quantum circuit
with M parameterized operations Uj(θj) = e−iθjPj , where each Pj is a Pauli operator acting on up
to n qubits. We define a simple variational quantum model as the parameterized function

F (θ) = Tr[Oρ(θ)], (3)
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where O is a Hermitian and unitary observable, and the quantum state ρ(θ) is expressed as ρ(θ) =
U(θ)ρU(θ)†. In the most general case, ρ will be an unknown quantum state that we refer to as
the quantum data setting, but we will also be interested in the simplified setting where ρ(θ) =

|ψ(θ)⟩ ⟨ψ(θ)| and |ψ(θ)⟩ = U(θ) |0⟩⊗n =
∏M
j=1 Uj(θj) |0⟩

⊗n.

In the simplified setting, the kth gradient component of F (θ) can be expressed as

[F ′(θ)]θk = 2 Re

⟨0|
 M∏
j=1

eiθjPj

O

(
M∏

m=k+1

e−iθmPm

)
(−iPk)

(
k∏
l=1

e−iθlPl

)
|0⟩

 . (4)

It becomes clear that computing all M components involves a large number of common operations.
At face value, one might think it straightforward to exploit this overlap of operations to gain computa-
tional efficiency, as is done classically. The problem is that intermediate information in a quantum
circuit is not easily retrievable without consequence, which is investigated in the following section.

4 Learning algorithms without quantum memory

Recall that a learning algorithm without quantum memory would perform operations and measure-
ments on each individual copy of a quantum state. In this regime, which is prominent in current
quantum machine learning settings, we have the following proposition.
Proposition 3 (Backpropagation scaling is impossible for quantum data using single copies). Given
the quantum data setting where one seeks to train a variational model using copies of the unknown
state ρ and the additional constraint of no quantum memory, then backpropagation scaling is not
possible in the general case.

Proof. Take the Pauli circuit model above and let us consider the case of all possible Pauli operators
Pj on n qubits, such that M = O(4n). If we take the special case of quantum data and initializing
all θj = 0, then the gradient with respect to each of the parameters is given by the expected value of
all possible Pauli operators on n qubits on the unknown quantum state ρ, up to a small constant. If no
quantum memory is available, that is, we only have the ability to perform measurements on single
copies at a time, then by Chen et al. [2022, Corollary 5.9], the minimal number of copies of ρ is lower
bounded by Ω(2n/ε2) in order to predict all Pauli operators to at most ε-error with probability 2/3.
Hence, backpropagation scaling is not possible in general in the single copy case.

Notably, Proposition 3 is based on an information-theoretic separation that does not generalize to
the simplified case, ρ = |0⟩⟨0|, or even when ρ is simply guaranteed to be a pure state generated
by a polynomial sized circuit, which we detail in Appendix C. Hence, for the simplified case and
polynomial complexity pure state cases, we must turn to computational arguments. Furthermore,
if it were possible to find a polynomial time algorithm for the approach in Appendix C, then it
would be possible to efficiently clone pseudo-random states, which is not believed to be possible [Ji
et al., 2018], despite the fact that they are pure states generated by polynomial sized circuits (see
Appendix C.2). The following remark aims to clarify the status of current methods for approaching
this problem.
Remark 4 (Current gradient methods fail to achieve backpropagation scaling). Given a variational
model F (θ) defined in (3) with time complexity

TIME(F (θ)) = Õ(M/εk),

for some integer k and precision ε, then all known schemes to estimate the gradient of F (θ) to the
same precision, do not, in general, achieve a time complexity in line with backpropagation scaling.

We briefly explain why known gradient methods fail, but defer details to Appendix A. A promising
gradient algorithm put forth in Jordan [2005] requires only a single black-box query to a function
to estimate its full gradient with a desired precision. But, as shown in Gilyén et al. [2019], when
considering variational models, a different query model must be applied and the original single-
query advantage becomes unattainable. The authors derive lower bounds requiring a quantum
computational cost of O(M

√
M/ε2) and in a high precision regime, O(M

√
M/ε) is worst-case
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optimal [Huggins et al., 2021] when using a black-box simplified model of U(θ). In other contexts,
it is also sometimes argued that the simultaneous perturbation stochastic approximation (SPSA)
algorithm is computationally efficient since it requires two function evaluations to estimate the
gradient, irrespective of M . This seemingly satisfies the scaling required, however, as M increases,
the variance of the gradient estimate increases and, thus, to counteract this, either a smaller learning
rate must be used - increasing the number of optimization steps - or more samples are needed to
estimate the gradient with an appropriate accuracy at every step. We derive a sample complexity
bound in Appendix A.2.3 which demonstrates SPSA’s inability to exhibit backpropagation scaling.
Thus far, other sampling schemes constructed to estimate the gradient of F (θ), like the parameter-shift
rule, perform destructive measurements that typically only retrieve a partial amount of information
for one component of the gradient. As a result, reducing the infinity norm error in the gradient with
reasonable probability, has a cost that scales like converging each component, i.e.

TIME(F ′(θ)) ∝M TIME(F (θ)) (5)

= Õ(M2/εk), (6)

which unfortunately, does not achieve backpropagation scaling.

While this quadratic dependence on the number of parameters may not seem problematic, a linear
dependence was the necessary catalyst in the age of modern deep learning, with overparameterized
networks that perform exceedingly well on practical tasks. We illustrate the consequences of quadratic
scaling in Appendix A.2, Figure 2, where one could wait up to a day to evaluate a single gradient
estimate of a model with fewer than 10 000 parameters.

But perhaps neural networks are not a fair benchmark. One could dig deeper in automatic differenti-
ation literature to investigate whether a direct classical analogue for these parameterized quantum
circuits attains backpropagation scaling. Interestingly, a particular analogue can.
Proposition 5 (Classical analogue achieves backpropagation scaling). Parameterized Markov chains,
which are much closer classical analogues to variational models than neural networks, exhibit
backpropagation scaling.

We detail the proof and scaling comparison in Appendix B by drawing an analogy between quan-
tum and classical probabilistic states. Under some reasonable assumptions on the set of classical
operations, the desired scaling is indeed possible in analogous classical parameterized stochastic
processes. The formulation of this classical-quantum analogy allows us to probe the root cause of
why backpropagation scaling is so difficult to obtain in the quantum variational setting. The origin of
the challenge lies within quantum measurement collapse and the inability to read out intermediate
states while continuing a computation, rather than the probabilistic formulation of the problem. In the
classical setting, one is always promised to be in a computational basis state, making it possible to do
perfect measurements non-destructively at intermediate steps. It remains an interesting open question
to better understand the performance separation on practical tasks between quantum variational
methods and this type of classical analogue, given the advantage in trainability of the latter.

Although Proposition 3 presents a strict lower bound ruling out backpropagation in the quantum data
case with single copies, this leads one to wonder whether backpropagation scaling is possible when
one has access to multiple copies. Moreover, destructive quantum measurements are the inhibitor
of backpropagation scaling in single copies, so perhaps there is some middle ground where one
could perform measurements that are only partially destructive on multiple copies. This idea has
led to breakthroughs in the shadow tomography problem, which we examine next in the context of
backpropagation.

5 Reusing multiple copies through gentle measurement

By allowing access to multiple copies of ρ, it is especially interesting to note that gentle measurements
can facilitate backpropagation scaling in all resources, when considering the special case outlined in
Proposition 3. We first define gentle measurement, followed by the special case construction.
Definition 6 (Gentle measurement). Fix a subset of quantum mixed states S. A measurement F is
α-gentle on S if for every state ρ ∈ S , and every outcome y of F , the post-selected state ρF=y obeys

||ρF=y − ρ|| ≤ α,
where α ∈ [0, 1]. Hence, the smaller the α, the less damage incurred by ρ.
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Proposition 7 (A special case variational model achieves backpropagation scaling). Given a vari-
ational model F (θ) = tr

[
U(θ)ρU(θ)†

]
, where U(θ) =

∏M
j=1 e

−iθjPjV for some fixed unitary V ,
setting θ to zero and O = I , the kth gradient component may be written as

F ′(0)k = 2 Re
(
Tr
[
V ρV †(−i)Pk

])
= 2 Im

(
Tr
[
V ρV †Pk

])
. (7)

Then all M gradient components can be estimated to within a fixed precision ε using O(log(M)/ε4)
function calls, and thus,

TIME(F ′(θ)) = O(log(M))TIME(F (θ)),

which is in line with backpropagation scaling.

Proof. With use of an ancilla qubit and a slightly modified circuit, the imaginary components of
Tr
[
V ρV †Pk

]
, which represent gradient components, can be estimated with O(logM/ε4) copies of

ρ for all k via application of V and two-copy Bell measurements of the resulting state that harness
gentleness. Similarly, using O(log(M)/ε2) copies along with the magnitude information from
the Bell measurements, one may estimate the sign of the gradient components using a majority
vote scheme that also exploits gentleness. The total number of copies scales as O(log(M)/ε4),
inducing a time complexity of O(log(M) ·M/ε4) with efficient classical overhead. The details of
the implementation are discussed in Huang et al. [2021, Appendix E].

This result indicates that there are at least some choices of circuits and generators for which back-
propagation scaling can be achieved using gentle measurements. The exception naturally leads one to
ask if this may be possible in more general cases with techniques like shadow tomography [Aaronson,
2019], however, with just a small perturbation away from this special case, the same technique no
longer works, and the general computational efficiency remains unknown [Aaronson and Rothblum,
2019, Bădescu and O’Donnell, 2021]. In the subsequent section, we adapt shadow tomography results
and exploit the sequential structure in variational models equipped with quantum data, to obtain
backpropagation scaling in quantum resources, but leave open the question of classical computational
efficiency. This represents substantial progress over current gradient methods for these models.

5.1 A quantum-efficient protocol for backpropagation

Our main contribution in this more general quantum data setting with multi-copy access, is the
establishment of a connection between gradient estimation and shadow tomography. This gives an
exponential improvement to the sample complexity of the input state from Õ(M) to O(polylog (M))
for computing gradients. It also gives a quadratic improvement in the number of quantum operations
from Õ(M2) to Õ(M), analogous to classical backpropagation. The algorithm is depicted diagram-
matically in Figure 1. Our proposal, however, houses a large caveat: it requires the classical storage
and manipulation of a hypothesis state, which results in an exponential classical overhead, unless an
approximation scheme can be effectively applied. It is argued in Aaronson [2019] that this cost is
unavoidable in general, since removing it would imply that quantum advice can always be simulated
by classical advice. Nevertheless, the exponential saving in sample complexity could be important in
settings where the labelled quantum states coming from Nature are limited, and valuable. In Huang
et al. [2022] for example, there were sources of quantum data that, when limited in quantity, could
achieve a substantial data advantage over classical learners – even in the range of 20-40 qubits. In this
size range, keeping the classical model in full detail would be completely feasible without ruining the
potential for quantum advantage. Further, the linear scaling of quantum operations, even in the face
of exponential classical overhead, could be beneficial if classical computation is extremely cheap
when compared to quantum computation.

Our protocol will apply to an even more general model than Equation (3), which we term a quantum
neural network.
Definition 8 (Quantum neural network). Let a quantum neural network be a variational quantum
circuit on n+1 qubits, numbered 0, 1, . . . , n. Qubits 1, . . . , n act as the data register, which will take
as input an unknown quantum state |φ⟩ to be classified. Qubit 0 acts as the output register, which is
measured in the Z-basis and initialized to |0⟩. The variational circuit belongs to the following simple
class

U(θ⃗) = eiθMPMUM . . . eiθ1P1U1,
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where {Pk} are fixed (n+1)-qubit Pauli operators and {Uk} are fixed circuits. The output prediction
on |φ⟩ is then given by a quantum neural network function defined as

QNNθ⃗(|φ⟩) = ⟨0|⟨φ|U
†(θ⃗)Z0 U(θ⃗)|0⟩|φ⟩ ∈ [−1, 1]. (8)

Note that running the circuit on |0⟩|φ⟩ gives a coin flip Ber( 12+
1
2QNNθ⃗(|φ⟩)) rather than QNNθ⃗(|φ⟩)

itself. This allows us to estimate QNNθ⃗(|φ⟩) to ε precision with high probability by running the
circuit poly(ε−1) times, as usual. Furthermore, note the sequential nature of the function’s gradients,
highlighted in a similar sense in Equation (4). This leads us to the following theorem.
Theorem 9 (Quantum-efficient backpropagation). Given an unknown n qubit input state |φ⟩, there
exists an explicit algorithm which produces estimates bk for all k = 1, ...,M such that |bk −
1
2∂θkQNNθ⃗(|φ⟩)| ≤ ε using only

m = O

(
n log2M

ε4

)
,

copies of |φ⟩. The required number of quantum operations for the proposed algorithm is Õ(mM),
which is quasi-linear in M . However, classical storage of a hypothesis state is used and incurs a
classical cost of M · 2Õ(n) when no effective approximation schemes are known.

The full details of the proof and the explicit quantum backpropagation algorithm are given in
Appendix D. We first show that estimating the gradient component ∂θkQNNθ⃗(|φ⟩) reduces to
estimating the expectation value of a certain traceless Hermitian unitary operator on |+⟩|0⟩|φ⟩.
Shadow tomography results then imply that estimating all gradient components to precision ε is
possible using only poly(logM,n, ε−1) copies of |φ⟩. In order to fully specify the algorithm, we
adapt an improved shadow tomography protocol from Bădescu and O’Donnell [2021] that makes use
of gentle measurements and is online. The key difference in our proposal, which enables us to achieve
linear scaling in M , is the reuse of quantum computation in a way reminiscent of backpropagation
through observation that one can rotate through the layers of the quantum neural network sequentially
and estimate the appropriate expectation value between each rotation step, as shown in Figure 1.
Naive implementation of the shadow tomography protocol for gradients would yield Õ(M2) quantum
operations, in line with most existing methods for quantum gradient estimation.

5.2 Reduction from shadow tomography

We now show that a fully efficient algorithm for computing gradients would give rise to a fully
efficient shadow tomography procedure for observables which can be efficiently implemented. This
very general class of observables, however, is not known to have a computationally efficient shadow
tomography protocol. Thus, this connection presents yet another obstacle to improving the exponential
classical run time of our quantum backpropagation algorithm since removing the exp(n) classical
run time overhead in general, necessitates a breakthrough in shadow tomography.
Definition 10 (Shadow tomography problem). Let E be a class of two-outcome measurements
with outcomes in {±1}. Given an unknown n-qubit quantum state |ψ⟩, and known measurements
E1, . . . , EM ∈ E , output estimates b1, . . . , bM ∈ [−1, 1] such that |bk − ⟨ψ|Ek|ψ⟩| ≤ ε ∀k. In
particular, do this via a measurement of |ψ⟩⊗m where m is as small as possible.
Definition 11 (Poly-time observables). A poly-time observable on n qubits is defined to be an
observable of the form U†Z1U where U is a poly-size circuit.

The shadow tomography problem is well-studied in quantum information theory. There are indeed
special cases where this problem may produce a favourable scaling in M and n, as outlined in
Proposition 7. But, in general, it is not trivial to remove the exponential classical cost when it comes
to shadow tomography.
Theorem 12 (Shadow tomography reduction). Suppose there is an algorithm which can estimate the
gradients ∂θkQNNθ⃗(|ψ⟩), k = 1, . . . ,M , to precision ε, with m copies of |ψ⟩, and with runtime T .
Then, this gives an algorithm for shadow tomography of poly-time observables, to precision ε

2 , with
m copies of |ψ⟩ and runtime T .

Proof. Consider an instance of shadow tomography on n qubits, with E1, . . . , EM given by Ek =

U†
kZ1Uk, where {Uk} are poly-size circuits. Construct the quantum neural network with the following
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variational circuit

U(θ⃗)|0⟩|ψ⟩ = eiθMY0⊗Z1ÛM . . . eiθ1Y0⊗Z1Û1H0|0⟩|ψ⟩
= eiθMY0⊗Z1ÛM . . . eiθ1Y0⊗Z1Û1|+⟩|ψ⟩

where

Û1 = 10 ⊗ U1

Ûk = 10 ⊗ UkU†
k−1 , 1 < k ≤M

Then, by Equation (7), the gradients at θ⃗ = 0⃗ are

∂θkQNNθ⃗(|ψ⟩)|θ⃗=0⃗ = 2Re ⟨0|⟨ψ|U†(⃗0)Z0∂θkU (⃗0)|0⟩|ψ⟩

= 2Re ⟨+|⟨ψ|Û†
1 . . . Û

†
MZ0ÛM . . . Ûk+1(iY0 ⊗ Z1)Ûk . . . Û1|+⟩|ψ⟩

= 2Re ⟨+|⟨ψ|Û†
1 . . . Û

†
k(iZ0(Y0 ⊗ Z1))Ûk . . . Û1|+⟩|ψ⟩

= 2⟨+|⟨ψ|(10 ⊗ U†
k)(X0 ⊗ Z1)(10 ⊗ Uk)|+⟩|ψ⟩

= 2⟨+|⟨ψ|(X0 ⊗ Ek)|+⟩|ψ⟩
= 2⟨ψ|Ek|ψ⟩

Thus computing the gradients allows us to solve the shadow tomography instance.

Seeing as there is no known classically efficient procedure for shadow tomography with respect to
poly-time observables, this reduction illustrates the difficulty of replicating true backpropagation
scaling in general.

5.3 A fully gentle gradient strategy

Shadow tomography makes use of multiple copies and a hypothesis state model, often stored
classically, to require a minimal number of destructive measurements. It is useful to examine the
limits of gentle measurement alone for gradient estimation in order to reduce the classical overhead.
In particular, it would be ideal if it were possible to use a small number of copies (e.g. polylog(1/α))
of a quantum state to achieve α-gentleness in the general case through a simple, direct measurement
scheme. While we do not explicitly construct a protocol here, this capability would naturally lead to
a scheme for gradient estimation that achieves backpropagation scaling. This capability, however,
would also allow us to violate known query lower bounds for the unstructured search problem. Thus,
for our gradient purposes, it seems as if successful schemes must limit the number of potentially
destructive accesses to a quantum state via the use of a classical model. We formalize the general
failure of gentle measurement alone in the following theorem.
Theorem 13 (Repeated gentle measurements). Assume it is possible to perform an arbitrary two-
outcome measurement gently by using up to a polylogarithmic number of copies of the state. Specifi-
cally, assume that any measurement can be made α-gentle by using O(polylog(1/α)) copies of the
state. Such an ability leads to a violation of known query bounds given by Grover’s search algorithm,
and thus, cannot be possible in general.

Proof. The proof is adapted from results in Aaronson et al. [2016]. Consider the n-qubit Grover state
after i iterations with an ancilla present to mark the state |x⟩,

sin((2i+ 1)θ) |x⟩ |1⟩+ cos((2i+ 1)θ)
∑

y∈{0,1}n y ̸=x

1√
M − 1

|y⟩ |0⟩ , (9)

where θ = arcsin 2−
M
2 . For each of the M = 2n possible marked elements x, one can define a two-

element POVM of the form {|x⟩ |1⟩ ⟨x| ⟨1| , I − |x⟩ |1⟩ ⟨x| ⟨1|}. One may ensure that the marked
bit string is found with high probability by performing a measurement of each of these POVMs with
respect to the Grover state Õ(2n) times, even in the case where the state is constructed with a single
Grover oracle query. Performing this procedure using standard, destructive, measurements of the
POVMs would require a fresh set of oracle queries with each round. However, using sufficiently gentle
measurements removes this requirement. If the distance between the pre- and post-measurement
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states is sufficiently small, one obtains results that are close to those that one would obtain from a
fresh copy of the state. In order to guarantee that the marked bit string can be extracted with high
probability, we demand that the state obtained after any number of measurement rounds be within
2−n

3 in the trace distance of the state prior to any measurements1. To guarantee that the state be
sufficiently unchanged by the end of the series of Õ(22n) measurements, each measurement should
therefore be Õ(2−3n)-gentle. By assumption, this is possible with polylog(23n), or simply poly(n),
copies of the original state, each of which is prepared using the Grover oracle a set number of times.
By performing the whole sequence of measurements gently, one can avoid biasing the result too
much before the marked state is found. Hence, one can identify x with high probability, using
poly(n) ≪ 2n/2 Grover oracle calls, which is a violation of known lower bounds [Grover, 1996].
In Appendix E.4, we discuss how sufficiently gentle measurements lead to a violation of known
bounds when considering a different notion of time complexity that combines measurements and
oracle queries.

Remark 14 (Shadow tomography does not violate known bounds). After seeing this result, one
might question how this relates to shadow tomography schemes that use gentle measurement plus
classical computation. It is consistent when one considers that α-gentleness considered in isolation
must apply to both the number of distinct measurements one may perform and the precision to
which one performs a particular repeated measurement. That is, from the point of view of gentle
measurement alone, gentleness on different measurements and gentleness on repeated measurement
to high precision ε, are on the same footing and hence, must respect known bounds for information
extraction. Indeed, all known shadow tomography schemes are consistent with a number of copies
of the state scaling polynomially with 1/ε, despite scaling logarithmically in the number of distinct
measurements, which prevents the above violation of known Grover query and time complexity
bounds. This reflects an asymmetry between the number of distinct measurements and the precision
of a single measurement present in all shadow tomography schemes and noted in the original work
on the topic [Aaronson, 2019] that hypothesized that there are fewer independent observables within
a quantum state than one might expect intuitively. The success of shadow tomography schemes, as
distinct from simple gentle measurement, depends crucially on the existence of models that update
quickly enough to limit the number of measurements made to the actual quantum states.

5.4 Approximate schemes

The failure of a fully gentle approach points to the necessity of a classical model to enable backpropa-
gation scaling. But, the key challenge in the general application of the proposed shadow tomography
algorithm is the use of an explicit classical representation of the quantum state, which in general,
scales exponentially with system size. While there have been a few special cases found that have fully
efficient schemes, like with Pauli operators [Huang et al., 2021], the case of whether there exists an
efficient computational scheme for poly-time observables remains open. However, an exact scheme
may not be required in practice, especially when dealing with noisy data. This raises the possibility of
using approximate classical representations of the state. For example, it is known that in cases where
states exhibit low entanglement, they may be efficiently represented by matrix product or tensor
network states [White, 1992, Perez-Garcia et al., 2006, Cramer et al., 2010, Evenbly and Vidal, 2015,
Orús, 2019]. Moreover, in the case of shadow tomography, one is not explicitly seeking an exact
representation of the density matrix, but rather a proxy, capable of reproducing the desired observables
with high probability. This relaxation of requirements may render an approximation scheme effective,
even when the true state is challenging to represent with a particular ansatz. This area represents an
interesting and potentially fruitful research direction that could dramatically increase the efficiency of
training in quantum machine learning models, and we leave it open for future work.

6 Discussion

Special cases aside, the inadequacy of current gradient methods to provide backpropagation scaling in
parameterized quantum models leaves room for many questions. One particular conclusive direction

1This choice of distance guarantees that, even in the presence of damage, the POVM used to identify the
actual marked element will correctly return a positive result with probability at least 2

3
2−n. Likewise, any

POVM corresponding to an unmarked element will incorrectly return a positive result with probability at most
1
3
2−n.
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would be developing a concrete computational argument to rule out backpropagation scaling in the
multi-copy setting, thereby confirming the true computational complexity of shadow tomography.
Even though the proposed information-efficient scheme in this study fails to satisfy classical cost
requirements of backpropagation, the possibility of a computationally efficient procedure remains
open, especially for cases with known, structured observables. Similarly, failure in the general
case of gentle measurements again suggests potential approximate or restricted models that may be
more trainable. One may find an alternative architecture where gradient computation has favorable
scaling, and even though the model is perhaps not as powerful or universal, it may still be useful
in practice. Interestingly, closely related probabilistic classical analogues to variational models can
exhibit backpropagation scaling. If the difficulty to achieve an efficient scaling is due to inherently
quantum properties, perhaps backpropagation is not the correct method for optimization of quantum
models, which seems to be a growing belief for classical models too, albeit for completely different
reasons [Hinton, 2022]. We hope that these results spark the development of either alternative
quantum models that can train at scale or new methods for efficient optimization.
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A Resource scaling for quantum backpropagation methods

What comprises classical memory and time complexity, is purposely left vague. The details depend
on the constituent types of operations needed to compute a function and its gradients, as well as
the memory access model available. But, details aside, backpropagation merely refers to gradient
computation in a particular manner, and, any reasonably successful implementation of it incurs a
constant overhead in relative complexity, as captured by Equations (1) and (2). With this in mind,
we elaborate on the operational definition of quantum backpropagation scaling in terms of memory.
Thereafter, we explain the failure of various current gradient methods to achieve backpropagation
scaling.

A.1 Memory complexity of the function

Recall the function of interest F (θ) = F (θ) = tr[ρ(θ)O], where O is an observable and ρ(θ) is
a parameterized quantum state built from M parameters, acting either on an unknown initial state
ρ or simplified initial state ρ = |0⟩⟨0|. Classifying the memory used to compute the function as a
combination of n qubits, plus storage for each of the M parameters with appropriate precision, δ,
implies

MEMORY(F (θ)) = Õ(n+M log(1/δ)). (10)

To derive the computational cost, assume unit cost access to any element of the circuit family {Uj}. If
an incoherent measurement scheme is used, measuring O and estimating F (θ) to an acceptable fixed
precision, ε, on repeated preparations of ρ(θ) incurs a cost that scales as TIME(F (θ)) = Õ(M

εk
), for

some integer k. This sets the scene for the computational requirements of computing F ′(θ), which
should, importantly, be achieved with a modest space overhead to truly replicate backpropagation.

A.2 Current gradient methods

Replicating classical backpropagation efficiency in a quantum setting requires more effort, which we
elaborate on next by discussing how and why current gradient methods fail to achieve this efficiency.
For further illustration, Figure 2 provides a hypothetical comparison between the popular gradient
method – the parameter-shift rule – and true quantum backpropagation. The plot incorporates
assumptions about time to compute native quantum operations taken from Babbush et al. [2021].

A.2.1 Naive sampling

The gradient of the function F (θ) expressed in Equation (4) also takes a simpler form using the
parameter-shift rule and properties of Pauli generators [Mitarai et al., 2018, Schuld et al., 2019]

[F ′(θ)]θk = F
(
θ +

π

2
θ̂k
)
, (11)

where θ̂k is a unit vector along the kth direction of θ. Thus far, sampling schemes constructed to
estimate (11), perform a destructive measurement that typically only retrieves a partial amount of
information for one component of the gradient. As a result, reducing the infinity norm error in the
gradient such that we expect ||F ′(θ)− F̂ ′(θ)||∞ ≤ ε with reasonable probability, has a cost that
scales like converging each component, i.e.

TIME(F ′(θ)) ∝M logM TIME(F (θ)) (12)

= Õ(M2/ε2). (13)

While this quadratic dependence on the number of parameters may not seem problematic, a linear
dependence was the necessary catalyst in the age of modern deep learning, with overparameterized
networks that perform exceedingly well on practical tasks.

A.2.2 Fast gradient algorithm

A method put forth by Jordan [2005] numerically estimates the gradient of a classical black-box
function at a given point, using a quantum computer. The algorithm impressively requires a single
black-box query to estimate the full gradient with a desired precision, whilst satisfying the memory
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Figure 2: Quantum backpropagation scaling. The parameter-shift rule is plotted alongside true
quantum backpropagation scaling. On the x-axis is time in number of seconds required to compute a
single estimate of the gradient in log scale, with common time points stated explicitly. On the y-axis
is the number of parameters, also in log scale, that may be optimized using each method, for a given
amount of time. We make simple assumptions, motivated from the work in Babbush et al. [2021].
Namely, we assume a minimum system size of n = 100 qubits. Further, assuming a favourable time
of 10µs to compute one parameterised operation ( which is 1 order of magnitude less than the time to
compute one Toffoli gate), the time for one primitive is lower bounded by 100× 10µs = Tq . Scaling
in time is then roughly M2 · Tq for the parameter-shift rule and M · polylog(M) · Tq for quantum
backpropagation. Furthermore, ε = O(1).

requirement in (2). We elaborate on the connection between this approach and backpropagation
on a quantum computer when the function considered is classical and reversible, in Appendix B.1.
But, as shown by Gilyén et al. [2019], when parameters are considered to be rotation angles like
those in variational circuits, a different query model needs to be applied and the original single-query
advantage becomes unattainable. With the appropriate query model, the known bounds imply a
computational cost of Õ(M

√
M/ε2) using amplitude estimation, and, in a high precision regime,

Õ(M
√
M/ε) is worst-case optimal even with commuting Pauli operators [Huggins et al., 2021]. This

worst-case bound was proved in a setting where operators commute, indicating that commutativity
need not be helpful in other settings.

A.2.3 Simultaneous perturbation stochastic approximation (SPSA) algorithm

A few studies have investigated the use of the simultaneous perturbation stochastic approximation
(SPSA) algorithm to optimize parameterized quantum circuits [Benedetti et al., 2019, Hoffmann
and Brown, 2022, Gacon et al., 2021]. It is argued that SPSA is computationally efficient since
its requires two function evaluations to estimate the gradient, irrespective of M . This seemingly
satisfies the scaling we require, however, the approximation of the gradient has limited accuracy
which affects the number of optimization steps needed for SPSA to converge to a minimum. As
M increases, the variance of the gradient estimate increases and, thus, to counteract this, a smaller
learning rate must be used - increasing the number of optimization steps - or more samples are needed
to estimate the gradient with an appropriate accuracy at every step. In either case, one cannot escape
a dependence on M , which indirectly affects the number of function evaluations needed to estimate
gradients or perform gradient-based optimization adequately. More formally, the gradient estimator
for component j of a function, given by SPSA, is

F̄ ′(θ)j =
F (θ + c∆)− F (θ − c∆)

2c∆j
(14)

where c is a step size constant and ∆ ∈ RM is a sizeM random variable with independent, zero-mean,
bounded second moments, and bounded inverse moments, i.e. E(|∆|−1

j ) is uniformly bounded for all
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j. A common choice for ∆ is a Bernoulli random variable with equal probabilities of being +1 or −1
for every entry.

Consider a special case, F , for pedagogical purposes such that the gradient at the point θ is a
constant g along all coordinates, the function is nearly linear at the point examined, and the number
of coordinates M is large in a central limit theorem sense. We then have, F ′(θ)j = g for all j,
and F (θ + c∆) ≈ F (θ) + c F ′(θ)T∆ = F (θ) + cg 1⃗T∆ ≈ F (θ) + N (0, cgM). On a quantum
computer, the estimator will be constructed by taking independent measurements of F (θ ± c∆) and
then rescaling the sample mean by 1/2c∆j . We then see that the variance of an individual term in
this case is given by

Var[F̄ ′(θ)j ] =
F (θ)

c
+ gM (15)

As such the number of samples required to reach a precision ϵ with high probability in even a single
gradient component scales as

Ns =
F (θ)/c+ gM

ϵ2
(16)

which clearly increases linearly with the number of components M , and does not achieve the desired
scaling despite the estimator being constructed from only two function calls. It is also worth noting
that the estimates for each component of the gradient are highly correlated across the vector, which
can lead to larger errors than would be otherwise expected under alternative norms. This is intuitively
expected, as it should not generally be possible to determine M independent random variables from
a single value without increasing the precision of the estimates at least proportionately. We note in
passing that generally to obtain an unbiased estimator one must also take c to be on the order of ϵ, but
this dependence can be improved with higher order formulas to ϵ−k for some k > 1 [Spall, 2000],
but this is not central to our study.

B Classical backpropagation in quantum circuits

In order to frame the discussion, it is worth considering a number of closely related setups as they
would appear if performed on a quantum computer. In particular, in similar notation and cost models,
its interesting to consider how classical backpropagation would look in a quantum circuit for a
deterministic classical function and perhaps the closer classical analog, classical parameterized
Markov processes on the space of probabilistic bits.

B.1 Classical functions

First we will look at an entirely classical function using reversible arithmetic for the purposes of
analogy, using a simplified function but with simple generalizations available. This will be helpful for
setting the stage in terms of notation and scaling, and also help make a connection with the gradient
algorithm of Jordan [2005]. Consider a classical function f that depends on some set of parameters
x ∈ RM via more elementary functions fi. For this example, we assume a simple dependency
graph for the overall function f : RM → R is the simple composition of elementary functions,
f = fN ◦ fN−1 ◦ ... ◦ f1. Given this structure, we denote a set of intermediate variables zi, such that
zi = xi for i ∈ [1,M ] and zi = fi(zα(i)) for i ∈ [M + 1, n] where α(i) is the subset of variables
needed to evaluate fi, noting that we are implicitly including a trivial set of elementary functions fi
that are simply the identity operation. We also assume that no zi depends on itself, each zi appears
exactly once, and derivatives of the elementary operations are readily available, that is a simple
function for evaluating f ′i(z) is available for any input z.

Given these definitions, we are ready to describe the algorithm for obtaining the gradient ∇xf(x).
We consider a universal precision δ for all parameters and function values, such that classical numbers
use O(log(1/δ)) qubits for their representation. For initialization, we store each of the parameters
xi in their own quantum register |⟩x to run the circuit fully within the quantum computer. In the
first step, we run the function evaluation in the so-called forward pass and store the intermediate
values zi each in their own quantum register |⟩z using the elementary implementations of fi as
reversible circuits. Taking now an additional set of auxiliary registers, |⟩λ with the same size as the
intermediate variables, we assign λn = 1, and compute the backwards pass according to reversible
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implementations of λj =
∑
i∈β(j) ∂zjfi(zα(i)) where β(i) is the outgoing nodes for intermediate

variables zi. In the final step, we may simply read off the λ register to find ∇xf(x) = λ1:M .

Considering a general auxiliary register |⟩A, these steps may be written in quantum form as

|x⟩x |0⟩z |0⟩λ |0⟩A →
Forward |x⟩x |z⟩z |0⟩λ |rf ⟩A →

Backward |x⟩x |z⟩z |λ⟩λ |rb⟩A (17)

where rf and rb denote the state of the arithmetic trash register after the forward and backwards pass
respectively. Given our precision specification, the size of each of the x register is Õ(M) and the
size of the z and λ registers are Õ(N). This representation is a bit wasteful in that as the backwards
pass proceeds one can overwrite the intermediate values z with λ when they are no longer needed,
but writing it this way clarifies the steps. If we assume a typical setup where the number of free
parameters is roughly on par with the number of elementary functions, then we see that the total
storage for the primary registers is Õ(M) and similar for the ancillary register. Similarly, the amount
of computation required in both the forward and backwards pass is Õ(M), or approximately twice
the cost of evaluating the function in the forward direction, meeting the scaling requirements of
backpropagation with some small overhead for maintaining reversibility.

It is useful to compare some aspects of this approach to the quantum algorithm of Jordan for evaluating
gradients of classical functions using a single black box function query [Jordan, 2005]. Considering
only the computation, if we approximate the forward pass and backwards pass to each be the same
cost as one black box function query, then up to log factors in precision of evaluation this method is a
constant factor of two more expensive. Said another way, there is no quantum advantage in evaluating
the gradient when one has white box access to the classical function implementation and it satisfies
the simple dependencies requirements. In terms of storage requirements, the algorithm of Jordan
requires the same x register, but makes no use of the intermediate variable registers such as z or λ
(which can be combined in real implementations to be approximately the size of the x register). This
use of intermediate storage is sometimes characterized as a form of dynamic programming, where the
storage of intermediate variables reduces overall computational complexity. Moreover, this version
takes advantage of analytical gradients of the subfunctions which can be evaluated to high precision
more easily than depending on the finite difference formulations of gradient algorithms as in Jordan’s
technique.

So in summary, both a quantum implementation of classical backpropagation and Jordan’s technique
have a computational cost that is constant in the number of parameters if our cost model considers
overall function evaluations as the cost model. This represents an exponential improvement over
naive finite difference computations or symbolic evaluation of derivatives one element at a time. The
backpropagation technique utilizes an extra storage register and knowledge of the problem structure,
as is common in dynamic programming, while Jordan’s algorithm needs only black-box queries.
Both of the techniques assume bitwise access to the oracle as a classical function.

B.2 Classical parameterized Markov chains

In the previous section, the comparison of classical backpropagation and Jordan’s algorithm made
use of bitwise access to a classical, deterministic function. The case of a classical function encoded in
bits helps frame the discussion in not only scaling but also the sense in which classical parameterized
functions are perhaps not the best analog for parameterized quantum circuits. A key aspect of this
difference was highlighted in Gilyén et al. [2019] by showing that in the black box setting, it was
more appropriate to consider current parameterized quantum circuits as a phase or amplitude oracle,
in which case they prove a lower bound of at least M1/2 calls to the black box (in contrast to O(1)),
ruling out the desired backpropagation scaling except for special cases. This contrast motivates
asking whether the intuitive origin of this lower bound is related more to the black box nature of
the access, the quantum nature of the parameterization, or merely the probabilistic features of the
parameterization. Here we show that a classical analog to parameterized quantum circuits, namely
parameterized Markov processes do indeed allow the analog of classical backpropagation which
helps highlight that the difficulty in achieving constant scaling is due to the quantum nature of the
problem.

To draw an analogy between quantum and probabilistic classical states for our purposes, we will
introduce a small number of analogous concepts that are considered in greater depth by Baez
and Biamonte [2012]. A parameterized quantum state |ψ(θ)⟩ is an L2 normalized state such that
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∫
S
ds |ψ(s; θ)|2 = 1, that is often formulated as a parameterized quantum circuit acting on

a known initial state as |ψ(θ)⟩ = U(θ) |0⟩ where U is a unitary transformation. In contrast, a
parameterized classical probability vector |ψ(θ)) is a positive L1 normalized probability vector such
that

∫
S
ds ψ(s; θ) = 1, that may be formulated as a parameterized classical circuit acting on a

known reference state as |ψ(θ)) = U(θ) |0) where U is a left-stochastic operation in this case. As a
connection between the two, one may consider classical transformations as the set of transformations
restricted to the diagonal of a quantum density matrix, and note that it is always possible to represent
a classical probability process as a quantum process, albeit non-uniquely, but the converse is of course
not true in general.

The corresponding analog of expected values of Hermitian operators on quantum states will be
expected values with diagonal operators O. Such operators are well defined for expected values on
both classical and quantum states and are identical when the quantum populations are equal to the
classical probabilities. In setting up for the computation of gradients with respect to the parameter
vectors, we will consider objective functions defined by the same observable O and a sequence of
operations that each depend on a single parameter. That is, the corresponding classical and quantum
objectives with these assumptions may be concisely defined by

f(θ) =

∫
S

ds O(s)|(
∏
i

Ui(θi)ψ
0)(s)|2 = ⟨O⟩U(θ)ψ0 (18)

f(θ)c =

∫
S

ds O(s)(
∏
i

Ui(θi)ψ
0
c )(s) = ⟨O⟩U(θ)ψ0

c
. (19)

Our question here will be if the restriction to parameterized classical stochastic processes allows
the desired scaling in determining gradients of an expected value with the given parameters. The
evaluation of gradients with respect to parameters in quantum circuits relies largely on the fact
that anti-Hermitian operators generate unitary evolutions, and we may exploit that relationship to
determine gradients as expected values explicitly. There is a direct analogy to this for general
stochastic operators, in that they are generated by so-called infinitesimal stochastic operators, defined
by
∑
iHij = 0. With this definition, in finite dimensions they characterize the family of Markov

semi-groups via exponentiation as U(t) = exp(Ht). For our purposes, it suffices that this yields a
well defined operator for evaluation of single parameter derivatives.

In order to properly compare the two settings, we need to make clear a number of assumptions on the
operators Ui and corresponding operators Hi that mirror assumptions in the quantum case, allowing
efficient implementation. To begin, we assume each Ui(θi) is a simple operation, analogous to a
quantum gate or Pauli operator, such that it is defined as a tensor product on a classical probabilistic
bit space, and evaluating the transition probability between two basis states is efficient to do at high
precision. In general, the basis could change between steps and the process could remain efficient,
however for simplicity we consider the standard computational basis here. Moreover, we assume that
the operation that generates the Ui, which we denote Hi is simple to evaluate between basis states,
and has a bounded norm ||Hi|| = 1, so that parameters θi have consistent and reasonable scales.
Similarly, we will restrict ourselves to observables O with reasonable norms, i.e. ||O|| = 1.

With these assumptions, we investigate derivatives of a classical stochastic process under different
sampling schemes. Let’s imagine we have a stochastic process U , much like a variational circuit,
which we write as

U(θ) =
∏
i

Ui(θi) (20)

where each Ui is a stochastic process with a corresponding generator Hi, such that
Ui(θi) = exp(θiHi) (21)

∂θiUi(θi) = HiUi(θi) (22)
We will be sampling the expected value of some observable O which is a diagonal matrix in our
construction, and so the function value we are interested in optimizing, given a initial probability
distribution ψ0 can be written in a number of ways, but some are

f(θ) = ⟨O⟩U(θ)ψ0
(23)

=

∫
OU(θ)ψ0 (24)
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Now if we take the gradient of this function with respect to the parameters, we find

∂θif(θ) = ∂θi⟨O⟩U(θ)ψ0
(25)

=

∫
O
∏
j<i

Uj∂θiUi
∏
k>i

Ukψ0 (26)

=

∫
O
∏
j<i

UjHiUi
∏
k>i

Ukψ0. (27)

Using this construction, one can store the trajectory and lean on a path-integral formalism to use
a single sampling process to take independent samples of all the gradient components with each
stochastic sample that is taken. One way to write this is to borrow the path-integral like formalism
using resolutions of the identity as

f(θ) =

∫
O
∏
j

Ujψ0 (28)

=
∑

i1,...,iN

∫
O |iN ) (iN |UN |iN−1) (iN−1|UN−1... (i1|ψ0

=
∑

i1,...,iN

p(i1, ..., iN )O(iN )

where we use p(i1, ..., iN ) to represent the probability of a particular configuration that was sampled,
and similarly O(iN ) for the value of the final configuration. We assume that for each individual
configuration it is possible to compute the transition probability between individual configurations,
e.g. (iN |UN |iN−1) which is typically true in the classical case as well. As a result, for a given path,
we use re-weighting to make that path produce an unbiased sample for the gradient component we are
interested in as well. In particular, writing the same for the shifted gradient estimator for component
j merely requires substituting the relevant matrix element

(ij |Uj |ij−1)→ (ij |HjUj |ij−1) (29)

hence we can estimate the gradient using samples re-weighted by

∂θjf(θ) =
∑

i1,...,iN

p(i1, ..., iN )

(
(ij |HjUj |ij−1)

(ij |Uj |ij−1)

)
O(iN ) (30)

where the weighting factors we also assume to be efficiently computable by construction of the
elementary operations Ui, which is analogous to the quantum generators typically used as well,
defined as simple operations lifted into large spaces by tensor products. This suggests the following
procedure for efficiently estimating gradients with respect to parameters in the classical analog of
quantum variational circuits.

1. Draw a sample from ψ0 and store this configuration as |ii), which may be represnted
efficiently as a classical bit string.

2. For each elementary operation Ui, sample the next classical configuration with probability
determined by Ui, and store the configuration as |ij).

3. Upon reaching the final configuration, evaluate O(iN ) from the definition of O to determine
the value of the objective.

4. Using the stored path, {|ij)}, for each elementary step, sample
(

(ij |HjUj |ij−1)
(ij |Uj |ij−1)

)
O(iN ) and

store the value in a vector to be used in a running average that determines the gradient.
5. Repeat this procedure until the uncertainty in the estimate for each gradient component is as

low as desired.

It is easy to see from the above procedure that the variance in the estimate of each individual gradient
component does not have an explicit dependence on the number of elementary steps. This can be seen
from Equation (30), which only has an explicit dependence on 3 points in the chain. Alternatively,
from our assumptions designed to mirror the case of quantum circuits, we know the variance of
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these estimators is controlled by the value of the product (ij |HjUj |ij−1)O(iN ) ≤ 1, independent
of the number of parameters or steps in the sampling process. It may appear that the quantity
estimated could be unbounded, but if we move the denominator into p, the result is again a probability
distribution multiplied only by values determined by the numerator here. As a result, analogous to
backpropagation in the bitwise function case, by storing the intermediate configurations {|ij)} at
a cost memory of O(M), we see that evaluating the gradient requires a number of samples that is
independent of M .

From this, we see that indeed the desired scaling is possible in the case of the analogous classical
parameterized stochastic processes on tensor product spaces. The formulation as a sum over paths
also allows us to make connection to the gentle measurement results in the main text, in that we are
always promised to be in a computational basis state, making it possible to do a gentle measurement
at intermediate steps with unit probability. This division allows us to help identify the origin of
challenges in achieving backpropagation scaling as a problem with quantum measurement collapse
and the inability to read out intermediate states while continuing a computation, rather than the
probabilistic formulation of the problem. In addition, one may make the classical generators Hi

non-commutative with each other and suffer no additional difficulties in estimating the gradient
components, unlike in the quantum case. It remains an interesting question to better understand the
performance separation on practical tasks between quantum variational methods and this type of
classical analog, given the advantage in trainability of the classical construction.

C Polynomial complexity circuits

It is reasonable to ask if we can first rule out backpropagation when only given access to single
copies of a state. A useful tool to rule out the possibility of certain tasks is information-theoretic
bounds, however, we show here that these are not sufficient to rule out quantum backpropagation
scaling on single copies as the task remains information-theoretically viable under the assumption
of a polynomial length variational circuit, thanks to classical shadows. On the other hand, standard
computational arguments illustrate the difficulty in acheiving the desired scaling.

C.1 Information-efficiency with classical shadows

The idea behind classical shadows is to create a classical representation of a state ρ, that allows one to
affordably estimate other properties of interest, like expectation values of observables [Huang et al.,
2020]. In general, the number of samples, N , needed to predict say, Tr[E1ρ], ...,Tr[EKρ] within
additive error ε, with high probability is

N = Ω(log(K) maxi∥Ei∥shadow/ϵ
2),

where ∥Ei∥shadow is a norm influenced by the particular measurement primitive chosen to implement
the classical shadow scheme. While general quantum states can be hard to determine, the additional
constraint of a state being generated by a polynomial complexity variational circuit allows us to
strengthen our statements.
Definition 15 (Polynomial complexity circuit). We say a circuit is a polynomial complexity circuit if
it is composed from a fixed gate set G that may be applied between any two qubits with a maximum
number of gates scaling polynomially in n, the number of qubits. Additionally, we will call it a
polynomial complexity parameterized circuit if each gate in the elementary set is defined by a bounded
number of parameters.

With this at hand, we have the following.
Proposition 16 (Information-efficiency of polynomial complexity circuits). Let ρ = |ψ⟩⟨ψ| be the
density matrix of a pure state generated from a quantum circuit of polynomial complexity built from
a gate set of size G applied between any two qubits, with at most p(n) total gates, where p(n) is a
polynomial in the number of qubits, n. With these definitions, there are at most K = (nG)2p(n) of
these circuits. Then, ρ can be explicitly determined using Ω(log(K)/ε2) = Ω(2p(n) log(nG)/ε2)
single-copy measurements and a classical search procedure.

Proof. Given that |ψ⟩ is generated from a polynomial complexity circuit, denote the possible states
created by such a circuit as |ϕi⟩. With the above definitions it is easy to see that the total number of
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possible states that can be generated by a single step is n2G, and hence with p(n) possible choices,
the total number of states is K = (nG)2p(n). If the underlying set of operations used to generate the
state is unknown, it is still possible to cover the space of two-qubit operations to diamond distance
error ϵ with a number of operations scaling polynomially in 1/ϵ and p(n) [Caro et al., 2022]. If we
denote this number of extended operations as G′, then the argument proceeds as before in terms of
asymptotic scaling by replacingG with G′. Performing Clifford classical shadows with Ei = |ϕi⟩⟨ϕi|
for i = 1, ...,K, one can estimate the fidelity, i.e. Tr[Ei |ψ⟩⟨ψ|], for all i within additive error ε using
Ω(log(K)/ε2) single copies of |ψ⟩. Since |ψ⟩ is generated by one of the K circuits, searching for an
Ei that provides the maximum fidelity, allows one to find Tr[Ei |ψ⟩⟨ψ|] = 1, with high probability,
and thus, explicitly determine |ψ⟩, and a circuit that generated it by using classical simulation of the
family of circuits, that will generally scale both exponentially in n and K.

With this knowledge, one may proceed to compute expectation values classically to determine
gradients or indeed any desired expected value or feature of the state. Whilst this procedure allows us
to determine |ψ⟩ and a circuit for creating it, executing it incurs quantum hardware costs dominated
by the Clifford circuits needed for the classical shadow protocol – which are of polynomial depth, but
contain entangling gates which are limiting in practice. Even more concerning, is the classical cost of
post-processing. Obtaining the maximum fidelity involves storing K = (n+ p(n))O(p(n)) values and
searching over them, which can be expensive. Additionally, the final computation of the expectation
values needed for backpropagation, requires knowing and storing M exponentially large matrices,
over and above the cost to compute the expectation values. And so, backpropagation scaling remains
untenable with this implementation.

C.2 Computational hardness on polynomial complexity circuits

The result and algorithm (a brute force search) used in Proposition 16 demonstrate the information-
theoretic efficiency of determining almost anything one would want to know about a state if we
are guaranteed that it is both a pure state and generated by a polynomial complexity circuit. The
classical computational procedure is clearly inefficient, but this begs the question of whether an
efficient procedure might exist in general, especially given the existence of an efficient procedure for
special cases. Here we argue that no efficient procedure can exist in the most general case, unless it is
possible to efficiently clone pseudo-random quantum states.

Proposition 17 (Computational hardness of polynomial complexity circuits). Under standard crypto-
graphic assumptions, no efficient computational procedure exists to identify a pure state of polynomial
complexity to trace distance ε.

Proof. A pseudo-random quantum state is defined to be a pure state of polynomial complexity that
no efficient computational algorithm given a polynomial number of copies of the state can distinguish
from the Haar random state. Using the procedure described in Proposition 16, a circuit that can
recreate the state to trace distance ϵ can be found using a polynomial number copies of the state. If
the procedure that finds this circuit is also computationally efficient, then the state can be cloned
efficiently, violating the no-cloning theorem for pseudo-random states shown in Ji et al. [2018], which
merely rests upon standard cryptographic assumptions.

This result demonstrates that even if we know a state is a pure state generated from a polynomial
complexity circuit, it is computationally infeasible to identify it under cryptographic assumptions
despite the information-theoretic efficiency. This suggests that there are states and observables for
which the backpropagation problem could remain challenging, and that the most effective strategies
must make use of known structure in the observables and states to achieve computational efficiency
in analogy to known special cases.

D Shadow tomography protocol for gradients

For much of this manuscript it has been assumed that one has complete white-box access to the input
state ρ = |ψ(θ)⟩⟨ψ(θ)|. In a more traditional quantum setting, however, this may not be the case. One
may be given access to unknown quantum states, or partially unknown states, and tasked to process
them for some machine learning task. In such an instance, the input states are usually referred to as
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quantum data, and insights pertaining to this model set up can be found in Huang et al. [2021]. In this
section, we discuss some details around this model type, which we call a quantum neural network
and is defined in Definition (8).

D.1 Gradients as observables

Before presenting our algorithm for performing quantum backpropagation, we begin with the follow-
ing remark on quantum neural networks which allows us to exploit a shadow tomography procedure.
Remark 18 (Gradient of a quantum neural network). The kth gradient component of the quantum
neural network may be expressed as

∂θkQNNθ⃗(|φ⟩) = 2Re ⟨0|⟨φ|U†(θ⃗)Z0∂θkU(θ⃗)|0⟩|φ⟩
= 2Re ⟨Φk|Ψk⟩

where

|Ψk⟩ = (iPk)e
iθkPkUk . . . e

iθ1P1U1|0⟩|φ⟩
= ei(θk+

π
2 )PkUk . . . e

iθ1P1U1|0⟩|φ⟩
|Φk⟩ = U†

k+1e
−iθk+1Pk+1 . . . U†

Me
−iθMPMZ0e

iθMPMUM . . . eiθ1P1U1|0⟩|φ⟩.
If one defines

U (Ψ)
k = ei(θk+

π
2 )PkUk . . . e

iθ1P1U1,

U (Φ)
k = U†

k+1e
−iθk+1Pk+1 . . . U†

Me
−iθMPMZ0e

iθMPMUM . . . eiθ1P1U1,

then, given a copy of |φ⟩, one may attach an ancilla qubit labelled ∗ in the |+⟩ state (in addition to
the output qubit 0). In doing so, consider applying control-U (Ψ)

k conditional on the ancilla being |0⟩,
and control-U (Φ)

k conditional on the ancilla being |1⟩. This produces the state

1√
2

(
|0⟩|Ψk⟩+ |1⟩|Φk⟩

)
.

Measuring X on the ancilla qubit, the expectation is

1

2

(
⟨0|⟨Ψk|+ ⟨1|⟨Φk|

)
X∗
(
|0⟩|Ψk⟩+ |1⟩|Φk⟩

)
= Re ⟨Φk|Ψk⟩

=
1

2
∂θkQNNθ⃗(|φ⟩).

This implicitly gives an operator on |+⟩|0⟩|φ⟩whose expectation value is 1
2∂θkQNNθ⃗(|φ⟩). Moreover,

we can implement this measurement with O(M) quantum operations.

D.2 Proof of Theorem 9

In order to prove Theorem 9, we need to discuss and modify two concepts: online learning and
threshold search [Aaronson et al., 2018, Bădescu and O’Donnell, 2021].

D.2.1 Online learning of quantum states

As in Aaronson et al. [2018], suppose we have access to a stream (E1, b1), . . . , (EM , bM ) where
each bk = ⟨ψ|Ek|ψ⟩. We want to compute hypothesis states ω1, . . . , ωM , which are mixed states
stored in classical memory, such that

• ωk depends only on (E1, b1), . . . , (Ek−1, bk−1) (the online condition)
• |Tr(Ekωk)− ⟨ψ|Ek|ψ⟩| > ε for as few k as possible

One may produce the following theorem.
Theorem 19. [Aaronson et al., 2018, Theorem 1] In the above setting, there is an explicit strategy for
outputting hypothesis states ω1, . . . , ωM such that |Tr(Ekωk)− ⟨ψ|Ek|ψ⟩| > ε for at most O( nε2 )
values of k. This holds even if the measurements bk are noisy, and only satisfy |bk − ⟨ψ|Ek|ψ⟩| ≤ ε

3
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Two remarks are in order: first, the problem setup and algorithm presented in Theorem 19 are both
completely classical. Second, this theorem says nothing about computational runtime. Implementa-
tion of the algorithm in Theorem 19 using techniques from convex optimization will require runtime
polynomial in the dimension of the Hilbert space poly(2n).

D.2.2 Quantum Threshold Search

Bădescu and O’Donnell [2021] promote online learning to a shadow tomography protocol using
a procedure which they call threshold search. This gives an improved version of the quantum
private multiplicative weights algorithm proposed in Aaronson and Rothblum [2019]. The difference
between the online learning setting from the previous section and general shadow tomography, is that
in practice, we are typically not given the expectation values {bk} and must measure them ourselves.
This is where threshold search comes in handy. Suppose we possess some copies |ψ⟩⊗m of a quantum
state and are given a stream (E1, a1), . . . , (EM , aM ) where each ak is supposed to be a guess such
that ak ≈ ⟨ψ|Ek|ψ⟩. Threshold search is a subroutine which, given only logarithmically many copies
of the state, can check in an online fashion whether there is an ak which errs by more than ε. More
formally, we have the following theorem.

Theorem 20. [Bădescu and O’Donnell, 2021, Lemma 5.2] Given m copies of an n-qubit quantum
state |ψ⟩⊗m, M observables −1 ≤ E1, . . . , EM ≤ 1, and guesses a1, . . . , aM , there is an algorithm
which outputs either

• |ak − ⟨ψ|Ek|ψ⟩| ≤ ε ∀k.

• Or |ak − ⟨ψ|Ek|ψ⟩| > 3
4ε when in fact |bk − ⟨ψ|Ek|ψ⟩| ≤ 1

4ε for a particular k and value
bk.

It does so using number of copies only

m = O

(
log2M

ε2

)
.

Furthermore, the algorithm is online in the sense that:

• The algorithm is initially given only M and ε. It then selects m and obtains |ψ⟩⊗m.

• Next, observable/threshold pairs (E1, a1), (E2, a2), . . . are presented to the algorithm in
sequence. When each (Ek, ak) is presented, the algorithm must either ‘pass’, or else halt
and output |ak − ⟨ψ|Ek|ψ⟩| > 3

4ε.

• If the algorithm passes on all (Ek, ak) pairs, then it ends by outputting |ak − ⟨ψ|Ek|ψ⟩| ≤
ε ∀k

We stress that this subroutine requires quantum memory and multi-copy measurements, and uses
gentle measurements in an essential way. One is able to check whether or not ak is inside the
threshold without greatly disturbing the copies of the quantum state. We are now ready to state the
full shadow tomography protocol from Bădescu and O’Donnell [2021]. The idea is to run the online
learning algorithm from Theorem 19 in parallel with threshold search, and Bădescu and O’Donnell
[2021, Theorem 1.4] tells us that this algorithm succeeds in outputting estimates |bk−⟨ψ|Ek|ψ⟩| ≤ ε
with high probability.

When applying Algorithm 1 to the observables corresponding to gradients described in Appendix
D.1, we can exploit that the observables are related sequentially. In between each round k, we rotate
both, the states stored in quantum memory and the classical online learner, so that implementing the
measurement of the next gradient only requires runtime independent of M . Since these rotations
are unitary and do not reduce the quality of any approximations, the same proof as Bădescu and
O’Donnell [2021, Theorem 1.4] will apply. This establishes Theorem 9.

By Bădescu and O’Donnell [2021, Theorem 1.4], this algorithm obtains estimates |bk −
1
2∂θkQNNθ⃗(|φ⟩)| ≤ ε for each k by taking the number of copies to be

m = O

(
n log2M

ε4

)
.
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Algorithm 1 Online and gentle shadow tomography
Input: m copies of the unknown input state |ψ⟩⊗m, in m registers each with n qubits.
Output: Estimates bk ≈ ⟨ψ|Ek|ψ⟩

1. Set R = O( nε2 ) and m0 = O( log
2M
ε2 ). We need R batches, each with m0 copies, so

m = Rm0 copies in total. This gives in total

m = O

(
n log2M

ε4

)
2. Initialize the online learner ω1 according to the online learning algorithm.
3. Start with the first batch of copies |ψ⟩⊗m0 .
4. For each k = 1, . . . ,M :

(a) Use the online learner to predict ak = Tr(Ekωk).
(b) Use threshold search to check |ak − ⟨ψ|Ek|ψ⟩|.
(c) If threshold search passes |ak − ⟨ψ|Ek|ψ⟩| ≤ ε,

i. Output estimate bk ← ak.
ii. Leave the online learner unchanged ωk+1 ← ωk.

(d) If threshold search concludes |ak−⟨ψ|Ek|ψ⟩| > 3
4ε and in fact |bk−⟨ψ|Ek|ψ⟩| ≤ 1

4ε,
i. Output estimate bk.

ii. Update online learner with bk ≈ ⟨ψ|Ek|ψ⟩ to get ωk+1.
iii. Discard the current batch and move onto a fresh batch |ψ⟩⊗m0 .

Moreover, the required number of quantum operations is

O(mM) = O

(
nM log2M

ε4

)
This is quasi-linear in M . With naive storage of the entire density matrix of the hypothesis state ωk,
the classical cost is

M · 2O(n)

Which is also linear in M , but unfortunately exponential in the input size n. We present the
full algorithm for gradient estimation using online shadow tomography with threshold search in
Algorithm 2.
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Algorithm 2 Shadow tomography protocol for gradients of a quantum neural network
Input: m copies of the unknown input state |φ⟩⊗m in m registers each with n qubits.
Output: Estimates bk ≈ 1

2∂θkQNNθ⃗(|φ⟩) for k = 1, . . . ,M

1. Set R = O( nε2 ) and m0 = O( log
2M
ε2 ). We need R batches, each with m0 copies, so

m = Rm0 copies in total. This gives

m = O

(
n log2M

ε4

)
2. Define for each k = 1, . . . ,M

|ψk⟩ =
1√
2

(
|0⟩|Ψk⟩+ |1⟩|Φk⟩

)
and recall from Remark 18 that

⟨ψk|X∗|ψk⟩ =
1

2
∂θkQNNθ⃗(|φ⟩)

3. Attach the output qubit and an ancilla qubit in the |+⟩ state to each register. Label the output
qubit 0 and the ancilla qubit ∗.

4. To each register, do the following:

(a) Apply control-U (Ψ)
1 conditional on the ancilla being |0⟩. This requires O(1) quantum

operations.

(b) Apply control-U (Φ)
1 conditional on the ancilla being |1⟩. This requires O(M) quantum

operations. This step is analogous to the initial forward pass in classical backpropaga-
tion.

(c) This produces the state |ψ1⟩⊗m.
5. Initialize the online learner ω1 according to the online learning algorithm.
6. Start with the first batch of copies |ψ1⟩⊗m0

7. For k = 1, . . . ,M , do the following. This loop is analogous to the backward pass in classical
backpropagation.
(a) Use the online learner to predict ak = Tr(X∗ωk).
(b) Use threshold search to check |ak − ⟨ψk|X∗|ψk⟩|. This takes time independent of M .
(c) If threshold search passes |ak − ⟨ψk|X∗|ψk⟩| ≤ ε,

i. Output estimate bk ← ak.
ii. Leave the online learner unchanged ωk+1 ← ωk.

(d) If threshold search concludes |ak−⟨ψk|X∗|ψk⟩| > 3
4ε and in fact |bk−⟨ψk|X∗|ψk⟩| ≤

1
4ε,
i. Output estimate bk.

ii. Update online learner with bk ≈ ⟨ψk|X∗|ψk⟩ to get ωk+1.
iii. Discard the current batch and move onto a fresh batch.

(e) To each register in the current batch and the unused batches, do the following:
i. Apply control-(ei(θk+1+

π
2 )Pk+1Uk+1e

−iπ2 Pk) conditional on the ancilla being |0⟩.
This implements U (Ψ)

k+1(U
(Ψ)
k )−1, and only requires O(1) quantum operations.

ii. Apply control-eiθk+1Pk+1Uk+1 conditional on the ancilla being |1⟩. This imple-
ments U (Φ)

k+1(U
(Φ)
k )−1, and only requires O(1) quantum operations.

iii. This produces in each batch (a noisy approximation to) the state |ψk+1⟩⊗m0 .
(f) Also apply the rotations in Step (e) to the hypothesis state ωk+1 in classical memory.

The online learner now approximates |ψk+1⟩⟨ψk+1|.
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E Fully gentle gradient estimation

In this section, we motivate for a need to perform sequential and gentle measurements to individual
gradient states, as opposed to superpositions of them. Thereafter, we discuss general strategies based
on gentle measurements alone, performed on single and multiple copies.

E.1 Considering individual gradient states

While we briefly motivated the need for a sequential reuse of information in measurements in the
main text, here we further motivate such a construction as a necessary, but perhaps not sufficient
condition for our purposes. Given that one can create a superposition over all the potential gradient
components at a cost that only requires a single function call, it is natural to ask if this ability gives us
any headway in achieving our goals. Consider exploiting the superposition over all gradient states

|Ψ⟩ =
M∑
k=1

ck |Ak⟩
∏
j∈A

Uj |0⟩ =
M∑
k=1

ck |Ak⟩ |ψk⟩ , (31)

using at most cM calls to the family {Uj} and some ancillary qubits |Ak⟩ associated with the
kth gradient state.2 Creating such a superposition weakens our ability to extract each gradient
component’s signal upon measurement, and thus, requires more samples to distinguish between
gradient components with a desired precision. From a cost perspective, it remains optimal or
equivalent to consider gradient states |ψk⟩ individually. To make this more concrete, consider a state
discrimination task, with the following lemma at hand.
Lemma 21 (Optimal two-state discrimination). Any quantum algorithm that distinguishes two states
ρ1 and ρ2 using a single copy of each state with probability at least 0.9 requires

1

2
+

1

2
∥ρ1 − ρ2∥tr ≥ 0.9. (32)

Now we may proceed to the state discrimination task, where it is clear a superposition is not helpful.
Proposition 22. Consider the two-state discrimination task for two scenarios. First, given |ψm⟩ and
|ϕm⟩, where ⟨ψm|ϕm⟩ = 0, there is a measurement strategy that can distinguish the states with a
single measurement. Second, given the states

|Ψ⟩ = 1√
M

M∑
k=1

|Ak⟩ |ψk⟩ , (33)

and

|Φ⟩ = 1√
M

M∑
k=1

|Ak⟩ |ϕk⟩ , (34)

where |ψk⟩ = |ϕk⟩ for every k except the mth component and ⟨ψm|ϕm⟩ = 0 as before, then Ω(M)
copies are required by any strategy aiming to discriminate |Ψ⟩ from |Φ⟩ with reasonably high success
probability.

Proof. The first scenario follows straightforwardly from Lemma (21) since there is no overlap
between |ψm⟩ and |ϕm⟩ – hence, their trace distance is 1 and Equation (32) always holds. For states
in uniform superposition over all M components, the overlap is 1 − 1/M which is close to unity
for large M , indicating the difficulty of the task when the states mostly overlap. Given access to N
copies of |Ψ⟩ and |Φ⟩, to discriminate with probability at least 0.9 requires

1

2
+

1

2

√
1− |⟨Ψ|Φ⟩|2N ≥ 0.9, (35)

or equivalently (
1− 1

M

)2N ≤ 0.36, (36)

implying that N = Ω(M) in order to discriminate successfully with the desired probability.
2c is some small constant.
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From Proposition (22), we have the immediate corollary.

Corollary 23. It is either optimal or equivalent in cost to consider gradient states individually, as
opposed to a superposition over them all.

Proof. Replacing the uniform superposition in Equations (33) and (34) to the more general, |Ψ⟩ =∑M
k=1 ck |Ak⟩ |ψk⟩ and |Φ⟩ =

∑M
k=1 ck |Ak⟩ |ϕk⟩ , the number of samples needed to discriminate

the mth component scales as N ∼ 1/c2m. Since c2m ∈ [0, 1], it is clear that c2m = 1 is optimal. If
there are M components, then c2m ∼ 1/M and hence, N ∼M . Assuming the superposition state |Ψ⟩
incurs a cost proportional to M , the number of samples required to differentiate between components
in the wave function will imply an overall cost that scales as M2.

E.2 A case for sequential and gentle measurement

Whilst the cost equivalence presented in Corollary 23 implies no benefit from a superposition of
gradient states, it also suggests that, if one is to obtain backpropagation scaling, individual gradient
states must be utilized in a more resource efficient manner. Drawing inspiration from backpropagation,
if one could instead use the state |ψk⟩ to make a measurement, then update it to |ψk+1⟩ without
substantially disturbing it, it would then be possible to perform all of the measurements at an
overall cost scaling like O(M). We illustrate such a benefit by means of an example using fictitious
non-destructive measurements in Algorithm 3.

Algorithm 3 Gradient estimation with a modified, non-destructive swap test
Input: Three registers initialized to |+⟩ |0⟩ |0⟩
Output: Gradient vector estimate for F (θ)

1. Apply U(θ) = UM ...U1 to the second register, controlled on the first being 0. Cost ∼M .
2. Apply OU(θ) to the third register, conditional on the first being 1. Cost ∼M and the state

becomes
|+⟩ |0⟩ |0⟩ → 1√

2
(|0⟩ |ψM ⟩ |0⟩+ |1⟩ |0⟩ |λ⟩),

where |ψM ⟩ = UM ...U1 |0⟩ and |λ⟩ = OUM ...U1 |0⟩. By assumption, all Uj and O are
hermitian and unitary.

3. For k in {M,M − 1, ..., 1}:
(a) Apply and update |ψk⟩ = −iPk |ψk⟩ conditioned on ancilla being 0. Cost ∼ 1.
(b) Perform a non-destructive swap test on the state

1√
2
(|0⟩ |ψk⟩ |0⟩+ |1⟩ |0⟩ |λ⟩)

to estimate [F ′(θ)]θk = −2 Im ⟨λ|ψk⟩ with no damage to the state. Cost ∼ 1.

(c) If k > 1 apply and update |λ⟩ = U†
k |λ⟩ conditional on ancilla being 1. Cost ∼ 1.

(d) If k > 1 apply and update |ψk−1⟩ = U†
k(iPk) |ψk⟩ conditional on ancilla being 0. Cost

∼ 1.

The procedure naturally breaks down in a real quantum computer at Step (3b) due to the reliance on
non-destructive measurements. Substituting these for gentle measurements, which are only partially
non-destructive but, at least, theoretically possible, one may still aspire to exploit the structure of the
problem and achieve backpropagation scaling as in Algorithm 3.

E.3 Gentle measurement on single copies

The need to reuse a state enough times to extract every gradient component, imposes constraints on
the gentleness of measurements made. While the use of multiple copies may enhance the ability
to leverage gentle measurements, it is straightforward to see why this approach would not work in
general, when given access to a single copy of ρ. Using a scheme like the modified swap test in
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Algorithm 3, implies that each measurement must be on average 1/M -gentle in order to reuse the
state M times to extract each gradient component without damaging the state to the point that at least
one observable on the state is completely wrong. Enforcing such a constraint, leads to measurements
that are trivial – i.e. they barely depend on ρ and cannot yield enough information about gradients.
We recap some useful lemmas whose proofs can be found in Aaronson and Rothblum [2019] to make
this more concrete.
Lemma 24 (Additivity of damage). Let ρ be some mixed state and let S1, S2, ..., SM be general
quantum operations. Suppose for all j, we have

∥Sj(ρ)− ρ∥tr ≤ αj ,
then

∥SM (SM−1(...S1(ρ)))− ρ∥tr ≤ α1 + ...+ αM .

Lemma 25 (Trivial measurement). Given a measurement M and parameter η ≥ 0, suppose that for
every two orthogonal pure states |ψ⟩ and |ϕ⟩, and every possible outcome y of M , we have

Pr[M(|ψ⟩) outputs y] ≤ eη Pr[M(|ϕ⟩) outputs y].
Then M is η-trivial. Further, let E1 + ...+ Ek = I be the POVM elements of M . Assume without
loss of generality that the outcome y corresponds to the element E = E1. Then,

⟨ψ|E |ψ⟩ ≤ eη ⟨ϕ|E |ϕ⟩ ,
holds for all states, not just all orthogonal |ψ⟩ , |ϕ⟩.
Lemma 26 (Triviality lemma). Suppose a measurement is α-gentle on all states. Then the measure-
ment is ln

(
1+4α
1−4α

)
-trivial —so in particular, O(α)-trivial, provided α ≤ 1

4.01 .

Equipped with these lemmas, we proceed to demonstrate the difficulty of gentle gradient estimation
with single-copy access to a pure state.
Theorem 27. A sequence of M measurements on a single-copy pure state that is 1/M -gentle at
every step to extract every gradient component, will be trivial.

Proof. Choose a circuit such that gradient state differs substantially, i.e. ∥|ψi⟩⟨ψi| − |ψj⟩⟨ψj |∥tr = 1
for all measurements. In other words, there is a unitary that must be applied to advance from gradient
component i to j, otherwise there will be a measurement that produces the incorrect result if no such
unitary is applied. Fix {Λ, I− Λ} as the POVM elements of a gentle measurement. Assume without
loss of generality that the outcome of measuring the gradient component with respect to a given state
corresponds to the element Λ = A†A, and

∥S(ρ)− ρ∥tr ≤ α (37)
where

S(ρ) =
AρA†

Tr[Λρ]
.

Using a single copy of ρ = |ψ⟩⟨ψ| to extract all M gradient components, requires advancing the state
after measuring gently at each step, and thus, each measurement step must be on average 1/M -gentle
to ensure ∥∥∥S(UMS(UM−1...S(U2S(U1ρU

†
1 )U

†
2 )...U

†
M−1)U

†
M )− ρM

∥∥∥
tr
< 1, (38)

where ρM is the density matrix representation of the advanced gradient state |ψM ⟩ = UM ...U2U1 |ψ⟩.
If we allowed for any more damage at a particular step, we could eventually reach a point where
subsequent measurements yield incorrect results, as the cumulative damage to the state may exceed 1.
While the gentleness could be distributed across each gradient component in different ways, from the
above lemma, we see that the more gentle the operator, the more trivial it becomes. Hence, if we
had (M − 1) 0−gentle measurements, they would be infinitely trivial and provide no information
with 1 informative measurement. Hence, the least trivial set of measurements that achieve an average
of 1/M gentleness would be to have each measurement be 1/M gentle. By Lemma (26), then each
measurement will be O(1/M)-trivial, which implies

Tr[Λρi] ≤ e1/M Tr[Λρi+1]

for any two gradient states ρi, ρi+1. As M increases, the estimates for all gradient components will
converge. Therefore, the measurement operator has an exponentially vanishing dependence on the
input states themselves and hence, provides little-to-no information about the gradient components.
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E.4 Multiple copies and non-collapsing measurements

Non-adaptive, non-collapsing measurements are, by assumption, measurements that do not disturb the
state of a quantum system at all. Under this assumption, the complexity class, non-adaptive Collapse-
free Quantum Polynomial time (naCQP) was introduced. With this ability, searching through an
unstructured M -element list can be performed in Õ(M

1
3 ) time, which is faster than the optimal lower

bound ofO(M
1
2 ) given by Grover’s search algorithm [Grover, 1996]. Importantly, time complexity in

naCQP is measured as the number of oracle queries plus the number of non-collapsing measurements.
This definition is considered more fitting, since any task in naCQP allows for exponentially many
non-collapsing measurements to be made and should thus, be accounted for.

Interestingly, one may still violate Grover’s bound by allowing for approximately non-collapsing
measurements. First, note that

∥ρ− ρ′∥tr = 0

for non-collapsing measurements, where ρ′ is the normalized state after measurement. In the
approximately non-collapsing regime, assume that a measurement operator can be applied to a tensor
product of the state ρ such that ∥∥ρ⊗m − ρ′⊗m∥∥

tr
≤ α.

As α→ 0, we recover the non-collapsing measurement regime. In the gradient setting, approximately
non-collapsing measurements are merely gentle measurements. This leads to the following.
Proposition 28. A sufficiently gentle measurement used for gradient extraction can solve an unstruc-
tured search problem in Õ(M

1
3 ) time.

Proof. Reformulating the gentle gradient task as a search problem, let M = 2n. Consider the state

sin((2i+ 1)θ) |x⟩ |1⟩+ cos((2i+ 1)θ)
∑

y∈{0,1}n ,y ̸=x

2−
M−1

2 |y⟩ |0⟩ (39)

after applying i =M
1
3 Grover iterations, where |x⟩ is the marked state. The probability of measuring

the marked state is | sin((2i+ 1)θ)|2 ≈ 1/M
1
3 . Suppose we can create the state |ψ⟩⊗m, where

m = O(log(M)) by using M
1
3 log(M) Grover queries. By having access to multiple copies of |ψ⟩,

assume that one may implement a 1/M -gentle measurement on the copies as required for gradient
estimation. Then, the probability of observing the marked state after a single gentle measurement
is log(M)/M

1
3 . By performing M

1
3 gentle measurements on the log(M) copies, the probability of

obtaining the marked state at least once is greater than 1− e− log(M) = 1− 1
M , using only Õ(M

1
3 )

Grover oracle queries and O(M
1
3 ) partially non-collapsing measurements, and thus, runs in time

Õ(M
1
3 ).
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