
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

IMPROVING AUTOREGRESSIVE IMAGE GENERATION
BY MITIGATING GRADIENT BIAS IN SOFTMAX

Anonymous authors
Paper under double-blind review

ABSTRACT

Softmax is the most commonly used probabilistic activation function in classifi-
cation tasks, partly due to its tendency to over-penalize non-target classes with
high prediction scores. However, this property becomes detrimental in autore-
gressive generation tasks, where multiple valid predictions may exist. Unlike con-
ventional classification task, which seeks a single correct answer, autoregressive
models are expected to assign high probabilities to various plausible outputs to
ensure diversity in generation. However, during training, gradient bias caused
by Softmax over-penalizes non-target predictions with high probabilities, limit-
ing output diversity and hindering optimization convergence. To alleviate this,
we propose Gradient Suppressed Softmax (GS-Softmax), which reduces the gra-
dient contributions of high-probability non-target classes. Through experiments,
we demonstrate that GS-Softmax improves both the diversity of generated content
and optimization convergence. Code and pre-trained models will be made public.

1 INTRODUCTION

Autoregressive models, leveraging the “predicting next token in the sequence” training stratege
and transformer structure (Vaswani, 2017), have achieved remarkable success in language mod-
eling (Radford, 2018; Brown, 2020; Touvron et al., 2023). Recently, building upon VQVAE (Van
Den Oord et al., 2017), which represents images as sequences of discrete tokens, the “next token
prediction” paradigm has also shown its effectiveness in image generation (Tian et al., 2024; Sun
et al., 2024; Li et al., 2024), surpassing diffusion-based methods (Song & Ermon, 2019; Ho et al.,
2020; Dhariwal & Nichol, 2021; Lu et al., 2022; Rombach et al., 2022) on several benchmarks.

The next token prediction task in autoregressive generative models is a specialized form of classi-
fication, where the model learns to predict the probability distribution of the next token based on
the preceding tokens in a sequence. Unlike conventional classification tasks that seek a single cor-
rect answer, these models should assign high probabilities to multiple plausible outputs to ensure
both reasonable and diverse generations. For instance, given the sequence “His name is,” the model
should favor various possible names rather than one.

However, autoregressive generative models are typically trained in a self-supervised manner (Rad-
ford, 2018; Brown, 2020; Touvron et al., 2023; Sun et al., 2024; Tian et al., 2024), where the model
predicts a single target token during training and is optimized to maximize the probability of this la-
bel. This suppresses other valid predictions, leading to overconfidence in one outcome. We find that
this issue is further exacerbated by the use of Softmax, which amplifies the focus on the predicted
target while diminishing diversity in the output.

Probabilistic activation functions (PAF) are essential in machine learning for converting model out-
puts (i.e., logits) into probability distributions. Among them, Softmax (Bridle, 1989) has emerged
as the dominant choice, particularly in classification tasks, owing to its propensity to excessively pe-
nalize high probabilities for non-target classes. This makes Softmax highly effective for single-label
classification problems. However, in autoregressive generation tasks, where multiple valid options
often exist, Softmax can become problematic. In these cases, with Softmax, the optimization will
focus more on suppressing potentially valid but non-target predictions, as they naturally carry high
probabilities (Holtzman et al., 2019), rather than maintaining a balanced distribution across all plau-
sible options. This misalignment not only limits the diversity of the model’s generated content but
also hinders its ability to properly learn the underlying data distribution.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(a) (b) (c)

Figure 1: Visualization of the positive mapping functions (indicated with blue) and their derivative
(indicated with red). When x and F (x) are large, the derivatives of our functions (b, c) stop increas-
ing, while the derivative of the mapping function (a) used in Softmax continues to increase.

To address the misalignment, we need to solve the issue where Softmax overly penalizes high-
probability non-target predictions. The Softmax operation can generally be broken down into two
steps: (1) applying a positive mapping function (PMF) to transform model outputs (i.e., logits) into
positive values, and (2) normalizing these values so that their sum equals one. By default, Softmax
uses Fs(x) = ex as its PMF, whose derivative increases with the input. This results in larger
gradients flow through logits with higher values, leading to the over-penalization of potential valid
predictions. To address this gradient bias, we propose to replace Fs with a function whose derivative
does not continuously grow as the input increases. Based on this criteria, we design two positive
mapping functions F1 and F2 (see illustration in Figure 1).

Through experiments, we demonstrate that replacing the PMF in Softmax with F1 or F2 leads to
performance improvements, validating our analysis and findings. We refer to this variant as Gradient
Suppressed Softmax (GS-Softmax). In a series of comprehensive experiments, we further show that
GS-Softmaxnot not only enhances the diversity of generated content but also improves optimization
convergence compared to traditional Softmax.

2 PRELIMINARY

2.1 PROBABILISTIC ACTIVATION FUNCTION

In classification tasks, models are required to predict the likelihood of each class. To achieve this,
classification models usually use a probabilistic activation function (PAF) to convert the model out-
puts (i.e., logits) into a valid probability distribution (i.e., all values are positive and add up to one).
Typically, the probabilistic activation functions can be conceptualized as a two-step process:

1. Positive Mapping Function (PMF): Use a positive monotonically increasing function F
(e.g., Fs(x) = ex in Softmax) to convert the logits into positive values.

2. Normalization: Normalize the positively mapped values so that their sum equals one.

Let K represent the number of classes in the task. The calculation of Softmax (Bridle, 1989), a
widely used probability activation function, can be expressed as:

Softmax(x(i)) =
Fs(xi)∑K
j=1 Fs(xj)

, where Fs(x) = ex. (1)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2.2 AUTOREGRESSIVE MODEL

Autoregressive (AR) models are developed based on the chain rule of probability, which allows
the joint probability of a set of variables x = (x1, x2, . . . , xn) to be factorized into a product of
conditional probabilities for each component:

p(x) = p(x1, . . . , xn) =

n∏
i=1

p(xi | x1, . . . , xi−1). (2)

To learn the data distribution P , most autoregressive generative models are trained based on the
“next token prediction” strategy. Specifically, let (x1, x2, . . . , xt) denote a token sequence sampled
from the dataset, where the goal is to predict xt based on the preceding tokens (x1, x2, . . . , xt−1).
This is achieved by maximizing the predicted probability Qθ(xt|x<t) using maximum likelihood
estimation (MLE). Inherently, the training objective of MLE is equivalent to minimizing the cross-
entropy between true data distribution P and the model’s predicted distribution Qθ, which can be
formulated as:

LMLE = −Ex∼P [

|x|∑
t=1

logQθ(xt|x<t)]. (3)

3 METHOD

Most autoregressive image generation models (Yu et al., 2021; Esser et al., 2021; Lee et al., 2022;
Sun et al., 2024; Tian et al., 2024) adopt Softmax as the probabilistic activation function. In this
section, we first demonstrate that using Softmax inherently conflicts with the training objective of
autoregressive generative models. Then, to alleviate this issue, we introduce a novel probabilistic
activation function: Gradient Suppressed (GS) Softmax.

3.1 SOFTMAX IS NOT OPTIMAL FOR AUTOREGRESSIVE GENERATIVE MODEL

In autoregressive tasks such as text or image generation, a single input can have multiple plausible
continuations. For instance, the prompt “My name is” could be followed by various valid comple-
tions. Thus, the autoregressive generative model should be capable of assigning high probabilities to
various reasonable answers, as this is essential for implementing sampling strategies such as top-k
(Fan et al., 2018) and top-p sampling (Holtzman et al., 2019) during inference. These sampling
strategies, in turn, are key to ensuring the model’s generations are diverse and valid.

In this section, we first reveal that the training objective of autoregressive generative models con-
tradicts the expectation that they should assign high probabilities to all potential correct answers.
Then, we demonstrate that this issue is further exacerbated when Softmax is used.

3.1.1 CONTRADICTION BETWEEN TRAINING OBJECTIVE AND EXPECTATION

Since autoregressive models are typically trained in a self-supervised manner, each training sample
is paired with only one “correct” target output, which is the next token in the given sequence. As
proved below, this forces the model to reduce the predicted probabilities of all other options.

For simplicity, let LT
θ (x) and QT

θ (x) respectively denote logits and the probability assigned by the
model to the target class T given the input sequence {x1, x2, . . . , xt−1}, while LNi

θ (x) and QNi

θ (x)
denote the ones assigned to the i-th non-target class Ni. Then the calculation of QT

θ (x) can be
termed as:

QT
θ (x) =

F (LT
θ (x))

F (LT
θ (x)) +

∑K−1
i=1 F (LNi

θ (x))
. (4)

Then, the training loss calculated on this single training example can be termed as:

LMLE(x) = − log(QT
θ (x))

= log(F (LT
θ (x)) +

K−1∑
i=1

F (LNi

θ (x)))− log(F (LT
θ (x))).

(5)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

As can be inferred from equation 5, and considering F is a monotonically increasing function, min-
imizing LMLE(x) forces the logits of all non-target classes to decrease. Accordingly, their predicted
probabilities are decreased, even if some of them could also be valid predictions in autoregressive
generation missions.

3.1.2 SOFTMAX OVER-PENALIZES POTENTIAL CORRECT PREDICTIONS.

Ideally, during training, the penalization of potentially valid non-target predictions should be mini-
mized to prevent excessively lowering their likelihood. However, with Softmax, this penalization is
actually exacerbated. According to equation 5, the gradient calculation for non-target logits LNi

θ (x)
can be referred to as follows:

∂LMLE(x)

∂LNi

θ (x)
= c×

∂F (LNi

θ (x))

∂LNi

θ (x)
, where c =

1

F (LT
θ (x)) +

∑K−1
i=1 F (LNi

θ (x))
. (6)

According to equation 6, among non-target classes, the relative magnitudes of the gradients flow to

their logits are governed by ∂F (L
Ni
θ (x))

∂L
Ni
θ (x)

, considering c is identical across them. Since Softmax uses

the exponential function Fs(x) = ex as the positive mapping function, and its derivative grows as x
increases, higher logits receive larger gradients. As a result, non-target classes with higher predicted
probabilities, which are always potentially correct predictions in autoregressive generation tasks
(Fan et al., 2018; Holtzman et al., 2019), experience stronger suppression due to larger gradient
updates. This contradicts the expectation that autoregressive generative models should assign high
probabilities to as many potential valid candidates as possible, as discussed in Section 3.1.

3.2 GRADIENT SUPPRESSED SOFTMAX

As analyzed in Section 3.1.2, the over-penalization problem arises since Softmax will assign greater
gradients to higher logits. Inherently, this gradient bias arises since Fs is a monotonically increasing
function. Based on this recognition, we propose to replace Fs with the function F that meets the
following criteria:

1. F ′(x) should not increase as F (x) increases when F (x) is large.

2. The function F (x) should be positive and monotonically increasing
(i.e., ∀x2 > x1, F (x2) > F (x1) > 0).

3. limF (x)→0 F
′(x) = 0.

Among them, criterion 1 is used to alleviate the over-penalization problem by ensuring that larger
logits do not receive greater gradients. Criteria 2 and 3 draw on the advantages of Softmax, ensuring
the efficiency and stability of the training. Considering these criteria and computational efficiency,
we design the following two functions that meet the above three requirements:

Function 1: F1(x) =
1

1 + e−x
(7)

Function 2: F2(x) =

{
ex, if x < 0

x+ 1, if x ≥ 0
(8)

Both Function 1 and Function 2 meet the requirements above (see the visualization in Figure 1). By
default, we use Function 1 as the positive mapping function, while we also empirically verify the
effectiveness of Function 2 in Section 5.1. Then, the calculation of GS-Softmax can be termed as:

GS-Softmax(xi) =
F1(xi)∑K
j=1 F1(xj)

, where F1(x) =
1

1 + e−x
. (9)

3.3 TEMPERATURE SCALING IN GS-SOFTMAX

In the inference stage of autoregressive generation tasks, temperature scaling (Hinton, 2015; Guo
et al., 2017) can be employed to modulate the sharpness of probability distributions, which allows

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

for trade-offs between the diversity and quality of the generated content. For Softmax, considering
its positive mapping function Fs(x) = ex is a convex function, the temperature scaling is realized
by simply scaling the input logits with a factor 1/τ , where τ is the temperature parameter.

Since the positive mapping function used in GS-Softmax is non-convex, we propose to perform
temperature scaling on “fake logits”. Let P = {p1, p2, . . . , pk} denote the probability distribution
of the next token predicted by the model, we use first use M(x) = ln(x) to map the predicted
probabilities to “fake logits” LF = {ln(p1), ln(p2), . . . , ln(pk)}. As proved below, the “fake logits”
can be converted back to P by applying Softmax:

Softmax(LF
i) =

eln(pi)∑K
j=1 e

ln(pj)

=
pi∑K
j=1 pj

= pi.

(10)

Considering now that the probabilities are obtained with “fake logits” and Softmax, we can perform
temperature scaling on the “fake logits” like the original algorithm (Hinton, 2015). Then, in GS-
Softmax, the calculation of the scaled probability pτi can be termed as:

pτi =
eln(pi)/τ∑K
j=1 e

ln(pj)/τ
. (11)

4 EXPERIMENTS

4.1 SETTINGS

To validate the effectiveness of GS-Softmax, we conduct experiments following the setup of LLa-
maGen (Sun et al., 2024), which achieves state-of-the-art performance with a straightforward algo-
rithmic design. We outline the training setup below and refer the reviewer to (Sun et al., 2024) for
further details.

Training. We train models using Softmax and GS-Softmax on the widely used 256×256 ImageNet
benchmark using consistent settings. Specifically, for all experiments, the learning rate is set as 10−4

with a batch size of 256, and we use the AdamW optimizer with β1 = 0.9, β2 = 0.95, and a weight
decay of 0.05. All models are trained for 300 epochs. In addition, gradient clipping with a maximum
norm of 1.0 is utilized. The dropout rate is 0.1 for input token embeddings, attention layers, and
feedforward networks (FFN). We also apply a 0.1 dropout to the class condition embedding for
classifier-free guidance.

Evaluation. We evaluate the effectiveness of our method using Fréchet Inception Distance (FID)
(Heusel et al., 2017) and sFID (Nash et al., 2021) as the primary metrics, as they consider both
the diversity and quality of the generated images. Additionally, we also report Inception Score (IS)
(Salimans et al., 2016) and Recall (Kynkäänniemi et al., 2019) for a comprehensive comparison.
For fairness, we fix the random seed as 0 and use the evaluation scripts provided by Sun et al.
(2024). Without special specification, all experiments in Section 4 are performed on ImageNet with
256 × 256 resolution using GPT-B. By default, as suggested by Sun et al. (2024), we set CFG=2,
temperature=1, and use top-k sampling to perform the evaluation.

4.2 MAIN RESULTS

To evaluate the effectiveness of GS-Softmax, we train models using either Softmax or GS-Softmax,
assessing their performance based on the following two aspects: the convergence of optimization
and the generative capacity of the trained models.

Effect on optimization convergence. Theoretically, using GS Softmax might increase training loss
since it suppresses the penalty on high-confidence, non-target predictions. However, in practice, we
find GS Softmax always helps to reduce the loss on both training and validation datasets. In Table
1, we compare the losses of models using standard Softmax versus GS-Softmax, where perplexity

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Model GPT-B GPT-L GPT-XL
PAF Softmax GS-Softmax Softmax GS-Softmax Softmax GS-Softmax

PPLtrain 1954.84 1949.62 1483.53 1473.65 1221.89 1208.16
PPLval 2021.07 2018.46 1644.99 1634.54 1553.13 1548.72

Table 1: Perplexity (PPL, equal to eLMLE , lower is better) of the trained models on the training and
validation splits of ImageNet. GS-Softmax helps the optimization converge better.

Model Top-k PAF sFID ↓ FID ↓ Recall (%) ↑ IS ↑

GPT-B
(111M)

Top-1000
Softmax 29.51 10.50 31.53 184.68

GS-Softmax 27.39 10.47 32.51 189.99

Top-5000
Softmax 11.31 6.73 39.76 203.00

GS-Softmax 10.53 6.69 40.91 205.17

Top-all
Softmax 7.53 5.25 45.08 189.28

GS-Softmax 7.21 5.22 45.34 193.38

GPT-L
(343M)

Top-1000
Softmax 23.70 8.35 36.69 285.25

GS-Softmax 22.81 8.02 38.78 275.65

Top-5000
Softmax 10.32 4.95 46.27 288.17

GS-Softmax 9.39 4.66 47.58 280.50

Top-all
Softmax 7.29 3.34 51.98 270.47

GS-Softmax 6.72 3.20 52.77 260.06

GPT-XL
(775M)

Top-1000
Softmax 19.58 7.11 39.20 322.05

GS-Softmax 19.36 6.76 40.75 308.15

Top-5000
Softmax 9.14 4.48 48.23 315.58

GS-Softmax 9.01 4.12 49.78 306.78

Top-all
Softmax 6.95 3.09 52.84 300.40

GS-Softmax 6.88 2.96 53.56 285.57

Table 2: Performance comparisons on class-conditional ImageNet benchmark with 256×256 reso-
lution. Better results are highlighted in bold.

(i.e., eLMLE) are reported for easier observation. The results show that, in most cases, using Gradient
Suppressed Softmax can lower the models’ perplexity on both training and validation sets. Given
that the training objective is the same, lower perplexity suggests that GS-Softmax enables the model
to learn the data distribution more effectively, as the optimization converges better. This further
supports our analysis that over-penalizing potentially valid non-target predictions conflicts with the
training objectives of autoregressive generative models.

Effect on image generation diversity and quality. We assess the quality of images generated under
various settings. As shown in Table 2, compared with Softmax, using GS-Softmax continuously
achieves better FID and sFID scores on different settings. This demonstrates that, with GS Softmax,
models could maintain a more balanced prediction distribution across plausible options. Moreover,
as can be observed, as the value of top-k decreased, the improvement brought by GS Softmax
consistently increased. This reflects that GS-Softmax helps the model assign higher probabilities to
more “correct” candidates than Softmax does.

4.3 ABLATION

Temperature scaling. To verify the effectiveness of the temperature scaling algorithm we designed
in Section 3.3, we evaluate our trained model with different temperature factors. The results in Ta-
ble 3 show that as the temperature increases, the sFID, FID, and Recall scores continuously improve,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Temperature sFID ↓ FID ↓ Recall (%) ↑ Inception↑ Precision (%) ↑

0.98 7.55 5.43 44.45 196.91 84.82
0.99 7.41 5.35 45.21 195.13 84.73
1.0 7.21 5.22 45.34 193.38 84.55

1.01 7.17 5.20 45.71 192.30 84.54
1.02 7.15 5.16 46.21 190.30 83.90

Table 3: Performance comparisons when performing temperature scaling in the inference stage. GS-
Softmax is employed as the probability activation function.

Scale Factor α sFID ↓ FID ↓ Recall (%) ↑ Inception↑ PPLtrain ↓ PPLval ↓

0.5 7.57 5.03 47.34 191.97 1946.91 2016.21
1.0 7.21 5.22 45.34 193.38 1949.62 2018.46
2.0 7.18 5.24 46.95 184.76 1955.89 2023.45

Table 4: Ablation study on scaling the range of F1 by a factor of a, where the range is enlarged or
reduced by a times. Enlarging the range degrades overall performance.

indicating the diversity of the generated outputs is enhanced. Conversely, when the temperature de-
creases, both the inception and precision scores improve, suggesting higher quality in the generated
images. This verifies the effectiveness of our temperature scaling algorithm, showing that we can
still use it to make a trade-off between diversity and quality when using GS-Softmax.

Range of the positive mapping function. The expressive power of the positive mapping func-
tion F1 used in GS-Softmax is relatively weaker than that of the function used in Softmax (i.e.,
Fs(x) = ex), as the range of Fs is (0,+∞), while the range of F1 is (0, 1). To explore whether this
affects performance, we trained and evaluated models using GS-Softmax, scaling the range of F1 by
multiplying it by a factor α. As shown in Table 4, increasing the range worsened the optimization
convergence. We attribute this to the fact that expanding the range reduces the gradient-suppressing
effect of GS-Softmax. Additionally, since carefully tuning the range provides minimal benefit, for
the sake of simplicity, we set α = 1 as the default.

Classifier Free Guidance. We conduct evaluations using different weights for Classifier-Free Guid-
ance (CFG) to examine its impact. As can be observed in Table 5 (Left), a larger CFG weight results
in better IS scores. Given that we consider sFID and FID as the primary metrics for evaluation, we
set CFG=2 as the default configuration, which performs well across various settings.

5 DISCUSSION

5.1 SELECTION OF POSITIVE MAPPING FUNCTION

As discussed in Section 3.2, the derivative of the positive mapping function F (x) should not con-
tinuously increase as F (x) increases. Based on this, we introduce two alternative positive mapping
functions: F1(x) (equation 7) and F2(x) (equation 8). The key difference between them is that
F ′
1(x) decreases as x increases for x ≥ 0, while F ′

2(x) = 1 for x ≥ 0. Both of them have lower
derivatives when x is large compared to the mapping function Fs used in Softmax (equation 1),
whose derivative keeps growing as x increases.

To validate the effectiveness of the criteria we suggested in Section 3.2, we trained models using
either Fs, F1(x) (equation 7) or F2(x) (equation 8) as the positive mapping functions and compared
their performance. As shown in Table 6, both F1(x) and F2(x) outperform the original Softmax
function. This confirms the effectiveness of our approach, demonstrating that over-penalizing po-
tentially correct candidates harms performance. Additionally, F1 and F2 did not demonstrate a clear
superiority over each other in the image evaluation metrics. However, F1 continuously achieved bet-
ter perplexity scores on both the training set and validation set, indicating it helps the optimization
converge better. Therefore, we default to using F1(x) as the positive mapping function.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

CFG sFID ↓ FID ↓ Recall (%) ↑ IS ↑

1.75 7.21 5.97 49.58 160.36
2.0 7.21 5.22 45.34 193.38

2.25 7.32 5.48 42.8 223.30

Model SoftMax GS-Softmax

GPT-B (111 M) 0.72 0.74
GPT-L (343 M) 1.15 1.18

GPT-XL (775 M) 2.58 2.60

Table 5: Left: Ablation on the weight of Classifier Free Guidance (CFG), IS scores become better
as the weight of CFG increases. Right: Comparisons of training cost (GPU seconds per iteration),
where different probabilistic activation functions are used.

Resolution PAF sFID ↓ FID ↓ Recall (%) ↑ Inception↑ PPLtrain ↓ PPLval ↓

256×256
Softmax 7.53 5.25 45.08 189.28 1954.84 2021.07

GS-Softmax (F1) 7.21 5.22 45.34 193.38 1949.62 2018.46
GS-Softmax (F2) 7.02 5.12 46.28 186.18 1951.35 2019.66

384×384
Softmax 7.74 5.85 45.50 170.35 1513.77 1630.10

GS-Softmax (F1) 7.64 5.80 46.06 168.68 1503.95 1618.97
GS-Softmax (F2) 7.69 5.83 45.41 170.93 1507.68 1624.58

Table 6: Performance comparisons of using different positive mapping functions. Models with GS-
Softmax (F1) consistently achieve better perplexity scores.

5.2 OVER PENALIZATION AND OVER CONFIDENCE

In standard classification tasks, several methods have been proposed to prevent the model from
becoming overly confident in its predictions. These approaches also help to reduce the penalty
on non-target high-probability categories during optimization. In this section, we explore whether
methods aimed at reducing model confidence, such as label smoothing (Szegedy et al., 2016) and
temperature scaling (Hinton, 2015), can benefit autoregressive image generation models.

Temperature scaling does not benefit in the training stage. As shown in Table 7, incorporating
temperature scaling during training did not lead to performance improvements. We attribute this
to the fact that although temperature scaling can make the predicted probability distribution either
flatten or sharper, it does not alter the relative magnitude of the gradients—i.e., a larger probability
still results in a larger gradient. As a result, as long as softmax is used, optimization will continue to
focus more on reducing the probability of high-confidence, non-target classes, which is misaligned
with the objectives of autoregressive generative models, as discussed in Section 3.1.

Label smoothing. Label smoothing (Szegedy et al., 2016) addresses model overconfidence by
modifying the labels of non-target classes from 0 to a small constant. However, as shown in Table 8,
applying label smoothing leads to a noticeable increase in both training loss and a decline in image
evaluation metrics. We hypothesize that this degradation arises from the increased optimization
challenge introduced by label smoothing. Moreover, it can also be attributed to the fact that label
smoothing does not fundamentally solve the problem. When label smoothing is applied, all non-
target labels remain the same. In this case, when Softmax is utilized, the optimization still focuses
more on minimizing the probabilities of potential valid but non-target options. Considering this, it
may be more effective to adjust the distribution of probabilities for non-target classes based on their
predicted probabilities.

5.3 TRAING COST AND EFFICIENCY

Training Cost. Compared to Softmax, GS-Softmax introduces a few additional calculations, be-
cause the positive mapping function has been changed from Fs(x) = ex to F1(x) = 1

1+e−x . As
the training cost reported in Table 5 (Right), this change does not significantly impact the overall
training speed. For instance, training GPT-XL (775M) with Softmax takes approximately 2.58 GPU
seconds per, while using GS-Softmax takes 2.60 GPU seconds on average. This represents an overall
increase of just 0.7%. Also, part of this slight cost increase may be attributed to PyTorch’s optimiza-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

PAF sFID ↓ FID ↓ Recall (%) ↑ Inception↑ PPLtrain ↓ PPLval ↓

Softmax (τ=0.8) 7.70 5.27 45.30 188.42 2019.70 2072.13
Softmax (τ=1.0) 7.53 5.25 45.08 189.28 1954.84 2021.07
Softmax (τ=1.2) 7.62 5.46 45.21 178.82 2286.32 2341.59

GS-Softmax 7.21 5.22 45.34 193.38 1949.62 2018.46

Table 7: Performance comparisons when training models with different temperatures. Temperature
scaling is not helpful in training.

PAF sFID ↓ FID ↓ Recall (%) ↑ Inception↑ PPLtrain ↓ PPLval ↓

Softmax 7.53 5.25 45.08 189.28 1954.84 2021.07
Softmax + Label Smoothing 13.33 9.84 48.39 135.42 2171.45 2261.72

GS-Softmax 7.21 5.22 45.34 193.38 1949.62 2018.46

Table 8: Performance comparisons on class-conditional 256×256 ImageNet benchmark. Label
Smoothing is not beneficial for training autoregressive generative model.

tions in the implementation of the Softmax. How to implement GS-Softmax in a more efficient way
will be the focus of our future work.

Training Efficiency. Intuitively, using GS-Softmax may slow down the convergence speed during
training since it suppresses the gradients used for punishing non-target classes with high probability.
In practice, although models using GS-Softmax often exhibit higher training loss than those with
standard Softmax in the early stages, the loss typically drops below that of models with Softmax
after around 50 to 80 epochs. Considering that autoregressive image generation models typically
require training for over 300 epochs, GS-Softmax does not hinder convergence speed overall.

5.4 VISUALIZATION

In Figure 2, we visualize images generated by models using either Softmax or GS-Softmax, where
the sampling is restricted to candidates with the top-500 probabilities. Overall, GS-Softmax pro-
duces images with more detailed features, supporting the observation that models with GS-Softmax
better capture the underlying data distribution (Table 1), and this advantage becomes even more
pronounced when the sampling range is constrained (Table 2).

6 RELATED WORKS

Autoregressive Image Generation. Autoregressive models for image generation convert 2D images
into 1D sequences of pixels or tokens, generating each RGB pixel or token in a predefined order.
Early works (Van Den Oord et al., 2016; Van den Oord et al., 2016; Parmar et al., 2018; Chen
et al., 2020) have demonstrated the effectiveness of autoregressive models on generating RGB pixels,
achieving comparable performance compared to generative adversarial network (Goodfellow et al.,
2014; Brock, 2018; Karras et al., 2019; Kang et al., 2023). Following works such as VQ-GAN (Esser
et al., 2021; Lee et al., 2022) significantly improved performance by conducting autoregressive
learning in the latent space of VQVAE (Van Den Oord et al., 2017; Razavi et al., 2019a), where
images are represented as token sequences. VQVAE-2 (Razavi et al., 2019b) and RQ-Transformer
(Lee et al., 2022) employ a similar approach but use a stacked VQVAE, which represents images
through hierarchical codes in the latent space. Moreover, inspired by BERT (Devlin, 2018), masked
prediction models (Chang et al., 2022; Yu et al., 2023a;a;b) enable predicting multiple tokens at
each step, significantly reducing the deploying cost. More recently, autoregressive image generation
methods (Sun et al., 2024; Tian et al., 2024; Li et al., 2024) have shown promising performance,
excels methods based on diffusion (Song & Ermon, 2019; Ho et al., 2020; Dhariwal & Nichol,
2021; Lu et al., 2022; Rombach et al., 2022) on several benchmarks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Softmax

GS-Softmax

Figure 2: Non-cherry-picked Visualization of images generated by models using Softmax and GS-
Softmax, conditioned on the class “Eskimo dog” (top-k=500). Images in the same column are
generated with the same start token.

Over-confidence issue in classification tasks. In classification tasks, deep neural networks of-
ten exhibit an over-confidence problem, where the model assigns excessively high confidence to
a single prediction while all others are greatly suppressed, which limits the generalizability of the
trained model. To address this issue, label smoothing (Szegedy et al., 2016) smooths the hard la-
bels of training samples to prevent the model from becoming overly confident in the target class.
Temperature scaling (Guo et al., 2017) adjusts the temperature parameter of the softmax function
to better calibrate the model’s predicted probabilities, making them more reflective of actual confi-
dence. Moreover, Pereyra et al. (2017) proposed to use both confidence penalty and label smoothing.
In general, methods focusing on alleviating over-confidence problems often do not consider how to
adjust confidence between non-target classes. Consequently, they are not effective in mitigating the
over-penalization issue caused by Softmax in autoregressive generative model scenarios, as we have
discussed and verified in Section 5.2.

Variants of Softmax. Various softmax variants have been proposed to enhance the performance.
For example, Hierarchical Softmax (Morin & Bengio, 2005) and Taylor Softmax (Banerjee et al.,
2020) are proposed to improve computing efficiency. Martins & Astudillo (2016) proposed Sparse-
max, which produces sparse probability distributions, enabling models to focus on a subset of classes
and improving interpretability. Moreover, Gumbel-Softmax (Jang et al., 2016) is proposed to facil-
itate differentiable sampling from categorical distributions, making it suitable for applications in
variational inference. In this work, to alleviate the over-penalty problem caused by Softmax, we
introduced a new variant: Gradient Suppressed (GS) Softmax.

7 CONCLUSION

In this work, we identify a key issue in autoregressive generative models: during training, the gradi-
ent bias introduced by Softmax will overly penalize potentially valid predictions, limiting the diver-
sity of the generation and hindering the model’s ability to learn the true data distribution. To address
this, we propose to mitigate the gradient bias by replacing the exponential function in Softmax with
a gradient-suppressed alternative. Through comprehensive experiments, we verify the effectiveness
of this strategy and introduce Gradient Suppressed Softmax, which improves both generation di-
versity and training efficiency. We hope our work helps the following researches to design a more
suitable probability activation function for autoregressive generative models.

Limitation. Intuitively, GS-Softmax should also be effective in autoregressive text generation tasks.
However, we didn’t verify this through experiments due to the limitation of the computing resource,
considering it requires training multiple large language models from scratch.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Kunal Banerjee, Rishi Raj Gupta, Karthik Vyas, Biswajit Mishra, et al. Exploring alternatives to
softmax function. arXiv preprint arXiv:2011.11538, 2020.

John Bridle. Training stochastic model recognition algorithms as networks can lead to maximum
mutual information estimation of parameters. Advances in neural information processing systems,
2, 1989.

Andrew Brock. Large scale gan training for high fidelity natural image synthesis. arXiv preprint
arXiv:1809.11096, 2018.

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked generative
image transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 11315–11325, 2022.

Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, and Ilya Sutskever.
Generative pretraining from pixels. In International conference on machine learning, pp. 1691–
1703. PMLR, 2020.

Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
tion, pp. 12873–12883, 2021.

Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation. arXiv preprint
arXiv:1805.04833, 2018.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
networks. In International conference on machine learning, pp. 1321–1330. PMLR, 2017.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Geoffrey Hinton. Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531,
2015.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
degeneration. arXiv preprint arXiv:1904.09751, 2019.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016.

Minguk Kang, Jun-Yan Zhu, Richard Zhang, Jaesik Park, Eli Shechtman, Sylvain Paris, and Taesung
Park. Scaling up gans for text-to-image synthesis. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 10124–10134, 2023.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 4401–4410, 2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved
precision and recall metric for assessing generative models. Advances in neural information
processing systems, 32, 2019.

Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and Wook-Shin Han. Autoregressive image
generation using residual quantization. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 11523–11532, 2022.

Tianhong Li, Yonglong Tian, He Li, Mingyang Deng, and Kaiming He. Autoregressive image
generation without vector quantization. arXiv preprint arXiv:2406.11838, 2024.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
ode solver for diffusion probabilistic model sampling in around 10 steps. Advances in Neural
Information Processing Systems, 35:5775–5787, 2022.

Andre Martins and Ramon Astudillo. From softmax to sparsemax: A sparse model of attention
and multi-label classification. In International conference on machine learning, pp. 1614–1623.
PMLR, 2016.

Frederic Morin and Yoshua Bengio. Hierarchical probabilistic neural network language model. In
International workshop on artificial intelligence and statistics, pp. 246–252. PMLR, 2005.

Charlie Nash, Jacob Menick, Sander Dieleman, and Peter W Battaglia. Generating images with
sparse representations. arXiv preprint arXiv:2103.03841, 2021.

Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer, Alexander Ku, and
Dustin Tran. Image transformer. In International conference on machine learning, pp. 4055–
4064. PMLR, 2018.

Gabriel Pereyra, George Tucker, Jan Chorowski, Łukasz Kaiser, and Geoffrey Hinton. Regularizing
neural networks by penalizing confident output distributions. arXiv preprint arXiv:1701.06548,
2017.

Alec Radford. Improving language understanding by generative pre-training. 2018.

Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with
vq-vae-2. Advances in neural information processing systems, 32, 2019a.

Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with
vq-vae-2. Advances in neural information processing systems, 32, 2019b.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. Advances in neural information processing systems, 29,
2016.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue Peng, Ping Luo, and Zehuan Yuan.
Autoregressive model beats diffusion: Llama for scalable image generation. arXiv preprint
arXiv:2406.06525, 2024.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethink-
ing the inception architecture for computer vision. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 2818–2826, 2016.

Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling:
Scalable image generation via next-scale prediction. arXiv preprint arXiv:2404.02905, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Aaron Van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex Graves, et al. Con-
ditional image generation with pixelcnn decoders. Advances in neural information processing
systems, 29, 2016.

Aäron Van Den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks.
In International conference on machine learning, pp. 1747–1756. PMLR, 2016.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Jiahui Yu, Xin Li, Jing Yu Koh, Han Zhang, Ruoming Pang, James Qin, Alexander Ku, Yuanzhong
Xu, Jason Baldridge, and Yonghui Wu. Vector-quantized image modeling with improved vqgan.
arXiv preprint arXiv:2110.04627, 2021.

Lijun Yu, Yong Cheng, Kihyuk Sohn, José Lezama, Han Zhang, Huiwen Chang, Alexander G
Hauptmann, Ming-Hsuan Yang, Yuan Hao, Irfan Essa, et al. Magvit: Masked generative video
transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pp. 10459–10469, 2023a.

Lijun Yu, José Lezama, Nitesh B Gundavarapu, Luca Versari, Kihyuk Sohn, David Minnen, Yong
Cheng, Agrim Gupta, Xiuye Gu, Alexander G Hauptmann, et al. Language model beats diffusion–
tokenizer is key to visual generation. arXiv preprint arXiv:2310.05737, 2023b.

13

	Introduction
	Preliminary
	Probabilistic Activation Function
	Autoregressive Model

	Method
	Softmax is not optimal for autoregressive generative model
	Contradiction between training objective and expectation
	Softmax over-penalizes potential correct predictions.

	Gradient Suppressed Softmax
	Temperature Scaling in GS-Softmax

	Experiments
	Settings
	Main Results
	Ablation

	Discussion
	Selection of positive mapping function
	Over penalization and over confidence
	Traing cost and efficiency
	Visualization

	Related Works
	Conclusion

