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Abstract

The rise of foundational models fine-tuned with human feedback from1

potentially untrusted users has increased the risk of adversarial data poi-2

soning, necessitating the study of robustness of learning algorithms against3

such attacks. While existing research focuses on certifying robustness for4

static adversaries acting on offline datasets, dynamic attack algorithms have5

shown to be more effective. Relevant for models with periodic updates6

where an adversary can adapt based on the algorithm’s behavior, such7

as those in RLHF, we present a novel framework for computing certified8

bounds on the impact of dynamic poisoning, and use these certificates to9

design robust learning algorithms. We give an illustration of the framework10

for the mean-estimation problem.11

1 Introduction & Problem Formulation12

With the advent of foundational models fine tuned using human feedback gathered from13

potentially untrusted users (for example, users of a publicly available language model)14

[3, 7], the potential for adversarial or malicious data entering the training data of a model15

increases substantially . This motivates the study of robustness of learning algorithms to16

poisoning attacks [2]. More recently, there have been works that attempt to achieve “certified17

robustness“ to data poisoning, i.e., proving that the worst case impact of poisoning is below18

a certain bound that depends on parameters of the learning algorithm. All the work in this19

space, to the best of our knowledge, focuses on the static poisoning adversary [9, 13]. Even20

in [10] which is the closest setting to our work, the poisoning adversary acts over offline21

datasets in a temporally extended fashion which are poisoned in one shot, and thus is not22

dynamic. There has been work on dynamic attack algorithms [12, 11] showing that these23

attacks can indeed be more powerful than static adversaries. This motivates the question24

we study: can we obtain certificates of robustness for a broad class of learning algorithms25

against dynamic poisoning adversaries?26

In this paper, we study learning algorithms corrupted by a dynamic poisoning adversary27

who can observe the behavior of the learning algorithm and adapt the poisoning in response.28

This is relevant in scenarios where models are continuously/periodically updated in the face29

of new feedback, as is common in RLHF/fine tuning applications. We provide (to the best30

of our knowledge) the first general framework for computing certified bounds on the worst31

case impact of a data poisoning attacker, and further, use this certificate to design robust32

learning algorithms. We given an illustration of the framework for the mean-estimation33

problem (see Section 2), and aim to leverage this framework for regression, classification34

and generative models in future work.35
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Learning objective We study learning problems where the goal is to minimize36

E
z∼Pdata

[` (θ, z)]

where θ ∈ Rd are parameters to be estimated (for example parameters of a generative model,37

classification model or a regression model), ` : Rd ×Rn 7→ R is a loss function and z ∈ Rn38

are i.i.d. samples from an underlying data distribution Pdata.39

Adversarially corrupted learning algorithm We work in a setting where the learning is40

being done in an online fashion and the corrupted datapoint can be updated after every41

step of learning, based on the trajectory of the learning process observed by the adversary.42

We consider learning algorithms of the form43

θt+1 ← θt − η (∇` (θt, zt) + Bwt) (1)

where wt ∼ N (0, I) is chosen iid at each t and zt ∼ εDirac(zadv
t ) + (1 − ε)Pdata and44

B ∈ Rd×d is a design parameter of the learning algorithm that is described below (see45

Potential Defense) and ε is a parameter that controls the “level” of poisoning (analogous to46

the fraction of poisoned samples). This is a special case of Huber’s contamination model,47

which is used in the robust statistics literature [4] (with the contamination model being a48

Dirac distribution). Further, there are typically allowed ranges for the datapoints that come49

from the learning algorithm normalizing inputs or by an outlier detection system used to50

filter potential adversarial data. In this preliminary work, we restrict ourselves to norm51

balls, A = {z : ‖z‖ ≤ r} .52

Potential Defense Inspired by differentially private learning algorithms like DP-SGD53

[1], we propose adding Gaussian noise to the learning process as a way of smoothing the54

learning algorithm against impacts of the poisoning adversary. In particular, we add Bwt55

where wt is iid noise in each step sampled from the standard Gaussian, and B is a design56

parameter of the learning algorithm. Subsequently, we will choose B so as to minimize the57

worst case impact of the poisoning adversary. We denote by S = BB> the covariance matrix58

of the noise added.59

Adversarial objective We assume that the poisoning adversary is interested in maximiz-60

ing some adversarial objective `adv (θ) on target data:61

`adv (θ) = E
z∼Ptarget

[` (θ, z)] Maximize loss on some target data

Dynamics as a Markov Chain By (1), we have that, conditioned on θt and zt, θt+1 follows62

a Gaussian distribution with mean θt − η∇` (θt, zt).63

The dynamics (1) gives rise to a Markov chain over the parameters θ. If Pt denotes the64

distribution over parameters at time t, we have65

Pt+1 (θ) =
∫

PS,Pdata,zadv
(
θ|θ′

)
µt
(
θ′
)

dθ′,

where PS,Pdata,zadv is the transition kernel induced by (1), explicitly given by66

PS,Pdata,zadv
(
θ′|θ

)
= εN

(
θt − η∇`(θt, zadv

t ), η2S
)
+ (1− ε) E

z∼Pdata

[
N
(

θt − η∇` (θt, z) , η2S
)]

(2)

where N (x|µ, Σ) denotes the Gaussian density at x for a Gaussian with mean µ and covari-67

ance matrix Σ.68

A certificate for the adversarial loss (Analysis) Since this is a Markov process, the optimal69

sequence of actions for the adversary (ie choices of zadv) constitute a Markov Decision70

Process with71

States θ, Actions zadv, Transition Kernel Ptrans
(

θ′|θ, zadv
)
= PS,Pdata,zadv

(
θ′|θ

)
2



and hence, can be formulated as an infinite dimensional linear program [8]. In particular,72

for the infinite horizon average reward setting [6], the LP can be written as73

sup
P∈P [Rd×Rn ]

E
θ,zadv∼P

[`adv (θ)] (3a)

subject to E
θ,zadv∼P

[
PS,Pdata,zadv

(
θ′|θ

)]
= E

θ,zadv∼P

[
I[θ′ = θ]

]
∀θ′ ∈ Rd. (3b)

where P [Rd ×Rn] denotes the space of probability measures on Rd ×Rn and I denotes74

the indicator function that equals 1 if its argument is true and 0 otherwise.75

Theorem 1. For any function λ : Rd 7→ R, we can upper bound the optimal value of (3) by76

sup
θ∈Rd

zadv∈A

E
θ′∼PS,Pdata,zadv (·|θ)

[
λ
(
θ′
)]

+ `adv (θ)− λ (θ) . (4)

Proof. Follows by weak duality for the LP (5a).77

If strong duality holds, we further have that the optimal value of (3) is exactly equal to78

inf
λ:Rd 7→R

sup
θ,zadv

E
θ′∼PS,Pdata,zadv (·|θ)

[
λ
(
θ′
)]

+ `adv (θ)− λ (θ) . (5a)

A design principle for robust learning algorithms (aka meta-learning a robust learning79

algorithm) Based on the above analysis, we can attempt to design the parameters of the80

learning algorithm (in this case S = BB>) to trade-off performance and robustness. In81

particular, in the absence of poisoned data, the updates (1) result in a stationary distribution82

P
(

S, Pdata
)

over model parameters θ:83

P
(

S, Pdata
)
= P that satisfies P

(
θ′
)
= E

θ∼P

[
E

z∼Pdata

[
N
(

θ′|θt − η∇` (θ, z) , η2S
)]]

. (6)

Given some space of data distributions P we can sample from (in a meta learning sense),84

we can propose the following criterion:85

inf
S∈Sd

+

λ:Rd 7→R

E
Pdata∼P

[
E

θ∼P(S,Pdata)
[` (θ)] + κ

(
sup

θ∈Rd ,zadv∈A
E

θ′∼PS,Pdata,zadv (·|θ)

[
λ
(
θ′
)]

+ `adv (θ)− λ (θ)

)]
,

(7)

where κ > 0 is a trade-off parameter. The outer expectation is a meta-learning inspired86

formulation, where we are designing a learning algorithm that is good "in expectation" under87

a meta-distribution over distributions. The first term in the outer expectation constitutes88

"doing well" in the absence of the adversary by converging to a stationary distribution over89

parameters that incurs low expected loss. The second term is an upper bound on the worse90

case loss incurred by the learning algorithm in the presence of the adversary.91

2 Mean estimation92

Consider the mean estimation problem, where we aim to learn the parameter θ to estimate93

the mean µ = Ez∼Pdata [z] of a distribution Pdata. The adversarial loss is given by:94

`adv (θ) = ‖µ− θ‖2.

Certificate on adversarial loss (analysis)95

Theorem 2. Choosing λ : Rd → R in Theorem 1 to be quadratic, i.e. λ (θ) = θ>Aθ + θ>b,96

the adversarial constraint set of the form ‖zadv − µ‖2
2 ≤ r, the certificate for the mean estimation97

problem for Pdata(z) = N (z|µ, Σ) for a fixed learning algorithm (i.e. S is fixed) is given by:98

inf
A∈Sd ,b∈Rd ,ν≥0

g(A, b, ν, S, µ, Σ), (8)

3



Algorithm 1 Meta learning

1: Input: Set of K distributions {N (µi, Σ i)}i∈[K] sampled from P , tradeoff parameter κ.
2: Initialize: S ∈ Sd

+ randomly.
3: Alternating Minimization over Lagrange multipliers {Ai, bi, νi}i∈[K] and defence parameter S.
4: for t = 1, . . . do
5: for i = 1, . . . , K do
6: Ai, bi, νi = infA∈Sd ,b∈Rd ,ν≥0 g(A, b, ν, S, µi, Σ i).
7: end for
8: S = argminS∈Sd

+
(η2Trace(S) + κ

K ∗∑i∈[K] g(Ai, bi, νi, S, µi, Σ i)).
9: end for

where g(A, b, ν, S, µ, Σ) is a convex objective in A, b, ν (matrix fractional objective with Linear99

Matrix Inequality (LMI) constraint) as defined below:100

g(A, b, ν, S, µ, Σ) =


1
4

∥∥∥∥[2(1− ε)η(1− η)Aµ− 2µ− ηb
εηb + 2νµ

]∥∥∥∥2

D
+ (1− ε)(η2Trace(ΣA) + η2µ>Aµ + ηb>µ)

+µ>µ + η2Trace(AS) + ν(r− µ>µ) if ν ≥ 0; D � 0
−∞ else

(9)

and D =

[
(1− (1− η)2)A− I −ηε(1− η)A
−ηε(1− η)A −εη2 A− νI

]
and ‖x‖2

D = x>D−1x.101

Meta-Learning Algorithm Following the formulation in Eq. (7), we wish to learn a defense102

parameter S that minimizes the expected loss (expectation over different Pdata from the103

meta distribution P). For the mean estimation problem this boils down to solving:104

inf
S∈Sd

+

η2Trace(S) + κEµ,Σ∼P [ inf
ν≥0

A∈Sd ,b∈Rd

g(A, b, ν, S, µ, Σ)]. (10)

In practice, one observes a finite number of distributions from P , and sample average105

approximation is leveraged, with the aim of learning a defense parameter which generalizes106

well to unseen distributions from P . This process is stated in Algorithm 1.107

Figure 1: Test performance (mean squared error between true and estimated means) on 50
(d = 20 dimensional) Gaussian distributions drawn from Gaussian prior for the mean and
Inverse Wishart prior for the covariance. The defense parameter S was trained with 10 such
randomly chosen Gaussians via Algorithm 1. We varied the learning rates (left) and the
the fraction of samples corrupted by the dynamic adversary (right) and observe that our
defense beats training without defense significantly.
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A Proofs141

Theorem 2. Choosing λ : Rd → R in Theorem 1 to be quadratic, i.e. λ (θ) = θ>Aθ + θ>b,142

the adversarial constraint set of the form ‖zadv − µ‖2
2 ≤ r, the certificate for the mean estimation143

problem for Pdata(z) = N (z|µ, Σ) for a fixed learning algorithm (i.e. S is fixed) is given by:144

inf
A∈Sd ,b∈Rd ,ν≥0

g(A, b, ν, S, µ, Σ), (8)

where g(A, b, ν, S, µ, Σ) is a convex objective in A, b, ν (matrix fractional objective with Linear145

Matrix Inequality (LMI) constraint) as defined below:146

g(A, b, ν, S, µ, Σ) =


1
4

∥∥∥∥[2(1− ε)η(1− η)Aµ− 2µ− ηb
εηb + 2νµ

]∥∥∥∥2

D
+ (1− ε)(η2Trace(ΣA) + η2µ>Aµ + ηb>µ)

+µ>µ + η2Trace(AS) + ν(r− µ>µ) if ν ≥ 0; D � 0
−∞ else

(9)

and D =

[
(1− (1− η)2)A− I −ηε(1− η)A
−ηε(1− η)A −εη2 A− νI

]
and ‖x‖2

D = x>D−1x.147

Proof. We can write the learning algorithm in Eq. (1) for the case of mean estimation as148

follows:149

θt+1 = F (θt, zt) + ηBwt,

where F (θ, z) = θ (1− η) + ηz, which is a linear transformation of θ followed by additive150

Gaussian noise.151

The transition distribution for the parameter is given by:152

PS,Pdata,zadv
(
θ′|θ

)
= εN

(
θ′|F(θ, zadv), η2S

)
+ (1− ε) E

z∼Pdata

[
N
(

θ′|F(θ, z), η2S
)]

(11)

which is a Gaussian distribution whose mean depends linearly on θ and zadv.153
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Then, we have from Eq. (5a) that the certified bound on the adversarial objective is given by:154

155

sup
zadv∈A

θ

ε E
θ′∼N (F(θ,zadv),η2S)

[
λ
(
θ′
)]

+ (1− ε) E
z∼Pdata

[
E

θ′∼N (F(θ,z),η2S)

[
λ
(
θ′
)]]
− λ (θ) + `adv (θ)

(12a)

We choose λ (θ) = θ>Aθ+ θ>b to be a quadratic function. Then we have:

= sup
zadv∈A

θ

ε
(

λ
(

F
(

θ, zadv
))

+ η2
〈
∇2λ (0), S

〉)
+ (1− ε) E

z∼Pdata

[
λ (F (θ, z)) + η2

〈
∇2λ (0), S

〉]
− λ (θ) + `adv (θ)

(12b)

= sup
zadv :‖zadv−µ‖2

2≤r
θ

−
∥∥∥∥[ θ

zadv

]∥∥∥∥2

E−1
+

[
θ

zadv

]> [2(1− ε)η(1− η)Aµ− 2µ− ηb
εηb

]

+ (1− ε)(η2Trace(ΣA) + η2µ>Aµ + ηb>µ) + µ>µ, (12c)

where E =

[
(1− (1− η)2)A− I −ηε(1− η)A
−ηε(1− η)A −εη2 A

]
,

The dual function of this supremum (with dual variable ν) can be written as:

= inf
ν≥0

sup
zadv

θ

−
∥∥∥∥[ θ

zadv

]∥∥∥∥2

D−1
+

[
θ

zadv

]> [2(1− ε)η(1− η)Aµ− 2µ− ηb
εηb

]

+ (1− ε)(η2Trace(ΣA) + η2µ>Aµ + ηb>µ) + µ>µ + ν(r− µ>µ) (12d)

where E =

[
(1− (1− η)2)A− I −ηε(1− η)A
−ηε(1− η)A −εη2 A− νI

]
.

The inner supremum is a quadratic expression in zadv, θ. A finite supremum exists if the
Hessian of the expression is negative semifdefinite. Plugging in the tractable maximizer
of the quadratic, we get:

inf
ν≥0

1
4

∥∥∥∥[2(1− ε)η(1− η)Aµ− 2µ− ηb
εηb + 2νµ

]∥∥∥∥2

D
+ (1− ε)(η2Trace(ΣA) + η2µ>Aµ + ηb>µ)

+ µ>µ + η2Trace(AS) + ν(r− µ>µ) such that D � 0. (12e)

This completes the proof.156

157

Lemma A.1. The stationary distribution in the absence of adversary in Eq. (6) for the mean158

estimation problem for Pdata = N (µ, Σ) takes the form:159

P
(

S, Pdata
)
= N (µ, η2S).

Proof. The stationary distribution is tractable in this case. Recall from Eq. (11), setting160

ε = 0, the transition distribution conditioned on θ is a Gaussian whose mean is linear in θ.161

Therefore the stationary distribution:162

E
θ∼P

[
PS,Pdata

(
θ′|θ

)]
,

will be a Gaussian distribution as a sum of gaussians is also a gaussian. Let us assume the163

distribution has mean m. Comparing the means we have:164

m(1− η) + ηµ = m
=⇒ m = µ.
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Moreover, PS,Pdata (θ′|θ) is a Gaussian with covariance η2S for all θ. Hence the expectation165

over P also has covariance η2S. This concludes the proof.166

Lemma A.2. The loss at stationarity of the learning dynamics in the absence of an adversary for the167

mean estimation problem for Pdata = N (µ, Σ) is given by:168

E
θ∼P(S,Pdata)

[` (θ)] = η2Trace(S). (13)

Proof.

E
θ∼N (µ,η2S)

[
‖θ − µ‖2

2

]
= E

θ∼N (0,η2S)

[
‖θ‖2

2

]
= η2Trace(S).

169

Remark A.1. We use CVXPY [5] to solve the optimization problems in Algorithm 1.170
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