
Continuous generation of versioned
collections’ members with RML and LDES

Dylan Van Assche , Sitt Min Oo ,
Julián Andrés Rojas , and Pieter Colpaert

IDLab, Department of Electronics and Information Systems,
Ghent University – imec, Technologiepark-Zwijnaarde 122, 9052 Ghent, Belgium

{dylan.vanassche, x.sittminoo,

julianandres.rojasmelendez, pieter.colpaert}@ugent.be

Abstract. When evolving datasets are used to generate a knowledge
graph, it is usually challenging to keep the graph synchronized in a timely
manner when changes occur in the source data. Current approaches fully
regenerate a knowledge graph in such cases, which may be time consum-
ing depending on the data type, size, and update frequency. We propose
a continuous knowledge graph generation approach that can be applied
on different types of data sources. We describe continuously updating
knowledge graph versions represented as a Linked Data Events Stream,
and use an rml processor for rdf generation. In this paper, we present
our approach and demonstrate it on different types of data such as bike-
sharing, public transport timetables, and weather data. By describing
entities with unique, immutable, and reproducible iris, we were able to
identify changes in the original data collection, reducing the number of
materialized triples and generation time. Our use-cases show the impor-
tance of mechanisms to derive unique and stable iri strategies of data
source updates, to enable efficient knowledge graph generation pipelines.
In the future, we will extend our approach to handle deletions in data
collections, and conduct an extensive performance evaluation.

1 Introduction

Knowledge graphs (kg) usually coexist and integrate with heterogeneous and
non-rdf data sources via mapping rules. The result of executing such mapping
rules is commonly a data dump that represents a snapshot of the kg at a certain
time. However, in practice, kgs and their sources may evolve making it difficult
for data publishers to keep the kg up to date and for consumers to stay syn-
chronized with their latest version. Recently, Linked Data Event Stream (ldes)1

was introduced as a mechanism for publishers to expose a stream of changes (ad-
ditions, updates and deletions) of topic-based data sources composed by data
objects (a.k.a. members), as an immutable collection [1]. Thanks to ldes, data
consumers are able to traverse and materialize historical versions, or simply syn-
chronize with the latest member changes of a data source without having to

1 https://w3id.org/ldes/specification

https://orcid.org/0000-0002-7195-9935
https://orcid.org/0000-0001-9157-7507
https://orcid.org/0000-0002-6645-1264
https://orcid.org/0000-0001-6917-2167
https://w3id.org/ldes/specification

2 D. Van Assche et al.

re-download it in its full extent, saving time, bandwidth, and computing re-
sources.

Efficient generation of an ldes from non-rdf sources requires not only the
capacity to define unique and immutable iris identifying every new version of
a member, but also a mechanism that enables materializing only the members
that were actually updated. Data sources may publish updates in various ways
e.g. latest version of each member, only the updated members, or all members
and their history. Yet, they not always provide the means to uniquely identify
every update and leave it up to the consumer to handle integration.

Current kg generation approaches cannot leverage data updates. Instead,
they regenerate the complete kg upon updates, even when only a subset of
the data changes. This approach becomes impractical for large data sources
where the cost of processing new updates grows proportionally to their update
frequency and may impact services relying on the resulting kg. For example,
services operating on outdated data or being unavailable during the regeneration.

We address this problem by investigating how we can uniquely and consis-
tently (across multiple versions) identify and materialize only member updates,
to avoid the costs of fully regenerating the kg. We extend an rml processor im-
plementation to produce ldes-based kgs and demonstrate our approach through
3 use cases with varying data characteristics, e.g. size and update strategy. Pre-
liminary tests show that our approach reduces the processing time and number
of triples up to 20 times when a data source is updated compared to completely
regenerating all the triples.

Through this work, we aim on reducing the generation time and size of the kg
generated from dynamic and evolving data sources, while improving the overall
operational behavior of dependent services and applications.

The next section discusses related work. Section 3 describes our approach.
Section 4 applies our approach on 3 use cases: bike-sharing, public transport
timetables, and weather data. Section 5 presents our conclusions and future
work.

2 Related Work

Mapping rules execution optimizations Optimizing mapping rules execution for
rdf kg generation is an active research domain; several approaches e.g. SDM-
RDFizer [2], or FunMap [3] emerged to optimize the mapping rules execution
for generating rdf. SDM-RDFizer avoids generating rdf from duplicates in a
data collection. This way, all rdf triples are generated only once every time
the SDM-RDFizer is executed. FunMap applies the same methodology to data
transformations. It executes every function on each collection member only once
and leverages an existing rml processor for the actual rdf generation. However,
both approaches cannot apply this methodology across multiple versions of a
data source. If a subset of a kg must be updated, it is fully regenerated.

Versioned collections’ members with RML & LDES 3

Linked Data Event Stream (LDES) ldes2 is a collection of immutable rdf
data members such as versioned entities, observations, etc. ldes uses immutable
iris [4] for each member. Consequently, every version of a member will have a
new immutable iri. ldes relies on the tree specification 3 for describing col-
lection and pagination relations. Each ldes has a tree:shape predicate which
associates a shacl 4 shape describing its members. It also includes tree:members
indicating the members of the collection. Optionally, one or multiple path de-
scriptions such as ldes:timestampPath or ldes:versionOfPath may be pro-
vided to indicate the relation with previous versions of a member. Additionally,
an ldes may specify a retention policy such as ldes:LatestVersionSubset to
inform consumers for how long is the data kept.

Versioning Mechanisms to store and access versioned rdf data include the ap-
proaches proposed by Ostrich [5], TailR [6], R&Wbase [7], Memento5, or ldes [8].
Three main rdf archive storage strategies can be identified: (i) Independent
Copies (IC), (ii) Change-Based (CB), and (iii) Timestamp-Based (TB). Ostrich
and TailR are both hybrid approaches, combining all three strategies for effi-
cient query operations. R&Wbase is based on Git6 and applies a CB approach,
while Memento is a TB approach for accessing different versions over HTTP.
All these approaches put the burden of resolving versions on the producer. ldes
uses an IC approach by storing complete and incrementally versioned objects for
each change in an append-only log. This way, consumers can synchronize their
collections with the producer, and resolve the versioning on the consumer-side.
ldes is similar to the Copy and Log approach [9], but can be applied using any
versioning strategy, not only limited to a timestamp-based approach. However,
efficient generation and storage of ldes-based kgs from dynamic non-rdf data
sources remains an open challenge.

3 Approach

In this section, we describe our approach to generate unique and reproducible iris
for collection’s member updates, to enable continuous ldes-based kg generation.
We discuss data collections types, how we generate iris, and expose a ldes.

3.1 Data collection types

Different data collection types exist regarding immutability and history. We
identify 5 types given history availability and data immutability (Table 1).

Based on their update strategy, we consider that data collections may be: (i)
immutable or (ii) mutable. A collection is immutable if all its members and their

2 https://w3id.org/ldes/specification
3 https://w3id.org/tree/specification
4 https://www.w3.org/TR/shacl/
5 http://mementoweb.org/guide/rfc/
6 https://git-scm.com

https://w3id.org/ldes/specification
https://w3id.org/tree/specification
https://www.w3.org/TR/shacl/
http://mementoweb.org/guide/rfc/
https://git-scm.com

4 D. Van Assche et al.

updates can be uniquely identified through data member properties e.g. times-
tamps or hash codes. This way, consumers can identify each update individually
without comparing against previous versions. In contrast, mutable collections re-
quire consumers to compare each member against previous versions to identify
if the member was updated. In which case, consumers store the new version for
handling later version reconciliation.

Regarding history availability, we identify 3 different types of data source:
(i) latest state, (ii) latest changes, and (iii) full history. Latest state collections
publish the latest version of all its members on every update. Latest changes
collections publish only updated members (a.k.a. delta updates). In this case,
consumers must retrieve the complete collection upfront and reconcile updates
over it. In both previous cases, it is up to the consumers to record history.
Full history collections provide the latest state of all members, including also
(some) previous versions. In such case, member versions are normally identified
by means of a version ID property, making them immutable.

History Immutable Description Use case

Latest state Yes Complete dump, unique IDs Bike-sharing data
Latest state No Complete dump, non-unique IDs GTFS timetables
Latest changes Yes Delta updates, unique IDs OpenStreetMap diffs
Latest changes No Delta updates, non-unique IDs GTFS-RealTime
Full history Yes Complete dump, versions history Meteorological data
Table 1. Data source types and example use cases according to their update strategy
and characteristics.

3.2 Unique and reproducible IRIs

In this section, we introduce our approach to generate unique and reproducible
iris by leveraging properties of immutable data collections or by observing prop-
erties of mutable ones.

Immutable data collections provide member properties which are renewed
when a member is updated e.g. timestamps or hash codes. When generating kgs
from this type of data collections, we use such properties to create unique and
reproducible iris for named entities. We highlight that these properties must
be unaffected by external factors. For example, timestamps may be affected
by timezones, in such case, the timezone offset must also be present for the
collection to remain immutable. Mutable data collections on the other hand, do
not provide unique member properties across updates. Consumers must compare
each data member against a previous version to identify updates. Once a member
update is found, a unique property such as a timestamp or hash code needs to be
externally generated to create unique and reproducible iris for named entities.
Keeping track of the generated iris for each collection’s member and updates,
allows to identify updates and avoid generating duplicates.

Versioned collections’ members with RML & LDES 5

Fig. 1. Logical flow for generating unique and reproducible iris, when processing collec-
tion updates, and dealing with both immutable and mutable collections. We implement
this logic as a FnO described function that is executed by the rml engine.

Our approach for generating unique and reproducible iris for mutable and
immutable data collections is illustrated in Figure 1. We generate iris with an
unique identifier for each data member update [10]. First, we check if the col-
lection is immutable or not, which is described in the rml mapping rules. If
immutable, we proceed to generate an iri given that members already include
at least one property to produce an iri that is unique and reproducible (Sec-
tion 3.1). If the collection is mutable, we compare the data member properties
with a previous version (if any) to identify if a member was updated. To achieve
this, we describe in the mapping rules which properties we want to observe of
each data member. If a change is detected, we generate a unique value, e.g.
timestamp or hash code based on the observed properties, to uniquely identify
this member update and store this new version for comparison with further up-
dates. Leveraging these unique and reproducible iris, we can avoid generating
duplicates by checking if the iri was already generated in the past or not. This
way, only data members which are updated, trigger rdf materialization.

Listing 1.1 shows an extract of an rml mapping that produces unique iris
for an mutable data collection. Subject iris are generated through a FnO de-
scribed function (line 6). This function receives as input (i) the iri template (line
9); (ii) a flag indicating if at least one property of the member is unique across
updates (line 12) and; (iii) a set of properties to observe to check for updates
(line 15). In this example, watched properties are input in a URL parameter-like
form, but this can be adjusted according to the idlab-fn:generateUniqueIRI
function implementation. Resulting subject iris in this example will conform to
http://ex.org/prop1/prop2#timestamp. We use the generation time as times-

6 D. Van Assche et al.

tamp in this example to make the iri unique, but hash codes can be applied here
as well.

Listing 1.1. rml Subject Map for generating a unique and immutable iri from a
mutable data collection.

1
2 rr:subjectMap [
3 fnml:functionValue [# Unique IRI generation: $prop1/$prop2#timestamp
4 rr:predicateObjectMap [
5 rr:predicate fno:executes ;
6 rr:objectMap [rr:constant idlab -fn:generateUniqueIRI] ;
7], [# IRI template
8 rr:predicate idlab -fn:iri ;
9 rr:objectMap [rr:template "https ://ex.org/{prop1 }/{ prop2}"]

10], [# Flag to indicate if the properties are unique on their own
11 rr:predicate idlab -fn:unique ;
12 rr:objectMap [rr:constant "false"; rr:termType xsd:boolean;]
13], [# Set of properties to monitor for changes
14 rr:predicate idlab -fn:watchedProperty ;
15 rr:objectMap [rr:constant "prop1={prop1 }& prop2={prop2 }";]
16];
17];
18]

3.3 LDES Logical Target

We also introduce ldes Logical Target which is used to export the generated
ldes-based rdf into a file. Thanks to the modularity of rml’s Logical Tar-
get [11], it is possible to add an ldes Logical Target to any rml processor.

An ldes Logical Target (Listing 1.2) is a regular rml Logical Target with
an additional ldes:EventStreamTarget type. Each ldes:EventStreamTarget

adds ldes specific properties to a regular Logical Target such as ldes paths
(lines 6-7) or a shacl shape (line 8). An ldes Logical Target only adds metadata
to the serialized output. It also inherits all the characteristics of a regular rml
Logical Target7, allowing it to be written into a file, a triple store, etc.

Listing 1.2. ldes Logical Target definition in rml to export an ldes to a file.

1 <#LDESToFile > a rmlt:LogicalTarget;
2 rmlt:target [a ldes:EventStreamTarget;
3 dcat:distribution [a dcat:Distribution;
4 dcat:accessURL <file :// data/dump.nq.zip >;];];
5 rmlt:serialization formats:N-Quads; rmlt:compression comp:zip;
6 ldes:timestampPath sosa:resultTime;
7 ldes:versionOfPath dcterms:isVersionOf;
8 tree:shape <http :// example.org/shape.shacl >; .

4 Use Cases and Preliminary Tests

In this section, we describe practical examples of our approach, applied on 3 use
cases: (i) BlueBike8 bike-sharing availability data, (ii) NMBS9 public transport

7 https://rml.io/specs/dataio/
8 https://blue-bike.be/
9 https://www.belgiantrain.be/

https://rml.io/specs/dataio/
https://blue-bike.be/
https://www.belgiantrain.be/

Versioned collections’ members with RML & LDES 7

timetables, and (iii) KMI10 meteorological data with the RMLMapper as rml
processor. We implemented our approach in the RMLMapper, but it can be im-
plemented in any other rml processor since we re-use existing features such as
FnO functions to generate unique and reproducible IRIs; and rml’s Logical Tar-
get for producing ldes-based kgs. Our mapping rules 11 and implementation 12

are available on GitHub.

BlueBike bike-sharing data provides a dump of all stations and currently avail-
able bikes. This data source is immutable. Its members include a data property
that is unique across updates, and it follows a latest state update strategy. We
mapped the data using a GBFS-based vocabulary 13 into rdf, and exported it as
an ldes with our ldes Logical Target. We retrieved every minute the latest state
and generated unique and reproducible IRIs with our approach (Section 3.2), by
leveraging the immutable last seen timestamp property, which is included on
every data member of this collection.

NMBS is the Belgian railway agency which publishes its yearly timetable sched-
ule as a GTFS 14 dump. This data source is mutable since there are not unique
data properties across updates, and follows a latest state update strategy. Each
day the schedule is republished without providing a list of updates. The GTFS
dump is retrieved daily to check for updates. We define a set of observed proper-
ties that are used to asses member updates (e.g. parent station and stop id

for GTFS stops). If an updated member is found, we generate a unique and
reproducible IRI for the member by adding the current timestamp when the
mapping rules were executed.

KMI is the Belgian meteorological institute, which provides measurements of
their Automatic Weather Stations as a csv dump. This data source is immutable
since it contains historical data about the measurements with unique identifiers.
We leveraged these identifiers, namely the code property, to generate unique
and reproducible IRIs.

We performed preliminary tests by retrieving dumps for each of the use
cases and replayed them in the same retrieval order to verify the impact of our
approach on generation time and number of materialized triples. We observed
reduced generation time that is proportional to the data source size. For the
smaller data sources BlueBike and KMI, the generation time is 1.1x and 1.2x
faster. For the bigger data source NMBS we register a generation time 24.7x
faster. In terms of number of materialized triples, we see a reduction in all cases:
BlueBike 4.6x less triples, KMI 17x less triples, and NMBS 33.7x less triples;
compared to fully regenerating each kg. These results are available on Github15.

10 https://opendata.meteo.be/
11 https://github.com/RMLio/RML-LDES-mapping-rules
12 https://github.com/RMLio/rmlmapper-java/releases/tag/v5.0.0
13 https://github.com/pietercolpaert/Blue-Bike-to-Linked-GBFS
14 https://gtfs.org
15 https://github.com/RMLio/RML-LDES-mapping-rules/

https://opendata.meteo.be/
https://github.com/RMLio/RML-LDES-mapping-rules
https://github.com/RMLio/rmlmapper-java/releases/tag/v5.0.0
https://github.com/pietercolpaert/Blue-Bike-to-Linked-GBFS
https://gtfs.org
https://github.com/RMLio/RML-LDES-mapping-rules/

8 D. Van Assche et al.

5 Conclusion

We see very promising results of our approach in terms of efficiency for contin-
uous kg generation. We manage to speed up generation time up to 24x while
reducing unnecessarily materialized triples up to 33.7x. Our approach relies on
existing rml features such as FnO functions, which facilitates its implementa-
tion on existing engines. Furthermore, our implementation provides out-of-the-
box publishing of kg updates in the form of an ldes, which facilitates data
synchronization tasks for consumers. In the future, we will extend our approach
to handle deletions and perform a more exhaustive performance evaluation.

References

1. Van Lancker, D., Colpaert, P., Delva, H., Van de Vyvere, B., Rojas Meléndez, J.,
Dedecker, R., Michiels, P., Buyle, R., De Craene, A., Verborgh, R.: Publishing base
registries as Linked Data Event Streams. In: Proceedings of the 21th International
Conference on Web Engineering. Lecture Notes in Computer Science, pp. 28–36.
Springer (2021)

2. Iglesias, E., Jozashoori, S., Chaves-Fraga, D., Collarana, D., Vidal, M.-E.: SDM-
RDFizer: An RML Interpreter for the Efficient Creation of RDF Knowledge
Graphs. In: Proceedings of the 29th ACM International Conference on Information
& Knowledge Management (2020)

3. Jozashoori, S., Chaves-Fraga, D., Iglesias, E., Vidal, M.-E., Corcho, O.: Funmap:
Efficient execution of functional mappings for knowledge graph creation. In: Inter-
national Semantic Web Conference, pp. 276–293 (2020)

4. Kuhn, T., Dumontier, M.: Trusty uris: Verifiable, immutable, and permanent dig-
ital artifacts for linked data. In: Presutti, V., d’Amato, C., Gandon, F., d’Aquin,
M., Staab, S., Tordai, A. (eds.) The Semantic Web: Trends and Challenges, pp.
395–410. Springer, Cham (2014)

5. Taelman, R., Vander Sande, M., Verborgh, R.: Versioned querying with OSTRICH
and Comunica in MOCHA 2018. In: Proceedings of the Mighty Storage Challenge
(2018)

6. Meinhardt, P., Knuth, M., Sack, H.: Tailr: A platform for preserving history on
the web of data. In: Proceedings of the 11th International Conference on Seman-
tic Systems. SEMANTICS ’15, pp. 57–64. Association for Computing Machinery
(2015)

7. Vander Sande, M., Colpaert, P., Verborgh, R., Coppens, S., Mannens, E., Van de
Walle, R.: R&Wbase: git for triples. In: Proceedings of the 6th Workshop on Linked
Data on the Web. CEUR Workshop Proceedings (2013)

8. Van Lancker, D., Colpaert, P., Delva, H., Van de Vyvere, B., Meléndez, J.R.,
Dedecker, R., Michiels, P., Buyle, R., De Craene, A., Verborgh, R.: Publishing
Base Registries as Linked Data Event Streams, pp. 28–36 (2021)

9. Salzberg, B., Tsotras, V.J.: Comparison of access methods for time-evolving data.
ACM Comput. Surv. (2), 158–221 (1999)

10. Sequeda, J., Corcho, O.: Linked stream data: A position paper (2009)
11. Van Assche, D., Haesendonck, G., De Mulder, G., Delva, T., Heyvaert, P.,

De Meester, B., Dimou, A.: Leveraging Web of Things W3C Recommendations
for Knowledge Graphs Generation. In: Web Engineering, 21st International Con-
ference, ICWE 2021, Proceedings, pp. 337–352 (2021)

	Continuous generation of versioned collections' members with RML and LDES

