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Abstract

This work addresses the problem of domain adap-
tation on an unlabeled target dataset using knowl-
edge from multiple labelled source datasets. Most
current approaches tackle this problem by search-
ing for an embedding that is invariant across source
and target domains, which corresponds to search-
ing for a universal classifier that works well on
all domains. In this paper, we address this prob-
lem from a new perspective: instead of crushing
diversity of the source distributions, we exploit
it to adapt better to the target distribution. Our
method, named Multi-Source Domain Adaptation
via Weighted Joint Distribution Optimal Transport
(MSDA-WJDOT), aims at finding simultaneously
an Optimal Transport-based alignment between the
source and target distributions and a re-weighting
of the sources distributions. We discuss the theoret-
ical aspects of the method and propose a conceptu-
ally simple algorithm. Numerical experiments in-
dicate that the proposed method achieves state-of-
the-art performance on simulated and real datasets.

1 INTRODUCTION

Many machine learning algorithms assume that the test and
training datasets are sampled from the same distribution.
However, in many real-world applications, new data can
exhibit a distribution change (domain shift) that degrades
the algorithm performance. This shift can be observed for
instance in computer vision when changing background, lo-
cation, illumination or pose of the test images, or in speech
recognition when the recording conditions or speaker ac-
cents are varying. To overcome this problem, Domain Adap-
tation (DA) [Jiang, 2008, Kouw and Loog, 2019] attempts
to leverage labelled data from a source domain, in order to
learn a classifier for unseen or unlabelled data in a target

domain.

Several DA methods incorporate a distribution discrepancy
loss into a neural network to overcome the domain gap.
The distances between distributions are usually measured
through an adversarial loss [Ganin et al., 2016, Ghifary et al.,
2016, Tzeng et al., 2015, 2017] or integral probability met-
rics, such as the maximum mean discrepancy [Long et al.,
2016, Tzeng et al., 2014]. DA techniques based on Optimal
Transport have been proposed by [Courty et al., 2016, 2017,
Damodaran et al., 2018] and justified theoretically by Redko
et al. [2017].

In this work, we focus on the setting, more common in prac-
tice, in which several labelled sources are available, denoted
in the following as multi-source domain adaptation (MSDA)
problem. Many recent approaches motivated by theoreti-
cal considerations have been proposed for this problem.
For instance, Mansour et al. [2009], Hoffman et al. [2018]
provided theoretical guarantees on how several source pre-
dictors can be combined using proxy measures, such as
the accuracy of a hypothesis. This approach can achieve a
low error predictor on the target domain, under the assump-
tion that the target distribution can be written as a convex
combination of the source distributions.

Other MSDA methods [Peng et al., 2019, Zhao et al., 2018,
Wen et al., 2020] look for a single hypothesis that minimizes
the convex combination of its error on all source domains
and they provide theoretical bounds of the error of the ob-
tained hypothesis on the target domain. Those guarantees
generally involve some terms depending on the distance
between each source distribution and the target distribution
and suggest to find an embedding in which the feature distri-
butions between sources and target are as close as possible,
by using Adversarial Learning [Zhao et al., 2018, Xu et al.,
2018, Lin et al., 2020] or Moment Matching [Peng et al.,
2019]. However, it may not be possible to find an embedding
preserving discrimination even when the distances between
source and target marginals are small. One such example is
given in Figure 1, in which a rotation between the sources
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prevents the existence of such invariant embedding as the-
orized by Zhao et al. [2019]. At last, we mention the very
recent line of works on MSDA considering approaches in-
spired from imitation learning Nguyen et al. [2021a,b] and
the work by Montesuma and Mboula [2021] building on
Wasserstein barycenters.

Contributions In this paper, we address the MSDA prob-
lem following a radically different route than the usual ap-
proach consisting in looking for a latent representation in
which all source distributions are similar to the target. The
approach we advocate embraces the diversity of source dis-
tributions and look for a convex combination of the joint
source distributions with minimal Wasserstein distance to
an estimated target distribution, without relying on a proxy
measure such as the accuracy of source predictors.
We support this novel conceptual approach by deriving a
generalization bound on the target error. Our algorithm con-
sists in optimizing a key term in this generalization bound,
given by the Wasserstein distance between the estimated
joint target distribution and a weighted sum of the joint
source distributions. One unique feature of our approach is
that the weights of the source distribution are learned simul-
taneously with the classification function, which allows us
to distribute the mass based on the similarity of the sources
with the target, both in the feature and in the output spaces.
As such, our model can also handle problems in which only
target shift occurs. Interestingly the estimated weights pro-
vide a measure of domain relatedness and interpretability.
We refer to the proposed method as Multi-Source Domain
Adaptation via Weighted Joint Distribution Optimal Trans-
port (MSDA-WJDOT).

Notations Let g : X → G be a differentiable embedding
function, with G the embedding space. Throughout the pa-
per all input distributions are in this embedding space. We
let pS and pT be the true joint distributions in the source
and target domains, respectively. Both distributions are sup-
ported on the product space G × Y , where Y is the label
space. In practice we only have access to a finite number NS

of samples in the source domain leading to the empirical
source distribution p̂S = 1

NS

∑NS

i=1 δg(xi
S),yi

S
where δ is the

Dirac function. In the target domain, only a finite number of
unlabeled samples NT in the feature space is available. We
then denote with ∆J := {ααα ∈ [0, 1]J |

∑J
i=1 αi = 1} the

(J − 1)-dimensional simplex. Finally, given a loss function
L and a joint distribution p, the expected loss of a function
f is defined as εp(f) = E(x,y)∼p[L(y, f(x))].

2 OPTIMAL TRANSPORT AND DA

In this section we first recall the Optimal Transport problem
and the notion of Wasserstein distance. Then we discuss
how they were exploited for domain adaptation (DA) in the
Joint Distribution Optimal Transport (JDOT) formulation
that will be central in our approach.

Optimal Transport The Optimal transport (OT) prob-
lem has been originally introduced by Monge [1781] and,
reformulated as a relaxation by Kantorovich [1942]. Let
µ̂S =

∑
i a

S
i δxi

S
, µ̂T =

∑
i a

T
i δxi

T
be discrete probability

measures with aSaSaS , aTaTaT ∈ ∆J . The OT problem searches a
transport plan π ∈ Π(µ̂S , µ̂T ), where

Π(µ̂S , µ̂T ) :=
{
π ≥ 0

∣∣ J∑
i=1

πi,j = aTj ,

J∑
j=1

πi,j = aSi

}
,

that is, the set of joint probabilities with marginals
µ1 and µ2, that solve the following problem:

WC(µ̂S , µ̂T ) = min
π∈Π(µ̂S ,µ̂T )

J∑
i,j=1

Ci,j · πi,j (1)

where Ci,j = c(xi
S , x

j
T ) represents the cost of transporting

mass between xi
S and xj

T for a given ground cost function
c : X × X → R+. It is often chosen to be the Euclidean
distance, recovering the classical W1 Wasserstein distance.
Given a ground cost C, WC(µ̂S , µ̂T ) corresponds to the
minimal cost for mapping one distribution to the other and
π⋆ is the OT matrix describing the relations between source
and target samples. OT and in particular Wasserstein dis-
tance have been used with success in numerous machine
learning applications such as Generative Adversarial Mod-
eling [Arjovsky et al., 2017, Genevay et al., 2018] and DA
[Courty et al., 2016, 2017, Shen et al., 2018].

Joint Distribution Optimal Transport (JDOT) This
method has been proposed by Courty et al. [2017] to address
the problem of unsupervised DA with only one joint source
distribution p̂S and the feature marginal target distribution
µ̂T . Since no labels are available in the target domain, the
authors proposed to use a proxy joint empirical distribu-
tion p̂fT whereby labels are replaced by the prediction of a
classifier f : G → Y , that is

p̂fT =
1

NT

NT∑
i=1

δg(xi
T ),f(g(xi

T )). (2)

In order to use a joint distribution in the Wasserstein dis-
tance, they defined, for z, z′ ∈ G and y, y′ ∈ Y , the cost

D(z, y; z′, y′) = β∥z − z′∥2 + L(y, y′)

where L is a loss between classes and β weights the strength
of feature loss. This cost takes into account embedding and
label discrepancy. To train a meaningful classifier on the
target domain, Courty et al. [2017] solved the problem

min
f

WD(p̂S , p̂
f
T ) (3)

where the minimization is over a suitable set of classifiers
and the objective WD(p̂S , p̂

f
T ) is a Wasserstein distance



between the joint source and joint “predicted” target,

min
π∈Π(p̂S ,p̂f

T )

J∑
i,j=1

D(g(xi
S), y

i
S ; g(x

j
T ), f(g(x

j
T ))) · πi,j .

JDOT has been supported by generalization error guaran-
tees, [see Courty et al., 2017, for a discussion]. It was later
extended to deep learning framework where the embedding
g was estimated simultaneously with the classifier f , via an
efficient stochastic optimization procedure in [Damodaran
et al., 2018]. A key aspect of JDOT, that was overlooked
by the domain adaptation community, is the fact that the
optimization problem involves the joint embedding/label
distribution. This is in contrast to a large majority of DA
approaches [Ganin et al., 2016, Sun and Saenko, 2016, Shen
et al., 2018] using divergences only on the marginal distri-
butions, whereas using simultaneously feature and labels
information is the basis of most generalization bounds as
discussed in the next section.

3 MULTI-SOURCE DA VIA WEIGHTED
JOINT OPTIMAL TRANSPORT

We now discuss our MSDA approach. We assume to have
J sources with joint distributions pS,j , for 1 ≤ j ≤ J . We
define a convex combination of the source distributions

pαS =

J∑
j=1

αjpS,j (4)

with ααα ∈ ∆J and we present a novel generalization bound
for MSDA problem that depends on pαS . Then, we introduce
the MSDA-WJDOT optimization problem and propose an
algorithm to solve it. Finally, we discuss the relation be-
tween MSDA-WJDOT and other MSDA approaches.

3.1 GENERALIZATION BOUND

The theoretical limits of DA are well studied and well un-
derstood since the work of Ben-David et al. [2010] that
provided an "impossibility theorem" showing that, if the tar-
get distribution is too different from the source distribution,
adaptation is not possible. However in the case of MSDA,
one can exploit the diversity of the source domains and use
only the sources close to the target distribution, thereby
obtaining a better generalization bound. For this purpose, a
relevant assumption, already considered in Mansour et al.
[2009], is that the target distribution is a convex combina-
tion of the source distributions. The soundness of such an
approach is illustrated by the following lemma.

Lemma 1. For any hypothesis f ∈ H, denote by εpT
(f)

and εpα
S
(f), the expected loss of f on the target distribution

and on the weighted sum of the source distributions, with
respect to a loss function L bounded by B. Then

εpT
(f) ≤ εpα

S
(f) +B ·DTV (pαS , pT ) (5)

where DTV is the total variation distance.

This simple inequality, whose proof is presented in the ap-
pendix, tells us that the key point for target generalization is
to have a function f with low error on a combination of the
joint source distributions and that combination should be
"near" to the target distribution. Note that this also holds for
single source DA problem corroborating the recent findings
that just matching marginal distributions may not be suffi-
cient [Wu et al., 2019]. While the above lemma provides a
simple and principled guidance for a multi-source DA al-
gorithm, it cannot be used for training since it assumes that
labels in the target domain are known. In the following, we
provide a generalization bound in a realistic scenario where
no target labels are available and a self-labelling strategy is
employed to compensate for the missing labels.

Taking inspiration from the result in Lemma 1, we pro-
pose a theoretically grounded framework for learning from
multiple sources. To this end, we first recall the notion of
Probabilistic Transfer Lipschitzness (PTL) of a classifier
Courty et al. [2017], that will be used in our method.

Definition 1. (PTL Property) Let D be a metric on G and let
ϕ : R→ [0, 1]. A labeling function f : G → R and a joint
distribution π ∈ Π(µS , µT ) are ϕ-Lipschitz transferable if
for all λ > 0, we have

Prob(xS ,xT )∼π

[
|f(xS)−f(xT )| > λD(xS , xT )

]
≤ ϕ(λ).

The PTL property is a reasonable assumption for DA that
was introduced in Courty et al. [2017] and provides a bound
on the probability of finding pair of source-target samples
of different label within a 1/λ-ball.

Our approach is based on the idea that one can compensate
the lack of target labels by using an hypothesis labelling
function f which provides a joint distribution pfT in (2),
where f is searched in order to align pfT with a weighted
combination of source distributions pαS . Following this idea,
we introduce the definition of similarity measure and a new
generalization bound for MSDA.

Definition 2. (Similarity measure) LetH be a space of M -
Lipschitz labelling functions. Assume that, for every f ∈ H
and x, x′ ∈ G, |f(x)−f(x′)| ≤M . Consider the following
measure of similarity between pαS and pT introduced in
[Ben-David et al., 2010, Def. 5]

Λ(pαS , pT ) = min
f∈H

εpα
S
(f) + εpT

(f), (6)



where the risk is measured w.r.t. to a symmetric and k-
Lipschitz loss function that satisfies the triangle inequality.

Theorem 1. Let H be the space introduced in Definition
2 and assume that the function f∗ minimizing Eq. 6 satis-
fies the PTL property (Definition 1). Let p̂S,j be j-th source
empirical distributions of Nj samples and p̂T the empirical
target distribution with NT samples. Then for all λ > 0 ,
with β = λk in the ground metric D, we have with proba-
bility at least 1− η that

εpT
(f) ≤WD

(
p̂αS , p̂

f
T

)
+

√
2

c′
log

2

η

 1

NT
+

J∑
j=1

αj

Nj


+ Λ(pαS , pT ) + kMϕ(λ).

Note that the quantity Λ(pαS , pT ) in the bound measures
the discrepancy between the true target distribution and the
"best" combination of the source distributions and, similarly
to some terms in the DA bounds of Ben-David et al. [2010],
it is not directly controllable. However, we have experimen-
tally checked that our approach minimizes an upper bound
of this term Λ – see discussion in Section 4 and Figure ??
in the appendix. Interestingly the 1/Nj ratios in the bound
are weighted by αj which means that even if one source
is poorly sampled it won’t have a large impact as soon as
the coefficient αj stays small. This suggests to investigate
some kind of regularization for the weights α but since it
would introduce one more hyperparameter we left it to fu-
ture works and in the following focus only on optimizing
the first term of the bound.

3.2 MSDA-WJDOT PROBLEM

MSDA-WJDOT Optimization Problem Our approach
aims at finding a function f that aligns the distribution
pfT with a convex combination

∑J
j=1 αjpS,j of the source

distributions with convex weights ααα ∈ ∆J on the simplex.
We express the multi-domain adaptation problem as

min
ααα,f

WD

p̂fT ,

J∑
j=1

αj p̂S,j

 . (7)

Problem above is a minimization of the first term in the
bound from Theorem 1 with respect to both f and ααα. The
role of the weight ααα is crucial because it allows in practice
to select (when ααα is sparse) the source distributions that
are the closest in the Wasserstein sense and use only those
distributions to transfer label knowledge from. An example
of the method is provided in Figure 1 showing 4 source
distributions in 2D obtained from rotation in the 2D space.
One interesting property of our approach is that it can adapt
to a lot of variability in the source distributions as long
as the distributions lie in a distribution manifold and this

Algorithm 1 Optimization for MSDA-WJDOT

Initialise ααα = 1
J 1J and θθθ parameters of fθθθ and steps µααα

and µθθθ.
repeat
θθθ ← θθθ − µθθθ∇θθθWD

(
p̂fT ,

∑J
j=1 αj p̂S,j

)
ααα← P∆J

(
ααα− µααα∇αααWD(p̂fT ,

∑J
j=1 αj p̂S,j)

)
until Convergence

manifold is sampled correctly by the source distributions.
For instance the linear weights allow to interpolate between
source distributions and recover the weighted source that is
the closest to the manifold of distribution, hence providing
a tightest generalization as shown in the previous section.

Optimization Algorithm Problem (7) can be solved with
a block coordinate descent similarly to what was proposed
in Courty et al. [2017]. But with the introduction of the
weights ααα we numerically observed that one can easily get
stuck in a local minimum with poor performances. So we
proposed the optimization approach in Algorithm 1, that is
an alternated projected gradient descent w.r.t. the parameters
θθθ of the classifier fθθθ and the weights ααα of the sources. Note
that the sub-gradient of ∇θθθW is computed by solving the
OT problem and using the fixed OT matrix to compute
the gradient similarly to Damodaran et al. [2018]. It is well
known that the subgradient w.r.t. the weights of a distribution
can be expressed as ∇wwwW (µ,

∑J
i=1 wiδxi

) = βββ where βββ
is the optimal right dual variable of the problem. Moreover,
the sub-gradient∇αααW can be computed in closed form as

∇αj
WD

p̂fT ,

J∑
j=1

αj

Nj

Nj∑
i=1

δ(g(xi
j),y

i
j)

 = Nj

Nj∑
i=1

β∗
j,i

where β∗
j,i is the dual variable for sample i in source do-

main j. The definition of the projection to the simplex PΘ is
provided in supplementary materials. Also note that while
we did not need it in the numerical experiments, Algorithm
1 can be performed on mini-batches by sub-sampling the
source and target distribution on very large datasets as sug-
gested in Damodaran et al. [2018] which has been shown to
provide robust estimators in Fatras et al. [2020].

3.3 RELATED WORK

MSDA approaches learning only the classifier MSDA-
WJDOT is related to JDOT [Courty et al., 2017] but pro-
poses a non-trivial extension of it to multisource domain
adaption. Indeed, there are two simple ways to apply JDOT
to multi-source DA, which we refer to as Concatenated
JDOT (CJDOT) and Multiple JDOT (MJDOT). The first one
consists in concatenating all the source samples into one
source distribution (equivalent to uniform ααα if all Nj are
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Figure 1: 2D simulated data. (Left) illustration of 4 source distributions corresponding to 4 increasing rotations. The
color of the sample corresponds to the class. (Center Left) source distributions and target distribution in black because
no class information is available. (Center Right) source distributions weighted by the optimal ααα⋆ = [0, 0.5, 0.5, 0] from
MSDA-WJDOT: only Source 2 and 3 have a weight > 0 because they are the closest to the target in the Wasserstein sense.
(Right) Final MSDA-WJDOT target classification.

equal) and using classical JDOT on the resulting distribution.
The second one consists in optimizing a sum of JDOT losses
for every source distribution but again, this leads to uniform
impact of the sources on the estimation. It is clear that
both approaches are not robust when some sources distribu-
tions are very different from the target (those would have a
small weight in MSDA-WJDOT). Recently, Montesuma and
Mboula [2021] proposed to compute a Wasserstein barycen-
ter to aggregate the source marginal distributions. Once the
intermediate domain is computed, they transport the Wasser-
stein barycenter into the target domain using the Sinkhorn
algorithm [Cuturi, 2013] with (WTBreg) or without (WTB)
class regularization. The Wasserstein barycenter is also used
in another MSDA approach, called JCPOT [Redko et al.,
2019], to estimate the class proportion. This method, based
on Courty et al. [2016], has been proposed to address only
target shift (change in proportions between the classes) and
satisfies a generalization bound showing that estimating the
class proportion in the target distribution is key to recov-
ering good performances. MSDA-WJDOT can also handle
the target shift as a special case since the reweighting ααα is
directly related to the proportion of classes. A crucial dif-
ference between MSDA-WJDOT and the barycenter-based
approaches described above is that they rely only on align-
ing marginal distributions, whereas the proposed method
aligns joint distributions by optimizing a Wasserstein dis-
tance in the joint embedding/label space.
Also note that MSDA-WJDOT relies on a weighting of
the samples where the weight is shared inside the source
domains. This is a similar approach to DA approaches
such as Importance Weighted Empirical Risk Minimization
(IWERM) [Sugiyama et al., 2007] designed for Covariate
Shift that use a reweighing of all the samples. One major dif-
ference is that we only estimate a relatively small number of
weights in ααα leading to a better posed statistical estimation.
It is indeed well known that estimation of continuous den-
sity which is necessary for a proper individual reweighting
of the samples is a very difficult problem in high dimen-
sion. All the above mentioned methods do not require to

learn an embedding, whose estimation may be computation-
ally expensive and unnecessary (e.g., when a pre-trained
model is available). Further, there exists numerous examples
of source variability in real life (such as rotation between
the full distributions) that cannot be handled with a global
embedding.

MSDA approaches estimating an embedding As dis-
cussed in the introduction, the majority of recent DA ap-
proaches based on deep learning [Ganin et al., 2016, Sun
and Saenko, 2016, Shen et al., 2018] relies on the estima-
tion of an embedding that is invariant to the domain which
means that the final classifier is shared across all domains
when the embedding g is estimated. Those approaches have
been extended to multiple sources with the objective that
the embedded distributions between sources and target are
similar. Authors in Xu et al. [2018] propose an algorithm
based on adversarial learning, named Deep Cocktail Net-
work (DCTN), to learn a feature extractor, domain discrim-
inators and source classifiers. The domain discriminator
provides multiple source-target-specific perplexity scores
that are used to weight the source-specific classifier pre-
dictions and produce the target estimation. In Peng et al.
[2019], the embedding is learned by aligning moments of
the source and target distributions, by an approach called
Moment matching (M333SDA) . Our approach differs greatly
here as we do not try to cancel the variability across sources
but to embrace it by allowing the approach to automatically
find the source domains closest in terms of embedding and
labeling function.

4 NUMERICAL EXPERIMENTS

In this section, we first discuss the implementation and the
robustness of MSDA-WJDOT. We then evaluate and com-
pare it with state-of-the-art MSDA methods, on both simu-
lated and real data. The numerical implementation relies on
the Pytorch [Paszke et al., 2017] and Python Optimal Trans-
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Figure 2: (Left and Center-Left) Loss function and α coefficients with different weights initializations. (Center-Right and
Right) Loss function and α sparsity for increasing number of sources J .

port [Flamary et al., 2021] toolboxes and will be released
upon publication.

Practical Implementation We used in all numerical ex-
periments the MSDA-WJDOT solver from Algorithm 1.
We recall that in this paper we assume to have access to
a meaningful (as in discriminant) embedding g. This is a
realistic scenario due to the wide availability of pre-trained
models and advent of reproducible research. Nevertheless
we discuss here how to estimate such an embedding when
none is available. To keep the variability of the sources that
is used by MSDA-WJDOT we propose to estimate g with
the Multi-Task Learning framework originally proposed in
Caruana [1997], i.e.

ming,{fj}J
j=1

∑J
j=1

1
Nj

∑Nj

i=1 L(fj ◦ g(xi
j), y

i
j). (8)

This approach for estimating an embedding g makes sense
because it promotes a g that is discriminant for all tasks but
allows a variability thanks to the task specific final classifiers
fj which is an assumption at the core of MSDA-WJDOT.
We refer to MSDA-WJDOT where the embedding g is
learned with the above procedure as MSDA-WJDOTMTL.
Note that this is a two step procedure.
An important question, especially when performing unsuper-
vised DA, is how to perform the validation of the parameters
including early stopping. We propose here to use the sum of
squared errors (SSE) between the target points in the embed-
ding and their cluster centroids. Specifically, we estimate
cluster membership on the the outputs through f ◦ g. Then
the SSE is computed in the embedding g using the estimated
clusters. Intuitively, if the SSE decreases it means that f
attributes the same label to samples of the target domain
that are close in the embedding. We also explored another
strategy, based on the classifier accuracy on the sources, that
is discussed and reported in the supplementary material.
In addition, to provide a lower and an upper bound
of the MSDA performance, we implemented super-
vised classification methods trained on the sources
(Baseline), the target (Target), on both sources
and target (Baseline+Target) domain. We consider
Baseline as a performance lower bound as the target
domain is not used during training, whereas Target and

Baseline+Target are two unrealistic approaches that
use labels in target. Note that Target trains a classifier us-
ing only target labels and is more prone to overfitting since
less samples are available. Since we have access to labels for
Target and Baseline+Target, we validate the model
by using the classification accuracy on the target validation
set making those two approaches clear upper bounds on
the attainable performance for each dataset. All methods
are compared on the same dataset split in training (70%),
validation (20%) and testing (10%) but the validation set is
used only for Baseline+Target and Target.

Algorithm convergence and stability In Figure 2 (Left
and Center-left) we show the stability of the algorithm for
different weights initialization. The loss function always
converges and the ααα coefficients are not affected by the ini-
tialization. Moreover, we observed in practice that choosing
the same step for ααα and θθθ does not degrade the performance
and in all experiments we validated it via early stopping.
We also noticed a fast convergence of the weights ααα, mean-
ing that the relevant domains are quickly identified. This
behavior is illustrated in Fig. 2 (Right), where ααα sparsity
rapidly increases for any choice of S illustrating that only
few relevant source distributions are used in practice. We
also report the loss convergence for increasing number of
sources S (Center-right).

Simulated Data: Domain Shift We consider a classifica-
tion problem similar to what is illustrated in Figure 1, but
with 3 classes, i.e. Y = {0, 1, 2}, and in 3D. For the sources
and target we generate Nj and NT samples from J + 1
Gaussian distributions rotated of angle θj ∈ [0, 3

2π] around
the x-axis. As the data is already linearly separated, we set
g as the identity function in this experiment. We carried out
many experiments in order to see the effect of different pa-
rameters such as the number of source domains J , of source
samples Nj and of target samples NT . Each experiment has
been repeated 50 times. We report in Fig. 3 the accuracy of
all methods with Nj = NT = 300 for J = 3 (Left) and
J = 30 (Right). All competing methods are clearly outper-
formed by MSDA-WJDOT both in term of performance and
variance even for a limited number of sources. Interestingly
MSDA-WJDOT can even outperform Target due to its
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Figure 3: Simulated dataset. Methods’ accuracy and recovered α weights for an increasing rotation angle of the target
samples: (Left and Center-Left) J = 3 and (Right and Center-Right) J = 30 sources.

access to a larger number of samples. Another important
aspect of MSDA-WJDOT is the obtained weights α that
can be used for interpretation. We show in Fig. 3 the α
weights that are attributed to the sources (ordered on the
x-axis by increasing rotation angles), for in an increasing
rotation angle in the target samples (y-axis). The estimated
weights tend to be sparse and put more mass on sources
that have a similar angle i.e. we recover automatically the
closest sources in the joint distribution manifold. Note that
we only report the method’s performances on those two con-
figurations; the results for other experiments can be found
in the supplementary material.
We next investigate how the function Λ in (6) behaves when
the weights ααα are optimized w.r.t. the first term of the bound
in Theorem 1. To this end we computed for 30 sources an
upper bound of Λ with the 0-1 loss by using the estimated f̂
instead of the minimizer in (6). We recover a value of 0.57
that is very close to twice the Bayes error, corresponding to
the best possible value for Λ in this experiment. On the other
hand, the value for the upper bound of Λ for a uniform ααα is
0.64 and 0.65 in average for 10000 randomly drawn values
of ααα. This suggests that optimizing ααα with MSDA-WJDOT
leads to a minimization of Λ in the generalization bound.

Simulated Data: Target Shift We take into account the tar-
get shift problem with 2D source and target datasets which
present different proportions of classes. The proportion of

the class c in the source j is defined as P c
j =

#{yi
j=c}

Nj
(and

similarly for the target). We consider a binary classification
task and we sample sources and target datasets from the
same Gaussian distribution. In Fig. 4 (Left and Center) we il-
lustrate two sources and target distributions and how MSDA-
WJDOT reweights the sources. As we can see, almost all
the mass is concentrated on Source 2 (α2 ≫ α1) because its
class proportion is closer to the target one. Instead, Source 1
has a class proportion inverted w.r.t. the target. In the exper-
iment reported in Fig. 4 (Center-Right and Right) we have
J = 20 sources with P 2

j randomly generated between 0.1

and 0.9 (we ordered the sources s.t. P 2
j ≤ P 2

j+1). We show
the average classification accuracy and the ααα weights over
50 trials for varying P 2

T in {0.1, 0.2, · · · , 0.9}. Our method
always outperforms JCPOT and selects the sources with a

proportion of classes closer to the one in the target.

Object Recognition The Caltech-Office dataset [Gong
et al., 2012] contains four different domains: Amazon, Cal-
tech [Griffin et al., 2007], Webcam and DSLR. The variabil-
ity of the different domains come from several factors: pres-
ence/absence of background, lightning conditions, noise, etc.
We use for the embedding function g the output of the 7th
layer of a pre-trained DeCAF model [Donahue et al., 2014],
similarly to what was done in Courty et al. [2016], resulting
into an embedding space G ∈ R4096. For f , we employ a
one-layer neural network. Training is performed with Adam
optimizer with 0.9 momentum and ϵ = e−8. Learning rate
and ℓ2 regularization on the parameters are validated for all
methods. In JDOT extensions and MSDA-WJDOT, we also
validate the β parameter weighting the feature distance in
the cost (3).
The aim of this experiment is to evaluate MSDA-WJDOT
and compare it with the current literature in the setting
in which the embedding is given. The performance of the
methods is reported in Table 1. We can see that MSDA-
WJDOT is state of the art providing the best Average Rank
(AR). Note that the DeCAF pre-trained embedding was orig-
inally designed in part to minimize the divergence across
domains which as discussed is not the best configuration
for MSDA-WJDOT but it still performs very well show-
ing the robustness of MSDA-WJDOT to the embedding.
Moreover, we observed that for each adaptation problem
MSDA-WJDOT provides one-hot vector ααα (reported in sup-
plementary) suggesting that only one source is needed for
the target adaptation. Interestingly the source selected by
MSDA-WJDOT for each target is the one that was reported
with the best performance for single-source DA in Courty
et al. [2016], which shows that MSDA-WJDOT can auto-
matically find the relevant sources with no supervision.

Music-speech Discrimination We now tackle a MSDA
problem in which both the embedding and the target classi-
fier need to be learned. Specifically, we consider the music-
speech discrimination task introduced in Tzanetakis and
Cook [2002], which includes 64 music and speech tracks of
30 seconds each. We generated 14 noisy datasets by combin-
ing the raw tracks with different types of noises from a noise
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Figure 4: Illustration of MSDA-WJDOT on target shift problem. (Left) illustration of 2 source and target distributions
with unbalanced classes. (Center-Left) source distributions weighted by ααα and estimated target classifier. (Center-Right
and Right) classification accuracy of MSDA-JDOT and JCPOT and ααα coefficients at varying of class proportions in target
dataset.

Table 1: Object recognition accuracy. The last column re-
ports the average rank across target domain. Results of meth-
ods marked by ∗ are from Montesuma and Mboula [2021].

Method Amazon dslr webcam Caltech10 AR
Baseline 93.13± 0.07 94.12± 0.00 89.33± 1.63 82.65± 1.84 5.00
IWERM 93.30± 0.75 100.00± 0.00100.00± 0.00100.00± 0.00 89.33± 1.16 91.19± 2.5791.19± 2.5791.19± 2.57 2.75
CJDOT 93.71± 1.57 93.53± 4.59 90.33± 2.13 85.84± 1.73 3.50
MJDOT 94.12± 1.57 97.65± 2.88 90.27± 2.48 84.72± 1.73 3.00
JCPOT∗ 79.23± 3.09 81.77± 2.81 93.93± 0.60 77.91± 0.45 5.50
WBT∗ 59.86± 2.48 60.99± 2.15 64.13± 2.38 62.80± 1.61 7.25
WBT∗

reg 92.74± 0.45 95.87± 1.43 96.57± 1.7696.57± 1.7696.57± 1.76 85.01± 0.84 4.00
MSDA-WJDOT 94.23± 0.9094.23± 0.9094.23± 0.90 100.00± 0.00100.00± 0.00100.00± 0.00 89.33± 2.91 85.93± 2.07 2.25
Target 95.77± 0.31 88.35± 2.76 99.87± 0.65 89.75± 0.85 -
Baseline+Target 94.78± 0.48 99.88± 0.82 100.00± 0.00 91.89± 0.69 -

dataset (spib.linse.ufsc.br/noise.html). The noisy
datasets have been synthesised by PyDub python library
[Robert et al., 2018]. We then used the libROSA python li-
brary [Brian McFee et al., 2015] to extract 13 MFCCs, com-
puted every 10ms from 25ms Hamming windows followed
by a z-normalization per track. We chose each of the four
noisy datasets F16, Bucaneer2 (B2), Factory2 (F2), and De-
stroyerengine (D) as target domains, considering the remain-
ing noisy datasets and the clean dataset as labelled source
domains. The feature extraction g is a Bidirectional Long
Short-Term Memory (BLSTM) recurrent network with 2
hidden layers of 50 memory blocks each. The f classifier
is learned as one feed-forward layer. Model and training
details are reported in the supplementary materials.

We report in Table 2, the mean and standard devia-
tion accuracy on the testing set of each target dataset
over 50 trials, as well as the Average Rank for each
method. First note that on this hard adaptation problem the
Baseline+Target approach only slightly improves the
Baseline, and most of the methods performance shows
large variance. As expected, MSDA-WJDOTMTL signifi-
cantly outperforms MSDA-WJDOT confirming the impor-
tance of estimating an embedding g exploiting the source
variability. MSDA-WJDOTMTL achieves a 1.25 Average
Rank outperforming all the other MSDA methods and also
presents low standard deviation, showing robustness to small
sample size. Surprisingly, MSDA-WJDOTMTL even outper-

Table 2: Music-Speech discrimination accuracy and average
rank across target domains. Results of methods marked by
∗ are from Montesuma and Mboula [2021].

Method F16 B2 F2 D AR
Baseline 69.67± 8.78 57.33± 7.57 83.33± 9.13 87.33± 6.72 9.25
IWERM 72.22± 3.93 58.33± 5.89 85.00± 6.23 81.64± 3.33 8.75
IWERMMTL 75.00± 0.00 66.67± 0.00 100.00± 0.00100.00± 0.00100.00± 0.00 98.33± 3.33 4.00
DCTN 66.67± 3.61 68.75± 3.61 87.50± 12.5 94.44± 7.86 6.50
M333SDA 70.00± 4.08 61.67± 4.08 85.00± 11.05 83.33± 0.00 8.50
CJDOT 59.50± 13.95 50.00± 0.00 83.33± 0.00 91.67± 0.00 9.75
CJDOTMTL 83.83± 5.11 74.83± 1.17 100.00± 0.00100.00± 0.00100.00± 0.00 95.74± 16.92 3.25
MJDOT 66.33± 9.57 50.00± 0.00 83.33± 0.00 91.67± 0.00 9.50
MJDOTMTL 86.00± 4.55 72.83± 5.73 97.67± 3.74 97.74± 8.28 3.50
JCPOT∗ 88.67± 1.67 92.55± 2.11 82.41± 2.22 87.89± 1.39 5.50
WBT∗ 56.63± 6.56 56.88± 9.54 59.38± 2.61 56.63± 6.88 11.75
WBT∗

reg 94.92± 0.6894.92± 0.6894.92± 0.68 96.27± 1.6096.27± 1.6096.27± 1.60 96.87± 0.94 92.98± 1.38 3.00
MSDA-WJDOT 83.33± 0.00 58.33± 6.01 87.00± 6.05 89.00± 4.84 7.00
MSDA-WJDOTMTL 87.17± 4.15 74.83± 1.20 99.67± 1.63 99.67± 1.6399.67± 1.6399.67± 1.63 2.25
Target 73.67± 6.09 69.17± 7.50 77.33± 4.73 73.17± 9.90 -
Baseline+Target 71.06± 9.31 67.62± 11.92 85.33± 11.85 79.53± 10.05 -

forms both the Target and Baseline+Target meth-
ods, where the labels are available.

5 CONCLUSION

We presented a novel approach for multi-source DA that
relies on OT for propagating labels from the sources and
a weighting of the source domains that selects the best
sources for the target task at hand in order to get a better
prediction. We provided results that show that the proposed
approach is theoretically grounded. We present numerical
experiments on simulated data that shows the effectiveness
of our method on both domain and target shift problems. Fi-
nally, we illustrate the good performance of MSDA-WJDOT
on real-world benchmark datasets. Future works will investi-
gate a regularization of α and estimating simultaneously the
embedding g with MSDA-WJDOT instead of pre-training
it with multitask learning. The embedding could indeed be
updated for each new target which suggests an incremental
formulation for MSDA-WJDOT that could be valuable in
practice.

spib.linse.ufsc.br/noise.html
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