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Abstract

We study the problem of determining the best
atomic intervention in a Causal Bayesian Net-
work (CBN) specified only by its causal graph.
We model this as a stochastic multi-armed ban-
dit (MAB) problem with side-information, where
interventions on CBN correspond to arms of the
bandit instance. First, we propose a simple regret
minimization algorithm that takes as input a causal
graph with observable and unobservable nodes and
in T exploration rounds achieves Õ(

√
m(C)/T )

expected simple regret. Here m(C) is a parameter
dependent on the input CBN C and could be much
smaller than the number of arms. We also show
that this is almost optimal for CBNs whose causal
graphs have an n-ary tree structure. Next, we pro-
pose a cumulative regret minimization algorithm
that takes as input a causal graph with observable
nodes and performs better than the optimal MAB
algorithms that do not use causal side-information.
We experimentally compare both our algorithms
with the best known algorithms in the literature.

1 INTRODUCTION

Causal Bayesian Networks or CBNs [Pearl, 2000] have be-
come the natural choice for modelling causal relationships in
many real-world situations such as price-discovery [Haigh
and Bessler, 2004], computational-advertising [Bottou et al.,
2013], healthcare [Velikova et al., 2014], etc. A CBN has
two components: a directed acyclic graph (DAG) called the
causal graph, and conditional probability distributions of
each node given its parents such that the joint distribution
of all variables factorizes as a product of these conditionals.
Edges in the causal graph represent direct causal relation-
ships and therefore it captures the data generation process.

In its most general setup, only a subset of the variables

appearing in the CBN are observable and the rest are unob-
served (see Definition 1.3.1 in Pearl [2000]). CBNs enable
modelers to simulate the effect of external manipulations
via a process called intervention. An intervention forcibly
fixes selected observable variables in the graph and breaks
the edges coming into them. Data generated from the re-
sulting model is the simulated outcome of the intervention.
In the presence of an outcome variable of interest Y (as-
sumed to be observable), a natural question (see epidemic
prevention example below) is to find the variable X and a
corresponding value x, such that the intervention setting X
to x leads to the maximum expected value of Y i.e. X = x
has the highest causal impact on Y . Such an intervention
which manipulates only a single variable is called an atomic
intervention.

The problem of learning the best atomic intervention was
formulated as a sequential decision making problem called
Causal Bandits (CB) in Lattimore et al. [2016]. In CB, access
to the underlying DAG of the CBN is assumed but the associ-
ated conditional probability distributions are unknown. The
outcome variable Y is considered as a reward variable and
the set of allowed atomic interventions are modelled as arms
of a bandit instance. In addition, there is an observational
arm corresponding to the empty intervention, and pulling the
observational arm generates a sample from the joint distri-
bution of all observable variables. Here, identifying the best
atomic intervention is equivalent to the well-studied best-
arm identification problem in a multi-armed bandit (MAB)
instance. However, in CB, an algorithm while pulling an
arm has access to causal side information derived from the
causal graph associated with the input CBN. See Lattimore
et al. [2016] and the references therein for a comparison of
CB and MAB problems with other types of side-information.

In this work, we study CB for causal graphs with unobserved
confounders. (UCs). These are unobserved variables that
are parents of at least two observable variables. To the best
of our knowledge, this is the first work that analyses the
regret of causal bandit algorithms when input causal graphs
contain UCs. Moreover, in the fully observable setting, i.e.
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Figure 1: Causal Graph: Epidemic Prevention with Social
and Economic Factors being an Unobserved Confounder

when all variables are observable, our algorithm does not
assume any structural constraints on the input causal graph
and hence can be applied quite generally. Before stating our
contributions, we provide a motivating example where deter-
mining the best atomic intervention is important. Suppose
a policy-maker is required to identify the best precaution-
ary measure that should be enforced to reduce spread of a
disease. The available measures are mandating social dis-
tancing, wearing of face mask, making people work from
home and preventive vaccinations. Since the effect of each
measure needs to be isolated while disrupting public life
minimally, the policy-maker can enforce at most one of these
measures at a given time. The policy-maker can conduct sur-
veys to collect data from public about which measures were
taken by them (other than the one enforced) and whether
they got infected or not. The goal would then be to design a
mechanism of implementing such enforcement one by one,
during a time period and collecting the respective survey
data to identify the best measure to enforce. Note that, us-
ing domain knowledge of health experts, policy makers can
have access to an underlying causal graph such as the one in
Fig. 1. They would want to use this graph to decide if and
when a particular measure should be enforced.

1.1 OUR CONTRIBUTIONS

We study CB with respect to two standard objectives in MAB:
simple and cumulative regret. Simple regret captures the
best arm identification problem described above, whereas
the cumulative regret is more natural when the goal is to
maximize the cumulative reward at the end of T rounds
instead of determining the best arm. We state our contri-
butions below; meanings of the relevant terminologies are
defined in Sec. 2.

Simple Regret Minimization: We propose a simple regret
minimization algorithm called SRM-ALG. The input causal
graph of the underlying CBN C is assumed to be (with-
out loss of generality) a Semi-Markovian Causal Graph or
SMCG (defined in Sec. 2) on observable nodes having both
directed and bi-directed edges (representing presence of
UCs) between the nodes. We assume that the input SMCG

is identifiable with respect to a set of intervenable nodes X,
meaning that the interventional distributions arising from
atomic interventions on variables in X can be consistently
estimated from the observational data itself (see definition
in Sec. 2). When the c-components (connected components
of bi-directed edges, defined in Sec. 2) of the SMCG are
bounded in size (by a constant) and the total in-degree of
all vertices in the c-components are also bounded, given a
time budget of T rounds, SRM-ALG attains Õ(

√
m(C)/T )

expected simple regret (see Thm. 3.1). Here, m(C) depends
on the input CBN and is ≤ 2N , where N is the number of
intervenable nodes i.e. N = |X|.

In Sec. 3 we give examples of graphs, where m(C) ≪ N ,
and hence SRM-ALG performs better than standard bandit
algorithms which achieve Ω(

√
N/T ) expected simple re-

gret in the worst-case (Thm. 4 in Audibert et al. [2010]).
SRM-ALG leverages the causal side-information available
by deriving reward estimates for each arm from pulls of the
observational arm. The quality of these derived estimates
depends on the input CBN. The quantity m(C) intuitively
captures the trade-off between the number of arms with
bad estimates, and the quality of estimates determined from
intervening upon them explicitly.

We note that Lattimore et al. [2016] and Nair et al. [2021]
propose algorithms in the fully observable setting, when the
input causal graph is a parallel graph and a no-backdoor
graph, respectively.1 For these special classes of graphs,
SRM-ALG recovers the regret guarantees given in Lattimore
et al. [2016], Nair et al. [2021]. Hence, SRM-ALG can be
viewed as a significant generalization of these algorithms to
more general causal graphs with UCs. Further, Yabe et al.
[2018] proposed a causal bandit algorithm for interventions
which can simultaneously manipulate multiple variables.
However, the input causal graph is assumed to have no UCs,
and regret guarantee of their algorithm is Õ(

√
N/T ) for

atomic interventions. In particular, its performance is not
better than optimal MAB algorithms that do not take causal
side-information into account. In Sec. 6, we experimentally
compare the regret guarantee of SRM-ALG with the algo-
rithm in Yabe et al. [2018], as well as MAB algorithms that
do not take causal side-information into account.

Lower Bound on Simple Regret: We also show that
SRM-ALG is almost optimal for CBNs associated with a
large and important class of causal graphs. Specifically, in
Thm. 4.1, we show that for any causal graph G which is an
n-ary tree on N + 1 nodes2, and any M ∈ [1, N ] there is
a probability distribution P compatible with the the causal
graph such that m(C) = M , and the expected simple regret
of any algorithm at the end of T rounds is Ω(

√
M/T )3. We

remark that these graphs naturally capture important CBNs

1These graphs have no backdoor paths from any X ∈ X to Y ,
implying P(Y | do(x)) = P(Y | x).

2N nodes are intervenable and can causally effect node Y .
3Here C is the CBN (G,P) and m(C) is as described before.



like causal trees [Greenewald et al., 2019]. Also, the class of
graphs considered in Thm. 4.1 subsumes the parallel graph
model, and for them lower bound in Thm. 4.1 matches the
lower bound given in Lattimore et al. [2016]. Importantly,
Thm. 4.1 implies that the regret guarantee of SRM-ALG can
be only improved by considering more nuanced structural
restrictions on the causal graph, which could enable more
causal information sharing between the interventions.

Cumulative Regret Minimization: We propose a cumu-
lative regret minimization algorithm called CRM-ALG. All
variables in the input causal graph are assumed to be ob-
servable. CRM-ALG achieves constant expected cumulative
regret if the observational arm is optimal, and otherwise
achieves better regret than the optimal MAB algorithm which
does not take causal side-information into account (see Thm.
5.1). Cumulative regret minimization in general graphs were
also studied by Lu et al. [2020] and Nair et al. [2021]. How-
ever, they crucially assume that distribution of parents of
the reward node is known for every intervention. CRM-ALG
does not make this assumption. The reason why we develop
CRM-ALG in the fully observable setting (unlike SRM-ALG)
is rather technical and is explained at the end of Sec. 5.

1.2 RELATED WORK

As noted before, causal bandits was introduced in Latti-
more et al. [2016], where an almost optimal algorithm was
proposed for CBNs associated with a parallel causal graph.
Recently, a similar algorithm for simple regret minimiza-
tion along with an algorithm for cumulative regret min-
imization was proposed for no-backdoor graphs in Nair
et al. [2021], and the observation-intervention trade-off was
studied when interventions are costlier than observations.
An importance sampling based algorithm was proposed by
Sen et al. [2017a] to minimize simple regret but only soft-
interventions at a single node were considered. The cumula-
tive regret minimization problem for general causal graphs
was studied in Lu et al. [2020], Nair et al. [2021], but they
assume the knowledge of the distributions of the the parents
of the reward variable for every intervention. Recently Lu
et al. [2021a] designed a cumulative regret minimization
algorithm which only utilizes the side information that the
underlying causal graph is a directed tree or a causal forest
(and does not require the exact DAG). Assuming faithfulness
and identifiability, their algorithm outperforms the standard
MAB algorithms. Sen et al. [2017b] studied the contex-
tual bandit problem where the observed context influences
the reward via a latent confounder variable, and proposed
an algorithm with better guarantee compared to standard
contextual bandit. Lee and Bareinboim [2018, 2019] gave a
procedure to compute the minimum possible intervention set
by removing sub-optimal interventions identifiable from the
input causal graph, and they empirically demonstrated that
ignoring such information leads to huge regret. Recently,

Lu et al. [2021b] introduced the causal Markov decision
processes, where at each state a causal graph determines the
action set, and gave algorithms that achieve better policy re-
gret when the causal side-information is taken into account.
Finally, in a related line of work Bareinboim et al. [2015]
promote the use of observational data for bandit problems in
the presence of UCs. We note that our proposed algorithms
SRM-ALG and CRM-ALG both use observational samples to
leverage side-information and hence achieve better regrets.

2 NOTATIONS AND PRELIMINARIES

Notations: For positive integers m,n with m < n,
[n] denotes the set {1, . . . , n} and [m,n] denotes the set
{m,m + 1, . . . , n}. Random variables are denoted using
capital letters (e.g. X) and corresponding lower case letters
(i.e. x) denote the assignment X = x. Unless otherwise
specified, all random variables will be discrete with finite
support. Sets of random variables are denoted by bold face
letters (e.g. X) and corresponding bold face lower case letter
(i.e. x) denotes the assignment X = x. We use P(X = x)
(equivalently P(x)) to denote the probability of X taking
the value x. Conditional probability of X = x given Y = y
is denoted by P(x | y). Size of any set S is denoted by |S|.

Causal Bayesian Network: A Bayesian Network or BN
is a tuple (G,P), where G = (V,E) is a directed acyclic
graph (DAG), and V = {V1, . . . , Vn} and E are the set of
nodes and edges in G respectively. A node Vi is called the
parent of Vj and Vj the child of Vi, if there is a directed edge
from Vi to Vj in E. The nodes in V are labelled by random
variables, and P is the joint distribution of V that factorizes
over G, i.e. P(V) =

∏n
i=1 P(Vi | Pa(Vi)), where Pa(Vi)

is the set of parents of Vi. Sometimes, in a BN, certain nodes
are not observable and are termed unobserved variables. In
this situation, for each node Vi ∈ V, Pa(Vi) will denote
the set of observable parents of Vi. A Causal Bayesian
Network or CBN is a BN where each edge denotes an im-
mediate causal relationship. The graph G (called the Causal
Graph) corresponding to a CBN describes the data gen-
eration process not just of the observational distribution P
but also of interventional distributions that can be derived
from it. An intervention on an observable node X ∈ V is
denoted as do(X = x), where X is set to value x and all
the edges coming in to X are removed. The resulting graph
defines a probability distribution P(V \ {X} | do(X = x))
over V \ {X}, called an interventional distribution. In the
presence of unobserved variables it is convenient to assume
(without loss of generality) [Tian and Pearl, 2002b, Verma
and Pearl, 1988] that the underlying graph G of the CBN
is semi-markovian. Formally, a Semi-Markovian Causal
Graph or an SMCG is a DAG, where every unobserved vari-
able is a root and has exactly two observable children [Tian
and Pearl, 2002b, Acharya et al., 2018]. These unobserved
variables are called Unobserved Confounders or UCs in



the rest of the paper. It is convenient to represent SMCGs
with observable vertices only by adding a bi-directed edge
between two observable vertices if they have a common un-
observed parent and removing the unobserved parent from
the graph [Tian and Pearl, 2002b]. Such graphs thus com-
prise of both directed and bi-directed edges with all vertices
V = {V1, . . . , Vn}4 observable. The bi-directed edges can
be used to partition the observable vertices into what are
called c-components5 [Tian and Pearl, 2002b]. Two observ-
able vertices are said to be in the same c-component if and
only if they are connected by a path of bi-directed edges.
Let X = {X1, . . . , XN} ⊂ V denote the set of interven-
able nodes. The c-component containing the node Xi is
denoted by Si and its size is denoted by ki i.e. ki = |Si|.
The number of observable parents of Xi is denoted by di, i.e.
di = |Pa(Xi)|. We define Pa+(Si) = Si∪

⋃
V ∈Si

Pa(V ),
and Pac(Xi) = Pa+(Si)\{Xi}. For more details on these
definitions we refer the reader to Tian and Pearl [2002b],
Verma and Pearl [1988], Acharya et al. [2018]. An impor-
tant question that arises in the context of SMCGs is that
of identifiability, which asks whether the interventional
distributions P(V \ {X} | do(X = x)) can be estimated
consistently using observational data sampled from P(V).
In the case of atomic interventions, Tian and Pearl [2002a]
provided a necessary and sufficient condition for this to
happen. They show that (Thm. 3 in Tian and Pearl [2002a])
P(V \ {X} | do(X = x)) is identifiable if and only if
there is no bi-directed path connecting X to any of its chil-
dren. For this work, we say that an “SMCG is identifiable
with respect to variables in X” if the identifiability condi-
tion mentioned above holds for all intervenable nodes in
X. Note that, when all variables are observable, there are
no bi-directed paths and the interventional probabilities are
always identifiable. Moreover, in the observable setting one
can use the backdoor criterion [Pearl, 2009] for estimating
the interventional probabilities from observational samples.
In the general setting, Bhattacharyya et al. [2020] provides
an efficient procedure (based on construction in Tian and
Pearl [2002a]) to estimate the interventional distribution
using observational samples which we use in Sec. 3.

Causal Bandits: A causal bandit algorithm receives as
input a causal graph G = (V,E) (corresponding to some
CBN C), the associated set of (binary) intervenable nodes
X ⊆ V and the designated (observable) reward node
Y ∈ V. We assume there are N intervenable nodes X =
{X1, . . . , XN}, and there are 2N interventions denoted
ai,x = do(Xi = x) for i ∈ [N ] and x ∈ {0, 1}. The empty
intervention do(), which corresponds to the observational
distribution is denoted as a0. These 2N + 1 interventions
constitute the arms A = {ai,x | i ∈ [N ], x ∈ {0, 1}}∪{a0}

4By abuse of notation we denote the set of observable vertices
by V from here on wards.

5If a node is not incident by any bi-directed edge then its
c-component is itself.

of the bandit instance. A causal bandit algorithm is a sequen-
tial decision making process that at each time t, makes
an intervention at ∈ A, and observes the sampled val-
ues of the nodes in V including the value of the node Y .
The values of nodes V ∈ V, X ∈ X and Y sampled at
time t are denoted as V (t), X(t), and Y (t) respectively.
Throughout the paper we use i, x, and a to index the sets
[N ], {0, 1}, and A respectively. The expected reward corre-
sponding to intervention ai,x ∈ A and a0 ∈ A is denoted as
µi,x = E[Y | do(Xi = x)] and µ0 = E[Y ]. We study the
causal bandit problem with respect two standard objectives
in bandit literature: simple and cumulative regret.

Simple Regret: The expected simple regret of an algorithm
ALG that outputs arm aT at the end of T rounds is defined
as rALG(T ) = maxa∈A µa − µaT

.

Cumulative Regret: Let ALG be an algorithm that plays
arm at at time t ∈ [T ]. Then the expected cumulative regret
of ALG at the end of T rounds is defined as RALG(T ) =
maxa∈A µa · T −

∑
t∈[T ] µat

.

Throughout this paper, we assume that the intervenable
nodes are binary, distribution of any intervenable node Xi

conditioned on its parents Pa(Xi) is Bernoulli. We assume
without loss of generality that Xi ≺ Y where ≺ is a topo-
logical order on G. In SRM-ALG (Sec. 3) we assume that
the input is an SMCG that is identifiable with respect to the
intervenable variables X and in CRM-ALG (Sec. 5), we as-
sume the input causal graph has no UCs and the underlying
distribution P is strictly positive i.e. P(v) > 0 for all v.

Other than the above, our algorithms do not make any other
structural assumptions and are therefore significantly gen-
eral compared to the previous works [Lattimore et al., 2016,
Lu et al., 2020, Nair et al., 2021, Lu et al., 2021a]. However,
we would like to note that the results in our main theorems
i.e. Thms. 3.1, 4.1, 4.2, 5.1 are stated assuming that all the
c-components have bounded size implying that ki = O(1)
for all i ∈ [N ] and that the total number of observable par-
ents of nodes in c-component Si, i.e. |∪V ∈Si

Pa(V )| is also
bounded above by a constant. Note that this clearly implies
that the indegree di = |Pa(Xi)| is also O(1). These help
us describe the results more cleanly highlighting the main
parameters of importance for this work. But our algorithms
work even without these assumptions. We note that these
assumptions are common in the causal inference literature
[Acharya et al., 2018, Bhattacharyya et al., 2020].

3 SIMPLE REGRET MINIMIZATION

In this section, we state and analyze our simple regret mini-
mization algorithm called SRM-ALG which takes as input
an SMCG which is identifiable with respect to intervenable
variables X (See Sec. 2 for definition). Our proposed algo-
rithm repeatedly plays the observational arm a0 for the first
T/2 rounds. Using this observational data, it determines



a small set of arms to pull (i.e. perform interventions) in
the next T/2 rounds and estimates their rewards using the
interventional samples thus obtained. Finally, for the arms
it does not pull, it uses the collected observational samples
(from the initial T/2 pulls of a0) to estimate their rewards
by adapting a procedure from Bhattacharyya et al. [2020]
which efficiently estimates distributions resulting from an
atomic intervention using observational samples. We re-
mark that previous works in Lattimore et al. [2016] and
Nair et al. [2021] imposed structural restrictions on the in-
put causal graphs which allowed observational samples to
be directly used for estimating rewards corresponding to
interventions6. SRM-ALG, on the other hand, can work with
more general identifiable SMCGs and still estimate rewards
of multiple arms simultaneously using the observational arm
pulls. SRM-ALG is presented in Algorithm 1. We explain
each step below.

Algorithm 1 SRM-ALG
INPUT: Causal Graph G = (V,E), set of intervenable
nodes X ⊆ V and time horizon T .

1: His = {} /* His would be used to keep the history of
sampled values in the first T/2 rounds. */

2: for t ∈ [1, . . . , T/2] do
3: Play arm a0 and let His = His ∪ {V(t) \

U(t), Y (t)}.
4: For each i ∈ [n], compute q̂i (as defined in Equation 2)

and m̂ (as an estimate of m) by plugging in q̂i in place
of qi in Equation 1. Let Q = {ai,x ∈ A : q̂ki

i < 1/m̂}.
5: for ai,x ∈ Q do
6: Play arm ai,x and observe Y for T

2|Q| rounds.

7: Estimate reward as µ̂i,x = 2|Q|
T

∑T/2|Q|
t=1 Y (t).

8: for ai,x ̸∈ Q do
9: For each i ∈ [n], x ∈ {0, 1}, use Algorithm C.1 in

App. C with inputs G,His to get reward estimate µ̂i,x.
10: Return estimated optimal a∗T ∈ arg -maxa∈A µ̂a.

Steps 1–4: At Steps 1 − 3, SRM-ALG collects T/2 obser-
vational samples from pulls of a0 and at Step 4 it identi-
fies a set of arms Q whose reward estimates (when com-
puted using the collected observational samples) will be
bad7. This is done using a quantity m(C) defined next;
the meaning of relevant notations can be found in Sec.
2. Let qi = minz,x P(Xi = x,Pac(Xi) = z). For each
τ ∈ [2, 2N ], let Iτ = {i : qki

i < 1/τ}8. We define,

m(C) = min{τ : |Iτ | ≤ τ}. (1)

The observational samples that were collected are used to

6The restrictions ensured that the conditional distributions are
equal to the corresponding interventional distributions.

7Can be seen easily using Lemma D.3.
8Recall from Sec. 2 that ki is size of the c-component of Xi.

first compute estimates q̂i of qi given as:

q̂i =
( 2

T

)
·min

z,x

{ T/2∑
t=1

1{Xi(t) = x,Pac(Xi)(t) = z}
}
(2)

These estimates are then plugged into the above definition
of m(C) to obtain it’s estimate m̂. Finally the set of arms Q
is defined as Q = {ai,x ∈ A : q̂ki

i < 1/m̂}.

Steps 5–10: Since, using observational samples reward es-
timates of arms in Q will be bad, in Steps 5 − 7, we pull
these arms equal number of times by performing the corre-
sponding interventions and estimate their rewards directly
from the interventional samples. The observational samples
collected in first T/2 rounds are used to compute the esti-
mates for each arm ai,x ̸∈ Q at Steps 8, 9. Reward estimates
of these arms are computed using Algorithm C.1, App. C.
Finally in Step 10, we return arm ai,x with the best reward
estimate. Even though Algorithm C.1 uses Bhattacharyya
et al. [2020], which assumes strong positivity, we do not
need to explicitly make this assumption since low probabil-
ity arms ai,x get pulled (by intervention) in Step 6 and only
high probability arms are estimated using Algorithm C.1.

Some remarks about m(C): Our definition of m(C)
above is a novel extension of a similar quantity m defined
in Lattimore et al. [2016] and reduces to Θ(m) for parallel
graphs [Lattimore et al., 2016] and no-backdoor graphs
[Nair et al., 2021]. As a result, the regret guarantee of
SRM-ALG for these special classes of graphs matches those
of the respective algorithms in these works. Operationally,
m(C) determines for us the optimal number of arms to be
pulled in Steps 5− 7, in order to minimize expected regret.
In particular, Im(C) is a set of arms such that the best arm
in it (found using T/2 rounds of interventions) and the best
arm in its complement Icm(C) (found using T/2 rounds of
observations) have reward estimates of similar quality.

We show that the expected simple regret of SRM-ALG in
Theorem 3.1 stated below is Õ(

√
m(C)/T ), which is an

instance-dependent regret guarantee as m(C) depends on the
input CBN. If m(C) ≪ N then SRM-ALG performs better
than the optimal MAB algorithm. In particular, SRM-ALG
explores only at most 2m̂+1 arms compared to the 2N arms
that must be explored by a standard best-arm identification
MAB algorithm which achieves Ω(

√
N/T ) expected worst-

case simple regret [Audibert et al., 2010]. It is easy to see
that there are CBNs C with m(C) ≪ N as illustrated in App.
B. The proof of Theorem 3.1 is given in App. D.

Theorem 3.1
The expected simple regret of SRM-ALG at the end of T

rounds is rSRM-ALG(T ) = O

(√
m(C)
T log NT

m(C)

)
.

Remark: The constant involved in the regret expression



is exponential in maxi{ki} and maxi{|Pac(Xi)|}. Recall
that these are constant as per our assumptions in Sec. 2.

4 SIMPLE REGRET LOWER BOUND

A closer inspection of SRM-ALG given in Sec. 3 reveals that
the algorithm only leverages causal side-information while
pulling the observational arm. Hence, there remains a possi-
bility that a better algorithm could be designed which uses
the information shared between any two interventions. In
this section, we show that this is not possible for a large and
important class of causal graphs that we call tree-graphs and
denote it as T. Each graph in T is an n-ary tree, where each
node can have 2 to n children. Additionally, all the leaves
are connected to the outcome node Y . We also assume that
all nodes of any graph in T are observable. Note that a
causal bandit algorithm receives as input a causal graph G
(corresponding to some CBN C = (G,P)) but the associated
distribution P is unknown to the algorithm. Since there are
multiple probability distributions that are compatible with
a given G the algorithm is required to learn the unknown
P through the arm pulls. We show in Thm. 4.1 that for any
causal graph G in T and any positive integer M ≤ N , there
exists a distribution P such that M = m(C), where C is
CBN (G,P), and, any algorithm must explore at least Ω(M)
arms to minimize the worst-case expected simple regret.

Theorem 4.1
Corresponding to every causal graph G ∈ T, with N inter-
venable nodes and any positive integer M ≤ N , there exists
a probability measure P and CBN C = (G,P) such that
m(C) = M and the expected simple regret of any causal
bandit algorithm ALG is rALG(T ) = Ω

(√
m(C)/T

)
.

The proof of Thm. 4.1 is in App. E. Recall, from Sec. 3
that m(C) is completely defined by q = (q1, . . . , qN ) and
G; in particular the definition of m(C) does not depend on
the entire probability distribution corresponding to CBN C.
We conclude this section by showing in Thm. 4.2 that the
dependence of the regret on q in the definition of m(C) is
optimal for certain graphs. In Thm. 4.2, a q is valid if there
exists a probability measure P for the graph G, which results
in the given q. The proof of Thm. 4.2 is in App. F.

Theorem 4.2
There exists a fully observable causal graph G with N ≥ 3
nodes such that given any valid q corresponding to G, there
is a probability measure P conforming with q and CBN
C = (G,P) for which expected simple regret of any causal
bandit algorithm is Ω

(√
m(C)/T

)
.

5 CUMULATIVE REGRET
MINIMIZATION

In this section, we propose CRM-ALG, an algorithm based
on the well-known UCB algorithm [Auer et al., 2002], that

sequentially performs (atomic) interventions and minimizes
the cumulative regret incurred over the time horizon T . Un-
like SRM-ALG, here we assume all nodes in the input graph
G are observable and the joint distribution P is strictly pos-
itive9. Similar to the UCB family of algorithms CRM-ALG
maintains UCB estimates at each round and pulls the arm
with the highest UCB estimate. CRM-ALG performs better
than the standard UCB algorithm [Auer et al., 2002] by lever-
aging (via backdoor criterion [Pearl, 2009]) the available
causal side-information. In particular, CRM-ALG uses the
samples from the observational arm pulls in addition to the
samples from the arm pulls of ai,x to compute UCB esti-
mates of ai,x. Note that even though the observational arm
may not be reward optimal, pulling it gives a simultane-
ous causal side-information about all the arms. CRM-ALG
ensures a good trade-off between such a simultaneous ex-
ploration and the possible loss in reward by ensuring that
a0 is pulled at least a pre-specified (carefully chosen) num-
ber of times. We note that CRM-NB-ALG proposed for no-
backdoor graphs in Nair et al. [2021], also ensures that the
observational arm a0 is pulled a pre-specified number of
times, but CRM-ALG differs from CRM-NB-ALG on how
the UCB estimates for the arms are computed at the end of
each round. Next, we present the details of CRM-ALG.

Algorithm 2 CRM-ALG (Minimizing cumulative regret in
general causal graph)

INPUT: Causal graph G and the set of intervenable nodes
1: Pull each arm once and set t = 2N + 2
2: Let β = 1
3: for t = 2N + 2, 2N + 3, . . . do
4: if N0

t−1 < β2 log t then
5: Pull at = a0
6: else
7: Pull at = argmaxa∈A µ̄a(t− 1)

8: Na
t = Na

t−1 + 1{at = a}
9: Update µ̂a(t) and µ̄a(t) for all a ∈ A according to

Equations 3, 5, 6 and 7.
10: Let µ̂∗ = maxa µ̂a(t)

11: if µ̂0(t) < µ̂∗ then
12: Set β = min{ 2

√
2

µ̂∗−µ̂0(t)
,
√
log t}

13: t = t+ 1

We use N i,x
t and N0

t to denote the number of times arms
ai,x and a0 have been played at the end of t rounds respec-
tively, and further let at denote the arm pulled at round
t. Also, µ̂i,x(t) and µ̄i,x(t) (respectively µ̂0(t) and µ̄0(t))
denotes the empirical and UCB estimates of the arm ai,x
(respectively arm a0) computed at the end of round t. At
Step 4 CRM-ALG checks if the observational arm is pulled
at least β2 log t times, and accordingly either plays the ob-

9Strict positivity of the joint distribution is often assumed in
the causality literature [Hauser and Bühlmann, 2012].



servational arm or the arm with the highest UCB estimate.
Here the value of β is updated as in Steps 11-12 . As noted
before, the chosen update for β and the corresponding pre-
specified number of pulls for arm a0 delicately balances the
exploration-exploitation trade-off in expectation. The em-
pirical estimate for arm a0 at Step 9 is computed as follows

µ̂0(t) =
1

N0
t

t∑
s=1

1{Y (s) = 1, as = a0} . (3)

The empirical estimate for arm ai,x is involved, and as men-
tioned before is done by leveraging the following backdoor
criterion (see Thm. 3.3.2 in Pearl [2009]).

P(Y = 1 | do(Xi = x)) = (4)∑
z

P(Y = 1 | Xi = x,Pa(Xi) = z)P(Pa(Xi) = z)

Let the set of time steps s ≤ t at which arm a0 is pulled
be denoted by St = {t1, . . . , tN0

t
}. Partition St into two

parts Ot containing all the time steps with odd indices (i.e.
t1, t3, etc.) and Et containing all the time steps with even
indices (i.e. t2, t4, etc.). We will now define some sets and
intermediate estimators in order to describe the final estima-
tor. Since Xi is clear from the context, we do not use i to
index these intermediate estimators. In general these sets
and estimators will be different for different i. We use time
steps in Ot to estimate P(Y = 1 | Xi = x, Pa(Xi) = z),
and those in Et to estimate P(Pa(Xi) = z). These proba-
bilities are estimated on disjoint sets of time steps to make
the estimators independent of each other which we require
while showing that the estimator is unbiased (Lemma G.1
in App. G). To estimate the above mentioned probabilities,
we focus on the subsets

Ox,z
t = {s ∈ Ot | Xi(s) = x,Pa(Xi)(s) = z} ⊆ Ot

Let Cx
t be the minimum value of |Ox,z

t | (as z is varied). To
use time steps in Et for estimating P(Pa(Xi) = z), we
partition this set into Cx

t many parts10, say Et = Et,1 ∪
. . . ∪ Et,Cx

t
. For each part Et,c, c ∈ [Cx

t ], we create an
estimator of the probability P(Pa(Xi) = z) as follows:

p̂ z
t,c =

∑
s∈Et,c

1{Pa(Xi)(s) = z}
|Et,c|

Now we are ready to build an estimator using Equation 4.
Let s1, . . . , sCx

t
be any distinct elements11 of set Ox,z

t . For
each c ∈ [Cx

t ], we define a variable Y x
c as follows:

Y x
c =

∑
z

1{Y (sc) = 1}p̂ z
t,c

10Each part has at least ⌊|Et|/Cx
t ⌋ elements. Choice of Cx

t

helps in bounding regret (Lemma G.2 in App. G).
11They exist since |Ox,z

t | ≥ Cx
t .

Let Si,x
t be the set of timestamps s ≤ t, when arm ai,x is

pulled. Our final empirical estimator µ̂i,x(t) of arm ai,x is:

µ̂i,x(t) =

∑
s∈Si,x

t
1{Y (s) = 1}+

∑
c∈[Cx

t ]
Y x
c

N i,x
t + Cx

t

(5)

It is easy to see that E[µ̂0(t)] = µ0, and in Lemma G.1 (App.
G) using backdoor criterion (Sec. 3.3.1 in Pearl [2009])
we show that E[µ̂i,x(t)] = µi,x for every i, x. Finally,
CRM-ALG uses Equations 3 and 5 to compute the UCB esti-
mates µ̄i,x(t) and µ̄0(t) of arms ai,x and arm a0 respectively

µ̄i,x(t) = µ̂i,x(t) +

√
2 ln t

N i,x
t + Cx

t

(6)

µ̄0(t) = µ̂0(t) +

√
2 ln t

N0
t

(7)

We bound the expected cumulative regret of CRM-ALG in
Thm. 5.1, where a∗ = arg -maxa∈A µa and, for a ∈ A,
∆a = µa∗ − µa, pi,xz = P(Xi = x,Pa(Xi) = z), pi,x =

minz p
i,x
z . Additionally, ηi,xT denotes the probability that the

empirical estimate of pi,x at time T is large (See Observation
G.6 in App. G) and is defined as ηi,xT = max

{
0,
(
1 −

ZiT
−

p2i,x
4

)}
, where Zi is the size of the domain of Pa(Xi).

Theorem 5.1
If a∗ = a0, then at the end of T rounds the expected cumu-
lative regret is O(1). Otherwise, the expected cumulative re-

gret is of the order 58 lnT
∆0

+∆0+
∑

∆i,x>0 ∆i,x max

{
0, 1+

8 lnT

(
1

∆2
i,x

− pi,x·ηi,x
T

36∆2
0

)}
+
∑

∆a>0 ∆a
π2

3 .

The proof of Thm. 5.1 is given in App. G. Notice that the
regret guarantee in Thm. 5.1 is an instance dependent con-
stant if a0 is optimal and otherwise slightly better than the
UCB family of algorithms. Also, it is easy to construct ex-
amples of CBNs where the observational arm is optimal, for
example see Experiment 2 in Sec. 6.

No unobserved variable assumption: As mentioned, in
CRM-ALG we work in the fully observable setting unlike
SRM-ALG (Sec. 3). A natural question is whether Algo-
rithm C.1 (App. C) can also be used in CRM-ALG in the
presence of unobserved confounders. We believe there is no
straight-forward way to accomplish this due to a rather tech-
nical reason. Our estimator (Equation 5) cleverly interprets
observational samples as Cx

t many interventional samples
and can be shown to be unbiased (Lemma G.1, App. G).
The technique in Algorithm C.1 does not enable the same
interpretation of observational samples, and hence cannot
be easily used to create an estimator with similar properties.



6 EXPERIMENTS

In this section, we validate our results empirically. In Ex-
periment 1, we compare the simple regret of our proposed
algorithm SRM-ALG to two baseline MAB algorithms: uni-
form exploration (UE) and successive rejects (SR) [Audibert
et al., 2010]. In Experiment 2, we compare SRM-ALGwith a
simple regret minimization algorithm for CB (referred to as
PROP-INF or Propagating Inference from here onwards),
given in Algorithm 3 in Yabe et al. [2018]. While imple-
menting PROP-INF as described in Yabe et al. [2018], we
faced multiple issues that we had to resolve. Details are pro-
vided in App. H. In Experiment 3, we compare the simple
regret of SRM-ALG with baselines UE, SR as m increases.
In Experiment 4, we compare expected cumulative regret of
CRM-ALG and UCB [Auer et al., 2002] when observational
arm is the best arm (a∗ = a0) validating first part of Thm.
5.1. In Experiment 5, we compare expected cumulative re-
gret of CRM-ALG and UCB on random CBNs with a∗ ̸= a0
validating second part of Thm. 5.1.
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Figure 2: Simple Regret vs. T

Experiment 1 (Simple Regret vs. T , SRM-ALG vs. UE,
SR): This experiment compares the expected simple re-
gret of SRM-ALG with UE and SR as T increases. We
run the algorithms on 50 CBNs, where every constructed
CBN C, has 100 intervenable nodes with m(C) = 9.
The CBNs are constructed as follows: a) randomly gen-
erate 50 DAGs on 101 nodes X1, . . . , X100, Y such that
X1 ≺ . . . ≺ X100 ≺ Y is a topological order in each
such DAG, b) Pa(Xi) contains ≤ 2 nodes chosen uni-
formly at random from X1, . . . , Xi−1, and Pa(Y ) equals
the set of all Xis, c) P(Xi | Pa(Xi)) = 0.5 for i ∈
[91] and P(Xi|Pa(Xi)) = 1/18 for i ∈ [92, 100], d)

uniformly at random choose a j ∈ {92, . . . , 100} and
set P (Y |X1, . . . , Xj = 1, . . . , X100) = 0.5 + ϵ and
P (Y |X1, . . . , Xj = 0, . . . , X100) = 0.5−ϵ′ where ϵ = 0.3
and ϵ′ = qϵ/(1 − q) for q = 1/18. Our choice of the con-
ditional distributions in (c) ensures m(C) = 9 for every
generated CBN C. Our strategy to generate CBNs is a gener-
alization of the one used in Lattimore et al. [2016]. For each
of the 50 CBN, we run SRM-ALG, MAB, SR for multiple
values of the time horizon T in [500, 2500] and average the
regret over 100 independent runs. We average the regret
over the 50 CBNs and plot mean regret vs. T in Fig. 2a.
Since m ≪ N , we see that, SRM-ALG has a much lower
regret compared to UE,SR in accordance with Thm. 3.1.

Experiment 2 (Simple Regret vs. T , SRM-ALG vs.
PROP-INF): This experiment compares the expected sim-
ple regret of SRM-ALG with CB as T increases. We run the
algorithms on 50 CBNs such that for every constructed
CBN C, it has 10 intervenable nodes and m(C) = 5.
The CBNs are constructed as follows: a) randomly gen-
erate 50 DAGs on 11 nodes X1, . . . , X10 and Y , and let
X1 ≺ . . . ≺ X10 ≺ Y be the topological order in each
such DAG, b) Pa(Xi) contains at most 1 node chosen
uniformly at random from X1, . . . , Xi−1, and Pa(Y ) =
{X6, . . . , X10}, c) P(Xi | Pa(Xi)) = 0.5 for i ∈ [5] and
P(Xi|Pa(Xi)) = 1/10 for i ∈ [6, 10], d) uniformly at
random choose a Xj from Pa(Y ) and set the CPD of Y
as P(Y | . . . , Xj = 1, . . .) = 0.5 + ϵ and P(Y | . . . , Xj =
0, . . .) = 0.5 − ϵ′ where ϵ = 0.3 and ϵ′ = qϵ/(1 − q) for
q = 1/10. The choice of the conditional probability distribu-
tions (CPDs) in (c) ensures m(C) = 5 for every CBN C that
is generated. Our strategy to generate CBNs is a generaliza-
tion of of the one used in Lattimore et al. [2016] to define
parallel bandit instances with a fixed m. For each of the 50
random CBN, we run SRM-ALG and CB for multiple values
of the time horizon T in [500, 2500] and average the regret
over 30 independent runs. We calculate the mean regret over
the 50 random CBNs and plot mean regret vs. T in Fig. 2b.
As seen, SRM-ALG has a much lower regret compared to
PROP-INF which incurs Õ(

√
N/T ) regret in comparison

to SRM-ALG’s regret of Õ(
√
m/T ) (Theorem 3.1).

Experiment 3 (Simple Regret vs. m): This Exp. compares
the expected simple regret of SRM-ALG with UE and SR
for CBNs with different values of function m from the set
M = {10 + 2k : k ∈ [20]}. For this experiment, we fix the
time horizon to T = 1600. We randomly generate 35 DAGs
on N + 1 nodes X1, . . . , XN and Y . For each generated
DAG G and m ∈ M , we use the same process as Exp. 1 to
set the CPDs of G. For each of the 35 random CBNs thus
obtained, we run SRM-ALG, MAB, SR for time horizon T
and average the regret over 100 independent runs. We repeat
this Exp. for N = 100 and N = 200. For N = 100, we
plot the mean regret over all the 35 random CBNs vs. m in
Fig. 3a. The same plot for N = 200 is provided in Fig. 3b.
Our plots validate the

√
m dependence of regret (for fixed
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Figure 3: Simple Regret vs. m

T ) in the case of SRM-ALG. We see that as N increases
(with m fixed), regret of SRM-ALG is constant (as shown
in Theorem 3.1), whereas regret of MAB and SR increases
(as indicated by their regret guarantees). Thus, for large N ,
SRM-ALG is strictly better, for a wide range of values of m.
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Figure 4: Cumulative Regret vs. T

Experiment 4 (Cumulative Regret vs. T, a∗ = a0): In this
experiment, we compare cumulative regret of CRM-ALG
with UCB for CBN on four nodes X1, X2, X3, and Y . X1

has no parents and is the only parent of X2, X3. Parents

of Y are X2, X3. We choose CPDs: P(X1 = 1) = 0.5,
P(X2 = 1|X1) and P(X3 = 1|X1) are equal to 0.75X1 +
0.25(1−X1) and P (Y = 1|X2, X3) = 1X2=X3

. For this
instance, it is easy to see that P(Y = 1|do(X2 = x)) =
P (Y = 1|do(X3 = x)) = 0.5 for x ∈ {0, 1} and P (Y =
1|do()) = 5/8, implying that observational arm is the best
arm. We average the cumulative regrets of CRM-ALG and
UCB over 30 independent runs. Fig. 4a demonstrates that
cumulative regret of UCB increases and that of CRM-ALG
becomes constant for large T (as shown in Thm. 5.1).

Experiment 5 (Cumulative Regret vs. T, a∗ ̸= a0): This
experiment compares the cumulative regret of CRM-ALG
with UCB as T increases. The algorithms are run on 12
CBNs such that for every constructed CBN C, it has 10
intervenable nodes. The CBNs are constructed as follows:
a) randomly generate 12 DAGs on 11 nodes X1, . . . , X10

and Y , and let X1 ≺ . . . ≺ X10 ≺ Y be the topological
order in each such DAG, b) Pa(Xi) contains at most 1
node chosen uniformly at random from X1, . . . , Xi−1, and
Pa(Y ) contains Xi for all i, c) P(Xi | Pa(Xi)) = 0.5 for
i ∈ [10] and, d) uniformly at random choose a Xj from
Pa(Y ) and set the CPD of Y as P(Y | . . . , Xj = 1, . . .) =
0.5+ϵ and P(Y | . . . , Xj = 0, . . .) = 0.5−ϵ′ where ϵ = 0.1
and ϵ′ = qϵ/(1 − q) for q = 1/2, that is an interventional
arm is the best arm. We average the cumulative regrets
of CRM-ALG and UCB over 30 independent runs. Fig. 4b
demonstrates that cumulative regret of CRM-ALG gets better
than that of UCB for large T (as shown in Thm. 5.1).

7 CONCLUSION

We proposed two algorithms SRM-ALG and CRM-ALG that
take as input causal graphs, pull observational/interventional
arms, and minimize simple and cumulative regret respec-
tively. While SRM-ALG works over SMCGs and can handle
unobserved variables, CRM-ALG works in the fully observ-
able setting. We theoretically and empirically show that
our algorithms are better than standard MAB algorithms that
do not take causal side-information into account. Further,
we show that SRM-ALG is almost optimal for causal graphs
having an n-ary tree structure. In the fully observable setting,
our algorithms do not put any restrictions on the graph struc-
ture and subsume previous results which imposed strong
structural restrictions. We plan to explore cumulative regret
minimization in the presence of UCs in a future work. An-
other interesting direction is to identify graphs where better
simple regret guarantee than SRM-ALG can be attained. Fi-
nally, obtaining regret guarantees when interventions are
non-atomic will be a nice extension to our work.
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