
Statistical Foundations of Prior-Data Fitted Networks

Thomas Nagler 1 2

Abstract
Prior-data fitted networks (PFNs) were recently
proposed as a new paradigm for machine learn-
ing. Instead of training the network to an ob-
served training set, a fixed model is pre-trained
offline on small, simulated training sets from a
variety of tasks. The pre-trained model is then
used to infer class probabilities in-context on fresh
training sets with arbitrary size and distribution.
Empirically, PFNs achieve state-of-the-art perfor-
mance on tasks with similar size to the ones used
in pre-training. Surprisingly, their accuracy fur-
ther improves when passed larger data sets during
inference. This article establishes a theoretical
foundation for PFNs and illuminates the statisti-
cal mechanisms governing their behavior. While
PFNs are motivated by Bayesian ideas, a purely
frequentistic interpretation of PFNs as pre-tuned,
but untrained predictors explains their behavior.
A predictor’s variance vanishes if its sensitivity to
individual training samples does and the bias van-
ishes only if it is appropriately localized around
the test feature. The transformer architecture used
in current PFN implementations ensures only the
former. These findings shall prove useful for de-
signing architectures with favorable empirical be-
havior.

1. Introduction
1.1. PFNs in a Nutshell

Prior-data fitted networks (PFNs) were proposed by Müller
et al. (2022) as a new approach to machine learning, mo-
tivated by ideas from Bayesian nonparametrics and meta-
learning. The goal is to compute a posterior predictive
distribution (PPD) for a test feature given observed training
data. To approximate the PPD, a transformer network is

1Department of Statistics, LMU Munich, Munich, Germany
2Munich Center for Machine Learning, Munich, Germany. Corre-
spondence to: Thomas Nagler <t.nagler@lmu.de>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

trained offline through meta-learning. After simulating sev-
eral training data sets from a variety of tasks, a transformer
network imitating the PPD on these sets is trained. After
this pre-training phase, the network is treated as fixed. In
the inference phase, a fresh training set and some test fea-
tures are passed to the pre-trained network, which computes
predictions for the test labels in a single forward pass.

This approach is different from usual machine learning meth-
ods. Here, one would set up a model for the relationship
between label and feature, and train the model parameters
on a specific data set. The main benefit of PFNs is that no
training or tuning is necessary at the inference stage, and
predictions are delivered in split seconds.

1.2. Empirical Findings

Empirically, Müller et al. (2022) found that PFNs can in-
deed approximate a given PPD and perform well on real
prediction tasks. While this pilot study was limited to tiny
data sets, the TabPFN model of Hollmann et al. (2022) made
a leap forward to classification tasks on moderately large
tabular data sets. In particular, they pre-train a network
with simulated data sets of size up to n ≈ 1000 and report
state-of-the-art performance on several benchmarks. And
surprisingly, the network’s predictions continue to improve
at the inference stage when fed data sets with more than
1000 samples. This is an example of in-context learning
(ICL): a pre-trained network learns from the context pro-
vided in the prompt (here: the fresh training data) without
updating its parameters.

1.3. Summary

The main contribution of this work is establishing the theo-
retical foundation for PFNs and identifying statistical mech-
anisms explaining their empirical behavior.

• Theoretical framework (Section 2): As a prelimi-
nary step, we give precise definitions of the PPD, the
statistical model behind it, and its PFN approximation.

• When PPDs can learn (Section 3): Since PPDs are
the main motivation behind PFNs, we first ask when
a PPD can learn from training data. This can be ap-
proached from the perspective of Bayesian nonpara-
metrics (Ghosal & van der Vaart, 2017). If the prior
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has large enough support and does not concentrate too
much away from the true hypothesis, one can guaran-
tee that the PPD converges to a close approximation of
the true predictive distribution.

• How PFNs approximate PPDs (Section 4): The opti-
mal PFN approximation is characterized by a Kullback-
Leibler criterion. To allow for accurate approximation
of the conditional class probabilities, we need suffi-
ciently complex PFN models and prior. Practically, a
PFN is trained on simulated data sets. The larger these
data sets are, the more complex the PPD we approxi-
mate. The training set size can therefore be understood
as a regularizer on the expected complexity of the net-
work. The Monte-Carlo approximation of the optimal
PFN is discussed briefly, but rather uneventful and of
minor importance for PFNs’ inference behavior.

• Why PFNs can learn (Section 5): The most intriguing
question is: Why can a pre-trained network still learn
in the inference phase? Although we know now why
a PPD does, a PFN is not a valid PPD, and it is only
trained to approximate the PPD for limited training
sizes. The learning phenomenon can be understood
through a purely frequentistic interpretation of PFNs
as untrained predictors with many hyperparameters.
During pre-training, these hyperparameters are tuned
to be optimal for a set of tasks defined by the ‘prior’.
Whether the PFN predictor can learn at inference de-
pends on its structural properties. We show that the
variance of a fixed network vanishes if its sensitivity
to individual samples does, and that the network’s bias
can only vanish if it is sufficiently localized.

• Insights on specific PFNs (Section 6): We look at
some specific PFN models: window smoothers, clas-
sification trees, and transformer networks. The exam-
ples cover cases where the bias is constant, increasing,
or decreasing with n. We show that if the model is
well-designed, it can implicitly select or average over
sub-models, making the bias decrease with the sample
size. Transformer networks allow for vanishing vari-
ance and model selection through multi-head attention,
but not for localization. However, TabPFN’s bias can
be improved further with a simple post-hoc localization
method.

Section 7 concludes with suggestions for future research.
All proofs are given in Appendix A.

1.4. Related Work

In-context-learning in large language models The re-
cent interest in ICL was spurred by the success of large
language models (LLMs). These models are pre-trained on

a sequence prediction task on a large corpus of text. When
deployed, large models show the ability to solve tasks that
they haven’t seen during pre-training (e.g., mathematical
reasoning problems), only from the prompt context (Brown
et al., 2020; Wei et al., 2022). In particular, no parameter
updates are conducted after deployment. ICL has become
a new paradigm for natural language processing and is inti-
mately linked to the transformer architecture (Vaswani et al.,
2017). Dong et al. (2023) provide an up-to-date survey
of the large body of LLM-related research on in-context
learning.

In-context-learning on numeric data ICL has also been
observed in more classical statistical learning tasks: classifi-
cation and regression from tabular data. Müller et al. (2022)
proposed the concept of PFNs and illustrated the abilities of
a transformer model on toy examples. The TabPFN model
of Hollmann et al. (2022) implements a matured version
of this idea and shows superb performance on benchmarks
with small tabular data. Concurrently, Nguyen & Grover
(2022) proposed Transformer Neural Processes following
essentially the same idea. They also consider non-iid set-
tings and show promising results in applications to image
completion, contextual bandits, and Bayesian Optimization.
This paper illuminates the statistical foundations of such
models in the iid-setting and disentangles the prior from the
model architecture.

Mechanics of transformer-based ICL Garg et al. (2022)
show that transformers can learn target functions generated
from linear models, two-layer neural networks, and decision
trees. Several other works provide arguments and experi-
ments on how in-context learning emerges through implicit
gradient descent (Dai et al., 2022; von Oswald et al., 2022;
Akyürek et al., 2023). Olsson et al. (2022) identify a pattern
of several attention heads working together, closely related
to the discussion after Theorem 6.3 in this paper. Kirsch
et al. (2022) experimentally investigates other architectural
features (layers, memory, etc.). This work sheds further
light on the mechanisms and architectural features enabling
ICL.

Overall, the current work complements the existing ICL lit-
erature, by providing a theoretical foundation for the empir-
ical findings and deriving new insights from the perspective
of statistical generalization theory.

2. Theoretical Framework
2.1. Statistical Model

Consider a classification problem with class label Y ∈ Y
and features X ∈ X ⊆ Rd. Suppose we have iid training
data Dn = (Yi,Xi)

n
i=1 from some distribution p0. The goal

is to predict the conditional class probabilities p0(y | x) =
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P(Y = y | X = x). From the perspective of Bayesian
nonparametrics, we view p0 as a realization of a random,
infinite-dimensional parameter p ∈ P with distribution Π.
The distribution Π is called prior and expresses our beliefs
about p before seeing any data. Under this model, data sets
Dn ∪ (Y,X) are generated by the following mechanism:

1. Draw p ∼ Π.

2. Draw iid samples Dn = (Yi,Xi)
n
i=1 and (Y,X) from

model p.

2.2. Posterior Predictive Distribution

For every n, the statistical model gives the tuple (Dn ∪
(Y,X), p) a well-defined joint distribution. For every n, we
can then approximate p0(y | x) by the posterior predictive
distribution (PPD)

π(y | x,Dn) = P(Y = y | X = x,Dn).

This defines a family of PPDs indexed by n. If the prior Π
factorizes into independent parts for p(y | x) and p(x), the
PPD can be written as

π(y | x,Dn) =

∫
p(y | x)dΠ(p | Dn), (1)

where the posterior Π(· | Dn) is the conditional distribution
of p given the data Dn. The PPD π(y | x,Dn) is then
simply the posterior mean over conditional distributions
p(y | x).
Remark 2.1. In their implementation of PFNs, Müller et al.
(2022) and Hollmann et al. (2022) use priors that factorize as
above, but do not mention it explicitly to justify (1). Priors
that do not factorize this way would lead to a different form
of π(y | x,D):

π(y | x,Dn) =

∫
p(y | x)dΠ(p | x,Dn),

Here, observing the test feature x would be informative
about the conditional distribution p(y | x), which is unintu-
itive.

2.3. PFNs

A PFN is a numerical approximation of the family of PPDs.
It is based on the insight that, for all n, the PPDs maximize
the expected conditional likelihood

EΠ[log q(Y | X,Dn)], (2)

where EΠ is an expectation over (Y,X) ∪ Dn generated as
in Section 2.1 (see, Müller et al., 2022, Section 3).
Theorem 2.2. Let

Q =

{
q : (Y × X )n+1

i=1 → [0, 1],
∑
y∈Y

q(y | ·, ·) = 1

}
,

denote the set of all conditional probability functions. Then
π in (1) satisfies

π = argmax
q∈Q

EΠ[log q(Y | X,Dn)].

Remark 2.3. Maximizing (2) can also be interpreted as
minimizing expected KL divergence between q(· | X,Dn)
and π(· | X,Dn).

To approximate the PPDs, we train a model qθ parametrized
by θ. To be precise, for every parameter value θ, there is an
entire family of functions

{qθ,n : (Y × X )n+1
i=1 → [0, 1], n ∈ N},

but we shall not make this explicit in notation. To find the
best parameters for given PPDs, Müller et al. (2022) propose
to solve

θ∗ = argmax
θ
EΠN

EΠ[log qθ(Y | X,DN )], (3)

where ΠN is a probability distribution over the sample size
N . The expectation over N makes qθ∗ mimic the family of
PPDs, not just its nth element.

The model qθ will normally be misspecified; that is, there
is no parameter θ such that qθ equals π. In this case, (3)
defines a KL-optimal approximation of π over the class
{qθ : θ ∈ Θ}. In practice, the expectation in (3) is approxi-
mated by Monte-Carlo integration, i.e., averaging over iid
data sets (Yj ,Xj) ∪ D(j) of size Nj + 1 generated as in
Section 2.1 and Nj ∼ ΠN . We approximate θ∗ by solving

θ̂ = argmax
θ

m∑
j=1

log qθ(Yj | Xj ,D(j)). (4)

This is of course an idealization of the training process.
Sophisticated PFNs are large and usually trained in a single
epoch. The maximum in (4) is never reached. This does
not affect the main results of the following sections, which
largely consider arbitrary θ.
Remark 2.4. Hollmann et al. (2022) use a transformer net-
work (Vaswani et al., 2017) for qθ. For such architectures,
any fixed network qθ accepts an arbitrary number of feature
vectors x1, . . . ,xntest and a data set Dn of arbitrary length.
The output qθ(· | x1, . . . ,xntest ,Dn) are ntest vectors of con-
ditional class probabilities. Each vector contains predictions
for the conditional class probabilities p(· | xj). The test
size ntest is irrelevant in what follows, so we take ntest = 1
for simplicity.

3. When PPDs can Learn
The PPDs

π(y | x,Dn) =

∫
p(y | x)dΠ(p | Dn)
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are fully characterized by the prior Π. If Dn is a data set
generated from p0, we hope that Π(p | x,Dn) concentrates
around p0 as the size of Dn increases. Setting a good prior is
tricky in a nonparametric context. Finding a prior supporting
a large enough subset of possible functions isn’t trivial. And
even if, the prior may wash out very slowly or not at all if
it puts too much mass in unfavorable regions (see, Ghosal
& van der Vaart, 2017, Sections 1.2–1.3). But also if p0 is
outside the support P = {p : Π(p) > 0} of Π, PPDs can
learn from data if the prior is sufficiently well-behaved:

Theorem 3.1. Under conditions (A1) and (A2), there is
p∗ ∈ P such that

π(y | x,Dn)
n→∞→ p∗(y | x) almost surely,

for P0-almost every (y,x). Moreover, p∗ is a KL-optimal
approximation of p0 in P .

Exact conditions and a proof are given in Appendix A.2. If
P is sufficiently large, the KL-optimal p∗ ∈ P is close to p0.
This explains why PPDs can learn when fed more data. If
this was not the case, trying to approximate them with PFNs
would be pointless. And the better we choose Π, the more
attractive the PPDs become as an approximation target.

4. PFN Approximation of the PPD
Four factors influence the PFN approximation (4): the data
prior Π, the size prior ΠN , the model qθ, and the Monte-
Carlo size m. Since a PFN is pre-trained, the model class
{qθ : θ ∈ Θ} can be considered fixed relative to the number
of Monte-Carlo sets m. The approximation quality of θ̂ then
follows from standard results on empirical risk minimization.
In particular, we can expect θ̂ = θ∗ + Op(m

−1/2), see
Appendix B for more details. The other factors are more
interesting.

If Π consists of only simple models, the optimal PFN qθ∗

likely also produces only simple functions of (y,x). Con-
versely, simple models {qθ : θ ∈ Θ} cannot benefit much
from complex Π. For the pre-trained PFN to work well on di-
verse tasks, we need sufficient capacity in both {qθ : θ ∈ Θ}
and Π.

When pre-training the PFN via (4), we sample data sets D(j)

with random sample size Nj . Let us define the KL-optimal
parameter θ∗

n for a given sample size:

θ∗
n = argmax

θ
EΠ[log qθ(Y | X,Dn)].

The PPD π(y | x,Dn) we are trying to approximate changes
with n. Hence, the KL-optimal parameter θ∗

n may change
with n as well. Seen as a function of (y,x), we should
expect the complexity of π(y | x,Dn) to increase in n.
Similarly, we should expect the parameter θ∗

n to favor more
complex models. At the other extreme, n = 1, the true PPD

is close to the average model in our prior and normally close
to constant. The training set sizes Nj can thus be seen as a
regularizer on model complexity. By optimizing an average
over random sizes Nj , θ∗ also averages θ∗

Nj
. The distri-

bution ΠN lets us emphasize some ranges of sample sizes
more than others. The TabPFN of Hollmann et al. (2022)
was trained with a uniform distribution over {1, . . . , 1023}
for ΠN . The restriction to small sample sizes has computa-
tional reasons: the cost of evaluating a transformer network
scales quadratically in Nj .

Since TabPFN has never seen sample sizes larger than
around 1000 during pre-training, it is curious that it im-
proves its predictions when fed larger data sets. Whether
such behavior occurs depends in a non-obvious way on
the family {qθ̂(· | ·,Dn), n ∈ N}. The family learned by
TabPFN seems to have some structure that allows extrap-
olating nicely to larger n. This structure may come from
the architecture of the network qθ or from learning θ∗ for a
given Π. The following section looks closer into the mecha-
nisms at play.

5. Why PFNs can Learn In-Context
There is no reason to believe the PFN behaves like a PPD
family for some (implicit) prior when encountering sample
sizes never seen in pre-training. So even though PPDs serve
as a theoretical motivation for PFNs, Theorem 3.1 does not
apply to qθ̂. So why does a PFN qθ̂ pre-trained on up to
1000 samples improve when feeding larger data sets during
inference?

5.1. PFNs as Untrained Predictors

To understand what is going on, we take a frequentist per-
spective. For any data size n encountered at inference, we
may treat the pre-tuned network qθ̂(y | x, ·) as an untrained
predictor for p0(y | x), i.e., a function (Y × X )n → PY |X
that maps a data set Dn to an element of the space PY |X
of conditional distribution functions. In that view, θ is a
collection of tuning parameters of the predictor, selected
through meta-learning in the pre-training phase. Further,
the ‘priors’ Π and ΠN are simply distributions over tasks
for which we want the predictor to do well.

Now decompose the estimation error into bias and variance
components:

qθ(y | x,Dn)− p0(y | x)
= qθ(y | x,Dn)− EDn∼pn

0
[qθ(y | x,Dn)]︸ ︷︷ ︸

variance

+ EDn∼pn
0
[qθ(y | x,Dn)]− p0(y | x)︸ ︷︷ ︸

bias

.

Empirically, the error above decreases with n. So what
structural features of PFNs can explain this?
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5.2. Symmetry

Standard transformers are symmetric functions of the indi-
vidual samples in Dn. If the samples in Dn are iid, this is
most natural.

Lemma 5.1. Let f : (Y × X )n → PY |X be any predictor.
Then there is a symmetrized version f̃ of f such that, for
every probability measure P ,

EDn∼Pn [f̃(Dn)] = EDn∼PnP [f(Dn)],

and VarDn∼Pn [f̃(Dn)] ≤ VarDn∼Pn [f(Dn)].

Thus, using symmetric f is optimal in an MSE sense. How-
ever, symmetry itself does not have any meaningful conse-
quences for learning. For example, q(y | x,Dn) = 1/|Y| is
a symmetric function that is incapable of learning anything.

5.3. Variance and Diminishing Sensitivity

There is other structure we can reasonably expect from qθ.
When passed larger data sets Dn, the influence of individual
elements should diminish. This allows to bound the variance
of the predictor qθ. Formally, suppose there are α > 0 and
L < ∞, such that for large enough n and almost all data
sets Dn,D′

n differing only in one sample,∣∣qθ(y | x,Dn

)
− qθ(y | x,D′

n)
∣∣ ≤ Ln−α. (5)

Theorem 5.2. If (5) holds, then∣∣qθ(y | x,Dn)− E[qθ(y | x,Dn)]
∣∣ ≲ n1/2−α

with high probability.

If α > 1/2, we get limn→∞ n1/2−α = 0, so the variance
caused by Dn vanishes. In that case, the difference above
vanishes almost surely.

Lemma 5.3. If (5) holds with α > 1/2, then

qθ(y | x,Dn)− E[qθ(y | x,Dn)]
n→∞→ 0 almost surely.

This only partially explains how pre-trained PFNs can still
learn at inference. The remaining error is due to bias.

5.4. Bias and the Need for Locality

The bias is determined by the behavior of the sequence
E[qθ(y | x,Dn)]. It is reasonable to assume that

E[qθ(y | x,Dn)]
n→∞→ qθ(y | x),

for some function qθ. Without a specific model qθ at hand,
we cannot say much more. In Section 6 we shall see exam-
ples where the bias is constant, and other examples where
the bias decreases or increases with n.

We can give necessary conditions for a vanishing bias, how-
ever. A predictor that has vanishing bias on a sufficiently
rich class of functions must be local: asymptotically, only
samples (Yi,Xi) ∈ Dn with Xi close to x should con-
tribute to qθ(y | x,Dn).

Theorem 5.4. Let P be a set of distributions. Suppose that
for every p ∈ P ,

EDn∼pn [qθ(y | x,Dn)]
n→∞→ p(y | x). (6)

If (5) holds, there is a sequence ϵn → 0 for every p̃ ∈ P ,
such that almost surely,∣∣qθ(y | x,Dn)− qθ(y | x, D̃n)

∣∣ n→∞→ 0, (7)

where Dn = (Yi,Xi)
n
i=1 and D̃n = (Y ′

i ,Xi)
n
i=1 with

Y ′
i

{
= Yi, if ∥Xi − x∥ ≤ ϵn,

∼ p̃(· | Xi), if ∥Xi − x∥ > ϵn.

So if qθ is unbiased for rich enough P , we can flip the labels
of samples away from x almost arbitrarily without changing
the behavior of qθ; only samples (Yi,Xi) with Xi close to
x matter.

The result bears little meaning if the class P is too small,
and meaningless if P contains only one p. Even for rich
P , it only provides necessary conditions for a vanishing
bias. A constant predictor qθ = 1 is local in the sense of
(7), but its bias does not change with n. However, if P is
rich and the bias does vanish for all p ∈ P , the predictor
qθ can effectively only use ϵnn = o(n) samples, so (5) is
unlikely to hold with α = 1. This is in line with the lower
bounds on the bias-variance trade-off derived in Derumigny
& Schmidt-Hieber (2020).

6. Insights on Specific PFNs
We now consider some concrete examples of PFNs qθ, to
shed further light on the factors facilitating learning in the
inference phase. Before turning to transformer networks,
we briefly discuss two simpler models to illustrate some key
mechanisms. The following result will be helpful.

Lemma 6.1. Let g be a function bounded by K < ∞ and

qθ(y | x,Dn) =

∑n
i=1 g(y,x, Yi,Xi)∑n

i=1 1{Xi ∈ An(x)}
,

for some sequence An(x) ⊂ X . If

nηP{Xi ∈ An(x)}
n→∞→ c,

for some η ∈ (0, 1/2) and c > 0, then qθ satisfies the
conditions of Theorem 5.2 with α = 1− η and L = 4K/c.

5



Statistical Foundations of Prior-Data Fitted Networks

6.1. Window Smoother

For θ ∈ (0,∞), define

qθ(y | x,Dn) =

∑n
i=1 1(Yi = y)1(∥Xi − x∥ < θ)∑n

i=1 1(∥Xi − x∥ < θ)
.

This corresponds to a window smoother with bandwidth θ.
Then θ∗ is the KL-optimal bandwidth for datasets from the
prior. The fitted PFN is therefore just a window smoother
with its hyperparameter tuned to such data sets. According
to Lemma 6.1, qθ satisfies (5) with α = 1. The bias

E[qθ(y | x,Dn)]− p0(y | x)
= P0(Y = y | ∥X − x∥ < θ)− p0(y | x)

is constant, but optimized for data sizes from Π × ΠN .
Despite constant bias, the PFN learns from more data at
inference, but only through reducing its variance.

Now consider some sequence (an)n∈N and

qθ(y | x,Dn) =

∑n
i=1 1(Yi = y)1(∥Xi − x∥ < anθ)∑n

i=1 1(∥Xi − x∥ < anθ)
.

If an increases with n, the width of the smoothing window
does too. This choice of qθ isn’t sensible, of course, as the
bias

P0(Y = y | ∥X − x∥ < anθ)− p0(y | x)

typically increases with n. If we instead choose an → 0
and p0 is sufficiently smooth, we can get rid of the bias.
The scaling an = n−1/(4+d) is known to be optimal in
an MSE sense (e.g., Wand & Jones, 1994), with squared
bias and variance decreasing at rate n−4/(4+d). Indeed,
we have anP0(∥X − x∥ < anθ) → p0(x), so this is the
convergence rate implied by Lemma 6.1 and Theorem 5.2.
The hyperparameter θ∗ reduces to a prefactor, tuned to be
(asymptotically) optimal for data sets generated from Π of
arbitrary size.

6.2. Classification Trees

To keep the notation simple, suppose for the moment that
X ⊆ R. Define

qθ(y | x,D)

=

S∑
j=0

1(θj ,θj+1](x)

∑n
i=1 1(Yi = y)1(θj ,θj+1](Xi)∑n

i=1 1(θj ,θj+1](Xi)
,

as a classification tree with parameters θ ∈ RS and θ0 =
−∞, θS+1 = +∞ by convention. The (hyper-)parameters
are the split locations of the tree. The split locations are
trained offline, to work best on sets from the prior Π×ΠN .

Lemma 6.1 yields that Theorem 5.2 holds with α = 1. The
bias is

S∑
j=1

1(θj ,θj+1](x)P0(Y = y | X ∈ (θj , θj+1])− p0(y | x),

which is independent of n. To reduce the bias as in the
previous example, we would need to grow the number S of
split locations with n. But the model is considered fixed in
the inference phase and we cannot change the number of
parameters.

Instead, we could set up an ensemble of classification trees
with Bayesian model averaging. Let qθ1 , . . . , qθK

be classi-
fication trees as above, and

qθ(y | x,Dn) =
1

K

K∑
k=1

qθk
(y | x,Dn)w(Dn;θk),

where

w(Dn;θk) =
exp{−BIC(Dn;θk)}∑K
j=1 exp{−BIC(Dn;θj)}

,

and

BIC(Dn;θk) = −2

n∑
i=1

log qθk
(Yi | Xi,Dn) + S log n.

As n grows, the model qθ drifts towards a weighted average
of the best-performing ensemble members. We can thus
expect the bias to reduce with n, approaching the bias of the
best ensemble members. The role of the hyperparameters
θ is the same as for a single tree. But now, the KL-optimal
parameter θ∗ likely induces more complex and diverse en-
semble members.

6.3. Transformer Networks

We now consider a transformer network with one layer. Let
Dn = {Vi}ni=1 with Vi = (Yi,Xi) ∈ {0, 1} × Rd and
v = (0,x). Similar1 to Thickstun (2021), define

a
(h)
j = SoftMax

(
v⊤W (h)

q V1, . . . ,v
⊤W (h)

q Vn

)
j
,

u′ =

H∑
h=1

n∑
j=1

a
(h)
j W (h)

v Vj ,

u = LayerNorm(v + u′;γ),

z′ = Wr,2 ReLu(Wr,1u;γ),

z = LayerNorm(u+ z′;γ),

qθ(· | x,Dn) = SoftMax(Woz),

1Some scaling and redundancies in the parametrization have
been deliberately removed. They help for training the network, but
not its theoretical analysis.
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where W
(h)
q ,W

(h)
v ∈ R(d+1)×(d+1), Wr,1,W

⊤
r,2 ∈

Rm×(d+1), and Wo ∈ R|Y|×(d+1). The parameter θ col-
lects all these matrices. The SoftMax, LayerNorm, and
ReLu operations are defined as

SoftMax(v) =
exp(v)∑d

j=1 exp(vj)
,

LayerNorm(v;γ) = γ1
v − avg(v)

∥v − avg(v)∥+ |γ2|
+ γ3,

avg(v) =
1

d

d∑
j=1

vj1,

ReLu(v) = max(0,v),

with exp and max acting componentwise on vectors. Here
and in everything that follows, the norm ∥ · ∥ is understood
as ∥ · ∥2 for both vectors and matrices.

The first two equations describe an attention mechanism
with H heads (Vaswani et al., 2017). By definition, a(h)1 +

· · · + a
(h)
n = 1. The idea is that within every head, the

attention weights a
(h)
j emphasize specific samples Vj ∈

Dn. Emphasis is put on those Vj that are ‘similar’ to v

in a sense measured by v⊤W
(h)
q Vj . Each attention head

allows for a different definition of similarity. With the help
of Theorem 5.2 and Theorem A.1, we can show that the
variance of this predictor vanishes.

Theorem 6.2. For X = {x : ∥x∥ ≤ K} and
∥W (h)

q ∥, ∥W (h)
v ∥, ∥Wr,1∥, ∥Wr,2∥, ∥Wo∥ < ∞, it holds∣∣qθ(y | x,Dn)− E[qθ(y | x,Dn)]

∣∣ ≲ n−1/2,

with high probability.

The variance vanishes irrespective of the parameter θ. This
is because the attention mechanism necessarily gives di-
minishing weight to individual samples (see the proof in
Appendix A.8).

The bias depends heavily on the choice of θ.

Theorem 6.3. Under the assumptions of Theorem 6.2,

E[qθ(· | x,Dn)]
n→∞→ qθ(· | x),

where qθ(· | x) is defined as qθ(· | x,Dn), but with u′

replaced by

u′ =

H∑
h=1

W (h)
v EV ∼gh [V ],

where gh(s) =
exp(v⊤W

(h)
q s)

EV ∼p0
[exp(v⊤W

(h)
q V )]

p0(s).

The measure gh is an exponentially tilted version of p0 (Sieg-
mund, 1976). The tilt can be understood as an infinitesimal

form of the attention mechanism. Relative to p0, the tilted
measure lifts the likelihood of values s that are similar to
v (with similarity measured by v⊤W

(h)
q s) and discounts

the likelihood of others. Each attention head h assesses a
certain aspect of the unknown distribution p0 (characterized
by W

(h)
q ). If the matrices (W

(h)
q )Hh=1 are specified well,

the aspect views distinguish distinct feature values. This
localizes the predictor to some degree, but not in the sense
of Theorem 5.4. Although we upweight the influence of
samples “similar to” v, there always remains an influence
of samples away from v. We cannot flip the labels of such
samples without changing the predictor (asymptotically), so
we should not expect the bias to vanish.

Nevertheless, the limiting bias qθ(y | x)− p0(y | x) may
be small if the remaining network processes the sum of
aspect summaries W (h)

v EV ∼gh [V ] into a good approxima-
tion of p0. The relevance of individual aspect summaries
depends on the true measure p0, and less relevant aspects
may also contribute less to the sum. On small samples, this
effect is milder. At the extreme end, n = 1, all attention
weights a(h)j equal 1, so all aspects contribute equally. This
suggests that the bias of the transformer network may de-
crease — provided the hyperparameters downstream make
meaningful use of the aspect views. For example, Olsson
et al. (2022) identified powerful patterns of several attention
heads working together. This effect is similar to that of the
model averaging layer in Section 6.2. Key to this is the pres-
ence of multiple attention heads (H > 1). However, this
applies only to sample sizes the parameter θ has been tuned
to. For larger sample sizes, there is no reason to expect a
tuned network’s bias to decrease.

6.4. Localized PFNs

According to Theorem 5.4, we need to localize the network
to make its bias decrease. A simple post-hoc approach
applicable to any pre-trained network is the following. To
predict the label at a new feature x:

1. Construct a reduced training set Dn(x) by excluding
all but the kn nearest neighbors of x from Dn.

2. Predict the label that maximizes qθ(· | x,Dn(x)).

Intuitively, restricting to a neighborhood is like stretch-
ing/flattening the target p(y | ·) at the cost of a reduction
in sample size. Flatter functions are easier to approximate.
This is the mechanism behind the window smoother from
Section 6.1. If the model qθ approximates constant functions
well, localization should improve the bias.

6.5. Numerical Validation

Since the key mechanism acting on Dn remains intact if we
add more layers to the network, the findings likely transfer to

7



Statistical Foundations of Prior-Data Fitted Networks

average squared bias average variance
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Figure 1. Average squared bias and variance of the pre-trained TabPFN of Hollmann et al. (2022) on simulated data sets.

larger networks. The main predictions from our theoretical
considerations are: (i) the variance vanishes at rate 1/n,
(ii) the bias does not vanish, but decreases until n ≈ 1000.
To confirm this empirically, we simulate 500 data sets Dn

from the model p0(1 | X) = 1/2+sin(1⊤X)/2 with Y ∈
{0, 1}, X ∼ N (0, I5), and run the pre-trained TabPFN of
Hollmann et al. (2022, pip version 0.1.8).2 We compute
the average squared bias and variance over 100 samples
Xtest ∼ N (0, I5). The results in Figure 1 confirm that
the variance indeed decreases at rate 1/n and that the bias
decreases until n ≈ 1000, but does not vanish.

The analysis shows that, for larger sample sizes at infer-
ence, TabPFN learns mainly through decreasing its vari-
ance. This variance reduction is a consequence of the
transformer architecture and takes place irrespective of
the tuned parameters θ̂. Figure 1 also shows the results
of a localized version of TabPFN (as in Section 6.4 with
kn = min{500, ⌈n4/(d+4)⌉}). Here, the bias continues to
decrease beyond n = 1000 at the cost of a slightly larger
variance.

7. Discussion
As explained in Section 5.1, the prior Π characterizes tasks
we want the predictor to do well on. Hollmann et al. (2022)
propose a new kind of prior based on structural causal mod-
els (Pearl, 2009) that is interesting on its own. Their in-
tuitive idea is that the pair (Y,X) is generated by some

2An R script to reproduce the results can be
found at https://gist.github.com/tnagler/
62f6ce1f996333c799c81f1aef147e72.

noisy, causal mechanism (not necessarily in the direction
X → Y ). Because the mechanisms can be arbitrarily com-
plex, the prior is essentially nonparametric. The rate at
which corresponding posteriors contract is a complex issue
(Ghosal & van der Vaart, 2017, Chapters 8–9) and poses an
interesting open question.

The key factors driving PFNs capability to learn are their
sensitivity to individual samples, their ability to choose sub-
models, and localization. These insights may help to inform
architecture design. In Section 6.1 and Section 6.4, we
found a way to make the bias vanish at the cost of increased
sensitivity to the training instances. This was achieved by
introducing a scaling of the tuning parameters adapted to the
training set size n. Whether this is possible and what a good
scaling is depends on the model architecture. The localiza-
tion approach in Section 6.4 is simple and can be applied
post-hoc to any pre-trained network qθ. More serious archi-
tecture design should account for the entire training pipeline
and computational efficiency. Additional improvements can
be expected if localization is incorporated into pre-training.
Thinking about ways to adapt the transformer architecture
appropriately could be a promising path. Another possible
improvement is to augment the architecture with a Bayesian
averaging mechanism similar to Section 6.2.

Hollmann et al. (2022) acknowledge constraints on the fea-
ture dimension and sample size as a major limitation of
current PFN implementations. Owing to the standard trans-
former architecture, the maximal feature size is fixed, and
the algorithm scales quadratically in the number of samples.
To mitigate this, several works proposed scalable modifica-
tions of the transformer architecture (Beltagy et al., 2020;
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Zaheer et al., 2020; Kitaev et al., 2020). Hollmann et al.
(2022) rightfully point out that PFNs are quick enough to
be used as ensemble members. The size constraints could
therefore be overcome by boosting and bagging techniques
akin to random forests or boosted trees.

The full potential of PFNs is yet to be explored.

Acknowledgements
The author is grateful for several helpful comments by
Samuel Müller, Noah Hollmann, Thibault Vatter, and two
anonymous referees.

References
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A. Proofs
A.1. Proof of Theorem 2.2

By definition of the KL-divergence,

0 ≤ KL
[
q(· | x,D) || π(· | x,D)

]
for all (x,D),

or, equivalently,

EY∼π(·|x,D)[log π(Y | x,D)] ≥ EY∼π(·|x,D)[log q(Y | x,D)] for all (x,D).

Since this holds for any (x,D) it must also hold if we take expectations over random draws of (x,D). Taking expectation
with respect to (x,D) ∼ Π on both sides, the law of iterated expectations yields

EΠ[log π(Y | X,D)] ≥ EΠ[log q(Y | X,D)].

A.2. Proof of Theorem 3.1

Write KL(f | f ′) for the KL-divergence of f relative to f ′, and H(f, f ′) for their Hellinger distance. We need the following
assumptions:

(A1) There is a unique p∗ ∈ P with p∗ = argminp KL(p∗ | p0) and KL(p∗ | p0) < ∞.

(A2) For every α ∈ (0, 1/2), there are sets B1, . . . , BJ(α) with

P ⊆
J(α)⋃
j=1

Bj , sup
p,p′∈Bj

H(p, p′) ≤ 4(α2/2)1/α,

J(ϵ)∑
j=1

Π(Bj)
α < ∞.

Now let Πn(A) =
∫
A
dΠ(p | Dn) be the posterior measure. From our assumptions and Corollary 1 of De Blasi & Walker

(2013) it follows that for all ϵ > 0,

Πn

{
p ∈ P : H(p, p∗) > ϵ

}
→ 0, (8)

with probability 1 over sequences Dn. For some δ > 0 and an arbitrary set A ⊆ Y × X with µA = P ∗(A) > 0, define

Sδ,A =

{
p ∈ P : inf

(y,x)∈A

∣∣p(y | x)− p∗(y | x)
∣∣ ≥ δ

}
.

For any p ∈ Sδ,A, it holds

µAδ =

∫
A

δp∗(x)dx ≤
∫
A

|p∗(y | x)− p(y | x)|p∗(x)dx

=

∫
A

∣∣p∗(y,x)− p(y | x)p∗(x)
∣∣dx

=

∫
A

∣∣p∗(y,x)− p(y,x) + p(y | x)[p(x)− p∗(x)]
∣∣dx

≤
∫ ∣∣p∗(y,x)− p(y,x)|dx+

∫ ∣∣p(x)− p∗(x)
∣∣dx

≤ 4TV(p∗, p)

≤ 8H(p∗, p),

where TV(f, f ′) is the total variation distance. Together with (8), this implies

Πn(Sδ,A) ≤ Πn

{
p : H(p, p∗) ≥ µAδ/8

}
→ 0.

11
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We then get

inf
(y,x)∈A

|π(y | x,Dn)− p0(y | x)| ≤ inf
(y,x)∈A

∣∣∣∣∫ p(y | x)dΠn(p)− p0(y | x)
∣∣∣∣

≤ inf
(y,x)∈A

∫ ∣∣p(y | x)− p0(y | x)
∣∣dΠn(p)

≤ inf
(y,x)∈A

∫
Sδ,A

∣∣p(y | x)− p0(y | x)
∣∣dΠn(p) + δ

≤ 2Πn(Sδ,A) + δ → δ almost surely.

Since δ and A were arbitrary, we have shown that

π(y | x,Dn) → p ∗ (y | x),

with probability 1 for P ∗-almost every (y,x). Since KL(p∗ | p0) < ∞ by (A1), convergence must also take place for
P0-almost every (y,x).

A.3. Proof of Lemma 5.1

Let Rn be the set of permutations ρ : (Y × X )n → (Y × X )n. Define the symmetrized function f̃ as

f̃(Dn) =
1

|Rn|
∑
ρ∈Rn

(f ◦ ρ)(Dn).

If the elements in Dn are iid, it holds EP [f(Dn)] = EP [(f ◦ ρ)(Dn)] and VarP [f(Dn)] = VarP [(f ◦ ρ)(Dn)] for any
ρ ∈ Rn. Therefore, EP [f(Dn)] = EP [f̃(Dn)] and

VarP [f̃(Dn)] =
VarP [f(Dn)]

|Rn|2
∑

ρ,ρ′∈Rn

CorrP [(f ◦ ρ)(Dn), (f ◦ ρ′)(Dn)] ≤ VarP [f(Dn)],

with equality for all P if and only if f is symmetric.

A.4. Proof of Theorem 5.2

McDiarmid’s inequality (McDiarmid, 1989) yields

P
(∣∣qθ(y | x,Dn)− E[qθ(y | x,Dn)]

∣∣ > ϵ
)
≤ 2 exp

(
− 2ϵ2

L2n1−2α

)
.

Choosing ϵ2 = log(δ)L2n1−2α/2, we get

P
(∣∣qθ(y | x,Dn)− E[qθ(y | x,Dn)]

∣∣ > log(δ)1/2KLn1/2−α/
√
2
)
≤ 2δ.

A.5. Proof of Lemma 5.3

Using the first inequality from the previous proof, we get

∞∑
n=1

P
(∣∣qθ(y | x,Dn)− E[qθ(y | x,Dn)]

∣∣ > ϵ
)
≤ 2

∞∑
n=1

exp

(
− 2ϵ2

L2n1−2α

)
< ∞.

The Borel-Cantelli lemma then implies that, almost surely,

lim
n→∞

∣∣qθ(y | x,Dn)− E[qθ(y | x,Dn)]
∣∣ ≤ ϵ

Since ϵ was arbitrary the claim follows.
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A.6. Proof of Theorem 5.4

Condition (6) implies

Ep[qθ(y | x,Dn)]− Ep̃[qθ(y | x,Dn)] → 0,

for all p, p̃ ∈ P with p(y | s) = p̃(y | s) for ∥s− x∥ < ϵ. Lemma 5.3 then implies

lim
n→∞

∣∣qθ(y | x,Dn)− qθ(y | x, D̃n)
∣∣ = 0 almost surely.

Since ϵ was arbitrary, convergence must also hold for some sequence ϵn → 0.

A.7. Proof of Lemma 6.1

Let Dn = (Yi,Xi)
n
i=1 and D′

n = (Y ′
i ,X

′
i)

n
i=1 such that (Yi,Xi) = (Y ′

i ,X
′
i) for all i > 1. Hoeffdings’s inequality

(Boucheron et al., 2013, Theorem 2.8) gives

P
(∣∣∣∣ 1n

n∑
i=1

1{Xi ∈ An(x)} − P{Xi ∈ An(x)}
∣∣∣∣ > cn−η/3

)
≤ 2 exp

(
−c2n1−2η/9

)
.

Since η < 1/2,

∞∑
n=1

exp
(
−c2n1−2η/9

)
< ∞,

and the Borell-Cantelli lemma implies that for large n,∣∣∣∣ 1n
n∑

i=1

1{Xi ∈ An(x)} − P{Xi ∈ An(x)}
∣∣∣∣ ≤ cn−η/3 almost surely.

The remaining inequalities are understood almost surely, for large enough n. Because nηP{Xi ∈ An(x)} → c, we get

nη

∣∣∣∣ 1n
n∑

i=1

1{Xi ∈ An(x)} − cn−η

∣∣∣∣
≤ nη

∣∣∣∣ 1n
n∑

i=1

1{Xi ∈ An(x)} − P{Xi ∈ An(x)}
∣∣∣∣+ ∣∣∣∣nηP{Xi ∈ An(x)} − c

∣∣∣∣
≤ c/2,

which implies

1

n

n∑
i=1

1{Xi ∈ An(x)} ≥ cn−η/2.

Using this bound,

n1−η|qθ(y | x,Dn)− qθ(y | x,D′
n)| ≤ 2|g(y,x, Y1,X1)− g(y,x, Y ′

1 ,X
′
1)|/c ≤ 4K/c,

which proves the claim.

A.8. Proof of Theorem 6.2

The theorem is a consequence of Theorem 5.2 and the following result. (The norm bounds on ∥x∥ and the weight matrices
are arbitrary and can be relaxed.)

Theorem A.1. Let X = {x : ∥x∥ ≤ 1} and ∥W (h)
q ∥, ∥W (h)

v ∥, ∥Wr,1∥, ∥Wr,2∥, ∥Wo∥ ≤ 1. Then the network qθ satisfies
(5) with α = 1 and L = O(H|γ1|/|γ2|).

13
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Proof. Let D̃n = (Dn \Vn)∪ Ṽn and define ã(h)j , ũ′, ũ, z̃′, z̃ accordingly. Because SoftMax is 1-Lipschitz (Gao & Pavel,
2017, Proposition 4),

|qθ(y | x,Dn)− qθ(y | x, D̃n)| ≤ ∥Wo(z − z̃)∥ ≤ ∥z − z̃∥.

Using Lemma A.2 below, we further get∥∥z − z̃
∥∥ ≤

∥∥LayerNorm(u+ z′)− LayerNorm(ũ′ + z̃)
∥∥ ≤ 4

|γ1|
|γ2|

(∥∥u− ũ
∥∥+

∥∥z′ − z̃′∥∥).
Because also ReLu is 1-Lipschitz,∥∥z′ − z̃′∥∥ =

∥∥Wr,2 ReLu(Wr,1u)−Wr,2 ReLu(Wr,1ũ)
∥∥ ≤ ∥u− ũ∥.

Using Lemma A.2 again,

∥u− ũ∥ = ∥LayerNorm(v + u′)− LayerNorm(v + ũ′)∥ ≤ 4
|γ1|
|γ2|

∥u′ − ũ′∥.

The last displays together yield

|qθ(y | x,Dn)− qθ(y | x, D̃n)| ≤ 32
|γ1|
|γ2|

∥∥u− ũ
∥∥. (9)

Defining Ṽi = Vi for i < n, we obtain

1

H
∥u′ − ũ′∥ =

1

H

∥∥∥∥ H∑
h=1

[ n∑
j=1

a
(h)
j W (h)

v Vj −
n∑

j=1

ã
(h)
j W (h)

v Ṽj

]∥∥∥∥
≤ max

1≤h≤H

∥∥∥∥ n∑
j=1

a
(h)
j W (h)

v Vj −
n∑

j=1

ã
(h)
j W (h)

v Ṽj

∥∥∥∥
= max

1≤h≤H

∥∥∥∥ n∑
j=1

a
(h)
j W (h)

v (Vj − Ṽj) +

n∑
j=1

(a
(h)
j − ãj)W

(h)
v Ṽj

∥∥∥∥
≤ max

1≤h≤H

n∑
j=1

a
(h)
j ∥W (h)

v ∥∥Vj − Ṽj∥+
n∑

j=1

|ã(h)j − aj |∥W (h)
v ∥∥Ṽj∥

≤ 4 max
1≤h≤H

a(h)n + 2

n∑
j=1

|ã(h)j − aj |.

Let si = v⊤W
(h)
q Vi and note that |si| ≤ ∥v∥∥W (h)

q ∥maxj ∥Vj∥ ≤ 4.

|a(h)n | = exp(sn)∑n
j=1 exp(sj)

≤ e4∑n
j=1 e

−4
=

e8

n
.

Further,

|ã(h)j − a
(h)
j | =

∣∣∣∣ exp(sj)∑n
j=1 exp(sj)

− exp(s̃j)∑n
j=1 exp(s̃j)

∣∣∣∣
=

∣∣∣∣ exp(sj)∑n
j=1 exp(sj)

− exp(s̃j)∑n
j=1 exp(sj)

+
exp(s̃j)∑n
j=1 exp(sj)

− exp(s̃j)∑n
j=1 exp(s̃j)

∣∣∣∣
≤

∣∣∣∣exp(sj)− exp(s̃j)∑n
j=1 exp(sj)

∣∣∣∣+ ∣∣∣∣ exp(s̃j)∑n
j=1 exp(sj)

− exp(s̃j)∑n
j=1 exp(s̃j)

∣∣∣∣
=

∣∣∣∣exp(sj)− exp(s̃j)∑n
j=1 exp(sj)

∣∣∣∣+ exp(s̃j)∑n
j=1 exp(sj)

∣∣∣∣
∑n

j=1 exp(sj)−
∑n

j=1 exp(s̃j)∑n
j=1 exp(s̃j)

∣∣∣∣
=

∣∣∣∣exp(sj)− exp(s̃j)∑n
j=1 exp(sj)

∣∣∣∣+ exp(s̃j)∑n
j=1 exp(sj)

∣∣∣∣exp(sn)− exp(s̃n)∑n
j=1 exp(s̃j)

∣∣∣∣.
14
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The first term on the right is zero if j ̸= n. For j = n, it can be bounded by 2e8/n as before. Using the same argument for
the second term above, we get

|ã(h)j − a
(h)
j | ≤ 2e8

n
1(j = n) +

2e16

n2
.

Accordingly,

1

H
∥u′ − ũ′∥ ≤ 4 max

1≤h≤H
a(h)n + 2

n∑
j=1

|ã(h)j − aj | ≤
4e8

n
+

2e8

n
+ n

2e16

n2
≤ 8e16

n
. (10)

Combining (9) and (10) proves the claim.

Lemma A.2. For any two vectors a, b ∈ Rd it holds∥∥LayerNorm(a;γ)− LayerNorm(b;γ)
∥∥ ≤ 4

|γ1|
|γ2|

∥a− b∥.

Proof. Let us first assume avg(a) = avg(b) = 0 and, without loss of generality, ∥a∥ ≥ ∥b∥. It holds,∥∥LayerNorm(a;γ)− LayerNorm(b;γ)
∥∥

= |γ1|
∥∥∥∥ a

∥a∥+ |γ2|
− b

∥b∥+ |γ2|

∥∥∥∥
= |γ1|

∥∥∥∥ a

∥a∥+ |γ2|
− b

∥a∥+ |γ2|
+

b

∥a∥+ |γ2|
− b

∥b∥+ |γ2|

∥∥∥∥
≤ |γ1|

∥a− b∥
∥a∥+ |γ2|

+ |γ1|∥b∥
∣∣∣∣ 1

∥a∥+ |γ2|
− 1

∥b∥+ |γ2|

∣∣∣∣
= |γ1|

∥a− b∥
∥a∥+ |γ2|

+ |γ1|
∥b∥

∥b∥+ |γ2|

∣∣∥b∥ − ∥a∥
∣∣

∥a∥+ |γ2|

≤ |γ1|
∥a− b∥

∥a∥+ |γ2|
+ |γ1|

∣∣∥b∥ − ∥a∥
∣∣

∥a∥+ |γ2|

≤ 2
|γ1|∥a− b∥
∥a∥+ |γ2|

[reverse triangle inequality]

≤ 2
|γ1|
|γ2|

∥a− b∥.

If avg(a) ̸= 0 or avg(b) ̸= 0, we get

∥LayerNorm(a;γ)− LayerNorm(b;γ)∥ ≤ 2
|γ1|
|γ2|

∥a− b− avg(a− b)∥ ≤ 4
|γ1|
|γ2|

∥a− b∥,

because

∥ avg(a− b)∥2 =

∥∥∥∥1d
d∑

i=1

(ai − bi)1

∥∥∥∥2 ≤
(
1

d

d∑
i=1

|ai − bi|∥1∥
)2

= d

(
1

d

d∑
i=1

|ai − bi|
)2

≤ ∥a− b∥2,

where we used the triangle inequality in the second step and Jensen’s inequality in the last.

A.9. Proof of Theorem 6.3

We have

u′ =

H∑
h=1

n∑
j=1

a
(h)
j W (h)

v Vj =

H∑
h=1

1
n

∑n
j=1 exp(v

⊤W
(h)
q Vj)W

(h)
v Vj

1
n

∑n
j=1 exp(v

⊤W
(h)
q Vj)

.
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The law of large numbers implies u′ → u′ almost surely, where

u′ =

H∑
h=1

EV ∼p0
[exp(v⊤W

(h)
q V )W

(h)
v V ]

EV ∼p0
[exp(v⊤W

(h)
q V )]

.

Now, observe that

EV ∼p0 [exp(v
⊤W

(h)
q V )W

(h)
v V ]

EV ∼p0 [exp(v
⊤W

(h)
q V )]

=

∫
W (h)

v s
exp(v⊤W

(h)
q s)

EV ∼p0 [exp(v
⊤W

(h)
q V )]

p0(s)︸ ︷︷ ︸
gh(s)

ds = W (h)
v EV ∼gh [V ].

Since all following operations on u′ are continuous (see the proof of Theorem A.1), it also holds

lim
n→∞

∣∣qθ(· | x,Dn)− qθ(· | x)
∣∣ = 0 almost surely.

Because the sequence |qθ(· | x,Dn) − qθ(· | x)| is uniformly bounded by 2, convergence is also in L1. This implies
limn→∞E[qθ(· | x,Dn)] = qθ(· | x).

B. Approximation Results for the PFN Parameter
Suppose that the parameters θ live in a subset of Rp with p fixed and finite. This assumption would be questionable in the
usual machine learning setting, but our situation is different. A PFN is pre-trained offline, using m Monte-Carlo samples
from data sets D(j). Given enough computing power, we can take m as large as we want.

Given sufficient regularity, the following theorems are direct applications of existing results. To keep additional concepts
and notation to a minimum, we omit detailed conditions and proofs and refer to the original works for specifics. We start
with the behavior of θ̂.

Theorem B.1. It holds:

(i) θ̂ → θ∗ in probability,

(ii)
√
m(θ̂ − θ∗) → N (0,Σθ∗) in distribution, where Σθ∗ = I−1

θ∗ Vθ∗I−1
θ∗ and

Iθ∗ = EΠN
EΠ[∇2

θ log qθ∗(Y | X,DN )]

and Vθ∗ = EΠN
EΠ[∇θ log qθ∗(Y | X,DN )×∇⊤

θ log qθ∗(Y | X,DN )].

Proof. See Corollary 3.2.3 and Example 3.2.12 in Vaart & Wellner (1996).

The first part shows that θ̂ is a valid approximation of θ∗, the second quantifies its accuracy. Theorem B.1 has direct
implications for the approximated model qθ̂.

Theorem B.2. It holds:

(i) sup
(y,x,D)

|qθ̂(y | x,D)− qθ∗(y | x,D)| → 0 in probability,

(ii)
√
m(qθ̂ − qθ∗) converges weakly to a mean-zero Gaussian process with

Cov
(
(y | x,D), (y′ | x′,D′)

)
= ∇θqθ∗(y | x,D)⊤Σθ∗∇θqθ∗(y′ | x′,D′).

Proof. Part (i) follows from Theorem B.1 and the continuous mapping theorem (Vaart & Wellner, 1996, Theorem 1.11.1 ),
part (ii) from the delta method (Vaart & Wellner, 1996, Theorem 3.9.4).
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From the second part, we see that the variance of qθ̂(y | x,D) is approximately

1

m
∇θqθ∗(y | x,D)⊤Σθ∗∇θqθ∗(y | x,D).

Intuitively, the variance depends on the accuracy of θ̂ (through Σθ∗ ), and the sensitivity of qθ∗ with respect to θ∗ (through
∇θqθ∗ ). Model complexity normally works against us in both parts. Hence, more complex models need to be trained with
more Monte-Carlo samples to limit the variance.
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