Published in Transactions on Machine Learning Research (10/2025)

Temporal Test-Time Adaptation with State-Space Models

Mona Schirmer m.c.schirmer@uuva.nl
UvA-Bosch Delta Lab, University of Amsterdam

Dan Zhang dan.zhang2@de.bosch.com
Bosch Center for Al

Eric Nalisnick nalisnick@jhu. edu
Johns Hopkins University

Reviewed on OpenReview: htips: //openreview. net/ forum? id=HFETOmUtTV

Abstract

Distribution shifts between training and test data are inevitable over the lifecycle of a
deployed model, leading to performance decay. Adapting a model on test samples can help
mitigate this drop in performance. However, most test-time adaptation methods have focused
on synthetic corruption shifts, leaving a variety of distribution shifts underexplored. In this
paper, we focus on distribution shifts that evolve gradually over time, which are common in
the wild but challenging for existing methods, as we show. To address this, we propose STAD,
a Bayesian filtering method that adapts a deployed model to temporal distribution shifts
by learning the time-varying dynamics in the last set of hidden features. Without requiring
labels, our model infers time-evolving class prototypes that act as a dynamic classification
head. Through experiments on real-world temporal distribution shifts, we show that our
method excels in handling small batch sizes and label shift.

1 Introduction

Predictive models often have an ‘expiration date. Real-world applications tend to exhibit distribution shift,
meaning that the data points seen at test time are drawn from a distribution that is different than the
training data’s. Moreover, the test distribution usually becomes more unlike the training distribution as time
goes on. An example of this is with recommendation systems: trends change, new products are released,
old products are discontinued, etc. Unless a model is updated, its ability to make accurate predictions will
expire, requiring the model to be taken offline and re-trained. Every iteration of this model life-cycle can be
expensive and time consuming. Allowing models to remain ‘fresh’ for as long as possible is thus an open and
consequential problem.

Test-time adaptation (TTA) (Liang et al., 2024; Yu et al., 2023) has emerged as a powerful paradigm to
preserve model performance under a shifting test distribution. TTA performs online adaptation of a model’s
parameters using only test-time batches of features. By requiring neither access to labels nor source data,
TTA algorithms can be employed in resource-constrained environments, whereas related approaches such as
domain generalization, domain adaptation and test-time training cannot. Most TTA methods operate by
minimizing an entropy objective (Wang et al., 2021) or updating normalization parameters (Schneider et al.,
2020; Nado et al., 2020; Niu et al., 2023).

Synthetically corrupted images (e.g. CIFAR-10-C) are by far the most commonly used benchmark for
assessing progress on TTA, despite concerns about benchmark diversity (Zhao et al., 2023b). These shifts
increase the degree of information loss over time, and well-performing TTA methods must learn to preserve
a static underlying signal. In this work, we focus on an omnipresent distribution shift of quite a different
nature: Temporal distribution shifts encode structural change, not just information loss. Gradual structural
change over time is relevant for any deployed model that is operating continuously. While related subfields

https://openreview.net/forum?id=HFETOmUtrV

Published in Transactions on Machine Learning Research (10/2025)

like gradual domain adaptation (GDA) (Kumar et al., 2020) and temporal domain generalization (TDG) (Bai
et al., 2023) are dedicated to these shifts, they have received little attention in TTA. As we will demonstrate
using datasets like the Functional Map of the World (FMoW), which classifies land use over time (e.g.,
rural to urban development), the setting of temporal test-time adaptation (TempTTA) presents significant
challenges for existing TTA methods.

To address this gap, we propose State-space Test-time Adaptation (STAD), a method that builds on the
power of probabilistic state-space models (SSMs) to represent non-stationary data distributions over time.
STAD dynamically adapts a model’s final layer to accommodate an evolving test distribution. Specifically,
we employ a probabilistic SSM based on Bayesian filtering to model the evolution of the weight vectors in
the final layer, where each vector represents a class, as distribution shift occurs. For generating predictions
on newly acquired test batches, we use the SSM’s posterior cluster means as the new parameters. STAD
leverages Bayesian updating and does not rely upon normalization mechanisms. As a consequence, STAD
excels in scenarios where many TTA methods collapse (Niu et al., 2023), such as adapting with very few
samples and under label shift. Our contributions are the following:

e In Sec. 2, we detail the setting of TempTTA, which aims to cope with shifts that gradually evolve due
to variation in the application domain. Despite being ubiquitous in real-world scenarios, these shifts
are understudied in the TTA literature and pose significant challenges to established methods, as we
demonstrate in Sec. 5.1.

e In Sec. 3, we propose STAD, a novel method for TempTTA. It adapts to temporal distribution shifts by
modeling its dynamics in representation space. No previous work has explicitly modeled these dynamics,
which we demonstrate is crucial via an ablation study (Sec. 5.3).

e In Sec. 5, we conduct a comprehensive evaluation of STAD and prominent TTA baselines under authentic
temporal shifts. Our results show that STAD excels in this setting (Tab. 2), yet is applicable beyond
temporal shifts providing performance gains on some reproduction datasets (Tab. 3), synthetic corruptions
(Tabs. 4 and 12) and domain adaptation benchmarks (Tabs. 8 and 9).

2 Problem Setting

Data & Model We focus on the traditional setting of multi-class classification, where X C RP denotes
the input (feature) space and Y C {1, ..., K} denotes the label space. Let x and y be random variables and
P(x,y) = P(x) P(y|x) the unknown source data distribution. We assume « € X and y €) are realisations of
x and y. The goal of classification is to find a mapping fy, with parameters 6, from the input space to the
label space fy : X —). Fitting the classifier fy is usually accomplished by minimizing an appropriate loss
function (e.g. log loss). Yet, our method is agnostic to how fy is trained and therefore easy to use with, for
instance, a pre-trained model downloaded from the web.

Temporal Test-Time Adaptation (TempTTA) We are interested in adapting a model at test-time
to a test distribution that evolves with time. More formally, let 7 = {1,...,T} be a set of T time indices.
At test time, let the data at time ¢ € T be sampled from a distribution Q;(x,y) = Q;(x) Q.(y|x). The test
distributions differ from the source distribution, Q;(x,y) # P(x,y) V¢ > 0, and are non-stationary, meaning
Q:(x,y) # Qu(x,y) for t #t'. Like in standard TTA, we of course do not observe labels at test time, and
hence we observe only a batch of features X; = {x14,...,Xn}, where x,, ; ~ Q;(x) (i.i.d.). Given the t-th
batch of features X;, the goal is to adapt fp, forming a new set of parameters 6, such that fp, has better
predictive performance on X; than fy would have. Since we can only observe features, we assume that the
distribution shift must at least take the form of covariate shift: Q:(x) # P(x) Vt > 0. In addition, a label shift
may occur, which poses an additional challenge: Q;(y) # P(y) V¢ > 0. Temporal shifts, as described above,
have been the focus of temporal domain generalization (Bai et al., 2023) and gradual domain adaptation
(Abnar et al., 2021). However, both paradigms operate during training, whereas TempTTA is applicable at
test time. In Tab. 1, we contrast TempTTA with adjacent fields highlighting subfields that address temporal
shifts. Notably, TempTTA can be seen as a special case of continual TTA (CTTA) (Wang et al., 2022b) with
the important distinction that the domain index ¢ is inherently temporal. This is opposed to a categorical
domain index (e.g. different corruption types) as is mostly studied in CTTA.

Published in Transactions on Machine Learning Research (10/2025)

Table 1: Comparison of TempTTA with related fields

Adaptation Available Test distribution
stage samples non-stationary time-ordered
Domain generalization (DG) train P(x,y) X X
Temporal DG train P (x,¥),- .-, Prg(x,y) v v
Domain adaptation (DA) train P(x,), (x) X X
Gradual DA train P(x,y), Ql()s---, Qr(x) v v
Test-time training train, test P(x,y), Q(x) X X
Test-time adaptation (TTA) test Q(x) X X
Continual TTA test Q1 (x),...,Qr(x) v X
TempTTA | test | Q1(x),...,Qr(x) | v v

3 Tracking the Dynamics of Temporal Shifts

We now present our method: the core idea is that adaptation to temporal distribution shifts can be done
by tracking its gradual change in the model’s representations. We employ linear SSMs to capture how test
points evolve and drift. The SSM’s cluster representations then serve as an adaptive classification head that
evolves with the non-stationarity of the distribution shift. Fig. 1 illustrates our method. In Sec. 3.2, we first
introduce the general model and then, in Sec. 3.3, we propose an efficient implementation that leverages the
von Mises-Fisher distribution to model spherical features.

3.1 Adaptation in Representation Space

Following previous work (Iwasawa & Matsuo, 2021;
Boudiaf et al., 2022), we adapt only the last layer of
the source model. This lightweight approach is rea-
sonable for Temp-TTA since the distribution shifts

gradually over time, hence constrained adaptation j 7
is needed. From a practical perspective, this cir- @ >) W12 ‘‘‘‘‘‘
cumvents backpropagation through potentially large

networks such as foundation models and allows adap- X
tation when only embeddings are provided e.g. by an
API. More formally, let the classifier fy be a neural
network with L total layers. We will treat the first
L — 1 layers, denoted as feL ~1. as a black box that
transforms the original feature vector x into a new
(lower-dimensional) representation, which we denote
as h. The original classifier then maps these representations to the classes as: E[y|h] = softmax, (WE)r h),
where softmax, (-) denotes the dimension of the softmax’s output corresponding to the y-th label index and
W are the last-layer weights. As Wy will only be valid for representations that are similar to the training
data, we will discard these parameters when performing TempTTA, learning new parameters Wy for the
t-th time step. These new parameters will be used to generate the adapted predictions through the same
link function: E[y|h] = softmax, (W, h). In the setting of TempTTA, we observe a batch of features X;.
Passing them through the model yields corresponding representations H;, and this will be the ‘data’ used for
the probabilistic model we will describe below. Specifically, we will model how the representations change
from H; to H;y1 next.

<>

W13
W11

Figure 1: STAD adapts to distribution shifts by in-
ferring dynamic class prototypes wy j for each class &k
(different colors) at each test time point. It operates
on the representation space of the penultimate layer.

3.2 A Probabilistic Model of Shift Dynamics

We now describe our general method for a time-evolving adaptive classification head. We assume that, while
the representations H; are changing gradually over time, they are still maintaining some class structure
in the form of clusters. Our model will seek to track this structure as it evolves. For the intuition of the

Published in Transactions on Machine Learning Research (10/2025)

approach, see Fig. 1. The blue red, and green clusters represent classes of a classification problem. As the
distribution shifts from time step t = 1 to ¢ = 3, the class clusters shift in representation space. Using latent
variables wy j, for the cluster centers, we will assume each representation is drawn conditioned on K latent
vectors: by, ~ p(hywg1,..., Wy k), where K is equal to the number of classes in the prediction task. After
fitting the unsupervised model, the K latent vectors will be stacked to create Wy, the last-layer weights of
the adapted predictive model (as introduced in Sec. 3.1). We now move on to a technical description.

Notation and Variables Let H; = (hy1,...,h n,) € RP*Nt denote the neural representations for N,
data points at test time ¢. Let W, = (wy1,..., Wy k) € RP*K denote the K weight vectors at test time
t. As discussed above, the weight vector wy j; can be thought of as a latent prototype for class k at time ¢.
We denote with C; = (c.1,...,¢.n,) € {0, 135Nt the N; one-hot encoded latent class assignment vectors
cn € {0, 1}K at time t. The k-th position of c¢;, is denoted with c;, » and is 1 if h;, belongs to class k£
and 0 otherwise. Like in standard (static) mixture models, the prior of the latent class assignments p(c;)
is a categorical distribution, p(c;,,) = Cat(m;) with m; = (m.1,..., 7 x) € [0,1]% and 2521 7, = 1. The
mixing coefficient 7 ;, gives the a priori probability of class £ at time ¢ and can be interpreted as the class
proportions. Next, we formally describe how we model the temporal drift of class prototypes.

Dynamics Model We model the evolution of the K prototypes W, = (w1, ..., W, k) with K independent
Markov processes. The resulting transition model is

K
(Wi W1, 9p"%) = [p(Wek Wik, 0"), (1)
k=1

where 1'% denote the parameters of the transition density. At each time step, the feature vectors H; are
generated by a mixture distribution over the K classes,

N, K

p(HW,,) = T[D mer - p(hen

n=1 k=1

Wik,). (2)

where ¥°™* are the emission parameters. We thus assume at each time step a standard mixture model over
the K classes where the class prototype wy ; defines the latent class center and 7 j, the mixture weight for
class k. The joint distribution of representations, prototypes and class assignments can be factorised as

follows,
T

p(Hir, Wi, Crr) = p(W1) [[p(Wi Wiy, ™) T] p(Co)p(H W, Cp, ™). (3)

t=2 t=1

We use the notation Hqi.p = {Ht}?zl to denote the representation vectors H; for all time steps 7" and
analogously for Wy.r and Cy.7. A plate diagram of the probabilistic model is depicted in App. B. We next
outline how we infer the latent class prototypes Wi.p.

Posterior Inference & Adapted Predictions The primary goal is to update the class prototypes W
with the information obtained by the N; representations of test time ¢. At each test time ¢, we are thus
interested in the posterior distribution of the prototypes p(W|Hj.;). Once p(W¢|H;.;) is known, we can
update the classification weights with the new posterior mean. We can fit the probabilistic model and infer the
posterior distribution for the class weights W; and class assignments C; with the Expectation-Maximization
(EM) algorithm. In the E-step, we compute the posterior p(Wy.r, C1.7|Hj.7). In the M-step, we compute the
expectation of the complete-data log-likelihood (Eqn. (3)) with respect to this posterior and then maximize
the resulting expression with respect to the model parameters ¢:

" = arg;nax Epow,cm) [log p(Hy.r, Wir, Crir)], (4)

where ¢ comprises the parameters of the transition and emission densities as well as the mixing coeffi-
cients, ¢ = {5)™ ;.11 and we have abbreviated the posterior distribution by p(W,C | H) :=

Published in Transactions on Machine Learning Research (10/2025)

p(Wi.r,Ci.r|Hy.7). After one optimization step, we collect the K class prototypes into a matrix Wy.
Using the same hidden representations used to fit W;, we generate the predictions via the model’s softmax
parameterization,

Yt ~ Cat (Yt,n; softmax(WtThtm)), (5)

where y; ,, denotes a prediction sampled for the representation vector h; ,. Note that adaptation can be
performed online by optimizing Eqn. (4) incrementally, considering only data up to point ¢. To omit computing
the complete-data log likelihood for an increasing sequence as time goes on, we employ a sliding window
approach. Algorithm 1 outlines the overall, procedure of our method. The specific EM updates depend on
the chosen parametric form of the SSM. We consider two instances: a Gaussian model and a hyperspherical
model based on the von Mises—Fisher distribution. The corresponding EM steps for these two cases are
detailed in Algorithm 2 and Algorithm 3, respectively.

Algorithm 1 STAD

: Input: Source model fy, test batches Xi.r, sliding window size s
. Initialize: mixing coefficients m;, weights Wy, transition and emission parameters 1)trans, q)°ms
: fort €7 do
Define sliding window: S; = {7 | max(1,t —s) <7 <t}
Compute representations: H; = f5~*(X;)
Fit probabilistic SSM via EM: Wy, Cy, wy, 108 ¢°ms = EM({H,, W, C,, 7, };cs,, ™", %)
Predict: vy n ~ Cat(yt’n; softmax(W/ h,))
end for

@ N DT W

Gaussian Model The simplest parametric choice for the transition and emission models is Gaussian. The
resulting probabilistic SSM can be interpreted as a mixture of K Kalman filters (KFs) (Kalman, 1960). Owing
to the linear-Gaussian structure, the posterior expectation E,w cjm)[-] in Eqn. (4) can be computed in
closed form using the standard KF prediction, update, and smoothing equations (Calabrese & Paninski, 2011;
Bishop & Nasrabadi, 2006). The complete model specification is provided in App. B.1, and the corresponding
EM updates are summarized in Algorithm 2. However, these closed-form computations come at a cost: they
require matrix inversions of size D x D and the storage of K x D? parameters. This makes the Gaussian
formulation expensive for high-dimensional features and impractical in low-resource settings. Next, we present
a model for spherical features that circumvents these limitations.

3.3 Von Mises-Fisher Model for Hyperspherical Features

Choosing Gaussian densities for the transition and emission
models, as discussed above, assumes the representation space ¢+t
follows an Euclidean geometry. However, prior work has shown n G
that assuming the hidden representations lie on the unit hyper-
sphere results in a better inductive bias for OOD generalization
(Mettes et al., 2019; Bai et al., 2024). This is due to the norms ﬂ
of the representations being biased by in-domain information

such as class balance, making angular distances a more reliable

signal of class membership in the presence of distribution shift

(Mettes et al., 2019; Bai et al., 2024). We too employ the hyper- Figure 2: STAD-vMF: Representations lie
spherical assumption by normalizing the hidden representations on the unit sphere. STAD adapts to the
such that ||h||2 = 1 and model them with the von Mises-Fisher distribution shift — induced by changing de-

H; 1 2|Cpy2 Hyy2|Cpy2

(VMF) distribution (Mardia & Jupp, 2009), mographics and styles — by directing the last
. layer weights w; , towards the representa-
vMF (h; pui, 5) = Cp (k) exp {x - p h} (6) tions H,

where p;, € RP with [|pg||2 = 1 denotes the mean direction of class k, € R the concentration parameter,
and Cp (k) the normalization constant. High values of x imply larger concentration around pg. The vMF
distribution is proportional to a Gaussian distribution with isotropic variance and unit norm. While previous

Published in Transactions on Machine Learning Research (10/2025)

work (Mettes et al., 2019; Ming et al., 2023; Bai et al., 2024) has explored training objectives to encourage
representations to be vMF-distributed, we apply Eqn. (6) to model the evolving representations.

Hyperspherical State-Space Model Returning to the SSM given above (Eqn. (3)), we specify both
transition (Eqn. (1)) and emission models (Eqn. (2)) as vMF distributions, resulting in a hyperspheri-
cal transition model, p(W¢W;_1) = Hle VMF(Wy o |[Wi_1 k, £72"), and hyperspherical emission model,
p(HWy) = Hg;l le 71, VMF (hy , [Wy g, K™°). The parameter size of the vMF formulation scales linearly
with the feature dimension, O(DK), compared to the Gaussian case’s O(D?K). Notably, the noise parameters,
KTADS eems gimplify to scalar values which reduces memory substantially. Fig. 2 illustrates this STAD-vMF
variant.

Posterior Inference In contrast to the linear Gaussian case, the vMF distribution is not closed under
marginalization. As a result, the posterior distribution required for computing the expectation in Eqn. (4)
(E-step of the EM algorithm) cannot be expressed in closed form. To address this, we adopt a variational
EM approach, approximating the posterior p(W, C | H) with a mean-field variational distribution ¢(W, C)
following Gopal & Yang (2014):

q(Wi) = VMF(5 per, Yek), q(Cen) = Cat(s A). (7)

The variational distribution ¢(W,C) factorizes over t,n,k and the objective from Eqn. (4) becomes
argmax, E,w.c) [logp(leT, Wi, CLT)]. The optimal variational parameters are given by

7., Cp (K°™®) exp {ﬁemSEq [wtyk}—rhtﬁn}

Atk = o Yok = Beklls Pek = Ber/ Ve (8)
3721 7, O (ko) exp { kOB [wi ;] Th,p } i
Ny
with B e = 6" Lpsny Bg[weo1p] + £ Z Eglcem ke n + 67 Loy Bq[wig k], 9)
n=1

where I, denotes the indicator function, ensuring that terms are omitted at the temporal boundaries and
E, denotes expectations with respect to ¢(W, C). The expectations of the variational distributions (Eqn. (7))
are Eglcen] = (Aen1,- o An, k) and Eq[wy x] = Ap(vek)pek, which completes the E-step. We defer the
M-step to App. B.2. Algorithm 3 summarizes the EM algorithm for STAD-vMF. As in the Gaussian case, we
form the updated last-layer weight matrix by stacking the posterior means, W; = (p¢.1, ..., pr,x). Notably,
posterior inference for the vMF model is much more scalable than the Gaussian case. It operates with linear
complexity in D, rather than cubic, reducing runtime significantly.

Recovering the Softmax Predictive Distribution In addition to the inductive bias that is beneficial
under distribution shift, using the vMF distribution has an additional desirable property: classification via
the cluster assignments is equivalent to the original softmax-parameterized classifier. The equivalence is exact
under the assumption of equal class proportions and sharing x across classes:

VMF(htJL; wt,k7 Hems)

p(Ct, k= 1|ht, 0y Wt 1y - - s WK, KE) =
" ! Zszl vMF(hy 5 Wy, KOMS)
10
Cp (k™) exp {Kems) WZkht,n} (10)
= =% = = softmax (nems -W;rhtyn) ,
Zj:l C’D(Hems) exp {I{ems . Wt,jht,n}
which is equivalent to a softmax with temperature-scaled logits, with the temperature set to 1/x°™*. Tem-

perature scaling only affects the probabilities, not the modal class prediction. If using class-specific
k™S values and assuming imbalanced classes, then these terms show up as class-specific bias terms,

P(Cink = U p, Wet,. ., Wi i, K55, .., KS) & exp {Iizms . Wzkhtm +log Cp(k5™) + log ﬂt)k}.

4 Related Work

We overview SSMs and TTA next. App. A provides more detailed discussions on TTA and adjacent fields.

Published in Transactions on Machine Learning Research (10/2025)

State-Space Models (SSMs) in Deep Learning Probabilistic SSMs, such as the Kalman filter (Kalman,
1960), provide a principled framework for updating latent states with new information and have been widely
applied in deep learning. In sequence modeling, SSMs are used to learn latent trajectories in both discrete
(Krishnan et al., 2015; Karl et al., 2017; Fraccaro et al., 2017; Becker et al., 2019) and continuous time
(Schirmer et al., 2022; Ansari et al., 2023; Zhu et al., 2023). Recent advancements in structured SSMs (Gu
et al., 2022; Smith et al., 2023; Gu & Dao, 2023) have pushed the state-of-the-art in sequence modeling.
However, these models focus on individual sequence dynamics, whereas we are interested in modeling the
dynamics of an entire data stream. Our objective aligns more closely with online learning (Duran-Martin et al.,
2025). Notably, Chang et al. (2023) and Titsias et al. (2024) extend Kalman filters to handle non-stationary,
supervised settings. Like our method, Titsias et al. (2024) infers the evolution of the classification head with
a SSM. However, they require labels whereas our method is fully unsupervised.

Test-Time Adaptation (TTA) TTA aims to make pre-trained models robust to distribution shifts
by adapting directly to the test data during inference. It is training-agnostic, contributing to its growing
popularity (Xiao & Snoek, 2024). Early TTA methods recalculate batch normalization (BN) statistics from
test data (Nado et al., 2020; Schneider et al., 2020). Updating model parameters via gradient descent is
most commonly done via entropy minimization (Grandvalet & Bengio, 2004; Wang et al., 2021; Zhang et al.,
2022; Yu et al., 2024; Gao et al., 2024). Alternative approaches include contrastive learning (Chen et al.,
2022), invariance regularization (Nguyen et al., 2023), Hebbian learning (Tang et al., 2023), and prompt
tuning (Niu et al., 2024). Recent work has focused on making TTA reliably deployable by stress-testing
various real-world settings (see App. A for detailed discussions). A key challenge is continual adaptation to a
non-stationary target domain, studied in CTTA (Wang et al., 2022b). Solutions include episodic resets (Press
et al., 2024), student-teacher models (Dobler et al., 2023; Brahma & Rai, 2023), masking (Liu et al., 2024)
and regularization (Niu et al., 2022; Song et al., 2023). Approaches relying on test data statistics further
struggle with class imbalance or small test batches, which has led to adaptations in BN strategies (Zhao
et al., 2023a; Lim et al., 2023), reservoir sampling (Gong et al., 2022; Yuan et al., 2023), sample filtering (Niu
et al., 2023), and label distribution tracking (Zhou et al., 2023). Methods that adapt the classification head,
rather than relying on BN, effectively prevent such collapse (Boudiaf et al., 2022; Jang et al., 2023). The
most similar approach to ours, T3A (Iwasawa & Matsuo, 2021), recomputes prototypes from representations
but relies on heuristics, whereas STAD explicitly models dynamics with a SSM. Lee & Chang (2024b;a);
Lee (2025) also use a SSM for online TTA, but to filter noisy model updates, while our SSM models the
distribution shift itself. Concurrent to our work, Dai & Yang (2025) proposes Gaussian mixture models
updated via EM to adapt the prototypes of vision language models (VLMs). Aside from focusing on VLMs,
their model is also static and does not consider transition dynamics.

5 Experiments

We evaluate our method, STAD, against various baselines on 7 datasets under challenging settings. Sec. 5.1
studies temporal distribution shifts as defined in Sec. 2, demonstrating the difficulty of the task and STAD’s
robustness in practical settings. In Sec. 5.2, we go beyond temporal shifts and find that STAD is competitive
on reproduction datasets and synthetic corruptions as well (see App. D.1 for results on domain adaptation).
Finally, in Sec. 5.3, we provide insights into STAD’s mechanisms, confirming the reliability of its prototypes
and highlighting the importance of modeling shift dynamics through an ablation study. We now describe the
experimental setup. Details are listed in App. C.

Datasets We investigate temporal distribution shifts using three image classification datasets spanning
several years. Yearbook (Ginosar et al., 2015) involves binary gender prediction on portrait images, capturing
changes in demographics and beauty standards over time. EVIS (Zhou et al., 2022a) categorizes vehicles
and electronic products. FMoW-Time (Koh et al., 2021) maps satellite images to land use categories. Each
dataset comprises samples from multiple years, with the earlier years used for training and the later years for
testing (see App. C.1 for details). To evaluate the effectiveness of our method beyond TempTTA, we also test
its performance on reproduction datasets (CIFAR-10.1, ImageNetV2) and image corruptions (CIFAR-10-C).

Published in Transactions on Machine Learning Research (10/2025)

Table 2: Accuracy on temporal distribution shifts and label shifts, averaged over three random seeds.
Colors highlight performance that either improves or degrades relative to the source model. Best model in
bold, second-best underlined.

Yearbook EVIS FMoW-Time
Method covariate shift 4 label shift | covariate shift -+ label shift | covariate shift + label shift
Source model 81.30 & 4.18 56.59 + 0.92 68.94 £ 0.20
adapt feature extractor
BN 84.54 +2.10 70.47 + 0.33 45.72 + 2.79 14.48 + 1.02 67.60 + 0.44 10.14 + 0.04
TENT 84.53 £ 2.11 70.47 + 0.33 45.73 £ 2.78 14.49 £+ 1.02 67.86 £+ 0.54 10.21 £+ 0.01
CoTTA 84.35 £ 2.13 66.12 + 0.87 | 46.13 £ 2.86 14.71 + 1.00 | 68.50 + 0.25 10.19 + 0.04
SHOT 85.17 + 1.89 70.71 £+ 0.20 45.93 + 2.75 14.51 + 1.00 | 68.02 £+ 0.51 10.08 + 0.07
SAR 84.54 +2.10 70.47 + 0.33 45.78 + 2.80 14.63 + 1.00 | 67.87 & 0.51 10.27 + 0.10
CMF 85.34 £+ 1.86 71.20 £ 0.51 45.75 £+ 3.01 35.77 £ 2.07 | 67.44 £ 0.46 11.21 + 0.10
RoTTA 80.49 + 3.48 80.15 + 3.50 44.28 + 3.02 45.38 + 2.88 67.43 + 0.67 65.77 + 0.68
adapt classifier
LAME 81.60 + 3.99 82.70 &+ 4.55 56.67 + 0.99 69.37 + 5.37 | 68.32 +0.32 83.05 + 0.48
T3A 83.49 + 2.55 83.46 + 2.59 | 57.63 £ 0.77 57.32 £ 0.77 | 66.77 £ 0.26 66.83 £ 0.27
STAD-vMF (ours) 85.50 + 1.34 84.46 + 1.19 56.67 + 0.82 62.08 + 1.11 | 68.87 + 0.06 86.25 + 1.18
STAD-Gauss (ours) 86.22 + 0.84 84.67 + 1.46 - - - -

Source Architectures and Baselines We employ a variety of source architectures to demonstrate
the model-agnostic nature of STAD. They vary in backbone architecture (ViT, CNN, DenseNet, ResNet,
WideResNet) and dimensionality of the representation space (from 32 up to 2048). We list details in App. C.2.
We compare against 8 TTA baselines representing fundamental TTA approaches. Six of them adapt the
feature extractor: Batch norm adaptation (BN) (Schneider et al., 2020; Nado et al., 2020), TENT (Wang et al.,
2021), CoTTA (Wang et al., 2022b), SHOT (Liang et al., 2020) SAR (Niu et al., 2023) and RoTTA (Yuan
et al., 2023). Like our method STAD, two baselines adapt the last layer: T3A (Iwasawa & Matsuo, 2021)
and LAME (Boudiaf et al., 2022). More details are provided in App. C.3. Batch sizes are the same for all
baselines. To ensure optimal performance on newly studied datasets, we conduct an extensive hyperparameter
search for each baseline (see App. C.4) and report the best setting.

5.1 Temporal Distribution Shifts

We start by evaluating the adaptation abilities to temporal distribution shift on three image classification
datasets (Yearbook, EVIS, FMoW-Time), which vary in number of classes (2, 10, 62, respectively), rep-
resentation dimension (32, 512, 1024, respectively) and shift dynamics (recurring, progressive and rapid,
respectively as visible in Fig. 3). For the low-dimensional representations of Yearbook, we also evaluate our
computationally costly Gaussian model (STAD-Gauss). We evaluate two settings: (i) covariate shift with
a uniform label distribution and (ii) covariate shift with additional shift in the label distribution
Q:(y). Having a uniform label distribution—samples are evenly shuffled, making test batches nearly class
balanced—has been the traditional evaluation setting for TTA. However, particularly in temporal distribution
shifts, it is highly unlikely that samples arrive in this iid-manner. Instead, temporally correlated test streams
often observe consecutive samples from the same class (Gong et al., 2022). We follow Lim et al. (2023),
ordering the samples by class and thus inducing an extreme label shift. We draw the class order uniformly at
random.

Temporal shifts pose challenges for existing TTA methods. Tab. 2 shows overall accuracy, averaged
over all time steps and three random training seeds. Results that do not outperform the source model are
highlighted in red and ones that do in blue. Methods that primarily adapt the feature extractor are shown
in the upper section of the table. Ones that, like ours, adapt the classifier are shown in the lower section.
To summarize the results: on Yearbook, all methods perform well without label shift, and with label shift,
only classifier-based methods improve upon the source baseline. Feature-based methods completely fail on
EVIS, and all models, except LAME and STAD-vMF under label shift, fail on FMoW-Time. This leads us
to three key takeaways: first, these TempTTA tasks are inherently difficult, leading to smaller adaptation

Published in Transactions on Machine Learning Research (10/2025)

Yearbook EVIS FMoW-Time
100 80 - E‘Q\
90 -
70 BN —o— ROTTA
80 —eo— TENT LAME

60 1 —e— CoTTA —e— T3A
SHOT —e— STAD-vMF

50 SAR ===+ Source \

T T T T T T T T T T T T T T T
1970 1980 1990 2000 2010 2012 2014 2016 2018 2020 2013 2014 2015 2016 2017

Year Year Year

70 -

Accuracy (1)

60 -

Figure 3: Accuracy over time for TempTTA: STAD mitigates distribution shifts by improving up to 10 points
over the source model (Yearbook, 1980s). Some baselines perform similarly, shown by overlaying accuracy
trajectories.

gains overall compared to traditional corruption experiments. Second, methods that adapt only the last layer
clearly perform better on temporal distribution shifts under both label distribution settings. This indicates
that perhaps ‘less is more’ for TempTTA. Third, STAD demonstrates the most consistent performance,
ranking as the best or second-best model across all datasets and settings. On Yearbook, both the Gaussian
and vMF variants outperform the baselines, with the fully parameterized Gaussian model better capturing
the distribution shift than the more lightweight vMF model. Fig. 3 displays adaptation performance over
different timestamps. We see that on EVIS (middle) the methods markedly separate, which reflects the
aforementioned gap between feature-based and classifier-based approaches. The reader may wonder if STAD
can be stacked on a feature-based approach. We present results for BN in Tab. 11 (App. D.3) but find no
significant improvement in STAD’s performance.

STAD excels under label shift Tab. 2 demonstrates that STAD performs particularly well under
imbalanced label distributions, delivering the best results on both Yearbook and FMoW-Time. This advantage
stems from STAD’s clustering approach, where a higher number of samples from the same ground truth
class provides a stronger learning signal, leading to more accurate prototype estimates. This is particularly
notable on FMoW, where STAD improves upon the source model by more than 17 points. Further, the
performance gap between classifier and feature extractor adaptation methods becomes even more pronounced
in this setting. This is not surprising as the latter typically depend heavily on current test-batch statistics,
making them vulnerable to imbalanced class distributions (Niu et al., 2023). In contrast, having fewer classes
to cause confusion allows classifier-based methods to benefit from label shift, with STAD delivering the most
persistent adaptation gains.

Yearbook (covariate shift) EVIS (covariate shift) FMoW-Time (covariate shift)
- o |
— > e —— — ~
€ g [T oot o= £ 60 7 - £ 60+ V. BN LAME
g B 2 —e— TENT —e— T3A
4
IS g 401 A~ & 40+ / —e— COTTA —e— STAD-vMF
= 3 =
HOT —e— STAD-
g 60 S 204 +7 S nd SHO' STAD-Gauss
< < < V. SAR ~ =+ Source
0 0 —#— RoTTA
T T
1 2 4 8 16 32 64 128 256 512 10242048 1 2 4 8 16 32 64 128 256 512 10242048 1 2 4 8 16 32 64 128 256 512 10242048
Batch Size Batch Size Batch Size
Yearbook (covariate + label shift) EVIS (covariate + label shift) FMoW-Time (covariate + label shift)
100
£ /\ € 5 -m
> > L4 » Shamn o o a
2 ——t—t— 2
I oo —9—0 £ 50
g 1
o] 9 254
< <
T T

=3

T T T T T T T T T T T T T T T T
1 2 4 8 16 32 64 128 256 512 1024 2048 1 2 4 8 16 32 64 128 256 512 1024 2048 1 2 4 8 16 32 64 128 256 512 10242048

Batch Size Batch Size Batch Size

Figure 4: Batch size effects under covariate shift (first row) and additional label shift (second row): STAD-vMF
(dark blue) shows robustness to small batches, with a sweet spot around batch size 16 for label shift on EVIS
and FMoW-Time.

Published in Transactions on Machine Learning Research (10/2025)

STAD is robust to small batch sizes Adapting to a small number of samples is crucially valuable, as one
does not have to wait for a large batch to accumulate in order to make adapted predictions. We next evaluate
performance across 12 different batch sizes ranging from 1 to 2048 under both covariate shift and additional
label shift. Fig. 4, displays results. STAD-vMF (dark blue) is able to maintain stable performance under all
batch sizes. In Tab. 10 (App. D.2), we report values for batch size 1 showing that STAD adapts successfully
even in the most difficult setting. In contrast, methods relying on normalization statistics collapse when not
seeing enough samples per adaptation step. For example, on FMoW, feature-based methods collapse to nearly
random guessing at the smallest batch sizes. When batch sizes are large, note that TENT, CoTTA, SHOT,
and SAR hit memory constraints on FMoW-Time, failing to close the gap to the source model performance
in the label shift scenario.

5.2 Beyond Temporal Shifts: Reproduction Datasets and Synthetic Corruptions

Although STAD is designed for temporal distribution shifts, we are also interested in the applicability of our
method to other types of shifts. Next we report performance on reproduction datasets and synthetic image
corruptions.

Reproduction Datasets We evaluate our

method on reproduction datasets (CIFAR-10.1, Table 3: Accuracy on reproduction datasets.
ImageNetV2), which have been considered CIFAR101 TmageNetv2
as more I‘eahstic and Challenging distribution Method covariate shift + label shift | covariate shift + label shift
shifts (Zhao et al., 2023b). Tab. 3 confirms _Source model 8825 ‘ 63.18
. . . adapt feature extractor ‘
the difficulty of adapting to more natural dis- 8645+ 028 23.83+0.31 6260 +£0.15 43.20 + 0.28
tribution shifts. For CIFAR-10.1, only T3A TENT 86.75 + 0.35 23.87 £ 0.06 63.00 + 0.16 43.20 £ 0.28
STAD ‘ h 1§ CoTTA 86.75 £ 0.17 2237 £0.25 61.66 +0.29 43.73 & 0.33
and outperform the source model for SHOT 86.50 + 0.23 23.83 +0.31 62.97 + 0.22 43.10 + 0.34
both with and without label shift, with STAD SAR 86.45 + 0.28 23.82+0.33 62.99 +0.10 43.19 + 0.25
dantine best. For I NetV2 £ th RoTTA 87.17 £ 0.21 87.85+0.35 63.39 +0.20 63.20 & 0.21
adap mg. est. For ImageNe , none o e adapt clasefior |
methods improve upon the source model when — LAME 88.20 + 0.09 92.42 +0.28 63.15 £ 0.10 80.47 + 0.32

T3A 88.28 + 0.06 89.00 £ 0.66 62.86 £ 0.04 63.47 &= 0.09

the label distribution is uniform. We again ob- gpap e (ours) 88.42+0.10 0223+ 070 6239+ 005 81.46 + 0.24

serve that classifier-adaptation methods handle
label shifts better by a significant margin.

Synthetic Corruptions Lastly, we test our

method on gradually increasing noise corrup- Table 4: Accuracy on synthetic corruptions (CIFAR-10-
tions of CIFAR-10-C, a standard TTA bench- C)

mark and provide results on ImageNet-C in Corruption severity
App. D.4. Tab. 4 shows the accuracy averaged Method 1 2 3 4 5 Mean
across all corruption types for CIFAR-10-C. Source 86.00 81.34 7492 67.64 5648 | 73.46
We make three key observations. First, perfor- adapt feature extractor \
mance gains are much higher than on previous BN e
R TENT 90.87 89.70 88.32 85.89 83.09 87.57

datasets indicating the challenge posed by non- ¢ A 00.62 8942 B88.55 B87.28 85.27 88.23
synthetic shifts. Second, as expected, methods SHOT 90.31 88.66 87.31 85.02 82.13 86.69
adapting the backbone model are more perfor- ~ SAR 90.16 88.09 8626 83.32 7948 85.46

. RoTTA 90.60 89.41 88.14 85.88 83.37 8748
mative on input-level noise, since such shifts Lt classd

. . . e o M99, adapt classifier

primarily affect earlier layers (Tang et al., 2023; | \\ip 86.04 8139 7493 67.60 5647 73.48

Lee et al., 2023). Lastly, STAD is consistently T3A 87.83 8275 76.77 69.43 57.90 74.94
the best method amongst those adapting only STAD-vMF (ours) 88.21 8368 7842 7219 6244 76.99
the last layer.

5.3 Analysis of Tracking Abilities
Lastly, we seek to further understand the reasons behind STAD’s strong performance. At its core, STAD

operates through a mechanism of dynamic clustering. We next inspect the importance of STAD’s dynamics
component and assess the fidelity of its clustering.

10

Published in Transactions on Machine Learning Research (10/2025)

Clusters are reliable. We evaluate how well STAD’s inferred cluster centers align with the ground
truth cluster centers (computed using labels). We chose the progressively increasing distribution shift of
CIFAR-10-C as this dataset represents a bigger challenge for STAD. Fig. 5 (left) shows distance (in angular
degrees) to the ground truth cluster centers for both the source model and STAD. STAD (blue line) adapts
effectively, significantly reducing the angular distance to the ground truth cluster centers. For the source
model, the progressive distribution shift causes the ground truth cluster centers to drift increasingly further
from the source prototypes (red line). Additionally, by computing dispersion (Ming et al., 2023) (Fig. 5,
middle), which measures the spread of the prototypes (in angular degrees), we find that STAD mirrors the
ground truth trend () of clusters becoming closer together. This is a promising insight, as it
suggests that STAD’s cluster dispersion could potentially serve as an unsupervised metric to proactively flag
when clusters start overlapping and estimate adaptation accuracy. In Fig. 5 (right), we plot accuracy vs
dispersion of STAD’s prototypes for different corruptions and severity levels, confirming that they positively
correlate.

* -9 -—-9o--—9 -9 &
. ’,,{ = ~& - Source — Ly

Z 60 A __%—‘ = 80 —§— STAD-vMF T 80 ﬁ 4
[} - s} > [b=
151 .9 Ground Truth Q Py =
c 1) N - < o?, 3 O
= £ 60 4% . £ 5 60 .O >
B 40 2 I 2 I 9 4 3

A - o 2
A !——‘f‘_‘!—H A 40 ol < awd
20 o

Severity Severity Dispersion
Figure 5: Cluster fidelity on CIFAR-10-C

Dynamics are crucial. STAD is proposed with the assumption that adapting the class prototypes based
on those of the previous time step facilitates rapid and reliable adaptation. However, one could also consider
a static version of STAD that does not have a transition model (Eqn. (1)). Rather, the class prototypes
are computed as a standard mixture model (Eqn. (2)) without considering previously inferred prototypes.
Tab. 5 presents the accuracy differences between the static and dynamic versions of STAD. Removing STAD’s
transition model results in a substantial performance drop of up to 28 percentage points. This supports our
assumption that SSMs are well-suited for TempTTA.

Table 5: Accuracy of dynamic and static versions of STAD (i.e. when removing the transition model)

Variant Yearbook FMoW CIFAR-10-C
STAD-vMF with dynamics 85.50 + 1.30 86.25 + 1.18 76.99
STAD-vMF w/o dynamics 61.03 & 2.92 68.87 £ 0.28 73.57
Delta —24.47 -17.38 -3.41

STAD-Gauss with dynamics 86.22 + 0.84 - -
STAD-Gauss w/o dynamics ~ 57.79 + 2.14 - —

Delta -28.43 — -

6 Discussion and Conclusion

We studied temporal distribution shifts and demonstrated the significant challenges they pose for existing
TTA methods. We proposed STAD, a novel TTA strategy based on probabilistic state-space models to
address temporal shifts. Our Gaussian and vMF variants of STAD effectively track the evolution of the
last linear layer under distribution shifts, enabling unsupervised adaptation in deployed models. We found
STAD to be most effective for structural temporal shifts and label shifts (Tabs. 2 and 3). While effective
across a range of settings, STAD’s design inherits limitations regarding the types of distribution shift it
can mitigate. Notably, its performance depends on the shift being visible in the last layer, as adapting

11

Published in Transactions on Machine Learning Research (10/2025)

only the final classifier is less effective when earlier layers are primarily affected—a behavior we observe for
synthetic corruptions in CIFAR-10-C (Table 4) and ImageNet-C (Table 12), consistent with prior work (Lee
et al., 2023). STAD also assumes that last-layer representations change gradually over time, and that class
prototypes remain temporally correlated. This makes abrupt shifts more challenging to address, though in
our experiments we did not encounter a scenario where sudden shifts fully broke the temporal correlation
(see App. D.1). Future work on TempTTA could incorporate timestamps to better model time progression or
determine when adaptation is no longer feasible.

Broader Impact Statement

This work introduces a probabilistic state-space framework for TTA under temporal distribution shifts.
By modeling time-evolving feature dynamics and inferring class prototypes without labels, STAD enables
continuous model adaptation in settings where labels are unavailable. STAD contributes to more robust
and flexible deployment of machine learning systems in non-stationary environments. However, because the
method operates without ground-truth labels, there is a risk of compounding errors if the inferred prototypes
drift too far from reality—especially in cases of abrupt or adversarial shifts. Overreliance on unsupervised
adaptation without safeguards could lead to silent model degradation. Practitioners should therefore monitor
model behavior carefully and understand the assumptions underlying the temporal dynamics. Overall, this
work supports the development of adaptive models under distribution shift.

Acknowledgment

We thank Metod Jazbec for valuable discussions and helpful feedback on the draft, and we thank Rajeev
Verma for constructive comments on an early manuscript. This project was generously supported by the
Bosch Center for Artificial Intelligence. Eric Nalisnick did not utilize resources from Johns Hopkins University
for this project.

References

Samira Abnar, Rianne van den Berg, Golnaz Ghiasi, Mostafa Dehghani, Nal Kalchbrenner, and Hanie Sedghi.
Gradual domain adaptation in the wild: When intermediate distributions are absent. arXiv preprint
arXiv:2106.06080, 2021. 2, 21

Abdul Fatir Ansari, Alvin Heng, Andre Lim, and Harold Soh. Neural continuous-discrete state space models
for irregularly-sampled time series. In International Conference on Machine Learning, pp. 926-951. PMLR,
2023. 7

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization. arXiv
preprint arXiv:1907.02893, 2019. 20

Guangji Bai, Chen Ling, and Liang Zhao. Temporal domain generalization with drift-aware dynamic neural
networks. International Conference on Learning Representations, 2023. 2, 20

Haoyue Bai, Yifei Ming, Julian Katz-Samuels, and Yixuan Li. Hypo: Hyperspherical out-of-distribution
generalization. International Conference on Learning Representations, 2024. 5, 6

Arindam Banerjee, Inderjit S Dhillon, Joydeep Ghosh, Suvrit Sra, and Greg Ridgeway. Clustering on the unit
hypersphere using von mises-fisher distributions. Journal of Machine Learning Research, 6(9), 2005. 25

Philipp Becker, Harit Pandya, Gregor Gebhardt, Cheng Zhao, C James Taylor, and Gerhard Neumann.
Recurrent kalman networks: Factorized inference in high-dimensional deep feature spaces. In International
Conference on Machine Learning, pp. 544-552. PMLR, 2019. 7

Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine learning, volume 4. Springer,
2006. 5, 22

Andreea Bobu, Eric Tzeng, Judy Hoffman, and Trevor Darrell. Adapting to continuously shifting domains.
International Conference on Learning Representations - Workshop Track, 2018. 21

12

Published in Transactions on Machine Learning Research (10/2025)

Malik Boudiaf, Romain Mueller, Ismail Ben Ayed, and Luca Bertinetto. Parameter-free online test-time
adaptation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 8344-8353, 2022. 3, 7, 8, 20, 28, 29

Dhanajit Brahma and Piyush Rai. A probabilistic framework for lifelong test-time adaptation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3582-3591, 2023. 7

Zekun Cai, Guangji Bai, Renhe Jiang, Xuan Song, and Liang Zhao. Continuous temporal domain generalization.
Advances in Neural Information Processing Systems, 37:127987-128014, 2024. 20

Ana Calabrese and Liam Paninski. Kalman filter mixture model for spike sorting of non-stationary data.
Journal of neuroscience methods, 196(1):159-169, 2011. 5, 21, 22

Peter G. Chang, Gerardo Durdn-Martin, Alex Shestopaloff, Matt Jones, and Kevin Patrick Murphy. Low-rank
extended kalman filtering for online learning of neural networks from streaming data. In Proceedings of
The 2nd Conference on Lifelong Learning Agents, volume 232, pp. 1025-1071. PMLR, 2023. 7

Dian Chen, Dequan Wang, Trevor Darrell, and Sayna Ebrahimi. Contrastive test-time adaptation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 295-305, 2022.
7

Gordon Christie, Neil Fendley, James Wilson, and Ryan Mukherjee. Functional map of the world. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6172-6180,
2018. 27

Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Edoardo Debenedetti, Nicolas Flammarion, Mung
Chiang, Prateek Mittal, and Matthias Hein. Robustbench: a standardized adversarial robustness benchmark.
In Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks 1, 2021.
27

Qiyuan Dai and Sibei Yang. Free on the fly: Enhancing flexibility in test-time adaptation with online em. In
Proceedings of the Computer Vision and Pattern Recognition Conference, pp. 9538-9548, 2025. 7

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 248-255, 2009. 27

Mario Débler, Robert A Marsden, and Bin Yang. Robust mean teacher for continual and gradual test-time
adaptation. In Proceedings of the IEEE/CVFE Conference on Computer Vision and Pattern Recognition,
pp. 77047714, 2023. 7, 20

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words:
Transformers for image recognition at scale. International Conference on Learning Representations, 2021.
27

Chaoqun Du, Yulin Wang, Jiayi Guo, Yizeng Han, Jie Zhou, and Gao Huang. Unitta: Unified benchmark
and versatile framework towards realistic test-time adaptation. Second Workshop on Test-Time Adaptation:
Putting Updates to the Test! at ICML 2025, 2025. 20

G Duran-Martin, L Sdnchez-Betancourt, AY Shestopaloff, and K Murphy. A unifying framework for generalised
bayesian online learning in non-stationary environments. Transactions on Machine Learning Research,
2025. 7

Marco Fraccaro, Simon Due Kamronn, Ulrich Paquet, and Ole Winther. A disentangled recognition and

nonlinear dynamics model for unsupervised learning. Advances in Neural Information Processing Systems,
2017. 7

13

Published in Transactions on Machine Learning Research (10/2025)

Zhengqing Gao, Xu-Yao Zhang, and Cheng-Lin Liu. Unified entropy optimization for open-set test-time
adaptation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 23975-23984, 2024. 7

Shiry Ginosar, Kate Rakelly, Sarah Sachs, Brian Yin, and Alexei A Efros. A century of portraits: A visual
historical record of american high school yearbooks. In Proceedings of the IEEE International Conference
on Computer Vision Workshops, pp. 1-7, 2015. 7, 27

Taesik Gong, Jongheon Jeong, Taewon Kim, Yewon Kim, Jinwoo Shin, and Sung-Ju Lee. Note: Robust
continual test-time adaptation against temporal correlation. Advances in Neural Information Processing
Systems, 2022. 7, 8, 20

Siddharth Gopal and Yiming Yang. Von mises-fisher clustering models. In International Conference on
Machine Learning, pp. 154-162. PMLR, 2014. 6, 29

Yves Grandvalet and Yoshua Bengio. Semi-supervised learning by entropy minimization. Advances in Neural
Information Processing Systems, 17, 2004. 7

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv preprint
arXiw:2312.00752, 2023. 7

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured state spaces.
International Conference on Learning Representations, 2022. 7

Shurui Gui, Xiner Li, and Shuiwang Ji. Active test-time adaptation: Theoretical analyses and an algorithm.
arXiv preprint arXiv:2404.05094, 2024. 31

Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generalization. International Conference on
Learning Representations, 2021. 31

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp. 770-778, 2016. 27

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common corruptions
and perturbations. International Conference on Learning Representations, 2019. 27

Judy Hoffman, Trevor Darrell, and Kate Saenko. Continuous manifold based adaptation for evolving visual
domains. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 867874,
2014. 21

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q) Weinberger. Densely connected convolutional
networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
4700-4708, 2017. 27

Yusuke Iwasawa and Yutaka Matsuo. Test-time classifier adjustment module for model-agnostic domain
generalization. Advances in Neural Information Processing Systems, 2021. 3, 7, 8, 28, 29, 31

Minguk Jang, Sae-Young Chung, and Hye Won Chung. Test-time adaptation via self-training with nearest
neighbor information. International Conference on Learning Representations, 2023. 7, 31

Yujie Jin, Zhibang Yang, Xu Chu, and Liantao Ma. Temporal domain generalization via learning instance-
level evolving patterns. In Proceedings of the Thirty-Third International Joint Conference on Artificial
Intelligence, pp. 4255—4263, 2024. 20

Rudolph Emil Kalman. A new approach to linear filtering and prediction problems. 1960. 5, 7

Maximilian Karl, Maximilian Soelch, Justin Bayer, and Patrick van der Smagt. Deep variational bayes
filters: Unsupervised learning of state space models from raw data. International Conference on Learning
Representations, 2017. 7

14

Published in Transactions on Machine Learning Research (10/2025)

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International Conference
on Learning Representations, 2015. 28

Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Balsubramani,
Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, et al. Wilds: A benchmark of
in-the-wild distribution shifts. In International Conference on Machine Learning, pp. 5637-5664. PMLR,
2021. 7, 27

Rahul G Krishnan, Uri Shalit, and David Sontag. Deep kalman filters. Advances in Approxzimate Bayesian
Inference NIPS 2015 Workshop, 2015. 7

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009. 27

David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan Binas, Dinghuai Zhang,
Remi Le Priol, and Aaron Courville. Out-of-distribution generalization via risk extrapolation (rex). In
International Conference on Machine Learning, pp. 5815-5826. PMLR, 2021. 20

Ananya Kumar, Tengyu Ma, and Percy Liang. Understanding self-training for gradual domain adaptation.
In International Conference on Machine Learning, pp. 5468-5479. PMLR, 2020. 2, 21

Jae-Hong Lee. Bayesian weight enhancement with steady-state adaptation for test-time adaptation in dynamic
environments. In International Conference on Machine Learning, 2025. 7

Jae-Hong Lee and Joon-Hyuk Chang. Continual momentum filtering on parameter space for online test-time
adaptation, 2024a. 7

Jae-Hong Lee and Joon-Hyuk Chang. Stationary latent weight inference for unreliable observations from
online test-time adaptation. In International Conference on Machine Learning, 2024b. 7

Yoonho Lee, Annie S Chen, Fahim Tajwar, Ananya Kumar, Huaxiu Yao, Percy Liang, and Chelsea Finn.
Surgical fine-tuning improves adaptation to distribution shifts. International Conference on Learning
Representations, 2023. 10, 12

Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need to access the source data? source hypothesis
transfer for unsupervised domain adaptation. In International Conference on Machine Learning, pp.
6028-6039. PMLR, 2020. 8, 28, 29

Jian Liang, Ran He, and Tieniu Tan. A comprehensive survey on test-time adaptation under distribution
shifts. International Journal of Computer Vision, pp. 1-34, 2024. 1

Hyesu Lim, Byeonggeun Kim, Jaegul Choo, and Sungha Choi. Ttn: A domain-shift aware batch normalization
in test-time adaptation. International Conference on Learning Representations, 2023. 7, 8, 20

Jiaming Liu, Ran Xu, Sengiao Yang, Renrui Zhang, Qizhe Zhang, Zehui Chen, Yandong Guo, and Shanghang
Zhang. Continual-mae: Adaptive distribution masked autoencoders for continual test-time adaptation. In
Proceedings of the IEEE/CVFE Conference on Computer Vision and Pattern Recognition, pp. 28653-28663,
2024. 7

Kanti V Mardia and Peter E Jupp. Directional statistics. John Wiley & Sons, 2009. 5

Robert A Marsden, Mario Débler, and Bin Yang. Universal test-time adaptation through weight ensem-
bling, diversity weighting, and prior correction. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pp. 25552565, 2024. 20

Pascal Mettes, Elise Van der Pol, and Cees Snoek. Hyperspherical prototype networks. Advances in Neural
Information Processing Systems, 2019. 5, 6

Yifei Ming, Yiyou Sun, Ousmane Dia, and Yixuan Li. How to exploit hyperspherical embeddings for
out-of-distribution detection? International Conference on Learning Representations, 2023. 6, 11

15

Published in Transactions on Machine Learning Research (10/2025)

Zachary Nado, Shreyas Padhy, D Sculley, Alexander D’Amour, Balaji Lakshminarayanan, and Jasper Snoek.
Evaluating prediction-time batch normalization for robustness under covariate shift. ICML 2020 Workshop
on Uncertainty Robustness in Deep Learning, 2020. 1, 7, 8, 28

Anshul Nasery, Soumyadeep Thakur, Vihari Piratla, Abir De, and Sunita Sarawagi. Training for the future:
A simple gradient interpolation loss to generalize along time. Advances in Neural Information Processing
Systems, 2021. 20

A Tuan Nguyen, Thanh Nguyen-Tang, Ser-Nam Lim, and Philip HS Torr. Tipi: Test time adaptation with
transformation invariance. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 24162-24171, 2023. 7

Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Yaofo Chen, Shijian Zheng, Peilin Zhao, and Mingkui Tan.
Efficient test-time model adaptation without forgetting. In International Conference on Machine Learning,
pp. 16888-16905. PMLR, 2022. 7

Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Zhiquan Wen, Yaofo Chen, Peilin Zhao, and Mingkui Tan. Towards
stable test-time adaptation in dynamic wild world. International Conference on Learning Representations,
2023. 1, 2,7, 8,9, 20, 28, 29

Shuaicheng Niu, Chunyan Miao, Guohao Chen, Pengcheng Wu, and Peilin Zhao. Test-time model adaptation
with only forward passes. In International Conference on Machine Learning. PMLR, 2024. 7

Ori Press, Steffen Schneider, Matthias Kiimmerer, and Matthias Bethge. Rdumb: A simple approach that
questions our progress in continual test-time adaptation. Advances in Neural Information Processing
Systems, 2024. 7

Tiexin Qin, Shiqi Wang, and Haoliang Li. Generalizing to evolving domains with latent structure-aware
sequential autoencoder. In International Conference on Machine Learning, pp. 18062-18082. PMLR, 2022.
20

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers generalize
to imagenet? In International Conference on Machine Learning, pp. 5389-5400. PMLR, 2019. 27

Mona Schirmer, Mazin Eltayeb, Stefan Lessmann, and Maja Rudolph. Modeling irregular time series with
continuous recurrent units. In International Conference on Machine Learning, pp. 19388-19405. PMLR,
2022. 7

Steffen Schneider, Evgenia Rusak, Luisa Eck, Oliver Bringmann, Wieland Brendel, and Matthias Bethge.
Improving robustness against common corruptions by covariate shift adaptation. Advances in Neural
Information Processing Systems, 2020. 1, 7, 8, 28

Jimmy TH Smith, Andrew Warrington, and Scott W Linderman. Simplified state space layers for sequence
modeling. International Conference on Learning Representations, 2023. 7

Junha Song, Jungsoo Lee, In So Kweon, and Sungha Choi. Ecotta: Memory-efficient continual test-time
adaptation via self-distilled regularization. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 11920-11929, 2023. 7, 27

Yongyi Su, Xun Xu, and Kui Jia. Towards real-world test-time adaptation: Tri-net self-training with
balanced normalization. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp.
15126-15135, 2024. 20

Yushun Tang, Ce Zhang, Heng Xu, Shuoshuo Chen, Jie Cheng, Luziwei Leng, Qinghai Guo, and Zhihai
He. Neuro-modulated hebbian learning for fully test-time adaptation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 3728-3738, 2023. 7, 10

Michalis K. Titsias, Alexandre Galashov, Amal Rannen-Triki, Razvan Pascanu, Yee Whye Teh, and Jorg
Bornschein. Kalman filter for online classification of non-stationary data. International Conference on
Learning Representations, 2024. 7

16

Published in Transactions on Machine Learning Research (10/2025)

Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno A. Olshausen, and Trevor Darrell. Tent: Fully test-time
adaptation by entropy minimization. International Conference on Learning Representations, 2021. 1, 7, 8,
20, 27, 28

Haoxiang Wang, Bo Li, and Han Zhao. Understanding gradual domain adaptation: Improved analysis,
optimal path and beyond. In International Conference on Machine Learning, pp. 22784-22801. PMLR,
2022a. 21

Qin Wang, Olga Fink, Luc Van Gool, and Dengxin Dai. Continual test-time domain adaptation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7201-7211, 2022b. 2, 7, 8,
20, 28

Ross Wightman. Pytorch image models. https://github.com/rwightman/pytorch-image-models, 2019.
27

Markus Wulfmeier, Alex Bewley, and Ingmar Posner. Incremental adversarial domain adaptation for
continually changing environments. In 2018 IEEFE International conference on robotics and automation
(ICRA), pp. 4489-4495. IEEE, 2018. 21

Zehao Xiao and Cees GM Snoek. Beyond model adaptation at test time: A survey. arXiw preprint
arXiv:2411.08687, 2024. 7, 20

Mixue Xie, Shuang Li, Binhui Xie, Chi Harold Liu, Jian Liang, Zixun Sun, Ke Feng, and Chengwei Zhu.
Weight diffusion for future: Learn to generalize in non-stationary environments. Advances in Neural
Information Processing Systems, 2024a. 20

Mixue Xie, Shuang Li, Longhui Yuan, Chi Liu, and Zehui Dai. Evolving standardization for continual domain
generalization over temporal drift. Advances in Neural Information Processing Systems, 36, 2024b. 20

Huaxiu Yao, Caroline Choi, Bochuan Cao, Yoonho Lee, Pang Wei W Koh, and Chelsea Finn. Wild-time: A
benchmark of in-the-wild distribution shift over time. Advances in Neural Information Processing Systems,
2022. 27

Yeonguk Yu, Sungho Shin, Seunghyeok Back, Mihwan Ko, Sangjun Noh, and Kyoobin Lee. Domain-specific
block selection and paired-view pseudo-labeling for online test-time adaptation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22723-22732, 2024. 7

Yongcan Yu, Lijun Sheng, Ran He, and Jian Liang. Benchmarking test-time adaptation against distribution
shifts in image classification. arXiv preprint (arXiv:2307.03133), 2023. 1

Longhui Yuan, Binhui Xie, and Shuang Li. Robust test-time adaptation in dynamic scenarios. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15922-15932, 2023. 7, 8,
20, 28, 29

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In British Machine Vision Conference
2016. British Machine Vision Association, 2016. 27

Maxime Zanella, Clément Fuchs, Christophe De Vleeschouwer, and Ismail Ben Ayed. Realistic test-time
adaptation of vision-language models. In Proceedings of the Computer Vision and Pattern Recognition
Conference, pp. 25103-25112, 2025. 20

Qiuhao Zeng, Changjian Shui, Long-Kai Huang, Peng Liu, Xi Chen, Charles Ling, and Boyu Wang. Latent
trajectory learning for limited timestamps under distribution shift over time. International Conference on
Learning Representations, 2024. 20

Hongyi Zhang. mixup: Beyond empirical risk minimization. International Conference on Learning Represen-
tations, 2018. 20

Marvin Zhang, Sergey Levine, and Chelsea Finn. Memo: Test time robustness via adaptation and augmenta-
tion. Advances in Neural Information Processing Systems, 35:38629-38642, 2022. 7

17

https://github.com/rwightman/pytorch-image-models

Published in Transactions on Machine Learning Research (10/2025)

Bowen Zhao, Chen Chen, and Shu-Tao Xia. Delta: degradation-free fully test-time adaptation. International
Conference on Learning Representations, 2023a. 7

Hao Zhao, Yuejiang Liu, Alexandre Alahi, and Tao Lin. On pitfalls of test-time adaptation. In International
Conference on Machine Learning, pp. 42058-42080, 2023b. 1, 10, 28, 29

Kaiyang Zhou, Ziwei Liu, Yu Qiao, Tao Xiang, and Chen Change Loy. Domain generalization: A survey.
IEEFE Transactions on Pattern Analysis and Machine Intelligence, 45(4):4396-4415, 2022a. 7, 20

Shiji Zhou, Lianzhe Wang, Shanghang Zhang, Zhi Wang, and Wenwu Zhu. Active gradual domain adaptation:
Dataset and approach. IEEFE Transactions on Multimedia, pp. 1-1, 2022b. 27

Zhi Zhou, Lan-Zhe Guo, Lin-Han Jia, Dingchu Zhang, and Yu-Feng Li. Ods: Test-time adaptation in the
presence of open-world data shift. In International Conference on Machine Learning, pp. 42574—42588.
PMLR, 2023. 7

Harrison Zhu, Carles Balsells-Rodas, and Yingzhen Li. Markovian gaussian process variational autoencoders.
In International Conference on Machine Learning, pp. 42938-42961. PMLR, 2023. 7

18

Published in Transactions on Machine Learning Research (10/2025)

A Appendix
Appendix
The appendix is structured as follows:

o App. A discusses further related work such as adjacent robustness paradigms and further TTA
settings that aim for realistic evaluations.

e App. B provides methodological details on STAD.

— App. B.1 defines the Gaussian SSM (STAD-Gauss), provides the respective EM update equations
and an algorithmic overview (Algorithm 2).

— App. B.2 details the von Mises-Fisher SSM (STAD-vMF). Here, we notably provide the inference
scheme including all update equations for the variational EM step as well as an algorithmic
summary (Algorithm 3).

e App. C contains various implementation details.

e App. D provides additional experimental results on

— domain adaptation benchmarks (App. D.1)

— single sample adaptation (App. D.2)

— STAD in combination with BN (App. D.3)

— ImageNet-C (App. D.4)

— comparison to a supervised oracle (App. D.5)

— visualizations of representation space (App. D.6)
— runtime comparisons (App. D.7)

— sensitivity to hyperparameters (App. D.8)

19

Published in Transactions on Machine Learning Research (10/2025)

A Expanded Related Work

Table 6: Comparison of realistic TTA settings and associated methods. We distinguish settings with respect
to assumptions on the feature distribution and label distribution as well as if inherently time-ordered
data streams and single sample settings have been considered. Notably, we categorize the assumption on
the feature distribution into stationary (a single, static feature distribution), non-stationary (continually
evolving distribution) and mizture (mixture distribution, e.g. samples of different corruption types observed
simultaneously).

TTA setting Related method ‘ Feature distribution Q(x) ‘ Label distribution Q(y) | Time-ordered ‘ Single sample
Fully TTA TENT (Wang et al., 2021) stationary balanced X X
Continual TTA ~ CoTTA (Wang et al., 2022b) non-stationary balanced X X
. LAME (Boudiaf et al., 2022) stationary imbalanced X X
Non-fid TTA NOTE (Gong et al., 2022) stationary imbalanced v X
Practical TTA RoTTA (Yuan et al., 2023) non-stationary imbalanced X X
Wild TTA SAR (Niu et al., 2023) mixture imbalanced X v
N/A TTN (Lim et al., 2023) stationary, non-stationary, mixture imbalanced X v
N/A RMT (Débler et al., 2023) non-stationary balanced X v
Universal TTA ROID (Marsden et al., 2024) non-stationary, mixture imbalanced X v
Real-world TTA TRIBE (Su et al., 2024) non-stationary imbalanced X X
UniTTA UniTTA (Du et al., 2025) non-stationary, mixture imbalanced X X
TempTTA STAD (ours) ‘ non-stationary ‘ imbalanced ‘ v ‘ v

Realistic TTA aims to evaluate models under challenging test conditions that may occur in real-world
deployments. We provide a tabular overview of prominent and recent work in Tab. 6. For a more comprehensive
review of TTA settings and methods, see Xiao & Snoek (2024). Since TTA methods typically rely on test
data statistics, they are often sensitive to the ordering of samples in the test data stream. As a result, prior
work has explored the robustness of TTA under different sample ordering strategies. Two key factors influence
sample order: the domain index, which determines the feature distribution Q(x), and the class index, which
determines the label distribution Q(y).

In the standard fully TTA setting (Wang et al., 2021), the test stream consists of a single domain, and test
data is sampled i.i.d., resulting in a uniform label distribution per batch. Continual TTA (Wang et al.,
2022Db) extends this setting by considering multiple domains sequentially, leading to a non-stationary feature
distribution. Non-i.i.d. TTA (Boudiaf et al., 2022; Gong et al., 2022; Zanella et al., 2025) is another extension
of fully TTA that challenges the i.i.d. assumption by introducing temporal correlation in the sampling
procedure, causing an imbalanced label distribution per test batch. The Practical TTA setting (Yuan et al.,
2023) combines continual TTA and non-i.i.d. TTA by incorporating both continually changing domains and
temporal correlation. Wild TTA (Niu et al., 2023) is another extension of non-i.i.d. TTA that additionally
studies mixed domains (see also Universal TTA (Marsden et al., 2024)) and single sample adaptation (see
also Lim et al. (2023); Débler et al. (2023); Marsden et al. (2024)). Real-world TTA (Su et al., 2024) builds
on practical TTA by also controlling the global label distribution across the data stream. Lastly, UniTTA
(Du et al., 2025) comprises 36 sampling strategies, considering ordering and imbalance of both domains and
class labels.

While past work has studied adaptation to non-stationary distributions, they mostly consider a sequence of
categorical domains (e.g. different corruption types). In contrast, TempTTA focuses on sequences where the
domain index is temporal. The data stream thus follows an inherent time-ordering (Bai et al., 2023). To
test the applicablity of our method in challenging settings, we also evaluate single sample adaptation and
class-imbalanced label distributions in Sec. 5.1.

Domain Generalization (DG) The goal of DG (Zhou et al., 2022a) is to learn a predictive model that
can generalize well to any unseen domains, assuming access to multiple source domains at the training
stage. Examples of common approaches are domain-invariant feature learning (Arjovsky et al., 2019), data
augmentation (Zhang, 2018) and regularization (Krueger et al., 2021). The most relevant subfield to this
work is temporal DG (TDG) (Nasery et al., 2021; Qin et al., 2022; Bai et al., 2023; Xie et al., 2024b; Jin et al.,
2024; Zeng et al.; 2024; Cai et al., 2024; Xie et al., 2024a), which models dynamics from sequential source

20

Published in Transactions on Machine Learning Research (10/2025)

domains to generalize to evolving target domains. While both TDG and TempTTA address temporal shifts,
TDG operates during training and requires a sequence of labeled source domains, whereas our approach
improves the performance of arbitrary pre-trained models at test time using only a stream of unlabeled data.

Unsupervised Domain Adaptation (UDA) UDA improves generalization by exploiting both labeled
source data and unlabeled target data. Most related to our setting is gradual domain adaptation (GDA)
(Hoffman et al., 2014; Wulfmeier et al., 2018; Bobu et al., 2018; Kumar et al., 2020; Abnar et al., 2021; Wang
et al., 2022a), which aims to adapt to a target domain by exploiting intermediate domains with gradual
distribution shift between source and target. GDA methods rely on access to both source and target data for
distribution alignment. However, in many practical scenarios, source data may be unavailable due to e.g.
privacy concerns, motivating the need for TTA.

B Methodological Details

In the following, we provide details on the probabilistic model and inference of STAD. Fig. 6 displays the
plate diagram.

jtrans

?®

K

Figure 6: Graphical Model: Representations h; , are modeled with a dynamic mixture model. Latent class
prototypes w; ; evolve at each time step, cluster assignments c; ,, determine class membership.

B.1 Details on STAD-Gaussian

Gaussian State-Space Model We use a linear Gaussian transition model to describe the weight evolution
over time: For each class k, the weight vector evolves according to a linear drift parameterized by a class-
specific transition matrix A, € RP*P. This allows each class to have independent dynamics. The transition
noise follows a multivariate Gaussian distribution with zero mean and global covariance X% ¢ RP*XD The
transition noise covariance matrix is a shared parameter across classes and time points to prevent overfitting
and keep the parameter size manageable. Eqn. (11) states the Gaussian transition density.

Transition model: p(WW;_1) = | | N(wy

Akwt—l,kv ztrans) (11)

=

k

z

R

Emission model: p(H;|W;) =

n

Wt,kN(ht,n|Wt,k7 Eems) (12)

>
Il

1 1

Eqn. (12) gives the emission model of the observed features H; at time ¢. As in Eqn. (2), the features at a
given time ¢ are generated by a mixture distribution with mixing coefficient m; ;. The emission density of
each of the K components is a multivariate normal with the weight vector of class k at time ¢ as mean and
Sems ¢ RPXD a5 class-independent covariance matrix. The resulting model can be seen as a mixture of K
Kalman filters. Variants of it have found application in applied statistics (Calabrese & Paninski, 2011).

21

Published in Transactions on Machine Learning Research (10/2025)

Posterior inference We use the EM objective of Eqn. (4) to maximize for the model parameters
¢ = {{Ak, {m o} M Btans siemst - Thanks to the linearity and Gaussian assumptions, the poste-
rior expectation E,w, cjm)[] in Eqn. (4) (E-step) can be computed analytically using the well-known Kalman
filter predict, update, and smoothing equations (Calabrese & Paninski, 2011; Bishop & Nasrabadi, 2006) as
outlined next.

E-step The posterior responsibilities of each component are given by the Gaussian mixture posterior:

Ttk Eems|—1/2 eXp{—%(ht,n _ Wt,k)T(Eems)_l(ht,n _ Wt,k)}
E[Ctm,k} = K

S g Zems [2 exp{ =g (hyp — wiy) T(Zem) 7 (hy p — we) }

which we summarize as E[c ;] = computeAssignments(hy ,,, W i, 7 1, 2°™°). Given the previous posterior
(uj_l s Zj_l %), the prior distribution at time ¢ follows the standard Kalman filter prediction:

; (13)

My = Aku‘:—l,k? Et_,k = Ztans 4 Akzg_—l,kA;—' (14)

We denote this step as (u;;,, 2, ;) = predict(Ay, X

the current observation hy , yields:

,u;:l’k, EL,IJ- Conditioning the predicted state on

l'l’;tn,k = szn,k {(E;k)_lp‘;k + Elctn k] (B°™) hyn |, (15)

-1
S = [(Ci) ™+ Elens] ()7 (16)

that is, (u;fn’,w Zjnk) = update(p,; 1., 5; 1., hen, Elcrp,k]). This corresponds to a Kalman filter trajectory for

each observation and class. In order to aggregate the observation-wise posterior to one single posterior over
]E[Ct,n,k']

D ity Eleein]

each class, we chose a mixture distribution with weights o 1 = which gives:

N Ny Ny
+ + + o + + N + T
By = E :O‘tm,k g B = § :O‘t,mk Xkt E :O‘t7n,k(/‘t,n,k - I“l‘t,k)(l’l’t,n,k - V’t,k)) (17)
n=1 n=1 n=1

or compactly (“Ikv Ezk) = mixture({uzfm,€7 Ezn,k’ at,n,k}ﬁil). Smoothing backward in time gives:
Pk = B+ Ik (Nt+1,k - Ak#h) s Bk =30+ Jik <2t+1,k - Et_k> h P (18)
Jow =S AL(S) 7 (19)

ie, (Mg, Zig) = smooth(ujk,Ejk,uHLk,EHLk, 3. ., Ag). Finally, from the smoothed posteriors we
compute the necessary expectations required in the M-step:

Ewer] =t Blwerw, 3] = Send o4+ pern 1, ElwWerw)p] = Do+ ey, (20)

in short, {E[Wt,kL]E[Wt,kW;r_Lk],E[Wt’szk]} = computeMarginals(ges i, Xt 1, bt—1,k> Jt—1,k)-

M-step Given the responsibilities E[c; 1] and the smoothed posteriors of the prototypes (g x, Xk), the
parameters are re-estimated by maximizing the expected complete-data log-likelihood.

The posterior mixture weights are given by the average responsibilities:

! Ngt Ele] (21)
e = — n s
tk N, 2 tn,k

i.e., 1 = updatePi({E[ci.n 4] }0%,). Maximizing the likelihood of the linear-Gaussian state evolution yields
the least-squares estimate of the transition matrices:

Ay = (ZE[Wt,kW:—l,k]> <ZE[Wt—1,kWtT_17k]> : (22)

t=2 t=2

22

Published in Transactions on Machine Learning Research (10/2025)

or equivalently A, = updateA({E[wtykW:_l,kLE[Wt,l’sz_ljk]}fzz). The transition noise covariance is
obtained by the maximum-likelihood estimator of the process noise:

K T
1
shtrans _ Tk Z Z (Wi kWt) — E[wepw, k}A; - AkE[Wt—l,kWtTk] + Ak]E[wt_Lkth_Lk]AZ),
k=11=2
(23)
in short, trans — updateSigmaTrans({E[kawzk],E[Wtkwll’k],E[wt_l,kwllyk], A}T,). Finally, maxi-
mizing the likelihood of the Gaussian emission model yields the responsibility-weighted residual covariance:

St Yoiet Somty Elern k] (henhy, — Elw g]h/, — by Elwei] T + E[w: 1w, ,])
Zk IZt 12 [Ctnk]

or compactly X = updateSigmaEms({h¢ ,,, E[c.n k], E[we k], E[wtﬁszk]}tyn,k).

ZCmS —

: (24)

Complexity The closed-form computations of the posterior p(W;|Hj.;) and smoothing p(W¢|H;.7) densi-
ties come at a cost as they involve, amongst others, matrix inversions of dimensionality D x D. This results
in considerable computational costs and can lead to numerical instabilities when feature dimension D is large.
In addition, the parameter size scales as K x D?, risking overfitting and consuming substantial memory.
These are limitations of the Gaussian formulation, making it costly for high-dimensional feature spaces and
impractical in low-resource environments requiring instant predictions.

Algorithm 2 EM for STAD-Gauss
1: Input: {W,,C,, 7., H,},cg5,, T Ay, Zoms
2: for 7 € S; do
3: E-step
Elcr n,k) = computeAssignments(h, ,,, W, i, 77, Z™°)
B g 27 = predict(Ay, Strems gt S)
l’l‘:’tn,k’ Ej-_,n,k = update(u;k, X b, Eler k)
p’j,k7 Ej,k = miXture({IJ’in,k’ Ejn w Elcrn il 10z,
ooy Xr ke = SmOOth(p’j,M zr,lm Mriiks Br41k, Ak)
E[w- k], E[WT,leLk]v]E[WT,kWTT,k] = computeMarginals(fer x, X7 ks lr—1,k; Jr—1,%)
10: M-step
11: 7r = updatePi({E[cr.n1] 127))
12: end for
13: Ay = updateA({]E[wﬂkw;r_Lk],E[WT_L;CWI_UC]}T@;M r>min S,)
14: Ytrans — updateSigmaTrans({E[WT,kwIk],E[WT7;€WTT717,€],E[WT_ljkwTTfl’k],Ak}Tesh r>min S,)
15: Xoms — updateSigmaEms({hT,n,E[cﬁmk],E[wnk],E[WT7kWIk]}T7n,k)
16: return W, C,, m,, Xtrans yems

© P N> Gk

23

Published in Transactions on Machine Learning Research (10/2025)

B.2 Details on STAD-vMF

Complete-data log likelihood Using the von Mises—Fisher distribution as the hyperspherical transition
and emission model, the log of the complete-data likelihood in Eqn. (3) becomes

log p(Hy.7, Wi.r, Cr.7) :Zlogp(wl,k) (25)
- T N

+Z logp Ct.n +thnk10gp htn | Wik, R ems) (26)
t=1n=1

n
[M]=
] >

log p(We i | Wi, £72"%) (27)
t=2 k=1
K
= Z log Cp(kok) + Ho,klioT,kWLk (28)
k=1
T N, K
+ Z Z Ctn.ke 1og Tk +1og Cp (k) + Hcmsw:’khm) (29)
t=1n=1 k=1
T K
+ Z Z log CD(Htrans) + Htranswz—_Lkwt,k (30)

t

||
N

k=1

where kg and po ; denote the prior parameters for ¢ = 1. In practice, we set po to the source weights and
Ko,k = 100 (see App. C).

Variational EM objective As described in Sec. 3.3, we approximate the posterior p(Wy.7, C1.7 | Hy.1)
with a variational distribution ¢(W1.7, C1.1) assuming the factorized form

oWrr. Cor) = T [atwe)] aler): (31)

t=1k=1 n=1
where we parameterize g(wy 1) and g(ct,) with
q(Weg) = VMF(pri, Yek), q(Cen) =Cat(;Aeqn), Vi,n, k. (32)
We obtain the variational EM objective
argdr)nax Eq[log p(Hy.r, Wi.r, Cror)], (33)

where Eq(w,.,,c,.r) is denoted E, to reduce clutter.

E-step Taking the expectation of the complete-data log likelihood (Eqn. (25)) with respect to the variational
distribution (Eqn. (31)) gives

K

Eq[log p(Hi.p, Wi.p, Cri7)] = Z log Cp (ko) + HO,kN&qu[Wl,k]
k=1

z

K
ZE‘J Cton k] log 7k +1og Cp (k™) + ﬁemsEq[Wt,k]Tht,n)
k=1

i
] =

@,_
Il
—
3
Il
—

n
M=
M=

log Cp (K™) + k™K, [wy_1] T E,[wy 1] (34)

~+
Il
»
=
Il

1

24

Published in Transactions on Machine Learning Research (10/2025)

Solving for the variational parameters, we obtain

7k Cp(K°™) exp {HemsEq [Wt,k] Tht,n }

/\t,mk = s (35)
Soisy i Cp(oms) exp { ko Eq[wy ;] Thy p }

Ve = 1Beklls Pek = Ber/Veks (36)

Ny
Bek = KNS L1y Ey (Wit] + 5 Z Eqlct nxlhen + RTAnS Iiicry By [Wit1,k], (37)

n=1

The expectations are given by

IEq [Ct,n,k] = At,n,}’c (38)
Eq[we k] = Ap (Vi) Prks (39)
where Ap (k) = Iiﬂ/’;i% and I,(a) denotes the modified Bessel function of the first kind with order v and

argument a.

M-step Maximizing objective (Eqn. (33)) with respect to the model parameters ¢ = {k"3"5 xS 1.1}
gives

—~trans ~tran: T K
,%trans :Tt D — (rt i 8)3 with Ftrans _ Zt:Q Zk:l Eq[wt—l,k}TEq[Wt,k] (40)
1 — (ptrans)2 7 (T-1)x K
~ems _FemsD B (,,7ems)3 . —ems __ Zz:l Zi{zl 211’271:1]Eq[ctanvk] Eq[wtyk]—rhtvn
K - 1 mems)2 ’ with 7 - T (41)
- (T) Zt:l Nt
oty Eqletns]
_ Lun= s 42
Tt k N, (42)
Here we made use of the approximation from Banerjee et al. (2005) to compute an estimate for s,
i= 7’1_77; with 7 = Ap(&). (43)

25

Published in Transactions on Machine Learning Research (10/2025)

Algorithm 3 EM for STAD-vMF

1

w N

10:

11:
12:

13:

14:

15:

16:

17:

18:
19:

: Input: prototypes, cluster assignments, mixing coefficients, representations {W,, C., 7., H; },cgs,, transi-

trans ,.ems
)

tion and emission parameters k
: for 7 € S; do
: E-Step:

K

7,k CD (k%) exp {KcmSEq [Wr,k]ThT,n}

K
ZJ:I mr,;Cp (K™S) exp {ncmSEq [w,.ﬁj]Th,.ﬁn}
Get expectation of cluster assignments: Eg[cr pn k] = Ak

Compute: A, =

Compute: vr = || 5.kl
Compute: pr i = Brk/Vrk

Get expectation of prototypes: E,[w, k] = Ap(vrk)Prk
M-Step:

NT
Y ont Eqlern il

Compute: 7, = N
end for TK
T
Compute: 7t72m8 = Zfest Zk:l Eq[wr—15] Eq[wri]
(ISt —1) x K
7:transl) _ (Ftrans)S‘
Compute: k%888 = 1 — (Ftrans)2
K N,
COmpute~ jems — ZTESt Zk:1 Zn:l Eq [Cﬂ"»k’]E(I [WTvk]ThT’n
ZTGSt NT

Fems) _ (fems)?)

Compute: k™ = = (o2
Assign: Wy = (pr1,.., pt,i)
Assign: Cy = (Ap1,---, AeN,)

trans ems
)

return W, C;, m;, K K

N,
Compute: B = £ L1y Eg[wr_1] + £ 307 Byler ke + 652 L oy Eg (W g

26

Published in Transactions on Machine Learning Research (10/2025)

C Experimental Details

We next list details on the experimental setup and hyperparameter configurations. All experiments are
performed on NVIDIA RTX 6000 Ada with 48GB memory.

C.1 Datasets

o Yearbook (Ginosar et al., 2015): a dataset of portraits of American high school students taken across
eight decades. Data shift in the students’ visual appearance is introduced by changing beauty standards,
group norms, and demographic changes. We use the Wild-Time (Yao et al., 2022) pre-processing and
evaluation procedure resulting into 33,431 images from 1930 to 2013. Each 32 x 32 pixel, grey-scaled
image is associated with the student’s gender as a binary target label. Images from 1930 to 1969 are
used for training; the years 1970 - 2013 for testing.

o EVIS: the evolving image search (EVIS) dataset (Zhou et al., 2022b) consists of images of 10 electronic
product and vehicle categories retrieved from Google search, indexed by upload date. The dataset
captures shift caused by rapid technological advancements, leading to evolving designs across time. It
includes 57,600 RGB images of 256x256 pixels from 2009 to 2020. Models are trained on images from
2009-2011 and evaluated on images from 2012-2020.

o FMoW-Time: the functional map of the world (FMoW) dataset (KKoh et al., 2021) maps 224 x 224 RGB
satellite images to one of 62 land-use categories. Distribution shift is introduced by technical advancement
and economic growth changing how humans make use of the land. FMoW-Time (Yao et al., 2022) is an
adaptation of FMoW-WILDS (Koh et al., 2021; Christie et al., 2018), splitting 141,696 images into a
training period (2002-2012) and a testing period (2013-2017).

o CIFAR-10.1 (Recht et al., 2019): a reproduction of CIFAR-10 (Krizhevsky et al., 2009) assembled from
the same data source by following the same cleaning procedure. The dataset contains 2,000 32 x 32 pixel
images of 10 classes. Models are trained on the original CIFAR-10 train set.

o ImageNetV2 (Recht et al., 2019): a reproduction of ImageNet (Deng et al., 2009) with 10,000 images
of 1,000 classes scaled to 224 x 224 pixels. Models are trained on the original ImageNet.

e CIFAR-10-C: a dataset derived from CIFAR-10, to which 15 corruption types are applied with 5 severity
levels (Hendrycks & Dietterich, 2019). We mimic a gradual distribution shift by increasing the corruption
severity starting from the lowest level (severity 1) to the most sever corruption (severity 5). This results
in a test stream of 5 x 10,000 images per corruption type.

C.2 Source Architectures

o CNN: We employ the four-block convolutional neural network trained by Yao et al. (2022) to perform
the binary gender prediction on the yearbook dataset. Presented results are averages over three different
seeds trained with empirical risk minimization. The dimension of the latent representation space is 32.

o WideResNet: For the CIFAR-10 experiments, we follow Song et al. (2023); Wang et al. (2021) and use
the pre-trained WideResNet-28 (Zagoruyko & Komodakis, 2016) model from the RobustBench benchmark
(Croce et al., 2021). The latent representation have a dimension of 512.

o DenseNet: For FMoW-Time, we follow the backbone choice of Koh et al. (2021); Yao et al. (2022) and
use DenseNet121 (Huang et al., 2017) for the land use classification task. Weights for three random
trainings seeds are provided by Yao et al. (2022). We use the checkpoints for plain empirical risk
minimization. The latent representation dimension is 1024.

o ResNet: For EVIS, we follow Zhou et al. (2022b) and use their ResNet-18 (He et al., 2016) model with
a representation dimension of 512 and train on three random seeds. For ImageNet-V2, we follow Song
et al. (2023) and employ the standard pre-trained ResNet-50 model from RobustBench (Croce et al.,
2021). Latent representations are of dimension 2048.

e ViT-base: For ImageNet-C, we employ ViT-base (Dosovitskiy et al., 2021) from the timm library
(Wightman, 2019). Latent representations are of dimension 768.

27

Published in Transactions on Machine Learning Research (10/2025)

C.3 Baselines

e Source Model: the un-adapted original model.

o BatchNorm (BN) Adaptation (Schneider et al., 2020; Nado et al., 2020): aims to adapt the source
model to distributions shift by collecting normalization statistics (mean and variance) of the test data.

o Test Entropy Minimization (TENT) (Wang et al., 2021): goes one step further and optimizes the
BN transformation parameters (scale and shift) by minimizing entropy on test predictions.

o Continual Test-Time Adaptation (CoTTA) (Wang et al., 2022b): optimizes all model parameters
with an entropy objective on augmentation averaged predictions and combines it with stochastic weight
restore to prevent catastrophic forgetting.

o Source HypOthesis Transfer (SHOT) (Liang et al., 2020) adapts the feature extractor via an
information maximization loss in order to align the representations with the source classifier.

o Sharpness-Aware Reliable Entropy Minimization (SAR) (Niu et al., 2023) filters out samples
with large gradients based on their entropy values and encourages convergence to a flat minimum.

e Robust Test-time Adaptation (RoTTA) (Yuan et al., 2023) proposes a robust BN layer and the use
of a class-balanced memory bank to address simultaneous covariate and label shift.

o Laplacian Adjusted Maximum likelihood Estimation (LAME) (Boudiaf et al., 2022) regularizes
the likelihood of the source model with a Laplacian correction term that encourages neighbouring
representations to be assigned to the same class.

o Test-Time Template Adjuster (T3A) (Iwasawa & Matsuo, 2021) computes new class prototypes by
a running average of low entropy representations.

C.4 Implementation Details and Hyperparameters

By the nature of test-time adaptation, choosing hyperparameters is tricky (Zhao et al., 2023b) since one
cannot assume access to a validation set of the test distribution in practise. To ensure we report the optimal
performance on new or barely used datasets (Yearbook, EVIS, FMoW, CIFAR-10.1 and ImageNetV2),
we perform a grid search over hyperparameters as suggested in the original papers. We perform separate
grid searches for the uniform label distribution and online imbalanced label distribution setting. Reported
performance correspond to the best setting. If the baselines were studied in the gradual CIFAR-10-C setting
by Wang et al. (2022b), we use their hyperparameter setup; otherwise, we conduct a grid search as described
earlier. Unless there is a built-in reset (SAR) or convergence criteria (LAME) all methods run without reset
and one optimization step is performed. We use the same batch sizes for all baselines. For Yearbook we
comprise all samples of a year in one batch resulting in a batch size of 2048. To create online class imbalance,
we reduce the batch size to 64. We use a batch size of 100 for EVIS, CIFAR.10.1 and CIFAR-10-C and 64 for
FMoW-Time and ImageNetV2.

BN (Schneider et al., 2020; Nado et al., 2020) Normalization statistics during test-time adaptation are a
running estimates of both the training data and the incoming test statistics. No hyperparameter optimization
is necessary here.

TENT (Wang et al., 2021) Like in BN, the normalization statistics are based on both training and test set.
As in Wang et al. (2021), we use the same optimizer settings for test-time adaptation as used for training,
except for the learning rate that we find via grid search on {le™3,1e=%, 1e7%,1e7% 1e~"}. Adam optimizer
(Kingma & Ba, 2015) is used. For CIFAR-10-C, we follow the hyperparameter setup of Wang et al. (2022b)
and use Adam optimizer with learning rate le — 3.

CoTTA (Wang et al., 2022b) We use the same optimizer as used during training (Adam optimizer Kingma &
Ba (2015)). For hyperparameter optimization we follow the parameter suggestions by Wang et al. (2022b) and
conduct a grid search for the learning rate ({le=3,1e7%,1e7,1e7%,1e=7}), EMA factor ({0.99,0.999,0.9999})
and restoration factor ({0,0.001,0.01,0.1}). Following Wang et al. (2022b), we determine the augmentation
confidence threshold by the 5% percentile of the softmax prediction confidence from the source model on the
source images. For the well-studied CIFAR-10-C dataset, we follow the setting of Wang et al. (2022b) and

28

Published in Transactions on Machine Learning Research (10/2025)

use Adam optimizer with learning rate le — 3. The EMA factor is set to 0.999, the restoration factor is 0.01
and the augmentation confidence threshold is 0.92.

SHOT (Liang et al., 2020) We perform a grid search for the learning rate over {le=3,1e~*} and for 3, the
scaling factor for the loss terms, over {0.1,0.3}.

SAR (Niu et al, 2023) We conduct a grid search over the learning rate selecting among
{le72,1e73,1e74,0.00025}. Like the authors, we compute the Ey threshold as a function of number of classes
0.4 x In K, use SDG, a moving average factor of 0.9, and the reset threshold of 0.2. While (Niu et al., 2023)
apply SAR only to models with layer or group normalization and update those layers, we also evaluate SAR
on source architectures with batch normalization, following prior work (Zhao et al., 2023b). As noted in (Niu
et al., 2023), BN layers are less effective for small batch sizes, which accounts for the reduced performance of
SAR in this setting (Fig. 4 and Tab. 10).

RoTTA (Yuan et al., 2023) We conduct a search over the learning rate among {le=3,1e7%,1e7%}. As
in the experiments of the original paper, we use the default values for A; = 1.0, A, = 1.0, « = 0.05 and
v = 0.001.

LAME (Boudiaf et al., 2022) The only hyperparameter is the choice of affinity matrix. Like Boudiaf et al.
(2022) we use a k-NN affinity matrix and select the number of nearest neighbours among {1, 3,5}.

T3A (Iwasawa & Matsuo, 2021) We test different values for the hyperparameter M. The M-th largest
entropy values are included in the support set used for computing new prototypes. We test the values
{1,5,20, 50,100, None}. None corresponds to no threshold, i.e. all samples are part of the support set.

STAD-vMF The hyperparameters are the initialization values of the transition concentration parameter
kfrans emission concentration parameter x and the sliding window size s. We chose the concentration
parameters from {100,1000}. Tab. 7 lists employed settings. We use a default window size of s = 3.
For Yearbook, we employ class specific noise parameters £ and x§™* as discussed in Sec. 3.3. For the
other datasets, we found a more restricted noise model beneficial. Particularly, we use global concentration
parameters, k" and £, and follow suggestions by Gopal & Yang (2014) to keep noise concentration
parameters fixed instead of learning them via maximum likelihood (line 13 - 16 in Algorithm 3). Keeping
them fix acts as a regularization term as it controls the size of the cluster (via xk°*) and the movement of
the prototypes (via k"#%%). Low concentration values generally correspond to more adaptation flexibility

while larger values results in a more conservative and rigid model.

ems

STAD-Gauss We initialize the mixing coefficients with m; j = %Vt, k, the transition covariance matrix
with 3288 — (.01 x I and the emission covariance matrix with 3™ = 0.5 x I. We found a normalization of
the representations to be also beneficial for STAD-Gauss. Note that despite normalization, the two models
are not equivalent. STAD-Gauss models the correlation between different dimensions of the representations
and is therefore more expressive, while STAD-vMF assumes an isotropic variance.

29

Published in Transactions on Machine Learning Research (10/2025)

Table 7: Hyperparameters employed for STAD-vMF

Dataset | girans gems
Yearbook (covariate shift) 100 100
Yearbook (+ label shift) 1000 100
EVIS (covariate shift) 1000 1000
EVIS (+ label shift) 1000 100

FMoW-Time (covariate shift) | 100 100
FMoW-Time (+ label shift) 1000 100
CIFAR-10.1 (covariate shift) 1000 1000
CIFAR-10.1 (+ label shift) 1000 100
ImageNetV2 (covariate shift) 100 1000
ImageNetV2 (+ label shift) 1000 100
CIFAR-10-C (covariate shift) | 1000 100

30

Published in Transactions on Machine Learning Research (10/2025)

D Additional Results

D.1 Domain Adaptation Benchmarks

To study the limitations and applicability of our method STAD,
we also test adaptation performance on non-gradual shifts. For
that, we use the domain adaptation benchmark PACS, which
comprises images of 10 classes across four categorical domains
(photo, art-painting, cartoon and sketch). We use DomainBed
(Gulrajani & Lopez-Paz, 2021) to train a ResNet-50 model with
BN. We test two settings. In the first setting, we follow Iwasawa
& Matsuo (2021); Jang et al. (2023) and train the model on
three domains and adapt it on the held-out domain. In the
second setting, we follow Gui et al. (2024) and train the model
on the photo domain and adapt it on the remaining domains
sequentially. The second setting is more difficult as the model
is exposed to only a single domain during training and needs
to leverage several abrupt changes in the distribution over a
longer test stream.

Tab. 8 shows adaptation performance for the first setting. Adap-
tation gains are generally smaller than on corruption datasets,
with TENT, RoTTA, and SAR improving most upon the source
model by 2-3 percentage points. While STAD achieves a more
modest improvement of 1 percentage point, it remains the best-
performing method among classifier adaptation approaches.

Results for the second setting are shown in Tab. 9. Consistent with Gui et al. (2024), we observe a decreasing
performance across all TTA methods over the course of adaptation, highlighting the challenge posed by
multiple non-gradual domain shifts. Nevertheless, all TTA methods, except LAME, improve upon the source
model by over 10 percentage points on average. Despite the highly non-gradual nature of this test setting,
STAD-vMF performs comparably to the baselines, achieving the third-best performance overall. These
findings strengthens the results in Sec. 5.2, which suggest that STAD is applicable beyond gradual, temporal

distribution shifts similar as other TTA methods.

Table 9: Accuracy on domain adaptation benchmarks under covariate shift and uniform label distribution.
The source model is trained on the photo domain and TTA methods adapt to the remaining domains
sequentially. Results show average over three random training seeds. N/A indicates that adaptation is not

applied to the source domain.

Table 8: Accuracy on domain adaptation
benchmarks under covariate shift and uni-
form label distribution. The source model
is trained on three domains and tested on
the remaining one, rotating the test domain

for averaging.

Method ‘ PACS
Source model ‘ 82.99 + 8.87
adapt feature extractor

BN 82.85 £ 9.57
TENT 85.30 + 7.33
CoTTA 83.59 + 8.46
SHOT 83.30 £ 9.01
SAR 85.03 £ 7.71
RoTTA 85.11 + 7.73
adapt classifier

LAME 83.31 £ 8.90
T3A 83.68 £+ 9.14
STAD-vMF (ours) 83.91 + 8.58

Domain
Method P — A - C — S Mean
Source 99.34 +£ 0.57 63.10 £ 1.55 38.37 £4.99 41.51 + 2.99 ‘ 47.66 + 1.29
adapt feature extractor
BN N/A 68.03 £ 1.98 61.15 £ 0.34 49.64 £ 0.28 | 59.61 £ 0.52
TENT N/A 68.05 + 2.11 61.53 £ 0.52 51.33 & 1.35 | 60.30 £ 0.28
CoTTA N/A 63.82 + 3.23 59.36 £ 1.35 56.74 + 2.70 | 59.97 £ 2.17
SHOT N/A 67.91 £ 2.04 63.17 £0.86 57.90 £+ 1.22 | 62.99 + 0.58
SAR N/A 68.34 £ 1.81 61.49 £0.36 52.06 &= 1.10 | 60.63 £ 0.67
RoTTA N/A 68.73 + 1.13 5852 £ 1.32 52.43 £1.19 | 59.89 £ 0.19
adapt classifier
LAME N/A 62.73 £ 1.72 37.80 £ 5.09 41.01 &£ 2.90 | 47.18 + 1.26
T3A N/A 68.28 + 1.55 62.05 £ 0.67 54.80 £ 0.97 | 61.71 + 0.40
STAD-vMF (ours) N/A 68.59 + 2.51 61.65 = 0.39 52.16 £ 0.49 | 60.80 = 0.72

31

Published in Transactions on Machine Learning Research (10/2025)

D.2 Single Sample Adaptation

Table 10: Adaptation accuracy on temporal distribution shift with single sample adaptation (batch size 1) for
both covariate shift and additional online label shift: Table shows values as plotted in Fig. 4. Most methods
collapse when only provided with one sample per adaptation step. STAD can improve upon the source model
in 4 out of 6 scenarios.

Yearbook EVIS FMoW
Model covariate shift 4+ label shift | covariate shift 4 label shift | covariate shift 4 label shift
Source \ 81.30 & 4.18 \ 56.59 £ 0.92 \ 68.94 £ 0.20
adapt feature extractor
BN 73.32 £6.90 73.32 £6.90 | 11.12 +0.97 11.12 £ 0.97 3.46 + 0.03 3.46 + 0.03
TENT 61.33 £9.42 61.45 +9.46 | 10.80 + 0.84 10.78 £ 0.81 4.00 + 0.87 3.99 + 0.87
CoTTA 55.91 £5.26 56.71 = 6.12 | 10.04 £ 0.08 9.88 + 0.34 3.42 £+ 0.14 3.42 + 0.03
SHOT 53.71 £3.77 51.48 &+ 1.68 | 20.23 £ 1.40 16.36 £+ 1.67 3.84 + 0.21 4.01 + 0.44
SAR 73.32 +£ 6.89 73.38 £ 7.01 11.12 £+ 0.97 11.12 £ 0.97 3.46 £ 0.03 3.46 £+ 0.03
adapt classifier
T3A 83.51 £ 2.54 83.44 +2.60 | 57.63 £ 0.77 57.40 £ 0.76 | 66.78 £ 0.24 66.87 £+ 0.27
LAME 81.29 + 4.18 81.30 + 4.18 56.59 + 0.91 56.59 £+ 0.91 68.94 + 0.20 68.94 £ 0.20
STAD-vMF 84.32 + 2.03 81.49 +£4.23 | 56.15 + 0.98 58.02 + 0.77 | 68.88 & 0.29 71.22 £ 0.40

D.3 STAD in Combination with BN

Table 11: We explored whether STAD, which adapts the classifier, can be effectively combined with TTA
methods like BN adaptation, which targets the feature extractor. The results are mixed. On the covariate
shift of Yearbook, combining the two methods improves performance beyond what each achieves individually.
However, on other datasets, the combination generally results in decreased performance.

Yearbook EVIS FMoW

Model covariate shift + label shift | covariate shift 4+ label shift | covariate shift 4+ label shift
Source \ 81.30 + 4.18 \ 56.59 + 0.92 \ 68.94 + 0.20

BN 84.54 +£ 2.10 70.47 £+ 0.33 45.72 £ 2.79 14.48 £+ 1.02 67.60 £+ 0.44 10.14 £+ 0.04
STAD-vMF 85.50 £ 1.34 84.46 + 1.19 56.67 £ 0.82 62.08 + 1.11 68.87 £ 0.06 86.25 + 1.18
STAD-vMF + BN 86.20 + 1.23 69.96 + 0.39 | 44.23 +2.88 15.18 + 1.68 | 66.97 &+ 0.46 9.26 £ 1.97
STAD-Gauss 86.22 & 0.84 84.67 £ 1.46 - - - -
STAD-Gauss + BN | 86.56 &= 1.08 70.12 £0.33 — - - -

32

Published in Transactions on Machine Learning Research (10/2025)

D.4 ImageNet-C

Table 12: Accuracy on gradually increasing corruptions of ImageNet-C using ViT-Base as the source model.
BN and RoTTA are specific to batch normalization layers and are thus ineffective on ViT; they are omitted
from this experiment. As discussed in Sec. 5.2, methods that adapt the feature extractor achieve greater
adaptation gains on synthetic corruptions—except for CoTTA, which collapses. On this dataset, STAD
provides only marginal improvement over the source model.

Corruption severity

Method 1 2 3 4 5 Mean
Source 66.66 59.71 53.88 43.97 3243 | 51.33
adapt feature extractor

TENT 68.41 66.01 63.85 59.18 52.89 | 62.07
CoTTA 48.02 34.87 28.12 19.78 12.71 | 28.70
SHOT 67.51 64.41 62.33 57.52 51.19 | 60.59
SAR 67.69 64.70 62.33 57.55 51.01 | 60.66
adapt classifier

LAME 66.48 59.52 53.64 43.76 32.21 | 51.12
T3A 66.71 61.31 56.59 46.75 34.22 | 53.12
STAD-vMF (ours) 66.60 59.81 54.05 44.25 32.80 | 51.50

D.5 Comparison to Supervised Oracle

We investigate how far STAD, which operates unsupervised and does not require labels, can close the gap
to a supervised approach that makes use of labels. Obviously, a supervised approach is superior, as it can
directly learn the function mapping input samples to target labels. In contrast, TTA methods rely solely
on signals from the input and therefore have strictly less information available. To evaluate how far this
gap can be bridged, we continuously fine-tune the source model at each timestep using a small portion of
labeled samples. For this, we use another held-out set from the Wild-Time pipeline, which is 10% the size of
the adaptation test stream. At each timestep, we fine-tune the model for one epoch on this split and then
evaluate the performance on the regular test set.

We find that the supervised model achieves an average accuracy of 90.67% over the entire test stream.
Comparing this to the source model at 81.30%, STAD-Gauss at 86.22%, and STAD-vMF at 85.50% (see
Tab. 2), we observe that STAD can partially close the gap between the unadapted source model and the
fine-tuned model. Fig. 7 further reveals that STAD-vMF is on par with the fine-tuned classifier at certain
time steps (1986, 1995, 1997). Additionally, we observe that the severity of the temporal distribution shift
hampers also the supervised model’s ability to regain in-distribution accuracy. For instance, in the 1970s and

1980s, the performance of the supervised model is 20 points lower than its in-distribution accuracy (nearly
100%).

Yearbook

100 o

e p-.-.'.‘ lg

g 90 - ry ,“.’

Q /
[¢]

5 80 —e - Source g
g AT @+ Supervised (Oracl v/
g RS upervised (Oracle)

.
\ 77 N, Vel —e— STAD-vMF

[L4

T T T T T T T T T
1970 1975 1980 1985 1990 1995 2000 2005 2010

70 4

Year

Figure 7: Accuracy over time for the temporal distribution shift on Yearbook averaged over three random
training seeds.

33

Published in Transactions on Machine Learning Research (10/2025)

D.6 Cluster Visualization

Dimension 2
Dimension 2

Dimension 1 Dimension 1

Figure 8: t-SNE visualization of the representation space of FMoW-Time (year 2013) under joint covariate
and label shift: We visualize the cluster structure in representation space. Colors indicate ground truth
class labels for the 10 most common classes. Adapting with BN destroys the cluster structure, resulting in
inseparable clusters. In contrast, STAD operates on linearly separable representations.

D.7 Computational Complexity and Runtime

The complexity of STAD-vMF scales linearly with the sliding window size s, batch size N;, representation
dimension D and number of classes K, i.e. O(s x Ny x D x K). Note that the sliding window size s is fixed
at s = 3 and operations over the batch size, number of classes and representation dimension can be fully
parallelized.

Tab. 13 reports relative runtime compared to the source model for STAD and baselines. As results on
ImageNet-V2 show, even for high dimensions (D = 2048) and large number of classes (K = 1000) STAD’s
runtime is comparable to baseline TTA methods.

Table 13: Relative runtime per batch compared to the source model

Methods Yearbook FMoW-Time ImageNetV2
Source Model 1.0 1.0 1.0
BN 1.0 1.1 1.1
TENT 14 6.4 7.2
CoTTA 17.1 200.0 327.3
SHOT 1.3 6.3 6.7
SAR 1.5 7.1 10.0
RoTTA 90.0 30.0 41.8
LAME 1.2 2.9 5.5
T3A 1.1 1.8 10.9
STAD-vMF 2.5 8.8 23.6
STAD-Gauss 3.3 - -

D.8 Sensitivity to Hyperparameters

In this section, we conduct a sensitivity analysis of the hyperparameters involved in STAD. We analyze
sensitivity on two datasets: the temporal shift dataset Yearbook and the commonly used corruption benchmark
CIFAR-10-C. All experiments are conducted under a uniform label distribution. When testing the sensitivity
to a specific hyperparameter, all other hyperparameters are fixed at their default values (see App. C). Results

show the average over three random training seeds for Yearbook and the average over 15 corruption types for
CIFAR-10-C.

34

Published in Transactions on Machine Learning Research (10/2025)

Sensitivity to sliding window size s The window size determines the number of past time steps
considered by the dynamic model. A small s limits the influence of past prototypes, whereas a larger s
extends the considered history, giving more weight to past prototypes. However, large values of s come at the
cost of increased computational burden, as runtime scales linearly with window size. Tab. 14 suggests that
increasing the window size could improve adaptation performance.

Table 14: Accuracy of STAD for different values of s

s 3 5 7

Yearbook 85.4975 + 1.34 85.5022 £ 1.30 85.5029 £ 1.31
CIFAR-10-C | 76.9683 4+ 11.25 76.9735 £+ 11.25 76.9823 + 11.24

Sensitivity to x"%"® The transition concentration parameter k%" regulates the transition noise and
determines how far cluster prototypes move between different time steps. A high concentration value k"%
implies little movement of class prototypes, whereas low /72" allows prototypes to move more. This
parameter thus acts as a regularization factor between a more static and a more dynamic model. Tab. 15
displays the results. Performance changes only marginally for different values of the concentration parameter.

Table 15: Accuracy of STAD-vMF for different values of k218

Rirans 50 100 500 1000 5000

Yearbook 85.5034 &+ 1.3031 85.5034 £+ 1.3031 85.5034 £+ 1.3031 85.5034 £+ 1.3031 85.4980 £ 1.3099
CIFAR-10-C 76.9684 £ 11.2540 76.9683 + 11.2543 76.9685 £ 11.2538 76.9685 & 11.2538 76.9688 + 11.2552

Sensitivity to k°™° The emission concentration parameter £°** regulates the emission noise and determines
the spread of clusters. A high concentration value x¢® implies small, compact clusters, while low k¢™° allows
for widespread clusters. Results are shown in Tab. 16.

Table 16: Accuracy of STAD-vMF for different values of x“™*

KOS 50 100 500 1000 5000

Yearbook 85.5022 &+ 1.3036 85.5034 &+ 1.3031 85.5043 + 1.3019 85.5058 &+ 1.3001 85.5058 + 1.3001
CIFAR-10-C 76.9679 £ 11.2543 76.9683 + 11.2543 76.9689 £ 11.2529 76.9700 &+ 11.2514 76.9700 + 11.2513

35

	Introduction
	Problem Setting
	Tracking the Dynamics of Temporal Shifts
	Adaptation in Representation Space
	A Probabilistic Model of Shift Dynamics
	Von Mises-Fisher Model for Hyperspherical Features

	Related Work
	Experiments
	Temporal Distribution Shifts
	Beyond Temporal Shifts: Reproduction Datasets and Synthetic Corruptions
	Analysis of Tracking Abilities

	Discussion and Conclusion
	Appendix
	Expanded Related Work
	Methodological Details
	Details on STAD-Gaussian
	Details on STAD-vMF

	Experimental Details
	Datasets
	Source Architectures
	Baselines
	Implementation Details and Hyperparameters

	Additional Results
	Domain Adaptation Benchmarks
	Single Sample Adaptation
	STAD in Combination with BN
	ImageNet-C
	Comparison to Supervised Oracle
	Cluster Visualization
	Computational Complexity and Runtime
	Sensitivity to Hyperparameters

