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Abstract

The rise of foundation models fine-tuned on human feedback from poten-
tially untrusted users has increased the risk of adversarial data poisoning,
necessitating the study of robustness of learning algorithms against such
attacks. Existing research on provable certified robustness against data
poisoning attacks primarily focuses on certifying robustness for static ad-
versaries that modify a fraction of the dataset used to train the model before
the training algorithm is applied. In practice, particularly when learning from
human feedback in an online sense, adversaries can observe and react to
the learning process and inject poisoned samples that optimize adversarial
objectives better than when they are restricted to poisoning a static dataset
once before the learning algorithm is applied. Indeed, it has been shown
in prior work that online dynamic adversaries can be significantly more
powerful than static ones. We present a novel framework for computing
certified bounds on the impact of dynamic poisoning, and use these cer-
tificates to design robust learning algorithms. We give an illustration of
the framework for the mean-estimation problem and outline directions for
extending this in further work.

1 Introduction & Problem Formulation

With the advent of foundation models fine tuned using human feedback gathered from
potentially untrusted users (for example, users of a publicly available language model)
[4, 11], the potential for adversarial or malicious data entering the training data of a model
increases substantially. This motivates the study of robustness of learning algorithms to
poisoning attacks [1]. More recently, there have been works that attempt to achieve “certified
robustness“ to data poisoning, i.e., proving that the worst case impact of poisoning is below
a certain bound that depends on parameters of the learning algorithm. All the work in
this space, to the best of our knowledge, focuses on the static poisoning adversary [15, 21].
Even in [17] which is the closest setting to our work, the poisoning adversary acts over
offline datasets in a temporally extended fashion which are poisoned in one shot, and thus
is not dynamic. There has been work on dynamic attack algorithms [20, 18] showing that
these attacks can indeed be more powerful than static attacks. This motivates the question
we study: can we obtain certificates of robustness for a broad class of learning algorithms
against dynamic poisoning adversaries?
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Figure 1: A schematic diagram to highlight the differences between static and dynamic
poisoning.

Attack Type
Adversary adapts poisoning Adversary can Certifiedstrategy upon observing poison data robustnessmodel behavior for deployed model

Static / One-shot ([16, 15, 13]) ✗ ✗ ✓
Backdoor([3, 7, 8, 22, 21, 14]) ✗ ✓ ✓
Dynamic attack only ([18, 20] ✓ ✓ ✗
Dynamic attack & defense (Ours) ✓ ✓ ✓

Table 1: A comparison with lines of work closest to ours. A detailed description is provided
in Appendix A.

In this paper, we study learning algorithms corrupted by a dynamic poisoning adversary
who can observe the behavior of the learning algorithm and adapt the poisoning in response.
This is relevant in scenarios where models are continuously/periodically updated in the face
of new feedback, as is common in RLHF/fine tuning applications. We provide (to the best
of our knowledge) the first general framework for computing certified bounds on the worst
case impact of a data poisoning attacker, and further, use this certificate to design robust
learning algorithms. We given an illustration of the framework for the mean-estimation
problem (see Section 3) and suggest directions of future work to apply the framework to
more realistic learning scenarios.

2 Problem setup

We now develop the exact problem setup that we study in the paper. We will assume
that the learning algorithm we study is aimed at estimating parameters θ ∈ Θ and each
step of the learning algorithm makes updates to the estimate of these parameters based on
potentially poisoned data. The following components fully define the problem setup.

Online learning algorithm We consider learning algorithms that operate online receiving
at each step a new datapoint and making an update to parameters being estimated. In

Notation Interpretation Belongs to
θ Parameters of model Θ
ϕ Hyper-parameters of learning algorithm Φ
w Gaussian noise injected into learning algorithm W
z Datapoint Z
F Update rule of learning algorithm Θ×W × Z 7→ Θ

zadv Adversarial data point A
Table 2: Notation
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particular, we consider learning algorithms that can be written as

θt+1 ← F

 θt︸︷︷︸
Parameter estimate at time t

, wt︸︷︷︸
Exogeneous noise input

, zt︸︷︷︸
Datapoint received at time t

 (1)

where F : Θ×W × Z 7→ Θ is an update function that maps the parameters at time t to new
parameters, given an exogeneous noise input wt and a datapoint zt. The exogenous noise
input refers to noise artificially injected into the training algorithm in order to make the
algorithm more robust to potential poisoning. We further assume that the distribution of wt
is independent of t and each wt is sampled iid.

Poisoned learning algorithm We work in a setting where some of the datapoints received
by the learning algorithm are corrupted by an adversary, with the corruption allowed to be
a function of the entire trajectory of the learning algorithm up to that point. We assume that
with a fixed probability the data point the algorithm receives at each time step is poisoned.
In practice, this could reflect the situation that out of a large population of human users
providing feedback to a learning system, a small fraction are adversarial and will provide
poisoned feedback.

Mathematically, we have that at time t the learning algorithm receives a datapoint zt ∼
ϵDirac(zadv

t ) + (1 − ϵ)Pdata and ϵ is a parameter that controls the “level” of poisoning
(analogous to the fraction of poisoned samples in static poisoning settings [15]). This is a
special case of Huber’s contamination model, which is used in the robust statistics literature
[5] (with the contamination model being a Dirac distribution). We restrict the adversary
to choose zadv

t ∈ A which reflects the allowed range of datapoints due to input feature
normalization or outlier detection systems.

Adversarial objective We assume that the poisoning adversary is interested in maximizing
some adversarial objective ℓadv : Θ 7→ R, for example, the expected prediction error on
some target distribution of interest to the adversary.

Dynamics as a Markov Chain The dynamics (1) gives rise to a Markov chain over the
parameters θ. If Pt denotes the distribution over parameters at time t, we have

Pt+1 (θ) =
∫

PF,Pdata,zadv
(
θ|θ′

)
Pt
(
θ′
)

dθ′,

where PF,Pdata,zadv is the transition kernel induced, i.e., the conditional probability distribu-
tion of θ′ = F (θ, wt, zt) by (1) given θ.

2.1 Technical Approach: Certificate of Robustness

We are now ready to present our technical result, a certificate of robustness against dynamic
data poisoning adversaries. Since the learning algorithm is a Markov process, the optimal
sequence of actions for the adversary (i.e., choices of zadv) constitute a Markov Decision
Process with

States θ, Actions zadv, Transition Kernel Ptrans
(

θ′|θ, zadv
)
= PF,Pdata,zadv

(
θ′|θ

)
,

and hence, can be formulated as an infinite dimensional linear program [12]. In particular, for
the infinite horizon average reward setting [9], the LP can be written as

sup
P∈P [Θ×Z]

E
θ,zadv∼P

[ℓadv (θ)] (2a)

subject to E
θ,zadv∼P

[
PF,Pdata,zadv

(
θ′|θ

)]
= E

θ,zadv∼P

[
I[θ′ = θ]

]
∀θ′ ∈ Rd. (2b)

where P [Θ× Z] denotes the space of probability measures on Θ× Z and I denotes the
indicator function that equals 1 if its argument is true and 0 otherwise.
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Theorem 1. For any function λ : Θ 7→ R, we can upper bound the optimal value of (2) by
sup
θ∈Θ

zadv∈A

E
θ′∼PF,Pdata,zadv (·|θ)

[
λ
(
θ′
)]

+ ℓadv (θ)− λ (θ) . (3)

Proof. Follows by weak duality for the LP (4a).

If strong duality holds, we further have that the optimal value of (2) is exactly equal to
inf

λ:Θ 7→R
sup

θ∈Θ,zadv∈A
E

θ′∼PF,Pdata,zadv (·|θ)

[
λ
(
θ′
)]

+ ℓadv (θ)− λ (θ) . (4a)

2.2 Meta-learning a robust learning algorithm

Consider a parameterized family of learning algorithms Fϕ with tunable parameters ϕ ∈ Φ.
Based on the above analysis, we can attempt to design the parameters ϕ of the learning
algorithm to trade-off performance and robustness. In particular, in the absence of poisoned
data, assume that the updates (1) result in a stationary distribution P

(
ϕ, Pdata

)
over model

parameters θ.

Given some space of data distributions P we can sample from (in a meta learning sense),
we can propose the following criterion:

inf
ϕ∈Φ

λ:Θ 7→R

E
Pdata∼P

[
E

θ∼P(ϕ,Pdata)
[ℓ (θ)] + κ

(
sup

θ∈Θ,zadv∈A
E

θ′∼PS,Pdata,zadv (·|θ)

[
λ
(
θ′
)]

+ ℓadv (θ)− λ (θ)

)]
,

(5)
where κ > 0 is a trade-off parameter. The outer expectation is a meta-learning inspired
formulation, where we are designing a learning algorithm that is good "in expectation" under
a meta-distribution over distributions. The first term in the outer expectation constitutes
"doing well" in the absence of the adversary by converging to a stationary distribution over
parameters that incurs low expected loss. The second term is an upper bound on the worse
case loss incurred by the learning algorithm in the presence of the adversary.

3 Mean estimation

Consider the mean estimation problem, where we aim to learn the parameter θ ∈ Rd to
estimate the mean µ = Ez∼Pdata [z] of a distribution Pdata. Given a data point zt, the learning
rule is given by:

θt+1 ← (1− η)θt + ηzt + ηBwt,

where S = BB⊤ ∈ Sd
+ is the tunable defense parameter and wt ∼ N (0, I) is Gaussian noise.

The adversarial loss is given by:

ℓadv (θ) = ∥µ− θ∥2.

Certificate on adversarial loss (analysis)
Theorem 2. Choosing λ : Rd → R in Theorem 1 to be quadratic, i.e. λ (θ) = θ⊤Aθ + θ⊤b,
the adversarial constraint set of the form ∥zadv − µ∥2

2 ≤ r, the certificate for the mean estimation
problem for Pdata(z) = N (z|µ, Σ) for a fixed learning algorithm (i.e. S is fixed) is given by:

inf
A∈Sd ,b∈Rd ,ν≥0

g(A, b, ν, S, µ, Σ), (6)

where g(A, b, ν, S, µ, Σ) is a convex objective in A, b, ν (matrix fractional objective with Linear
Matrix Inequality (LMI) constraint) as defined below:

g(A, b, ν, S, µ, Σ) =


1
4

∥∥∥∥[2(1− ϵ)η(1− η)Aµ− 2µ− ηb
ϵηb + 2νµ

]∥∥∥∥2

D
+ (1− ϵ)(η2Trace(ΣA) + η2µ⊤Aµ + ηb⊤µ)

+µ⊤µ + η2Trace(AS) + ν(r− µ⊤µ) if ν ≥ 0; D ⪰ 0
−∞ else

(7)
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Algorithm 1 Meta learning a robust learning algorithm for mean estimation

1: Input: Set of K distributions {N (µi, Σ i)}i∈[K] sampled from P , tradeoff parameter κ.
2: Initialize: S ∈ Sd

+ randomly.
3: Alternating Minimization over Lagrange multipliers {Ai, bi, νi}i∈[K] and defence parameter S.
4: for t = 1, . . . do
5: for i = 1, . . . , K do
6: Ai, bi, νi = infA∈Sd ,b∈Rd ,ν≥0 g(A, b, ν, S, µi, Σ i).
7: end for
8: S = argminS∈Sd

+
(η2Trace(S) + κ

K ∑i∈[K] g(Ai, bi, νi, S, µi, Σ i)).
9: end for

and D =

[
(1− (1− η)2)A− I −ηϵ(1− η)A
−ηϵ(1− η)A −ϵη2 A− νI

]
and ∥x∥2

D = x⊤D−1x.

Meta-Learning Algorithm Following the formulation in Eq. (5), we wish to learn a defense
parameter S that minimizes the expected loss (expectation over different Pdata from the
meta distribution P). For the mean estimation problem this boils down to solving:

inf
S∈Sd

+

η2Trace(S) + κEµ,Σ∼P [ inf
ν≥0

A∈Sd ,b∈Rd

g(A, b, ν, S, µ, Σ)]. (8)

In practice, one observes a finite number of distributions from P , and sample average
approximation is leveraged, with the aim of learning a defense parameter which generalizes
well to unseen distributions from P . This process is stated in Algorithm 1.

Figure 2: Test performance (mean squared error between true and estimated means) on 50
(d = 20 dimensional) Gaussian distributions drawn from Gaussian prior for the mean and
Inverse Wishart prior for the covariance. The defense parameter S was trained with 10 such
randomly chosen Gaussians via Algorithm 1. We varied the learning rates (left) and the
the fraction of samples corrupted by the dynamic adversary (right) and observe that our
defense beats training without defense significantly.
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A Related Work

Data Poisoning Modern machine learning pipelines involve training on massive, uncu-
rated datasets that are potentially untrustworthy and of such scale that conducting rigorous
quality checks becomes impractical. Poisoning attacks [1, 10, 2] pose big security concerns
upon deployment of ML models. Depending on which stage (training / deployment) the
poisoning takes place, they can be characterised as follows : 1. Static attacks : The model is
trained on an offline dataset with poisoned data. Attacks could be untargeted, which aim to
prevent training convergence rendering an unusable model and thus denial of service [16]
or targeted which are more task-specific and instead of simply increasing loss, attacks of
this kind seeks to make the model output wrong predictions on specific tasks. 2. Backdoor
attacks: In this setting, the test / deployment time data can be altered [3, 7, 8, 22]. Attackers
manipulate a small proportion of the data such that, when a specific pattern / trigger is seen
at test-time, the model returns a specific, erroneous prediction. 3. Dynamic (and adaptive)
attacks: In scenarios where models are continuously/periodically updated in the face of new
feedback, as is common in RLHF/fine tuning applications, a dynamic poisoning adversary
[18, 20] can observe the behavior of the learning algorithm and adapt the poisoning in
response.

Certified Poisoning Defense Recently, there have been works that attempt to achieve
“certified robustness“ to data poisoning, i.e., proving that the worst case impact of any
poisoning strategy is below a certain bound that depends on parameters of the learning
algorithm. All the work in this space, to the best of our knowledge, focuses on the static or
backdoor attack adversary. [15] provide certificates for linear models trained with gradient
descent, [13] present a statistical upper-bound on the effectiveness of ℓ-2 perturbations on
training labels for linear models using randomized smoothing, [21, 14] present a model-
agnostic certified approach that can effectively defend against both trigger-less and backdoor
attacks, [19] observe that differential privacy, which usually covers addition or removal of
data points, can also provide statistical guarantees in some limited poisoning settings. Even
in [17] which is the closest setting to our work, the poisoning adversary acts over offline
datasets in a temporally extended fashion which are poisoned in one shot, and thus is not
dynamic.

B Proofs

Theorem 2. Choosing λ : Rd → R in Theorem 1 to be quadratic, i.e. λ (θ) = θ⊤Aθ + θ⊤b,
the adversarial constraint set of the form ∥zadv − µ∥2

2 ≤ r, the certificate for the mean estimation
problem for Pdata(z) = N (z|µ, Σ) for a fixed learning algorithm (i.e. S is fixed) is given by:

inf
A∈Sd ,b∈Rd ,ν≥0

g(A, b, ν, S, µ, Σ), (6)

where g(A, b, ν, S, µ, Σ) is a convex objective in A, b, ν (matrix fractional objective with Linear
Matrix Inequality (LMI) constraint) as defined below:

g(A, b, ν, S, µ, Σ) =


1
4

∥∥∥∥[2(1− ϵ)η(1− η)Aµ− 2µ− ηb
ϵηb + 2νµ

]∥∥∥∥2

D
+ (1− ϵ)(η2Trace(ΣA) + η2µ⊤Aµ + ηb⊤µ)

+µ⊤µ + η2Trace(AS) + ν(r− µ⊤µ) if ν ≥ 0; D ⪰ 0
−∞ else

(7)

and D =

[
(1− (1− η)2)A− I −ηϵ(1− η)A
−ηϵ(1− η)A −ϵη2 A− νI

]
and ∥x∥2

D = x⊤D−1x.

Proof. We can write the learning algorithm in Eq. (1) for the case of mean estimation as
follows:

θt+1 = F (θt, zt) + ηBwt,
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where F (θ, z) = θ (1− η) + ηz, which is a linear transformation of θ followed by additive
Gaussian noise.

The transition distribution for the parameter is given by:

PS,Pdata,zadv
(
θ′|θ

)
= ϵN

(
θ′|F(θ, zadv), η2S

)
+ (1− ϵ) E

z∼Pdata

[
N
(

θ′|F(θ, z), η2S
)]

(9)

which is a Gaussian distribution whose mean depends linearly on θ and zadv.

Then, we have from Eq. (4a) that the certified bound on the adversarial objective is given by:

sup
zadv∈A

θ

ϵ E
θ′∼N (F(θ,zadv),η2S)

[
λ
(
θ′
)]

+ (1− ϵ) E
z∼Pdata

[
E

θ′∼N (F(θ,z),η2S)

[
λ
(
θ′
)]]
− λ (θ) + ℓadv (θ)

(10a)

We choose λ (θ) = θ⊤Aθ+ θ⊤b to be a quadratic function. Then we have:

= sup
zadv∈A

θ

ϵ
(

λ
(

F
(

θ, zadv
))

+ η2
〈
∇2λ (0), S

〉)
+ (1− ϵ) E

z∼Pdata

[
λ (F (θ, z)) + η2

〈
∇2λ (0), S

〉]
− λ (θ) + ℓadv (θ)

(10b)

= sup
zadv :∥zadv−µ∥2

2≤r
θ

−
∥∥∥∥[ θ

zadv

]∥∥∥∥2

E−1
+

[
θ

zadv

]⊤ [2(1− ϵ)η(1− η)Aµ− 2µ− ηb
ϵηb

]

+ (1− ϵ)(η2Trace(ΣA) + η2µ⊤Aµ + ηb⊤µ) + µ⊤µ, (10c)

where E =

[
(1− (1− η)2)A− I −ηϵ(1− η)A
−ηϵ(1− η)A −ϵη2 A

]
,

The dual function of this supremum (with dual variable ν) can be written as:

= inf
ν≥0

sup
zadv

θ

−
∥∥∥∥[ θ

zadv

]∥∥∥∥2

D−1
+

[
θ

zadv

]⊤ [2(1− ϵ)η(1− η)Aµ− 2µ− ηb
ϵηb + 2νµ

]

+ (1− ϵ)(η2Trace(ΣA) + η2µ⊤Aµ + ηb⊤µ) + µ⊤µ + ν(r− µ⊤µ) (10d)

where D =

[
(1− (1− η)2)A− I −ηϵ(1− η)A
−ηϵ(1− η)A −ϵη2 A− νI

]
.

The inner supremum is a quadratic expression in zadv, θ. A finite supremum exists if the
Hessian of the expression is negative semifdefinite. Plugging in the tractable maximizer
of the quadratic, we get:

inf
ν≥0

1
4

∥∥∥∥[2(1− ϵ)η(1− η)Aµ− 2µ− ηb
ϵηb + 2νµ

]∥∥∥∥2

D
+ (1− ϵ)(η2Trace(ΣA) + η2µ⊤Aµ + ηb⊤µ)

+ µ⊤µ + η2Trace(AS) + ν(r− µ⊤µ) such that D ⪰ 0. (10e)

This completes the proof.

Lemma B.1. The stationary distribution in the absence of adversary in Eq. (??) for the mean
estimation problem for Pdata = N (µ, Σ) takes the form:

P
(

S, Pdata
)
= N (µ, η2S).

Proof. The stationary distribution is tractable in this case. Recall from Eq. (9), setting
ϵ = 0, the transition distribution conditioned on θ is a Gaussian whose mean is linear in θ.
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Therefore the stationary distribution:

E
θ∼P

[
PS,Pdata

(
θ′|θ

)]
,

will be a Gaussian distribution as a sum of gaussians is also a gaussian. Let us assume the
distribution has mean m. Comparing the means we have:

m(1− η) + ηµ = m
=⇒ m = µ.

Moreover, PS,Pdata (θ′|θ) is a Gaussian with covariance η2S for all θ. Hence the expectation
over P also has covariance η2S. This concludes the proof.

Lemma B.2. The loss at stationarity of the learning dynamics in the absence of an adversary for the
mean estimation problem for Pdata = N (µ, Σ) is given by:

E
θ∼P(S,Pdata)

[ℓ (θ)] = η2Trace(S). (11)

Proof.

E
θ∼N (µ,η2S)

[
∥θ − µ∥2

2

]
= E

θ∼N (0,η2S)

[
∥θ∥2

2

]
= η2Trace(S).

Remark B.1. We use CVXPY [6] to solve the optimization problems in Algorithm 1.
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