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ABSTRACT

Causal inference from observational data has recently found applications in ma-
chine learning applications. While there exist sound and complete algorithms
to compute causal effects, these algorithms require explicit access to conditional
likelihoods over the observational distribution. In the high dimensional regime,
conditional likelihoods are difficult to estimate. To alleviate this issue, researchers
have approached the causal effect estimation problem by simulating causal re-
lations with neural models. However, none of these existing approaches can be
applied to generic scenarios such as causal graphs having latent confounders and
obtaining conditional interventional samples. In this paper, we show that any iden-
tifiable causal effect given an arbitrary causal graph containing latent confounders
can be computed through push-forward computations using trained conditional
generative models. Based on this observation, we devise a diffusion-based ap-
proach to sample from any such interventional or conditional interventional dis-
tribution. To showcase our algorithm’s performance, we conduct experiments on
a semi-synthetic Colored MNIST dataset having both the intervention (X) and
the target variable (Y ) as images and present interventional image samples from
P (Y |do(X)). We also perform a case study on a real-world COVIDx chest X-ray
image dataset to demonstrate our algorithm’s utility.

1 INTRODUCTION

Causal inference has been a central problem in many sciences and is also recently understood to
be critical for developing more robust and reliable machine learning solutions (Xin et al., 2022;
Zhang et al., 2020; Subbaswamy et al., 2021). Although randomized controlled trials are known
as the gold standard for estimating causal effects, modern formalisms such as the structural causal
model (SCM) framework (Pearl, 2009) enable a data-driven approach to this problem: Given the
qualitative causal relations, summarized by a causal graph, certain causal queries can be uniquely
identified from the observational distribution. Today, we have a complete understanding of which
causal queries can be uniquely identified, and which require further assumptions or experimental
data, given this structure (Tian, 2002; Shpitser & Pearl, 2008; Bareinboim & Pearl, 2012).

For certain causal structures, sample-efficient ways to estimate (average) causal effect exist through,
for example using propensity scores, or backdoor adjustments (Rosenbaum & Rubin, 1983; Pearl,
1993; Maathuis & Colombo, 2015). However, the most general solutions assume that we have ac-
cess to the joint observational probability distribution of data. For example, the sound and complete
causal effect identification algorithm of Shpitser & Pearl (2008) writes interventional distributions
as functions of the observational distribution. These functions can seemingly get arbitrarily compli-
cated and in general there is no easy way to directly estimate them from data.

This creates an important gap between causal inference and modern ML datasets: We typically
observe high-dimensional variables, such as X-ray images of a patient, that need to be involved
in causal effect computations. However, explicit likelihood-based models are impractical for such
high-dimensional data. Instead, deep generative models have shown tremendous practical success
in correctly sampling from such high-dimensional variables (Brock et al., 2018; Karras et al., 2019;

1



Under review as a conference paper at ICLR 2024

YX

W2

W1

W3

W4
p(Y |do(X)) =

∑
W1

∑
W3

P (X,Y |W1,W2,W3,W4)P (W1,W2,W3)

P (W1,W2) P (W1)∑
W1,Y

∑
W3

P (X,Y |W1,W2,W3,W4)P (W1,W2,W3)

P (W1,W2) P (W1)

Figure 1: Double napkin graph and the corresponding causal effect estimand for P (Y |do(X)).

Croitoru et al., 2023). We are interested in the question: Can we leverage the representative power
of deep conditional generative models for causal inference?

As an example consider the causal graph in Figure 1. We are interested in the distribution of variable
Y after a hypothetical intervention on X . We use the do-operator of Pearl to represent the interven-
tion, i.e., we are interested in p(Y |do(X)). The ID algorithm (Shpitser & Pearl, 2008) identifies this
distribution in terms of the observational distribution as given on the right.This complicated expres-
sion can be evaluated if one has explicit access to the joint distribution P . However, it is not clear if
one can sample from this probability distribution without an explicit likelihood-based model.

In this paper, we show that this is possible. Specifically, we show that any identifiable interventional
distribution can be sampled from by only training conditional generative models on the observational
data. This enables us to leverage the state-of-the-art deep generative models, such as diffusion
models, and even sample from p(Y |do(X)) when both X and Y are high dimensional. To the best
of our knowledge, this is the first result that shows that conditional generative models are sufficient
to sample from any identifiable interventional distribution. Our contributions are as follows:

• We propose a training algorithm that learns a collection of conditional generative models
using observational data and can sample from any identifiable interventional distribution.

• We show that our algorithm is sound and complete, establishing that conditional generative
models are sufficient to sample from any identifiable interventional query. The guarantees
extend to sampling from any identifiable conditional interventional distribution.

• We use diffusion models to demonstrate the performance of our algorithm on a synthetic
image dataset, as well as a real-world COVIDx chest X-ray dataset.

2 RELATED WORK

Over time, extensive literature has developed on the causal effect estimation problem. Given access
to the causal graph and the probability distribution, Pearl proposed the do-calculus (Pearl, 1995)
rules as a general solution for any identifiable causal effect. Shpitser & Pearl (2008) propose the
popular sound and complete identification algorithm to express the causal effect of an arbitrary set of
variables on other variables in terms of observational distributions or suggest a graphical criterion for
non-identifiability. Bareinboim & Pearl (2012); Jaber et al. (2018); Lee et al. (2020) have proposed
variants of the causal estimation problem based on different restrictions on the causal graph and the
access to probability distributions. However, most of these studies have relied on explicit access to
the observational probability distributions which limits their applicability to be employed in causal
inference problems with high dimensional data.

The use of deep neural networks for performing causal inference has been recently suggested by
many researchers. Shalit et al. (2017); Louizos et al. (2017) proposed neural network-based ap-
proaches to estimate the causal effect. Sanchez & Tsaftaris (2022) employs energy-based generative
models such as DDPMs (Ho et al., 2020) to generative high dimensional interventional samples.
However, solutions of these methods do not generalize to arbitrary structures.

The sampling-based approaches using deep generative models are limited in the literature. Kocaoglu
et al. (2018) trains a collection of conditional generative models based on the causal graph and uses
adversarial training. Pawlowski et al. (2020) employed a conditional normalizing flow-based ap-
proach to offer high dimensional interventional sampling as part of their solution. Chao et al. (2023)
performs interventional sampling for arbitrary causal graphs employing diffusion-based causal mod-
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els with classifier-free guidance (Ho & Salimans, 2022). However, all of these methods depend on
the strong assumption that the system has no unobserved confounders.

Xia et al. (2021; 2023) extends this idea to not only sample from interventional distribution but also
test the identifiability of the interventional distribution. However, their approach does not handle
high-dimensional variables. Perhaps more importantly, all these works train a forward model based
on the causal graph structure. Conditional sampling then becomes tricky since it is not clear how
to update the posterior of upstream variables using feedforward operations. For example, Kocaoglu
et al. (2018) resorts to rejection sampling, which is slow and impractical for high-dimensional data.

Perhaps the most conceptually related work is Jung et al. (2020), where the authors identified an
algorithm that can convert the expression returned by the ID algorithm into a form where it can
be computed through a re-weighting function, similar to propensity score-based methods, to al-
low sample-efficient estimation. However, computing these reweighting functions from data is still
highly nontrivial with high-dimensional variables in the system.

3 BACKGROUND

We first introduce the structural causal models (SCMs) and how they can model interventions.
Definition 3.1 (Structural causal model, (SCM) (Pearl, 1980)). An SCM is a tuple M = (G =
(V, E),N ,U ,F , P (.)). V = {V1, V2, ..., Vn} is a set of observed variables in the system. N is a set
of independent exogenous random variables where Ni ∈ N affects Vi and U is a set of unobserved
confounders each affecting any two observed variables. This refers to the semi-Markovian causal
model. A set of deterministic functions F={fV1

, fV2
, .., fVn

} determines the value of each variable
Vi from other observed and unobserved variables as Vi = fi(Pai, Ni, USi

), where Pai ⊂ V (par-
ents), Ni ∈ N (randomness) and USi

⊂ U (common confounders) for some Si. P(.) is a product
probability distribution over N and U and projects a joint distribution PV over the set of actions V
representing their likelihood.

An SCM M, induces an acyclic directed mixed graph (ADMG) G = (V, E) containing nodes for
each variable Vi ∈ V . For each Vi = fi(Pai, Ni, USi

), Pai ⊂ V , we add an edge Vj → Vi ∈
E ,∀Vj ∈ Pai. Thus, Pai(Vi) becomes the parent nodes in G. G has a bi-directed edge, Vi ↔ Vj ∈
E between Vi and Vj if and only if they share a latent confounder. If a path Vi → . . . → Vj exists,
then Vi is an ancestor of Vj , i.e., Vi = AnG(Vj). An intervention do(vi) replaces the structural
function fi with Vi = vi and in other structural functions where Vi occurs. The distribution induced
on the observed variables after such an intervention is represented as Pvi(V). Graphically, it is
represented by GVi

where incoming edges to Vi are removed.
Definition 3.2 (c-component). Given an ADMG a maximal subset of nodes where any two nodes
are connected by bidirected paths is called a c-component. C(G) is the set of c-components of G.

Pearl (1995) identified do-calculus rules, which relate different interventional and observational
distributions to one another. Namely, rules identify conditions on the causal graph that allow i)
removing/adding conditioning variables in the probability distribution (rule-1), ii) replacing do-
operator with conditioning (rule-2) and iii) removing/adding do-operations (rule-3). These form
the basis for any identification algorithm, and were shown to be complete to identify any identifiable
interventional distribution (Shpitser & Pearl, 2008; Huang & Valtorta, 2012). In other words, finitely
many applications of these three rules is sufficient to convert an interventional distribution into a
function of the observational distribution, if possible. Shpitser & Pearl (2008); Tian & Pearl (2002);
Tian (2002); Huang & Valtorta (2012) provide systematic ways to apply them.
Lemma 3.3 (c-component factorization (Tian & Pearl, 2002)). Let M be an SCM that entails the
causal graph G and Px(y) be the interventional distribution for arbitrary variables X and Y . Let
C(G \X) = {S1, . . . , Sn}. Then we have Px(y) =

∑
v\(y∪x)

Pv\s1(s1)Pv\s2(s2) . . . Pv\sn(sn).

Intuitively, Px(y) is factorized into c-factors Pv\si(si) for each c-component Si in G \X .

Diffusion models. For the purposes of our algorithm, we aim to black-box the technical details of
the generative models we learn. This is intentional: the field of conditional generative modeling is
advancing rapidly and it is not at all clear that the current state-of-the-art frameworks will be used
in the near future. For the purposes of our framework, we have the following simple requirement:
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Figure 2: High dimensional interventional sampling: backdoor graph with Y as an image

given samples from a joint distribution, we need to be able to learn a model that provides approx-
imate samples from any conditional distribution. In practice, we will use classifier-free diffusion
guidance (Ho & Salimans, 2021), but our framework is agnostic to the choice of generative model.

In this paper, we assume i) the causal model is semi-Markovian and ii) we have access to the ADMG,
and iii) we assume that we can learn to sample high dimensional conditional distributions by training
a classifier-free guidance diffusion model on samples from a joint distribution.

4 CONDITIONAL GENERATIVE MODELS FOR CAUSAL SAMPLING

Given a causal graph G, dataset D ∼ P (V ), our objective is to generate samples from a causal query
P (Y |do(X)). Before we describe our algorithm formally, we express the challenges and outline our
main ideas which lead to the general algorithm over examples.

4.1 CHALLENGES WITH CAUSAL INFERENCE VIA SAMPLING AND MOTIVATING IDEAS

As the first example, consider the backdoor graph in Figure 2(a). Suppose we have a dataset D∼
P (X,Y, Z). Consider the causal query PX(Y ). An application of ID algorithm shows that PX(Y )=∑

z P (Y |X, z)P (z). We now intuit how to sample from this distribution. Suppose, for example, that
we could sample from PX(Y,Z); in other words suppose we had a mechanism that when provided
a value for x would provide samples (y, z)∼ Px(Y,Z). From this we can derive a way to sample
from PX(Y ), by sampling (y, z)∼Px(Y,Z) and only keeping the y variable: Dropping Z from the
joint sample is equivalent to sampling Y from the distribution where Z is marginalized out.

Now focusing on PX(Y,Z), ID gives PX(Y,Z) =P (Y |X,Z)P (Z). Sampling from this distribu-
tion seems more attainable; indeed if we could sample from both P (Z) and P (Y |X,Z), we could
use the following procedure: first sample z ∼ P (Z) and then use this z and the specified interven-
tional x to sample from P (Y |x, z). Hence the only ingredients we need are sample access to P (Z)
and P (Y |X,Z). From the joint dataset D, we can train conditional generative models MZ and MY

to approximate sampling from these distributions. With these models in hand, they can be wired
together in a sequential structure, which we visualize as a DAG, where each variable corresponds
to a node and its (conditional) generative model. Sampling from this DAG can be performed by
sampling from each node in a topological order, and passing sampled values to descendant nodes.

Next we consider the backdoor graph in 2(b), where we again want to sample from PX(Y ). Apply-
ing the ID algorithm yields PX(Y ) =

∑
z P (z)P (Y |X,W, z), which looks identical to the previous

example, except for the added term W in the conditional distribution. This raises the important ques-
tion of where this W comes from. Do-calculus ensures in this case that PX(Y ) = PX,W (Y ); in
other words, the causal effect of W on Y is irrelevant assuming we also intervene on X . Hence we
can pick any value of W to apply here. Then intuitively, sampling can proceed in a similar fashion
to the previous example. First attain a sampling mechanism MZ which samples z ∼ P (z), and
then attain a sampling mechanism MY providing sample access P (Y |X,W,Z). Sampling can then
proceed by using MZ to get z, picking any arbitrary value w, and sampling y from MY . Again this
can be arranged in a DAG structure, where sampling can be done according to the topological order.
Figure 2(b) demonstrates the graphical representation of this procedure.
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Figure 3: High dimensional interventional sampling from napkin graph

As our next example we consider the Napkin graph in Figure 3. For PX(Y ), ID algorithm returns

PX(Y ) =

∑
w1

P (X,Y | W1,W2)P (W1)∑
w1 P (X | W1,W2)P (W1)

.

While this expression seems more complicated, it is helpful to note that, with another call to the
ID algorithm, we can show that PW2(X,Y ) :=

∑
w1

P (X,Y |W2,W1)P (W1). Hence, if we define
P ′(V ) := PW2

(V ), sampling from PX(Y ) is equivalent to sampling from P ′(X,Y )/P ′(X) =
P ′(Y |X). In other words, if we could sample a dataset D′ ∼ P ′(V ), which implicitly depends
on W2, then we could sample from PX(Y ) by learning a conditional model MY using data from
P ′(V ) that emulates samples y ∼ P ′(Y |X). We note that since P ′ depends on W2, MY should be
a function of W2, so we can pass it as an argument to MY . This would be correct, only if we could
generate a dataset D′ ∼ P ′(V ) = PW2(V ). But sampling from an interventional distribution is
precisely the problem we are seeking to solve: this suggests that a recursion to smaller subproblems
must play a part in our algorithm, similar to the ID algorithm. On the other hand, we notice that
PW2

(X,Y ) has a similar structure to the backdoor graph, which we have already established we can
sample from. Thus a sampling procedure for PX(Y ) must involve several steps: generate a dataset
D′ ∼ PW2

(V ), use D′ to train MY , and then sample from MY .

We can summarize the insights from these examples as follows: for an identifiable query PX(Y )
and access only to joint samples, we were able to generate a directed acyclic graph where each
node corresponds to a variable and all but the interventional variables are imbued with a conditional
generative model that only depends on its parents in the DAG. Sampling from the interventional
query can be performed by sampling each node in this graph according to its topological ordering.
The only ingredient we have required throughout this procedure is the ability to learn models to
approximate samples from a conditional distribution given only joint sample access. We have been
intentionally informal during these examples, but we formalize this procedure in the next section.

4.2 ID-DAG: A GENERATIVE MODEL-BASED ALGORITHM FOR INTERVENTIONAL SAMPLING

Now we are ready to present our algorithm in full generality. The key idea is that we will be given a
causal query PX(Y ), a dataset D from the joint distribution P , and a causal graph G. Our algorithm
will follow the same recursive structure of the ID algorithm and return a DAG where each node
corresponds to a variable and is associated with a conditional generative model that depends only on
its parent nodes in that DAG. Sampling can then be performed by providing values for the intervened
variables and calling each generative model according to the topological ordering of the DAG.

The first step of our algorithm is an identifiability check: we run ID on our provided causal query and
if ID returns FAIL, then the query is not identifiable and we return FAIL. Otherwise, we proceed.

Our key contribution is the ID-DAG algorithm in Algorithm 1. We will spend the next several para-
graphs outlining its operation. We note that, identical to the ID algorithm, ID-DAG proceeds through
a series of 7 steps, several of which are recursive. The non-recursive steps are called base cases. In
the recursive steps, we point out several key differences from the ID algorithm. Where ID passes
distributions to its recursive calls, ID-DAG passes datasets, assumed to be joint samples from the
corresponding distribution in the ID algorithm. Further, where ID returns arithmetic expressions of
likelihood functions, ID-DAG returns sampling networks, i.e., a collection of conditional generative
models that form a DAG structure. These need to be incorporated into a larger global sampling
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Algorithm 1 ID-DAG(Y,X,D, G)

1: Input: target Y, intervention X , training data D, causal graph G.
2: Output: A DAG of trained models.
3: Let π be the topological order of nodes in G.
4: if X = ∅ then {Step 1}
5: H = ∅
6: for each Vi ∈ Y in topological order do
7: Let MVi be a model trained on {Vi, V

(i−1)
π } ∼ D such that MVi(V

(i−1)
π ) ∼ P (Vi|V (i−1)

π )
8: Add node (Vi,MVi) to H

9: Add edge Vj → Vi to H for all Vj ∈ V
(i−1)
π

10: Return H
11: if V \An(Y)G ̸= ∅ then {Step 2}
12: Return ID-DAG(Y,X ∩An(Y)G,D′ = D[An(Y)G], GAn(Y))
13: Let W = (V \X) \An(Y)G

X
{Step 3}

14: if W ̸= ∅ then {}
15: Return ID-DAG(Y,X = X ∪W,D, G)
16: if C(G \X) = {S1, . . . , Sk} then {Step 4}
17: for each Si ∈ C(G \X) = {S1, . . . , Sk} do
18: Hi=ID-DAG(Si,X = V \ Si,D, G)
19: Return ConstructDAG({Hi}∀i)
20: if C(G \X) = {S} then
21: if C(G) = {G} then {Step 5}
22: throw FAIL
23: if S ∈ C(G) then {Step 6}
24: H = ∅
25: for each Vi ∈ X do
26: Add node (Vi, ∅) to H
27: for each Vi ∈ S do
28: Let MVi be a model trained on {Vi, V

(i−1)
π } ∼ D such that MVi(V

(i−1)
π ) ∼ P (Vi|V (i−1)

π )
29: Add node (Vi,MVi) to H

30: Add edge Vj → Vi to H for all Vj ∈ V
(i−1)
π

31: Return H .
32: if (∃S′) such that S ⊂ S′ ∈ C(G) then {Step 7}
33: XZ = X \ S′, HS′ = ID-DAG(S′,XZ ,D, G), D′ ∼ HS′(XZ)
34: Return ID-DAG(Y,X,D′, GS′,XZ

)

network. Hence the operation of each recursive step can be summarized according to the following
scheme: i) generate the appropriate dataset from joint samples to pass to the recursion, ii) make the
recursive call and acquire the returned sampling networks, iii) update the global sampling network
according to the output of the recursion. As we describe the algorithm, we will briefly motivate each
case and describe how the operation fits into the above scheme.

Base Cases: We will describe the base cases of ID-DAG first. These are step 1 and step 6.

Step 1 occurs when the current intervention set is empty. Here, the desired distribution we wish to
sample from is P (Y ), and it suffices to only return a generative model for each variable in Y from
the dataset D. This can be done by learning a generative model for each Yi ∈ Y conditioned on its
parents according to the topological order of G and wiring them to only depend on their parents.

Step 6: When we enter step 6, we are seeking to sample from PX(Y ) where Y is entirely in a single
c-component S, and X is disjoint from S. In this case, ID algorithm asserts that we can replace
intervening on X by conditioning on X . Similar to step 1, then, we can leverage samples from the
dataset D to train a model for each variable Vi in the c-component, conditioned only on ancestor
nodes according to the topological order. Edges are added according to these conditioning variables.

Next we can consider the recursive cases, keeping in mind the schema that we need to i) alter
the dataset, ii) acquire the sampling network from the recursion, iii) incorporate it into the global
sampling network. We start with steps 2 and 3 as they only make a single recursive call to ID-DAG.

Step 2: We enter step 2 when there are variables Xi ∈ X that are not ancestor of any Yi ∈ Y .
Intervening on such variables cannot affect Y and we can safely drop them from the intervention
set. We restrict the dataset D by only considering the variables that are ancestors of Y according to
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the topological order and stop considering the irrelevant X ′
is. While bottom-up, we simply return

the sampling network returned by the recursive call.

Step 3: In step 3, ID asserts that intervening on extra variables W will have no influence on Y
assuming we already intervene on X . Here the dataset is the same, and we simply augment the
interventional variables. We note that the choice of W can be arbitrary, as discussed in Section 4.1.

Step 4: We enter this case when there are multiple c-components in the sub-graph G \X and one
or more c-components are affected by X . Multiple recursive calls are made here, one for each c-
component, with no alterations made to the dataset D. Each call will return a sampling network for
a c-component, but special care must be taken to merge these appropriately. The straightforward
parallel to the ID algorithm would be to use Tian’s factorization, where PX(V ) =

∏
i PV \Si

(Si).
However each returned sampling network has one node per variable considered, depending only
on its parents according to the global topological ordering. Here we make a call to the subroutine
ConstructDAG, outlined in the appendix, to handle the correct edges to add to merge each of
these graphs together. This step then returns a valid sampling network.

Step 7: This case occurs when i) G \ X is a single c-component S, ii) all the variables in Y are
contained within a single c-component S′ ⊂ S, but iii) the variables in X can be partitioned into
those that are contained within S′ and those that are not in S′. Letting XZ be those that are not
contained within S′, ID asserts that evaluating PX(Y ) is equivalent to evaluating P ′

X∩S′(Y ) where
P ′ is defined as PXZ

(V ). Hence we need to generate a dataset D′ ∼ PXZ
(V ). This is handled by

a recursive call to ID-DAG. Then we make the same recursive call as ID with the modification that
we need to keep the variables XZ in the graph as conditioning variables. Please see appendix for
more details on why this modification is needed.

Sampling from ID-DAG: Finally, after ID-DAG has returned a sampling network, we can sample
from it as follows: specify values for any interventional variables in X , and choose arbitrary values
for any variables W that may have been added to the interventional set during step 3. Then proceed
through the topological ordering of the DAG and call each generative model in turn. Of this joint
sample, only return the variables in Y . We can show that this procedure is sound and complete:

Theorem 4.1. (informal) ID-DAG is sound and complete for sampling from any identifiable PX(Y ).

Conditional interventional sampling: We provide the full conditional interventional sampling al-
gorithm in Algorithm 5 and its soundness and completeness proof in Appendix C.

5 EXPERIMENTS

We apply our algorithms to two datasets. First, we consider a synthetic dataset using alterations
to the thickness and color of MNIST images. Next we demonstrate that we can use Algorithm 1:
ID-DAG to sample from an interventional distribution on a dataset involving real chest X-rays of
COVID-19 patients. In both, we require the training of several neural networks, where full training
details are deferred to the appendix. We remark that evaluation of correctness is challenging: The
ground truth in these datasets is inaccessible and prior work was unable to compute interventional
queries on high-dimensional data. Thus, our evaluations focus on the quality of neural network
component and, in the case of MNIST, a surrogate ground-truth for a discrete version of the dataset.

For conditional sampling with high-dimensional data, we train a diffusion model using classifier-free
guidance (Ho & Salimans, 2022). For conditional sampling of categorical data, we train a classifier
using cross-entropy loss and apply temperature scaling as a means of calibration to ensure we are
sampling in a calibrated fashion (Guo et al., 2017). Training details and code are in the appendix.

5.1 NAPKIN-MNIST DATASET

Data Generation: First we consider a synthetic dataset imbued over the napkin graph. Full data gen-
eration details are given in the appendix. We consider variables W1,W2, X, Y , where W1, X, Y are
images derived from MNIST and W2 is a discrete variable. We introduce latent confounders C, T ,
denoting color and thickness, where C can be any of {red, greed, blue, yellow,magenta, cyan},
and T can be any of {thin, regular, thick}. Data generation proceeds as follows: first we sample
latent C, T from the uniform distribution. We color and reweight a random digit from MNIST to
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Color

Thickness

X Samples from PX(Y)

Figure 4: Napkin MNIST:. (Left) The causal graph for the Napkin-MNIST dataset. Thickness and
Color are latent confounders. (Right): Samples from the interventional distribution PX(Y ).

Table 1: Color distributions from our generated interventional samples from PX(Y ), where
V.c refers to the color of variable V . P̂ refers to our diffusion-based sampling mechanism, passed
through a color classifier. All other values are the ground truth on the discrete Napkin-MINST. Our
samples’ colors closely reflect the true interventional distribution than other candidate distributions.

Red Green Blue Yellow Magenta Cyan

P̂(Y.c | Do(X.c = Red)) 0.160 0.181 0.164 0.177 0.170 0.147
P (Y.c | Do(X.c = Red)) 0.167 0.167 0.167 0.167 0.167 0.167
P (Y.c | X.c = Red) 0.276 0.276 0.276 0.057 0.057 0.057

P̂(Y.c | Do(X.c = Green)) 0.159 0.176 0.163 0.178 0.173 0.150
P (Y.c | Do(X.c = Green)) 0.167 0.167 0.167 0.167 0.167 0.167
P (Y.c | X.c = Green) 0.057 0.057 0.057 0.276 0.276 0.276

form W1. W2 only keeps the digit value in {0 . . . 9} of W1 and a restriction of its color: if the color
of W1 is red, green, or blue, W2’s color is red, and it is green otherwise. X then picks a random
MNIST image of the same digit as W2, is colored according to W2’s color, and is reweighted ac-
cording to the latent T . Then Y is the same original MNIST image as X , reweighted according to
X’s thickness and colored according to the latent C. Further, for every edge in the graph, we include
a random noising process, where with p = 0.1, the information passed along is chosen uniformly
randomly from the valid range. We are interested in sampling from the distribution PX(Y ).

Component Models: The sampling net for the napkin graph is built by learning a model to sample
from the distribution P ′(Y |X,W2), where P ′(X,Y,W2) := PW2

(X,Y ). Hence, given samples
D∼P , we need to first generate a dataset D′ for W2, X, Y from PW2

(X,Y ), or equivalently just the
W2, X, Y samples from P (X,Y |W1,W2)P (W1). Sampling from P (X,Y |W1,W2) can be done
by learning a conditional diffusion model trained on the observational distribution P . Samples from
P ′ can be done by sampling W1∼P (W1), choosing an arbitrary W2 and sampling from the trained
diffusion model. On the new data D′, we learn a diffusion model to sample from P ′(Y |X,W2).

Evaluation: As the true ground truth interventional distribution is inaccessible, evaluation of our
approach comes in two parts. First, we evaluate each of the trained neural nets for image fidelity
and then we map our generated images to discrete variables where the ground truth is accessible.
Examples from the trained diffusion models are given in Figure 4 (right). To evaluate the correctness
of the sample, some preliminaries must be established. Note that each image in our data may be
mapped to a discrete variable (Digit, Color, Thickness). Indeed, a discrete analogue of this dataset
may be generated, for which exact likelihoods may be computed. Since we operate over images, we
are only able to access these discrete properties through trained classifiers to identify digit, color, and
thickness given an image. With classifiers in hand, we can estimate these properties of our sampled
images from our learned PY (X) and compare to the true (discrete) interventional and conditional
distributions. We display these results for the color attribute in Table 1, and see that our sampling
much more closely emulates the interventional distribution than the true conditional.

5.2 COVID X-RAY DATASET

Data generation: Next we apply our algorithm to a real dataset using chest X-rays on COVID-
19 patients. Specifically, we download a collection of chest X-Rays (X) where each image has
binary labels for the presence/absence of COVID-19 (C), and pneumonia (N) (Wang et al., 2020)
1. We imbue the causal structure of the backdoor graph, where C → X , X → N , and there is a
latent confounder affecting both C and N but not X . This may capture patient location, which might

1Labels are from https://github.com/giocoal/CXR-ACGAN-chest-xray-generator-covid19-pneumonia/
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Real
(C=0)

Generated
(C=0)

Generated
(C=1)

Real
(C=1)

Figure 5: Generated Covid XRay Images: Generated chest XRay images from our diffusion
model, separated by class and compared against real data.

affect the chance of getting COVID-19, and quality of healthcare affecting the right diagnosis. Since
medical devices are standardized, location would not affect the X-ray image given COVID-19. We
are interested in the interventional query PC(N): the treatment effect of COVID-19 on pneumonia.

Component Models: Applying ID-DAG to this graph requires access to two conditional distri-
butions: P (X|C) and P (N |X,C). Since X is a high-dimensional image, we train a conditional
diffusion model to approximate the former. Since N is a binary variable, we train a classifier that
accepts X,C and returns a Bernoulli distribution for N . The generated sampling network operates
by sampling an X given the interventional C, and then sampling an auxiliary C ′ ∼ P (C ′) and
feeding X,C ′ to the classifier for P (N |X,C), finally sampling from this distribution.

Evaluation: Again we do not have access to the ground truth. Instead, we focus on the evaluation of
each component model, and we also perform an ablation on our diffusion model. We first evaluate
the image quality of the diffusion model approximating P (X|C). We evaluate the FID of generated
samples versus a held-out validation set of 10K X-ray images. When samples are generated with
C taken from the training distribution, we attain an FID score of 16.17. We then evaluate the
conditional generation by comparing class-separated FID evaluations and display these results in
Table 2 (left). The classifier estimating P (N |X,C) has an accuracy of 91.9% over validation set.
We note that we apply temperature scaling (Guo et al., 2017) to calibrate our classifier, where the
temperature parameter is trained over a random half of the validation set. Temperature scaling does
not change the accuracy, but it does vastly improve the reliability metrics; see Appendix.

Finally we evaluate the query of interest PC(N). Since we cannot evaluate the ground truth, we
consider our evaluated PC(N) versus an ablated version where we replace the diffusion sampling
mechanism with P̂ (X|C), where we randomly select an X-ray image from the held-out validation
set. We also consider the query PC(N) if there were no latent confounders in the graph, in which
case, the interventional query PC(N) is equal to P (N |C). We display the results in Table 2 (right).

Table 2: (Left) Class-conditional FID scores for generated Covid XRAY images (lower is better).
Generated C = c, means we sample from the diffusion model conditioned on c. Real (C = c) refers
to a held out test set of approximately 5k images, partitioned based on C-value. Low values on
the diagonal and high values on the off-diagonal imply we are sampling correctly from conditional
distributions. (Right) Evalution of Interventional Distribution PC(N). We evaluate the distribu-
tions PC(N = 1) for three cases for the Covid-XRAY dataset. Diffusion uses a learned diffusion
model for P (X|C), No Diffusion samples P (X|C) empirically from a held out validation set, and
no latent evaluates the conditional query assuming no latent confounders in the causal model.

FID (↓) Real: C = 0 Real: C = 1

Generated: C = 0 15.77 61.29
Generated C = 1 101.76 23.34

Pc(N = 1) c = 0 c = 1

Diffusion 0.622 0.834
No Diffusion 0.623 0.860
No Latent 0.406 0.951

6 CONCLUSION

In this paper, we propose an algorithm to sample from a conditional or unconditional high-
dimensional interventional distributions. Our approach is able to leverage the state-of-the-art con-
ditional generative models by showing that any identifiable causal effect estimand can be sampled
from only via forward generative models. Our algorithm is sound and complete and, although we
used diffusion models in our experiments, is agnostic to the specific choice of generative model.
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A PSEUDO-CODES

A.1 INTUITIVE EXPLANATION OF ORIGINAL ID-ALGORITHM(SHPITSER & PEARL, 2008)

Algorithm 2 ID(y,x, P,G)

1: Input: y, x value assignments , distribution P , G.
2: Output: Expression for Px(y) in terms of P or Fail(F, F ′).
3: if x = ∅ then {Step:1}
4: Return

∑
v\y P (v)

5: if V \An(Y)G ̸= ∅ then {Step:2}
6: Return ID(y,x ∩An(Y)G,

∑
V\An(Y)G

P,GAn(Y))
7: Let W = (V \X) \An(Y)G

X
{Step:3}

8: if W ̸= ∅ then
9: Return ID(y,x ∪w, P,G)

10: if C(G \X) = {S1, . . . , Sk} then {Step:4}
11: Return

∑
v\(y∪x)

∏
i ID(si,v \ si, P,G

12: if C(G \X) = {S} then
13: if C(G) = {G} then {Step:5}
14: Return FAIL(G,G ∩ S)
15: if S ∈ C(G) then {Step:6}
16: Return

∑
s\y

∏
{i|Vi∈S} P (vi|vi−1

π )

17: if ∃S′ s.t. S ⊂ S′ ∈ C(G) then {Step:7}
18: Return ID(y,x ∩ S′, P =

∏
{i|Vi∈S′} P (Vi|V (i−1)

π ∩ S′, v
(i−1)
π \ S′), GS′)

Algorithm 3 ConstructDAG({Hi}∀i)
1: Input: A set of DAGs containing trained models: {Hi}∀i.
2: Output: A DAG from {Hi}∀i
3: for Hi ∈ {Hi}∀i do
4: for Vj ∈ Hi do
5: if Vj .f = ∅ and ∃Vk ∈ Hr,∀r such that Vj .name = Vk.name and Vk.f ̸= ∅ then
6: Vj = Vk

7: H = {Hi}∀i
8: Return H

Algorithm 4 IDC(Y,X,Z, P,G)

1: Input: x, y, z value assignments, P a probability distribution, G a causal diagram (an I-map of P ).
2: Output: Expression for PX(Y |Z) in terms of P or Fail(F,F’).
3: if ∃α ∈ Z such that (Y ⊥⊥ α|X,Z \ {α})G

X,α
then

4: return IDC(Y,X ∪ {α}, Z \ {α},D, G)
5: else
6: let P ′ = ID(y ∪ z,x, P,G)
7: return P ′/

∑
y P ′

12



Under review as a conference paper at ICLR 2024

Algorithm 5 IDC-DAG(Y,X,Z,D, G)

1: Input: target Y , intervention X , conditioning set Z. training data D, G.
2: Output: A DAG of trained model to sample from PX(Y|Z).
3: if ∃α ∈ Z such that (Y ⊥⊥ α|X,Z \ {α})G

X,α
then

4: return IDC-DAG(Y,X ∪ {α}, Z \ {α},D, G)
5: else
6: H1= ID-DAG(Y ∪ Z,X,D, G)
7: D′ ∼ H1(X)
8: H2 = ∅
9: Add node (X, ∅) and (Z, ∅) to H2

10: Let MY be a model trained on {Y,X,Z} ∼ D′ such that MY (X,Z) ∼ P ′(Y |X,Z) i.e.,
MY (X,Z) ∼ PX(Y |Z)

11: Add node (Y,MY ) to H2

12: Add edge X → Y and Z → Y to H2

13: return H2

B APPENDIX: THEORY

Here we provide formal proofs for all theoretical claims made in the main paper, along with accom-
panying definitions and lemmas.
Definition B.1. A conditional generative model for a random variable X ∈ V relative to distribu-
tion P (V ) is a function f : PaX → X such that f(paX) ∼ P (X|paX),∀pa ∈ Pa, where Pa is a
subset of observed variables in V .
Definition B.2. A collection of conditional generative models for a set V of variables is said to
form a sampling network if the directed graph obtained by connecting each X ∈ V to PaX via
incoming edges is acyclic. This graph is called the sampling network.
Assumption B.3. Each conditional generative model trained by ID-DAG correctly samples from
the corresponding conditional distribution.
Lemma B.4. Let H be a sampling network for random variables {V1, V2, . . . Vn} formed by a
collection of conditional generative models fi relative to Pi for all Vi. Then the tuple (V1, V2 . . . Vn)
obtained by sequentially evaluating each conditional generative model relative to the topological
order of the sampling graph is a sample from the joint distribution ΠiPi(Vi|Pai).

Proof. Without loss of generality, let (V1, V2, . . . , VN ) be a total order that is consistent with the
topological ordering over the nodes in G. To attain a sample from the joint distribution, sample each
Vi in order. When sampling Vj , we will have already sampled Vi for all i < j, which is a superset
of Paj by definition of topological orderings.

Definition B.5. We say that a sampling network H is valid for an interventional distribution pX(Y )
if the following conditions hold:

• Every variable y ∈ Y has a conditional generative model in H .

• The only nodes in the sampling graph without conditional generative models are those in
X .

• If the values X = x are specified in H , then sampling Y from H is equivalent to sampling
from PX(Y ).

Lemma B.6. Termination: Let PX(Y ) be a query for causal graph G = (V,E) and D ∼ P (V ).
Then the recursions induced by ID −DAG(Y,X,D, G) terminate in either step 1, 5, or 6.

Proof. Since ID is sound and complete, it is guaranteed to terminate in its base cases of 1, 5, or
6. Since the steps of ID-DAG exactly mirrors the steps of ID, with respect to recursions and the
arguments (Y,X,G) for every step except step 7, as long as ID-DAG does not enter step 7, it must
terminate. In step 7, we make an extra call to ID-DAG of the form ID−DAG(S′, XZ ,D, G). This
follows exactly from Lemma 36 of Shpitser & Pearl (2008): by definition, there are no bidirected
arcs from XZ to S′, so we proceed immediately to step 6, which is a base case.
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Lemma B.7. If a non-identifiable query is passed to our algorithm, ID-DAG, it will return FAIL.

Proof. We implicitly run an identifiability check before running the ID-DAG presented in the pseu-
docode. If the query is not identifiable, ID will return fail, and thus so will ID-DAG.

Lemma B.8. ID-DAG Base case (step 1): Let p(Y ) be a query over causal graph G = (V,E), and
D ∼ p(V ) samples from the observational joint distribution over V . Then the graph returned by
ID −DAG(Y, ∅,D, G) is a valid sampling network for p(Y ).

Proof. Observe that P (Y ) may be factored as

P (Y ) =
∏
Vi∈Y

P (Vi|Y ∩ V (i−1)
π ).

From Assumption 1, we may learn to sample from each conditional distribution in this product from
joint samples. We can then add a node for each Vi, with its associated conditional distribution as a
sampling mechanism. This produces a sampling graph that is a DAG, where each variable Vi ∈ Y
has a sampling mechanism. Since every node has a sampling mechanism and X = ∅, the third case
for correctness holds. By the factorization and Assumption 1, sampling from this graph produces
samples from P (Y ), hence this sampling graph is correct for P (Y ).

Lemma B.9. ID-DAG Base case (step 6): Let PX(Y ) be an identifiable interventional query over
a causal graph G = (V,E), and that we have access to samples D ∼ P (V ) from the observational
joint distribution over V . Suppose ID −DAG(Y,X,D, G) immediately enters step 6 and returns
H . Then H is a valid sampling network for pX(Y ).

Proof. In this case, both ID−DAG(Y,X,D, G) and ID(Y,X, P,G) enter step 6. By the condition
of step 6, G\X has only one c-component {S}, where S ∈ C(G). Then the soundness of ID implies
that

PX(Y ) =
∑
S\Y

∏
{i|Vi∈S}

P (Vi|V (i−1)
π )

where π is a topological ordering for G. ID-DAG operates in this case by training, from joint
samples D, a model to correctly sample each P (Vi | V (i−1)

π ) term, i.e., we learn a conditional gen-
erative model fi(V

(i−1)
π ) which produces samples from P (Vi | V (i−1)

π ), which we can do according
to Assumption 1. Then we construct a sampling network H by adding a node Vi with sampling
mechanism fi for each Vi ∈ S. We add edges from Vj → Vi for each Vj ∈ V

(i−1)
π . Since every

vertex in G is either in S or in X , every edge either connects to a previously constructed node or
a variable in X . When specified values for X and sampled according to topological order π, this
sampling graph provides samples from the distribution

∏
{i|Vi∈S} P (Vi|V (i−1)

π ), i.e. PX(S). We
assert the remaining conditions to show that this is correct for PX(Y ): certainly this graph is a
DAG and every v ∈ Y has a conditional generative model in H . By the conditions to enter step 6,
if C(G \X) = {S}, then G = S ∪X and S ∩X = ∅. Then every node in H is either in S or is in
X: hence the only nodes without sampling mechanisms are those in X as desired.

Lemma B.10. Let H be a sampling network produced by ID-DAG from an identifiable query PX(Y )
over a graph G. If G has the topological ordering π, then every edge in the sampling graph of H
adheres to the ordering π.

Proof. We consider two factors: which edges are added, and with respect to which graphs. Since
the only base cases ID-DAG enters are steps 1 and 6, the only edges added are consistent with
the topological ordering π for the graph that was supplied as an argument to these base case calls.
The only graph modifications occur in steps 2 and 7, and these yield subgraphs of G. Thus the
original topological ordering π for graph G is a valid topological ordering for each restriction of G.
Therefore any edge added to H is consistent with the global topological ordering Π.

Theorem B.11. ID-DAG Soundness: Let PX(Y ) be an identifiable query given the causal graph
G = (V,E) and that we have access to joint samples D ∼ P (V ). Then the sampling network
returned by ID −DAG(Y,X,D, G) correctly samples from PX(Y ) under Assumption B.3.
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Proof. We proceed by structural induction. We start from the base cases, i.e., the steps that do not
call ID-DAG again. ID-DAG only has three base cases: step 1 is the case when no variables are
being intervened upon and is covered by Lemma B.8; step 6 is the other base case and is covered
by Lemma B.9; step 5 is the non-identifiable case and since we assumed that PX(Y ) is identifiable,
due to Lemma B.7, ID-DAG never enters this step. The structure of our proof is as follows. By
the assumption that PX(Y ) is identifiable and due to Lemma B.6, its recursions must terminate
in steps 1 or 6. Since we have already proven correctness for these cases, we use these as base
cases for a structural induction. We prove that if ID-DAG enters any of step 2, 3, 4 or 7, under the
inductive assumption that we have correct sampling graphs for the recursive calls, we can produce a
correct overall sampling graph. The general flavor of these inductive steps adheres to the following
recipe: i) determine the correct recursive call that ID algorithm makes; ii) argue that we can generate
the correct dataset to be analogous to the distribution that ID uses in the recursion; iii) rely on the
inductive assumption that the generated DAG from the recursion is correct.

We consider each recursive case separately. We start with step 2. Suppose ID-DAG(Y,X,D, G)
enters step 2, then by the same conditions ID(Y,X, P,G) enters step 2 as well. Hence the correct
distribution to sample from is provided by ID step 2:

PX(Y ) = ID(Y,X ∩An(Y )G,
∑

V \An(Y )G

P (V ), GAn(Y )).

Following our recipe, we need to generate the dataset sampled from
∑

V \An(Y )G
P , generated only

with samples from D ∼ p(V ). This amounts to converting joint samples D to marginal samples
D′. We do this by dropping all variables downstream of Y (in the graph G) from the dataset D,
thereby attaining samples from the joint distribution

∑
V \An(Y )G

P (V ). Then we can generate the
sampling network from ID-DAG(Y,X ∩ An(Y )G,D′, GAn(Y )) by the inductive assumption and
simply return it.

Next, we consider step 3. Suppose ID-DAG(Y,X,D, G) enters step 3. Then by the same conditions,
ID(Y,X, P,G) enters step 3, and the correct distribution to sample from is provided from ID step
3 as

pX(Y ) = ID(Y,X ∪W,P,G)

where W := (V \X) \ An(Y )GX̄
. Since the distribution passed to the recursive call is P , we can

simply return the sampling graph generated by ID-DAG(Y,X∪W,D,G), which we know is correct
for PX∪W (Y ) by the inductive assumption. While we do need to specify a sampling mechanism
for W to satisfy our definition of a valid sampling network, this can be chosen arbitrarily, say
W ∼ P (W ). Note that these freely-chosen distributions will not affect the final samples as they
will cancel out due to conditioning on these variables.

Next we consider step 4. Suppose ID-DAG(Y,X,D, G) enters step 4. Then by the same conditions,
ID(Y,X, P,G) enters step 4 and the correct distribution to sample from is provided from ID step 4
as: ∑

V \(y∪x)

∏
i

ID(si, v \ si, P,G)

where Si are the c-components of G\X , i.e., elements of C(G\X). By the inductive assumption, we
can sample from each term in the product by ID-DAG(si, v \ si, D,G). However, recall the output
of ID-DAG: ID-DAG returns a ‘headless’ sampling network as follows: ID-DAG(Y,X,D, G) is a
sampling network, i.e., a collection of conditional generative models where for each variable in G
and every variable except those in X have a specified conditional generative model. To sample from
this sampling network, values for X must first be specified. In the step 4 case, the values V \si need
to be provided to sample values for si, and similarly for i ̸= j, values V \ sj are needed to sample
values for sj . Since si ⊆ (V \ sj) and sj ⊆ (V \ si), this might lead to cycles in the corresponding
directed graph of the sampling network obtained by combining each conditional generative model
for each c-component. Thus, it does not suffice to sample from each c-component separately. Hence
if Hi is the correct sampling network corresponding to ID-DAG(Si, V \ Si, P,G) by definition, for
each node vi ∈ Si, vi has a conditional generative model in Hi. By Lemma B.10, each edge in Hi

adheres to the topological ordering Π for G. Hence we apply ConstructDAG to construct a graph
H from {Hi}i which also adheres to the original topological ordering π. Thus H is a DAG. Since
every node in G \ X has a conditional generative model in some Hi, no v ∈ X has a conditional
generative model in any Hi, the only nodes in H without conditional generative models are those
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in X . Finally, since each node in H samples the correct conditional distribution by the inductive
assumption, H samples from the distribution PX(Y ). The sum

∑
V \(y∪x) can be safely be ignored,

because samples from the joint can be marginalized to attain samples from marginals. Hence H is
correct for PX(Y ).

Step 5 can never happen by the assumption that PX(Y ) is identifiable, and step 6 has already been
covered as a base case. The only step remaining is step 7.

Supposing ID-DAG(Y,X,D, G) enters step 7, then by the same conditions ID(Y,X, P,G) enters
step 7. Then by assumption, C(G\X) = {S} and there exists a confounding component S′ ∈ C(G)
such that S ⊂ S′. The correct distribution to sample from is provided from ID step 7 as

pX(Y ) = ID(Y,X ∪ S′, P ′, GS′)

where
P ′ :=

∏
{i|Vi∈S′}

p(Vi|V (i−1)
π ∪ S′, v(i−1)

π \ S′).

Examining ID algorithm more closely, if we enter step 7 during ID, the interventional set X is parti-
tioned into two components: X∩S′ and XZ := X\S′. From Lemmas 33 and 37 of Shpitser & Pearl
(2008), in the event we enter step 7, PX(Y ) is equivalent to P ′

X∩S′(Y ) where P ′(V ) = PXZ
(V ).

Hence in order to sample correctly, we need to do two things: first we need to alter our samples
D ∼ P to samples from D′ ∼ PXZ

(V ), and then we need to recurse on the query P ′
X∩S′(Y ) over

the graph GS′ . Generating samples D′ ∼ PXZ
(V ) can further be reduced to samples only from

X ∪ Y , which we note is equivalent to S′ ∪XZ . Hence the dataset D′ need only be supported over
S′. Therefore we need to generate a dataset from D′ via ID-DAG(S′, XZ ,D, G). This is attainable
via the inductive assumption and Lemma B.6. The only divergence from ID during generation of
D′ is that ID presumes pre-specified values for X , where we train a sampling mechanism that is
agnostic a priori to the specific choice of X and hence XZ . To sidestep this issue, we generate a
dataset with all possible values of XZ and be sure to record the values of XZ in the dataset D′.
Next, we need to map the recursive call ID(Y,X ∩ S′, P ′, G) to ID-DAG. Since instead of passing
the distribution P ′, we pass the dataset D′, which does not have specified values for XZ , we need
to pass the interventional values for XZ into this recursive call. Hence, instead of intervening in the
recursion on X ∩ S′, we intervene on X or equivalently (X ∩ S′)∪XZ . Additionally, since we are
intervening on X ∩ S′ and XZ , we need to ensure XZ is included in the restricted graph, hence we
replace GS′ with GS′,XZ

. By the inductive assumption, we can generate a correct sampling graph
from the call ID-DAG(Y, (X ∩ S′) ∪ XZ ,D′, GS′,X̄Z

), and hence the returned sampling graph is
correct for PX(Y ).

Since we have shown that every recursion of ID-DAG ultimately terminates in a base case, that all
the base cases provide correct sampling graphs, and that correct sampling graphs can be constructed
in each step assuming the recursive calls are correct, we conclude that ID-DAG returns the correct
sampling graph for PX(Y ).

C APPENDIX: CONDITIONAL INTERVENTIONAL SAMPLING

Conditional sampling: Given a conditional causal query PX(Y |Z), we sample from this condi-
tional interventional query by calling Algorithm 5: IDC-DAG. This function finds the maximal set
α ⊂ Z such that we can apply rule-2 and move α from conditioning set Z and add it to intervention
set X . Precisely, PX(Y |Z) = Px∪α(Y |Z \ α) = Px∪α(Y,Z\α)

Px∪α(Z\α) . Next, Algorithm 1: ID−DAG(.)

is called to obtain the sampling network that can sample from the interventional joint distribution
PX∪α(Y,Z \ α). We use the sampling network to generate samples D′ through feed-forward. A
new conditional model MY is trained on D′ that takes Z \ α and X ∪ α as input and outputs Y .
Finally, we generate new samples with MY by feeding input values such that Y ∼ PX∪α(Y, Z \ α)
i.e, Y ∼ PX(Y |Z).

Theorem C.1 (Shpitser & Pearl (2008)). For any G and any conditional effect PX(Y|W) there
exists a unique maximal set Z = {Z ∈ W|PX(Y|W) = PX,Z(Y|W\Z)} such that rule 2 applies
to Z in G for PX(Y|W). In other words, PX(Y|W) = PX,Z(Y|W \ Z).
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Theorem C.2 (Shpitser & Pearl (2008)). Let PX(Y|W) be such that every W ∈ W has a back-
door path to Y in G \ X given W \ {W}. Then PX(Y|W) is identifiable in G if and only if
PX(Y,W) is identifiable in G.

Theorem C.3. IDC-DAG Soundness: Let PX(Y |Z) be an identifiable query given the causal graph
G = (V,E) and that we have access to joint samples D ∼ P (V ). Then the sampling network
returned by IDC-DAG(Y,X,Z,D, G) correctly samples from PX(Y |Z) under Assumption B.3

Proof. The IDC algorithm is sound and complete based on Theorem C.1 and Theorem C.2. For
sampling from the conditional interventional query, we follow the same steps as the IDC algorithm
in Algorithm 5: IDC-DAG. Therefore, IDC-DAG is sound and complete.

D TECHNICAL NOVELTIES OF THE ID-DAG ALGORITHM

ConstructDAG({Hi}∀i)
1: Input: A set of DAGs containing trained models: {Hi}∀i.
2: Output: A DAG from {Hi}∀i
3: for Hi ∈ {Hi}∀i do
4: for Vj ∈ Hi do
5: if Vj .f = ∅ and ∃Vk ∈ Hr,∀r such that Vj .name = Vk.name and Vk.f ̸= ∅ then
6: Vj = Vk

7: H = {Hi}∀i
8: Return H

D.1 SUB-PROCEDURE: ConstructDAG()

Each sampling network Hi is a set of conditional trained models connected with each other accord-
ing to a directed acyclic graph. Any node Vj in the sampling network, represents a variable name
Vj .name and its corresponding trained model Vj .f . This sub-procedure takes multiple sampling
networks {Hi}∀i as input and combines them to construct a larger consistent sampling network H .
We iterate over the nodes Vj of each sampling network Hi (lines 3-4). If Vj does not have any
corresponding trained model associated with it, it must have its conditional model located in some
other sampling network Hr as node Vk. When we find that node Vk in another sampling network
Hr (line 5), we combine Hi and Hr by combining Vj and Vk since Vj and Vk are the same variable
(line 6). In this manner, we combine all sampling network to construct one single network H .

D.2 STEP 4 OF THE ID-DAG ALGORITHM

ID algorithm Step 4
1: if C(G \X) = {S1, . . . , Sk} then {Step:4}
2: Return

∑
v\(y∪x)

∏
i ID(si,v \ si, P,G

ID-DAG algorithm Step 4
1: if C(G \X) = {S1, . . . , Sk} then {Step 4}
2: for each Si ∈ C(G \ X) = {S1, . . . , Sk}

do
3: Hi=ID-DAG(Si,X = V \ Si,D, G)
4: Return ConstructDAG({Hi}∀i)

Step 4 of the ID algorithm performs Tian’s factorization, i.e, splits the variables in G\X into multiple
c-components and estimates Pv\si(si) recursively. Finally, multiplies these factors and marginalizes
all variables except y and x. To sample from the corresponding causal query Px(Y), one might feel
tempted to sample Si from each Pv\si(si) in topological order and then combine them. However,
this might lead to cyclic situation. For example, consider the causal graph in Figure 6. Here,
according to the ID algorithm step 4, Px(y) =

∑
w1,w2

Pw1
(x,w2) ∗ Px,w2

(w1, y). To sample
X,W2 ∼ Pw1

(x,w2) we need W1 as input which has to be sampled from Px,w2
(w1, y). But to

sample W1 ∼ Px,w2
(w1, y), we need X,W2 as input which has to be sampled from Pw1

(x,w2).
Therefore, no order helps to sample all X,W1,W2, Y consistently. ID-DAG solves this cyclic issue
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by avoiding direct sampling from the c-components. Rather ID-DAG builds a sampling network Hi

consists of trained models for each c-component Si. After that, sub-procedure ConstructDAG is
called to merge the sampling network found from each c-component to build a one single sampling
network. We use this single sampling network to sample [S1, . . . , Sk] ∼ PV \S1

(S1)∗. . . PV \Sk
(Sk).

ID-DAG drops all variables from [S1, . . . , Sk] except Y and these will be the samples from Px(Y ).

YX W1 W2

Figure 6: Cyclic graph and failure case for topological order sampling

D.3 STEP 7 OF THE ID-DAG ALGORITHM

ID algorithm Step 7
1: if ∃S′ s.t. S ⊂ S′ ∈ C(G) then {Step:7}
2: Return ID(y,x ∩ S′, P =∏

{i|Vi∈S′} P (Vi|V (i−1)
π ∩S′, v

(i−1)
π \S′),

GS′)

ID-DAG algorithm Step 7
1: if ∃S′ s.t. S ⊂ S′ ∈ C(G) then {Step 7}
2: XZ = X \ S′,
3: HS′ = ID-DAG(S′,XZ ,D, G)
4: D′ ∼ HS′(XZ)
5: Return ID-DAG(Y,X,D′, GS′,XZ

)

Here we show the differences between step 7 of the ID algorithm and the ID-DAG algorithm which
represent the technical novelty of our method. This case occurs when i) G \ X is a single c-
component S, ii) all the variables in Y are contained within a single c-component S′ ⊂ S, but
iii) the variables in X can be partitioned into those that are contained within S′ and those that are
not in S′. ID algorithm uses P =

∏
{i|Vi∈S′} P (Vi|V (i−1)

π ∩ S′, v
(i−1)
π \ S′), x = x ∩ S′ and

G = GS′ as arguments values for the next recursive call.

ID-DAG modification with respect to the dataset D: This new P is actually an interventional
distribution, PX\S′(S′) which is identifiable from obs data with the mentioned expression. It is not
straightforward to see the role of the new distribution argument value used in the ID algorithm. Let
XZ = X \ S′, i.e, the subset of intervention set X that is not contained within S′. ID-algorithm
under the hood using the fact that evaluating PX(Y ) where P = P (V ) is equivalent to evaluating
P ′
X∩S′(Y ) where P ′ = PXZ

(V ).

Therefore, to train the conditional models in the subsequent steps in the recursion, ID-DAG gener-
ates an interventional dataset from PXZ

(V ). To do that ID-DAG first obtains the sampling network
with a ID-DAG(S′,XZ ,D, G) call. Then the algorithm uses this sampling network to obtain the
interventional dataset D′ ∼ PXZ

(V ) which is used in the next recursive call.

ID-DAG modification with respect to the graph G: The graph argument ID algorithm sends to the
next recursive call is GS′ , i.e, it removes the intervened variables XZ from the graph G. This works
well for the ID algorithm because all variables values are assumed at the beginning and it estimates
the corresponding probability. However, this does not work if our aim is sampling. Since what values
of XZ we are using here depend on the values XZ has taken in another c-component, we consider
all possible values of XZ while training all conditional models in any level of the recursion for a
fixed c-component. Thus, we do not remove XZ from the causal graph but remove the incoming
edges since we intervened on them. As a result, when ever we train any conditional model in a
deeper level of the recursion, it will be used as an input condition. This is a very important step to
sample from PX(Y ) consistently.
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Color

Thickness

W1

W2

X

Y

Figure 7: Joint samples from the Napkin-MNIST dataset: Samples from the Napkin-MNIST
dataset are visualized as columns above. The first row indicates the latent variable color, the
second row indicates the latent variable thickness, and the row labeled W2 is a discrete variable
holding a (color, digit), where digit is represented as the number of dots. Notice that the noising
process sometimes causes information to not be passed to children.

E APPENDIX: EXPERIMENTAL DETAILS

E.1 NAPKIN-MNIST DATASET

Here we describe the data-generation procedure, and training setup for the Napkin-MNIST experi-
ment in full detail.

E.1.1 DATA GENERATION PROCEDURE: DISCRETE CASE

As a warm-up, we outline the generation for the Napkin-MNIST dataset in a low-dimensional set-
ting. When we consider in the next section the high-dimensional case, we simply replace some of
these discrete variables with MNIST images which can be mapped back into this low-dimensional
case.

We start by enumerating the joint distribution and the support of each marginal variable. First lets
define the sets

• COLORS := {red, green, blue, yellow, magenta, cyan}.
• RG COLORS := {red, green}.
• THICKNESSES := {thin, regular, thick}.
• DIGITS := {0, . . . , 9}.

And then the definitions and support of each of the variables in our distribution:

• (Latent) Color ∈ COLORS.
• (Latent) Thickness ∈ THICKNESSES.
• W1 ∈ DIGITS× COLORS× THICKNESSES

• W2 ∈ DIGITS× RG COLORS.
• X ∈ DIGITS× COLORS× THICKNESSES

• Y ∈ DIGITS× COLORS× THICKNESSES

Now we describe the full data generation procedure. A key hyperparameter is a noise-probability
p. This defines the probability that any variable flips to a uniform probability. To ease notation, we
define the function ηp(v, S) defined as

ηp(v, S) :=

{
v with probability 1− p

U(S) otherwise

and we define the mapping R : COLORS → RESTRICTED COLORS as

R(c) :=

{
red if c ∈ {red, green, blue}
green otherwise
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Where U(S) means a uniformly random choice of S. Then our data generation procedure follows
the following steps:

• Color := U(COLORS)

• Thickness := U(THICKNESSES)

• W1 :=
(
U(DIGITS), ηp(Color,COLORS), ηp(Thickness,THICKNESSES)

)
• W2 :=

(
ηp(W1.digit,DIGITS), ηp(R(W1.color,RG COLORS)

)
• X :=

(
ηp(W2.digit,DIGITS), ηp(W2.color,RG COLORS), ηp(Thickness,THICKNESSES)

)
• Y :=

(
ηp(X.digit,DIGITS), ηp(Color,COLORS), ηp(X.thickness,THICKNESSES)

)
It is easy to verify that this describes the Napkin graph, as each only Color, Thickness are
latent and each variable only depends on its parents in the SCM.

Secondly, observe that this structural causal model is separable with respect to digits, colors, and
thicknesses. Since each digit only depends on parent digits, each color only depends on parent
colors, and each thickness depends only on parent thicknesses, these can all be considered separately.

Further, because this distribution is only supported over discrete variables, exact likelihoods can be
computed for any conditional query. This is much more easily done programmatically, however, and
we provide code in the attached codebase to do just that. We will claim without proof that in the case
of thicknesses and digits, PY (X) = P (Y |X). However in the case of colors, PY (X) ̸= P (Y |X).
Hence we consider this case in the evaluations in the experiments section.

E.1.2 DATA GENERATION PROCEDURE: HIGH-DIMENSIONAL CASE

The high-dimensional case follows the discrete case of the Napkin-MNIST dataset, with a few key
changes. Namely, W1, X, and Y are MNIST images that have been colored and thickened. We
explicitly outline these changes:

• W1: A random MNIST image of the provided digit is used, then colored and thickened
accordingly (noisy from latents).

• W2 : This is a discrete variable, only encoding the (noised) digit and (noised) restricted
color of W1.

• X: This is a random MNIST image of the (noised) digit obtained from W2, then colored
with the (noised) restricted color from W2 and thickened according to the (noised) latent
thickness.

• Y : This is the same base image of X , unless the noising procedure calls for a change in
digit, then a random MNIST image of the specified image is used. The (noisy) color is
obtained from the latent distribution, and the (noisy) thickness is obtained from X .

To color the images, we convert each 1-channel MNIST image into a 3-channel MNIST image,
and populate the necessary channels to generate these colors. Note that in RGB images: if only
the RG channels are active, the image is yellow; if only the RB channels are active, the image is
magenta; if only the BG channels are active, the image is cyan. To thicken the images, we use the
MorphoMNIST package2. Operationally, we generate a base dataset for our experiments of size
equivalent to the original MNIST dataset. That is, the training set has a size of 60K, and the test
set has a size of 10K. Because we have access to the latents during the data generation procedure,
we are able to train classifiers for each variable to identify their digit, color and thickness. We use a
simple convolutional network architecture for each of these cases and achieve accuracy upwards of
95% in each case.

E.1.3 DIFFUSION TRAINING DETAILS

We train two diffusion models during our sampling procedure, and we discuss each of them in turn.

2https://github.com/dccastro/Morpho-MNIST/
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To train a model to sample from P(X,Y |W1,W2), we train a single diffusion model over the joint
(X,Y ) distribution, i.e., 6 channels. We train a standard UNet architecture where we follow the
conditioning scheme of classifier-free guidance. That is, we insert at every layer an embedding of the
W1 (image) and W2 (2-dimensional discrete variable). To embed the W1 image, we use the base of
a 2-layer convolutional neural network for MNIST images, and to embed the W1 we use a standard
one-hot embedding for each of the variables. All three embeddings are concatenated and mixed
through a 2-layer fully connected network to reach a final embedding dimension of 64. Batch sizes
of 256 are used everywhere. Training is performed for 1000 epochs, which takes roughly 9 hours on
2 A100 GPU’s. Sampling is performed using DDIM over 100 timesteps, with a conditioning weight
of w = 1 (true conditional sampling) and noise σ = 0.3.

To train a model to sample Y from the generated dataset (W2, X, Y ), we follow an identical scheme.
Perhaps the most correct thing is to train a single diffusion model for each choice of W2 in our
synthetic dataset, however we argue our schema still produces correct samples because: 1) W2 can
be arbitarily chosen, and thus should not affect Y , 2) we argue that the model fidelity benefits from
weight sharing across multiple choices of W2, 3) the model is only ever called with a specified value
of W2 so we always condition on this W2.

E.1.4 EXTRA EVALUATIONS

In addition to the evaluations presented in the main paper, we can further perform evaluations on the
component models necessary to sample PX(Y ).

P (X,Y |W1,W2): We can evaluate the model approximating samples from P (X,Y |W1,W2) on
a deeper level than just visual inspection as provided in the main paper. In particular, assuming
access to good classifiers that can predict the digit, color, and thickness of an MNIST image, we
can compare properties of the generated images with respect to the ground truth in the discrete case.
For example, assuming we have hyperparameter of random noise equal to p, we can compute the
following quantities analytically on the discrete dataset as:

• P [Xd = W2d] = 1− p+ p
10

• P [X.c = W2c] = 1− p+ p
10

• P [Xt = W1t] = (1− p+ p
3 )

2 +
(
p
3

)2 · 2
• P [Yd = Xd] = 1− p+ p

10

• P [Yc = W1c] = (1− p+ p
6 )

2 + big(p6
)2 · 5

• P [Yt = Xt] = 1− p+ p
3

where Vd, Vc, Vt refer to the digit, color, and thickness attributes respectively. These calculations
follow from two formulas. In a discrete distribution with support S and |S| = K:

• P [ηp(z, S) = z] = 1− p+ p
K

• P [ηp(z, S) = ηp(z, S)] = (1− p+ p
K )2 +

(
p
K

)2

· (K − 1)

where in the second equation, it is assumed that ηp(·, ·) are two independent noising procedures.

Then to evaluate, we can 1) consider a large corpus of joint data, 2) run each of W1, X, Y through
a classifier for digit, color, and thickness, 3) evaluate the empirical estimate of each desired proba-
bility. We present these results for the synthetic dataset Dsynth sampled from the diffusion model
approximating P (X,Y |W1,W2), a dataset Dorig generated according to the data generation proce-
dure, and Ptrue the true analytical probabilities. These results are displayed in the Table 3.

E.1.5 BASELINE COMPARISON

Here we compare our performance with two baselines and provide the results below: We provide a
short description of the ground truth first. We have the napkin causal graph:

W1 → W2 → X → Y ;X ↔ W1 ↔ Y
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Table 3: Evaluations on the Napkin-MNIST generated dataset. V.d, V.c, V.t refer to the digit,
color and thickness respectively of variable V . The first column is with respect to samples generated
from diffusion model P̂ (X,Y | W1,W2), Image Data is the dataset used to train P̂ , Discrete Data is
the empirical distribution according to a discrete Napkin-MNIST, and the ground truth is analytically
computed. Ideally all values should be equal across a row. While our synthetic dataset generated
from P̂ is not a perfect representation, it is quite close in all attributes except thickness. This is
because the classifier for thickness has some inherent error in it, as evidenced by the mismatch
between the base data and ground truth in the thickness rows.

P̂ (Y,X | W1,W2) Image Data Discrete Data Ground Truth

P [X.d = W2.d] 0.931 0.895 0.909 0.910
P [X.c = W2.c] 0.964 0.950 0.950 0.950
P [X.t = W1.t] 0.683 0.776 0.879 0.873
P [Y.d = X.d] 0.927 0.895 0.909 0.910
P [Y.c = W1.c] 0.847 0.841 0.841 0.842
P [Y.t = X.t] 0.830 0.851 0.933 0.933
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Figure 8: Performance comparison with baselines

Dataset: W1, X and Y are digit images and W2 are discrete properties (thickness and color) of W1.
Each digit image can take a value from [0,9] and color from [Red, Green, Blue, Yellow, Magenta,
Cyan].

Baselines: We compared our algorithm with two baselines: Baseline 1: A classifier-free diffusion
model that samples from the conditional distribution: Y ∼ P (Y |X). Baseline 2: The NCM algo-
rithm Xia et al. (2021) that samples from the interventional distribution P (Y |do(X)).

Algorithm execution: To easily understand the distinction among different methods, we chose two
images i) of digit 3 and ii) of digit 5, both colored red as the intervention value for X . Then we used
these images to sample from the corresponding distribution P (Y |X) and P (Y |do(X)) distributions
using different methods. Although the implementation of these methods is different, we considered
the performance of each method after running them for 300 epochs. The NCM algorithm took
around 50 hours to complete while our algorithm took approximately 16 hours to complete.

Results:

i) Image quality: First, we discuss the image quality of the generated samples from each approach
that we provided in Figure 8. The conditional model (row 1, row 4) and our algorithm (row 2, row
5) both generate high-quality images of digit 3 and digit 5 with a specific color from the six possible
colors. Whereas, the colors in generated images from the NCM algorithm (row 3, row 6) can not
remain at any specific value and get blended (such as green+yellow, etc).

In Table 4, we provide the Frechet Inception Distance (FID) of each method (the lower the better).
We observe that our algorithm has the lowest FID score, i.e., our algorithm generates the most
high-quality images from interventional distribution.
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Table 4: Baseline comparison with FID scores

Conditional NCM Our algorithm
FID Score 67.012 71.646 43.507

Table 5: Color probability distribution of the sampled images

Predicted color probabilities Red Green Blue Yellow Magenta Cyan
Conditional model: P (Y |X = red) 0.1889 0.4448 0.1612 0.1021 0.0232 0.0798

Ours: P (Y |do(X = red)) 0.1278 0.2288 0.2097 0.1445 0.1177 0.1715

ii) Correctness of the sampling distribution: We use a classifier to detect the color frequency from
the generated images of the conditional model and our algorithm. We observe the probabilities in
Table 5.

In the generated samples from the conditional model, the color of digit image X and digit image
Y are correlated due to confounding through backdoor paths. For example, for a digit image X
with color as red, Y takes a value from [Red, Green, Blue] with high probability. Thus, the con-
ditional model does not have the ability to generate interventional samples. On the other hand, our
algorithm generates samples from the interventional distribution P (Y |do(X)) and the generated
samples chooses different colors:[Red, Green, Blue, Yellow, Magenta, Cyan] with almost the same
probability.

Therefore, we show our performance with a close baseline NCM and illustrate our capability of
sampling from high-dimensional interventional distribution.

E.2 COVID X-RAY DATASET

Now we consider the Covid X-Ray Dataset. We first outline the steps we perform to preprocess our
data and then discuss training details for each of the models we train.

E.2.1 DATA PREPROCESSING

Note that a full pipeline of data preparation is contained in cxray/prep cxray dataset.sh
in the provided codebase. We start by downloading the corpus approximately 30K Covid X-Ray
images3. Then we download Covid-19 labels and Pneumonia labels4 and attach labels to each image.
Then we convert each image to black-white one-channel images and rescale each to a size of (128×
128) pixels. Finally, a random split of the 30K images is performed: keeping 20K to be used during
training, and 10K to be used as validation images. Note that the labels come with a set of 400 test
images, but 400 images is too small to be an effective test set (say for FID computations). We will
be explicit about where we use each data set.

E.2.2 DIFFUSION TRAINING DETAILS

We train a diffusion model to approximate P (X|C). To do this, we use a standard UNet and
classifier-free guidance scheme. We train for 100K training steps over the 20K-sized training set,
using a batch size of 16. This takes roughly 10 hours on a single A100. The same classifier-free
guidance parameters are used as in the NapkinMNIST diffusion training.

E.2.3 CALIBRATED CLASSIFIER TRAINING DETAILS

To train a classifier to sample from P (N |C,X), we note that our inputs are a (1, 128, 128) image and
a binary variable. Our architecture is as follows: we create an embedding of X by modifying the final
linear layer of a ResNet18 to have output dimension 64 (vs 1000), and modify the input channels
to be 1. We create an embedding for N by using a standard embedding layer for binary variables,
with embedding dimension 64. These embeddings are then concatenated and pushed through 3 fully

3https://www.kaggle.com/datasets/andyczhao/covidx-cxr2
4https://github.com/giocoal/CXR-ACGAN-chest-xray-generator-covid19-pneumonia
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Figure 9: Reliability plots for P(N|C,X):. Reliability plots which overlay accuracy versus clas-
sifier confidence. (Left) Reliability plot for P (N |C,X) without calibration. (Right) Reliability plot
for P (N |C,X) with temperature scaling calibration applied.

connected layers with ReLU nonlinearities and dimension 128. A final fully-connected layer with 2
outputs is used to generate logits.

Training follows a standard supervised learning setup using cross entropy loss. We train for 100
epochs using a batch size of 256 and a standard warmup to decaying learning rate (see code for full
details).

We note the deep literature suggesting that even though classifiers seek to learn P (N |X,C), neural
networks trained using cross entropy loss do not actually do a very good job of estimating this
distribution. Training attains an accuracy of 91.2% on the test set. Calibrated classification seeks
to solve this problem by modifying the network in a way such that it more accurately reflects this
distribution. We follow the standard approach using temperature scaling of the logits, where a
temperature is learned over the validation set, using LBFGS with a learning rate of 0.0001 and a
maximum of 10K iterations. This does not affect the test accuracy at all, but drastically improves
the ECE and MCE reliability metrics. See Guo et al. (2017) for a further discussion of temperature
scaling.
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