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ABSTRACT

Self-supervised visual representation learning has recently attracted significant re-
search interest. While a common way to evaluate self-supervised representations
is through transfer to various downstream tasks, we instead investigate the prob-
lem of measuring their interpretability, i.e. understanding the semantics encoded in
raw representations. We formulate the latter as estimating the mutual information
between the representation and a space of manually labelled concepts. To quantify
this we introduce a decoding bottleneck: information must be captured by simple
predictors, mapping concepts to clusters in representation space. This approach,
which we call reverse linear probing, provides a single number sensitive to the se-
manticity of the representation. This measure is also able to detect when the rep-
resentation contains combinations of concepts (e.g., “red apple”) instead of just
individual attributes (“red” and “apple” independently). Finally, we propose to
use supervised classifiers to automatically label large datasets in order to enrich the
space of concepts used for probing. We use our method to evaluate a large number
of self-supervised representations, ranking them by interpretability, highlight the
differences that emerge compared to the standard evaluation with linear probes and
discuss several qualitative insights. Code at: https://github.com/iro-cp/ssl-qrp.

1 INTRODUCTION

Relying on black-box models such as deep networks comes sometimes with significant methodolog-
ical and ethical challenges. This is particularly true for unsupervised and self-supervised models
which are learned without human supervision. While these models perform increasingly well in
downstream applications, often outperforming supervised counterparts, there is very little under-
standing of what they learn, making their real-life deployment risky.

In this paper, we thus consider the problem of characterizing the meaning of data representations,
with a particular focus on unsupervised and self-supervised representations of images. Given a rep-
resentation f mapping images x to representation vectors f(x) ∈ RD, our goal is to find whether
these vectors contain human-interpretable information. This is usually done by finding a relationship
or correspondence between f(x) and human-provided descriptions y(x) of the images, essentially
translating the information from the representation space to a concept space. Consider for example
the popular linear probing method (Alain and Bengio, 2017). Given a large dataset X̂ of images
with corresponding manual annotations y(x), one learns linear classifiers (probes) to map the fea-
ture vectors f(x) to labels y(x), measuring the resulting classification accuracy. If the predictor is
accurate, then one can argue that the representation captures the corresponding concept y.

One possible issue with this type of approaches is that one can only discover in the representation
concepts that are represented in the available data annotations. In order to maximize the semantic
coverage of the analysis, it is thus customary to combine annotations for several types of attributes,
such as object classes, textures, colour, etc. (Bau et al., 2017). In this case, y is a vector of image
attributes, and one can compute several linear probes to predict each individual attribute yi. By
doing so, however, attributes are treated independently, which may be unsatisfactory. In order to
obtain a single number assessing the overall semanticity of a representation, one must combine
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the prediction accuracies of several independent classifiers, and there is no natural way of doing
so (e.g., a simple average would not account for the different complexity of the different prediction
tasks). Furthermore, the representation might be predictive of combinations of attributes, i.e. it might
understand the concept of “red apple” without necessarily understanding the individual concepts,
“red” and “apple”. While it is in principle possible to test any combination of attributes via linear
probing, most attribute combinations are too rare to generate significant statistics for this analysis.

We propose a complementary assessment strategy to address these shortcomings. In contrast to
linear probes, we start by considering the reverse prediction problem, mapping label vectors y(x)
to representation vectors f(x). A key advantage is that the entire attribute vector is used for this
mapping, which, as we show later, accounts for attribute combinations more effectively.

Next, we consider the challenge of deriving a quantity that allows to compare representations based
on the performance of these reverse predictors. Obviously a simple metric such as the average L2

prediction error is meaningless as its magnitude would be affected by irrelevant factors such as
the scale of the representation vectors. To solve this problem in a principled manner, we consider
instead the mutual information between the concepts and quantized representation vectors. This
approach, which we justify from the viewpoint of information theory, essentially measures whether
the representation groups the data in a human-interpretable manner.

We use our approach to evaluate a large number of self-supervised and supervised image represen-
tations. Importantly, we show that (a) all methods capture interpretable concepts that extend well
beyond the underlying label distribution (e.g., ImageNet labels, which are not used for training), (b)
while some clusters that form in the representation space are purely semantic (object-centric), others
carry information about scenery, material, textures, or combined concepts, and (c) context matters.
We also show that more performant methods recover more of the original label distribution, i.e. learn
better “ImageNet concepts”, and rely less on lower-level concepts. Quantitatively, we observe that
our interpretability measure results in a similar but not identical ranking for state-of-the-art methods
with clustering-based approaches generally producing more interpretable representations.

2 RELATED WORK

Self-supervised representation learning (SSL) In this paper, we focus on self-supervised meth-
ods that learn representations from image data. Early self-supervised learning approaches devise nu-
merous pretext tasks — colorization, predicting image rotations or solving image puzzles — to learn
useful representations from unlabeled images (Gidaris et al., 2018; Pathak et al., 2016; Noroozi and
Favaro, 2016; Doersch et al., 2015; Larsson et al., 2016; Zhang et al., 2017; 2016). More recent
approaches follow the contrastive learning paradigm (Chen et al., 2020a; Frankle et al., 2020; He
et al., 2020; Chen et al., 2020b; Hénaff et al., 2019; Oord et al., 2018; Misra and Maaten, 2020;
Tian et al., 2019; 2020; Wu et al., 2018), where the goal is to discriminate instances belonging to
the same image from negative samples. Later methods take a closer look at the effect of negatives
samples (Mitrovic et al., 2020; Robinson et al., 2020; Chuang et al., 2020; Kalantidis et al., 2020)
or eliminate the need for negatives altogether (Zbontar et al., 2021; Chen and He, 2020; Grill et al.,
2020; Caron et al., 2021), while others consider nearest neighbors (Dwibedi et al., 2021; Assran
et al., 2021). Although several studies aim to explain why constrastive learning works (Arora et al.,
2019; Wang and Isola, 2020; Tschannen et al., 2020; Tsai et al., 2020; Purushwalkam and Gupta,
2020), in most cases, the focus lies on measuring empirical improvements in downstream tasks.

Clustering A related part of literature deals with unsupervised image clustering. Early approaches
include using autoencoders (Hinton and Salakhutdinov, 2006), agglomerative clustering (Bautista
et al., 2016) and partially ordered sets of hand-crafted features (Bautista et al., 2017). More recent
methods combine representation learning with clustering, using mutual information (Ji et al., 2019;
Hu et al., 2017), K-means (Caron et al., 2018; Zhan et al., 2020), prototypes (Li et al., 2021) or
optimal transport (Asano et al., 2020; Caron et al., 2020). Other methods build on strong feature
representations and, at a second stage, cluster and further refine the network (Yan et al., 2020;
Van Gansbeke et al., 2020; Lee et al., 2019). These methods produce pseudo-labels which can be
used to evaluate representations by measuring the correlation to the ground-truth labels.

Evaluation and analysis of SSL There are two main directions in evaluating self-supervised
learning methods. The first one uses pre-trained representations as an initialization for subsequent
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supervised tasks, e.g., for object detection. The second approach is to train a linear classifier on the
representation space which is kept frozen after pre-training. Some concerns have been voiced re-
garding the generality of ImageNet linear classification accuracy as the main metric to evaluate rep-
resentations (Kotar et al., 2021) and, as a result, several benchmarking suites with various datasets
and tasks have been proposed (Zhai et al., 2019; Goyal et al., 2019; Van Horn et al., 2021; Kotar
et al., 2021). Complementary to this, clustering in the frozen feature space has also been proposed
as an evaluation metric (Zheltonozhskii et al., 2020; Sariyildiz et al., 2020). In addition, downstream
dataset (Ericsson et al., 2021) and pretraining dataset (Zhao et al., 2021; Cole et al., 2021) depen-
dencies have been evaluated. Finally, recent investigations of self-supervised feature spaces aim to
understand separability (Sehwag et al., 2020), concept generalization (Sariyildiz et al., 2020) and
the effect of balanced vs. long-tailed training data (Kang et al., 2020).

Interpretability Although a large amount of work has studied feature representations in Convo-
lutional Neural Networks (CNNs), it is heavily focused on models trained with full supervision.
Zeiler and Fergus (2014) and Zhou et al. (2014) analyze networks by visualizing the most activating
patches, while activation maximization methods (Mahendran and Vedaldi, 2016a;b; Nguyen et al.,
2017; 2016; Olah et al., 2017; Simonyan et al., 2014) generate inputs to activate specific neurons.

Another line of work focuses on understanding what information is present in intermediate repre-
sentations of CNNs, usually mapping activations to high-level concepts. Alain and Bengio (2017)
introduce linear probes as a means to understanding the dynamics of intermediate layers, by pre-
dicting the target labels from these layers. Escorcia et al. (2015) also use a linear formulation to
study the relationship of mid-level features and visual attributes, while Oramas et al. (2019) adopt
this to predict task-specific classes from the features (similar to Alain and Bengio (2017)), select
relevant features and generate a visual explanation. Similarly, Zhou et al. (2018) decompose feature
vectors into a set of elementary and interpretable components and show decomposed Grad-CAM
heat maps (Selvaraju et al., 2017) for concepts that contribute to the prediction. Furthermore, Kim
et al. (2018) relate feature vectors and human-interpretable concepts using a set of user-provided ex-
amples for each concept and Bau et al. (2017) propose to quantify the interpretability of individual
units by measuring the overlap between each unit and a set of densely annotated concepts, Finally,
Ghorbani et al. (2019) propose a method to automatically assign concepts to image segments and
Yeh et al. (2020) analyze the completeness of these concepts for explaining the CNN.

With the exception of (Laina et al., 2020; Bau et al., 2017; Fong and Vedaldi, 2018), relatively little
work has been done to understand the emergence of interpretable visual concepts in self-supervised
representations specifically. In particular, Laina et al. (2020) quantify the learnability and describa-
bility of unsupervised image groupings, by measuring how successful humans are at understanding
the learned concept from a set of provided examples. Instead, our approach does not depend on
human input and is thus easily scalable to a wide range of methods and number of classes.

3 METHOD

We are interested in measuring the semanticity of data representations. A representation f is a map
f :X → RD that encodes data samples x∈X as vectors f(x)∈RD. In this paper, we assume that
the data are images X = R3×H×W and f is a deep neural network, but other choices are possible.

The semantic content of an image x can be summarized by obtaining a label or description y(x) ∈ Y
of the image from a human annotator. If the representation f(x) captures the meaning of the image
well, then it should be predictive of the description y(x). The mutual information I(f(x), y(x))
provides a natural measure of predictivity, and it is thus tempting to use this quantity as a measure
of the overall semanticity of the representation. Note that, due to the data processing inequality
(I(f(x), y(x)) ≤ I(x, y(x))), the information is maximized by observing the raw image, i.e. by
the identity representation f(x) = x. Since data processing cannot increase information content, a
useful representation must preserve information while also making it easier to decode and act on it.

There are many possible definitions of what constitutes “easy decoding”. Common in literature is the
transfer through a simple predictor (e.g., linear) to new tasks. Here we propose a definition that stems
from the interpretation of differential entropy as the limit of discrete entropy for quantized versions
of the corresponding variables (Cover and Thomas, 2006). In our case, the description y(x) is
already discrete, but the representation vectors are continuous. We thus propose to discretize (vector-

3



Published as a conference paper at ICLR 2022

Image collection

Frozen 

Encoder ...

Feature extraction and quantization

𝜇𝐾

Concept extraction 

Image collection

...

Expert 1

Expert 2

Expert N

...

Reverse linear probing

... ...

ℎθ

Figure 1: Overview of our approach. (1) we evaluate pre-trained SSL models on an image collec-
tion, extracting and quantizing feature vectors to obtain clusters ( ... ), (2) we label the image
data with a diverse set of concepts ( ... ) from expert models trained with supervision on
external data sources, and (3) we train a linear model hθ to map concepts to clusters, measuring the
mutual information between the representation and human-interpretable concepts.

quantize) the representation and to use its information as a measure of semanticity. Intuitively, in the
limit of infinitely-fine quantization, this quantity reduces (up to a normalizing term) to the mutual
information above. For a finite number of clusters, however, a large value of information means
that the representation groups images in a way that makes sense to a human observer. In our case,
the quantization amounts to grouping images based on the L2-distance between their representation
vectors, i.e. clustering.

Formally, we use a vector quantization algorithm such as K-means (Lloyd, 1982) to learn a quan-
tizer function µK : RD → {1, . . . ,K} for the representation vectors, and estimate the mutual
information I(µK(f(x)), y(x)) by rewriting it as:

I(fK(x), y(x)) = H(fK(x))−H(fK(x) | y(x)), fK(x) = µK(f(x)). (1)
In the above equation, the first term denotes the entropy of the cluster assignments. In practice,
given a sample dataset X of images, we first run K-means to compute the quantizer µK , and then
compute the frequency of cluster assignments fK(x), x ∈ X to calculate the entropy. The second
term in Eq. (1) is the conditional entropy:

H(fK(x) | y(x)) = Ep[− ln p(fK(x) | y(x))] ≤ Ep[− ln q(fK(x) | y(x))],
where p is the true joint distribution between variables fK(x) and y(x). While this is difficult to
compute, we can upper-bound it by considering an auxiliary posterior distribution q interpreting the
conditional entropy as the cross-entropy loss of a predictor hθ : Y → K, parametrized by θ, that
maps labels y(x) to clusters fK(x). The gap can be minimized by learning the parameters θ.

In practice, learning the predictor may result in overfitting, which would lead to an over-optimistic
estimate of the mutual information. We address this issue by learning the predictor hθ on a subset
X̂ ⊂ X of the data and evaluating its cross-entropy loss on the remaining subsetX−X̂ . Importantly,
we consider a linear predictor (probe) for hθ, to further reduce the risk of overfitting. We refer to
this as quantized reverse probing, as it maps semantic concepts to quantized data representations.

Number of clusters The number of clusters K controls the size of the bottleneck. Mutual in-
formation increases monotonically as K increases, as we show in the Appendix (Fig. 6); when
comparing representations, it is thus important to fix a value of K and use it consistently. For added
convenience, in practice we report a normalised value of information (NMI).

Obtaining labelled data via automatic experts Similar to prior work on interpretation, our
method requires a dataset x ∈ X of images equipped with manually-provided labels y(x) ∈ Y .
Because we do not know a-priori which concepts may be captured by a given representation f(x)
under analysis, these labels should provide a good coverage for a number of different concepts (e.g.,
textures, object types, parts, etc.). A good example of such a dataset is Broden (Bau et al., 2017).

Because it would be cumbersome, and maybe even infeasible, to annotate any target dataset with all
present visual concepts, a cost-effective way to increase the coverage of the label space is to predict
the labels y(x) automatically via a battery of expert classifiers learned using full supervision. The
noise of these automated predictions is small compared to the noise in the correlation between the
concepts and the unsupervised/self-supervised visual representations under study.
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Figure 2: Forward vs. reverse probing. A dataset X embedded in R2 by two different represen-
tations, with meaningful clusters in representation space. Each data point has two binary attributes,
color y1(x): red or blue and shape y2(x): � or ©. Both representations separate these attributes;
however, color is not linearly separable in (b), so forward linear probing cannot recover this rela-
tionship. Decision boundaries are shown for the forward linear probes. On the contrary, our reverse
probing easily discovers that all combinations of shape and color map to well separated clusters.

Relation to linear probing Linear probing is a common approach for assessing representations.
A linear probe is a simple predictor hi ◦ f(x) ≈ yi(x) that maps the representation f(x) to a
specific concept yi (e.g., a binary attribute or a class label). The idea is that the representation
captures concept yi if the probe performs well. As a result, linear probing has become a standard
evaluation protocol in self-supervised representation to measure the (linear) classification accuracy
of the learned representations against a labelled set, commonly ImageNet (Russakovsky et al., 2015).
In interpretability studies, different formulations of linear probing (Alain and Bengio, 2017) are used
to understand intermediate layers of neural networks. Similar to our approach, the simplicity of the
probes (imposed via linearity and sometimes sparsity) is a necessary bottleneck for interpretability:
without such a constraint, the best possible probe would take the raw image as input.

Our method is complementary to linear probes, with some advantages. To discuss this point further,
we show an example in Fig. 2, where data points with color and shape attributes are encoded by two
different representations, such that they form well-defined nameable clusters, i.e. blue square, red
square, blue circle, and red circle. Forward linear probes (X →Y) can be trained as binary classifiers
h1, h2 for each attribute, mapping a feature vector (in this case, coordinates) to the corresponding
attribute value for each data point. If attributes are linearly separable (Fig. 2a), then forward probes
do well at separating the representation space. If an attribute is not linearly separable (color in
Fig. 2b), the predictive accuracy of the corresponding probe h1 reduces to chance, and consequently
reduces the average score. As a result, linear probes cannot always assess the meaningfulness of
clusters or, in other words, whether clusters in representation space respond to well-defined concepts.
On the contrary, if all data points in a cluster have consistent attributes, the reverse probe (Y→X )
achieves a high score for, e.g., “red square” without requiring the concept “red” to be also encoded
in the features. In this case, we can say that the model has discovered the concept of a “red square”
without identifying, in isolation, the concept “red”. Therefore, reverse probing handles combinations
of attributes naturally and allows to better assess the semanticity of clusters.

4 EXPERIMENTS

We use our method to evaluate a wide range of recent self-supervised representation learning and
clustering techniques. In the following, we compare these techniques according to the proposed
criterion, which results in a different ranking for state-of-the-art approaches. Further, we show
qualitatively how our method discovers elementary concepts encoded in the raw representations.

4.1 IMPLEMENTATION DETAILS

Attributes and expert models As a first step in our approach, we collect a set of attributes which
we expect to find encoded in the self-supervised representations; these include semantic object cat-
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Table 1: Different types of concepts used in our evaluation and corresponding datasets.

Categories Tasks/Datasets

OBJECTS IN-1k (Russakovsky et al., 2015); Open Images (Kuznetsova et al., 2020); MSCOCO [things] (Lin et al., 2014)
SCENE Places-365 (Zhou et al., 2016); Scene attributes (Patterson and Hays, 2012)
MATERIAL MINC (Bell et al., 2015); MSCOCO [stuff] (Caesar et al., 2018)
TEXTURE DTD (Cimpoi et al., 2014); Color (Bau et al., 2017)
OTHER Text detection; Sentiment; Photographic style

egories, scene types and attributes, materials and textures and possibly other information about the
photographic style or overall sentiment of an image (Table 1). We thus look for relevant human-
annotated datasets and expert models trained on these datasets, as a proxy to human knowledge.
This allows us to extract information related to such attributes on a different dataset or images in
the wild; in our experiments we focus on ImageNet (IN-1k) (Deng et al., 2009) as the target data
due to the large availability of pre-trained self-supervised models on this dataset. We concatenate
all available attributes and form M -dimensional binary vectors denoting the presence or absence of
each attribute in an image. We provide full details about the expert models in Appendix A. Since we
primarily focus on ImageNet, it is natural to also use the existing 1000 human-annotated labels. As
IN-1k already includes several fine-grained categories, we have not included further experts from
common fine-grained recognition datasets, such as iNaturalist (Van Horn et al., 2018).

Linear model For each method, we train a linear model mapping a set of input attributes to clus-
ters, which are obtained by K-means clustering on top of fixed representations and evaluate on a
held-out set. Further training details are provided in Appendix C.

4.2 COMPARISON OF SELF-SUPERVISED REPRESENTATIONS

We use reverse probing to evaluate recent self-supervised methods and rank them based on their se-
manticity (Table 2). Following convention, we categorize these models as contrastive (ÝÄ), positive-
only, (Ý), clustering-based (�), and handcrafted pretexts (á) — details are provided in Appendix B.
For each method, we freeze the pre-trained model and extract feature vectors on the IN-1k train data.
We run 5× K=1000-means to obtain different clusterings, each used to train a linear model using
all categories from Table 1. In addition to a normalized measure of mutual information (NMI), we
also report the adjusted mutual information (AMI), classification accuracy (top-1) and mean aver-
age precision (mAP). We also note the linear classification accuracy, as reported by the respective
source for each method. For fairness of comparisons, we group methods based on the number of
training epochs. For reference, we also evaluate the supervised counterparts in the same way as the
self-supervised methods. Overall, we find a relatively strong correlation between our approach and
the common linear evaluation protocol (Fig. 3). We also make the following observations:

Ranking Despite the strong correlation to linear classification accuracy, we obtain a different
ranking from the viewpoint of representational interpretability, using our approach. In particular,
state-of-the-art methods DINO, SwAV and BYOL fall slightly behind in our evaluation. The most
recent version of MoCo (v3) performs the best across three metrics, with DeepCluster-v2 and OBoW
ranking in the second place (across ResNet-50-based models).

Number of pre-training epochs For some methods, learned weights are available at various
epochs. In terms of interpretability, we observe no benefit in longer pre-training in the case of
DeepCluster-v2 and SwAV, despite the solid performance gains on standard benchmarks. However,
there is a noticeable gain for MoCo-v2, MoCHi and SimCLR between 200 and 800 epochs. Also
notable is that one of the best performing methods, OBoW is only trained for 200 epochs.

Clustering vs contrastive approaches Methods such as SeLa, OBoW, PCL and DeepCluster-v2,
which use a clustering mechanism during training, have generally more interpretable representa-
tions, i.e. they rank higher than methods with similar linear classification accuracy.

Architecture Interpretability increases with self-supervised methods that use a ViT (Touvron
et al., 2021; Dosovitskiy et al., 2021) backbone, showing a significant boost in all metrics, even more
so than what linear classification accuracy suggests. However, a fair comparison between MoCo-v3
and DINO is not possible due to pre-training for a different number of epochs (300 vs. 800).
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Table 2: Evaluation of self-supervised learning methods on ImageNet-1k (Russakovsky et al., 2015).
Lin. Acc. refers to the linear classification accuracy reported by the respective source for each model.
The remaining metrics are computed for our approach and reported as mean (±σ) over 5 clusterings.

Model Lin. Acc. NMI AMI Top-1 mAP

ResNet-50 (1×)

E
po

ch
20

0

á Jigsaw (Goyal et al., 2019) 46.58 37.36 ± 0.04 22.17 ± 0.04 9.80 ± 0.04 5.95 ± 0.04
� ClusterFit (Yan et al., 2020) 53.63 51.10 ± 0.07 38.78 ± 0.10 30.06 ± 0.09 25.41 ± 0.11
ÝÄ CMC (Tian et al., 2019) 58.60 51.96 ± 0.06 39.33 ± 0.07 29.01 ± 0.15 25.77 ± 0.23
ÝÄ MoCo-v1 (He et al., 2020) 60.60 55.94 ± 0.05 44.39 ± 0.07 34.36 ± 0.13 33.36 ± 0.17
� SeLa-v1 (Asano et al., 2020) 61.50 59.91 ± 0.04 49.02 ± 0.08 41.22 ± 0.13 39.94 ± 0.30
ÝÄ SimCLR (Chen et al., 2020a) 66.61 63.73 ± 0.07 54.87 ± 0.09 47.93 ± 0.09 53.95 ± 0.08
ÝÄ MoCo-v2 (Chen et al., 2020b) 67.70 64.76 ± 0.05 56.05 ± 0.05 47.53 ± 0.10 51.97 ± 0.19
ÝÄ InfoMin (Tian et al., 2020) 70.10 65.16 ± 0.07 57.27 ± 0.05 48.11 ± 0.11 54.79 ± 0.13
ÝÄ MoCHi (Kalantidis et al., 2020) 67.60 65.27 ± 0.09 56.94 ± 0.13 49.26 ± 0.22 56.15 ± 0.40

ÝÄ� PCL-v2 (Li et al., 2021) 67.60 68.89 ± 0.06 62.13 ± 0.09 53.72 ± 0.08 61.26 ± 0.16
� SwAV (Caron et al., 2020) 73.90 69.18 ± 0.05 61.68 ± 0.06 55.85 ± 0.09 62.77 ± 0.27
� OBoW (Gidaris et al., 2021) 73.80 71.50 ± 0.07 64.09 ± 0.09 57.25 ± 0.13 61.67 ± 0.22

E
po

ch
40

0 ÝÄ SimCLR (Chen et al., 2020a) 67.71 64.88 ± 0.09 56.45 ± 0.12 50.03 ± 0.17 56.92 ± 0.21
� SwAV (Caron et al., 2020) 74.60 69.09 ± 0.12 61.66 ± 0.18 56.06 ± 0.22 62.78 ± 0.25
� SeLa-v2 (Asano et al., 2020) 71.80 70.04 ± 0.06 63.43 ± 0.07 58.47 ± 0.15 68.33 ± 0.34
� DeepCluster-v2 (Caron et al., 2020) 74.32 70.85 ± 0.07 64.01 ± 0.12 58.91 ± 0.15 67.60 ± 0.27

E
po

ch
80

0

ÝÄ SimCLR (Chen et al., 2020a) 69.68 65.63 ± 0.14 57.48 ± 0.15 51.36 ± 0.17 59.11 ± 0.31
ÝÄá PIRL (Misra and Maaten, 2020) 69.90 65.92 ± 0.05 58.79 ± 0.09 51.95 ± 0.07 60.75 ± 0.11
Ý DINO (Caron et al., 2021) 75.30 68.73 ± 0.08 61.18 ± 0.11 55.33 ± 0.21 59.87 ± 0.21
� SwAV (Caron et al., 2020) 75.30 68.79 ± 0.05 61.19 ± 0.08 55.73 ± 0.06 62.17 ± 0.28
ÝÄ MoCHi (Kalantidis et al., 2020) 69.20 69.00 ± 0.07 61.77 ± 0.06 55.23 ± 0.07 63.81 ± 0.09
ÝÄ MoCo-v2 (Chen et al., 2020b) 71.10 69.02 ± 0.07 61.55 ± 0.11 54.17 ± 0.17 60.44 ± 0.10
ÝÄ InfoMin (Tian et al., 2020) 73.00 69.20 ± 0.02 62.54 ± 0.04 55.15 ± 0.10 63.84 ± 0.10
� DeepCluster-v2 (Caron et al., 2020) 75.18 69.44 ± 0.04 62.12 ± 0.05 57.01 ± 0.08 63.97 ± 0.26

E
po

ch
1k Ý Barlow Twins (Zbontar et al., 2021) 73.50 69.37 ± 0.08 61.69 ± 0.13 56.84 ± 0.18 61.32 ± 0.23

ÝÄ MoCHi (Kalantidis et al., 2020) 70.60 70.16 ± 0.06 63.37 ± 0.09 57.08 ± 0.16 66.18 ± 0.11
Ý BYOL (Grill et al., 2020) 74.40 70.48 ± 0.07 63.12 ± 0.10 58.36 ± 0.09 63.26 ± 0.25
ÝÄ MoCo-v3 (Chen et al., 2021) 74.60 71.45 ± 0.06 64.49 ± 0.09 59.58 ± 0.11 64.95 ± 0.43

Supervised (He et al., 2016) – 83.20 ± 0.06 78.82 ± 0.07 76.16 ± 0.14 78.53 ± 0.15

ViT-Base/16
ÝÄ MoCo-v3 (Chen et al., 2021) 76.70 79.06 ± 0.04 73.67 ± 0.05 70.51 ± 0.09 74.39 ± 0.28
Ý DINO (Caron et al., 2021) 78.20 81.46 ± 0.08 76.70 ± 0.11 72.95 ± 0.14 76.44 ± 0.18

Supervised (Touvron et al., 2021) – 94.36 ± 0.11 93.13 ± 0.14 92.02 ± 0.19 80.82 ± 0.15

4.3 EXPERT BREAKDOWN

Our next goal is to understand the effect of different concepts on explaining the representation,
i.e. answering the question: to which degree does the representation know certain concepts, e.g.,
material? As we focus on self-supervised representations, the answer to this question is far from
obvious. We measure this via the predictive ability of our probe, which we now train individually
for each group of concepts. These vary in nature; from highly semantic object categories (e.g., dog,
avocado) to lower-level features such as material (e.g., wood, brick), texture (e.g., bubbly,
striped) and color (e.g., red).

In Fig. 4, we show how the different concept groups contribute to the overall performance for se-
lected ResNet-50-based methods. We train and evaluate reverse probes for each shown combination,
e.g., IN-1K+OBJECTS, then IN-1K+OBJECTS+SCENE, etc. We compare variants with and without
using ground truth IN-1K categories as part of the input. We observe that for earlier methods, such
as MoCo-v1, ImageNet categories alone are not sufficient for accurately predicting the cluster as-
signments. In fact, it appears that using only semantic categories from MSCOCO and OpenImages
(w/o ImageNet) provides about as much information about the clusters. This likely suggests that
the discovered clusters do not reflect fine-grained distinctions, since the most notable difference be-
tween IN-1K and the other semantic experts is the granularity of some categories (e.g., dog breeds).
On the other hand, the best performing methods do owe a big part of their performance to IN-1K
concepts, meaning that they are able to recover clusters that are closer to the original label distribu-
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Figure 3: Linear classification accuracy on IN-
1k vs. classification accuracy of our probe (top-
1). A linear regression model is fit to the data,
suggesting strong correlation. Each point corre-
sponds to a ResNet-50-based model in Table 2.

MoCo-v1
MoCo-v2

SwAV
SeLa-v2

DeepCluster-v2
MoCo-v3

Supervised
0

10

20

30

40

50

60

70

80

To
p-

1
A

cc
ur

ac
y

(%
)

ImageNet
+ Objects
+ Scenes
+ Material
+ Texture
+ Other

ImageNet
+ Objects
+ Scenes
+ Material
+ Texture
+ Other

Figure 4: Contribution of each expert group to
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Table 3: Change in NMI when learning the reverse probe with individual concept groups on top of
the human-annotated IN-1K labels.

Method IN-1K OBJECTS SCENE MATERIAL TEXTURE OTHER

MoCo-v1 (He et al., 2020) 47.70 +2.73 +2.92 +2.93 +1.04 +0.21
MoCo-v2 (Chen et al., 2020b) 57.39 +2.43 +2.09 +2.03 +0.43 -0.24
SwAV (Caron et al., 2020) 61.94 +2.42 +1.92 +2.01 +0.23 -0.20
SeLa-v2 (Asano et al., 2020) 63.29 +2.23 +1.69 +1.69 +0.03 -0.45
DeepCluster-v2 (Caron et al., 2020) 64.29 +2.17 +1.54 +1.70 +0.12 -0.35
OBoW (Gidaris et al., 2021) 64.73 +2.77 +1.82 +2.13 +0.11 -0.15
MoCo-v3 (Chen et al., 2021) 67.69 +1.51 +0.32 +0.21 -0.36 -0.38

tion and that rely less on low-level concepts such as textures. This suggests that more performant
methods learn features highly correlated with IN-1K labels, but less with other semantic categories.

Finally, in Table 3, we also show the (decorrelated) effect of each individual concept group in isola-
tion but always in combination with the ground truth IN-1K categories. We observe that in absence
of concept combinations, the models we probed use as much (and sometimes more) information
about scene and material properties as information about semantic object categories. Miscellaneous
concepts (OTHER) do not appear relevant for more recent methods. We again observe that the rep-
resentations of the most recent, state-of-the-art MoCo-v3 share very little information with concepts
other than IN-1K, despite the lack of label information during pre-training.

4.4 QUALITATIVE RESULTS

Since the clusters we examine are learned without supervision and expert models are not perfect
predictors, it is crucial to verify that the clusters align with human interpretation, besides quantita-
tive scores. By inspecting the probe’s coefficients θ, one can qualitatively explore what concepts
are representative for specific clusters and how exposing the linear model to different sets of ex-
perts affects its predictive accuracy. In Fig. 5 we show pairs of clusters from MoCo-v2 for which
we observed a significant drop in pairwise confusion (estimated from the confusion matrix) with
the inclusion of an additional concept group on top of the fixed ImageNet label set. For example,
after including OBJECTS we notice that several pairs of clusters become more easily disambiguated
thanks to the concept person, or related concepts (human hand, human face, etc.). In Fig. 5
(top left), both clusters can be described by the ImageNet label French horn and it is only possi-
ble to explain their differences when more information becomes available. This finding supports our
initial hypothesis that there could be interpretable properties in the network that remain undetected
since they are not annotated a-priori in the benchmark data. Importantly, since ImageNet is only
annotated with a single label per image, combined concepts, such as “person playing the french
horn” cannot be discovered otherwise. Similarly, when adding SCENE concepts (top right), clusters
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Objects Scenes

Material Texture

Figure 5: Qualitative examples. We show pairs of clusters for which the estimated confusion was
significantly reduced after training the linear model with the corresponding concepts. We show and
discuss additional examples in Appendix E.

Table 4: Evaluation of selected IN-1k-pretrained methods on the Places-365 dataset. K-means
(K = {500, 1000}) and the reverse probe are trained on features extracted on Places-365.

K = 500 K = 1000

Model NMI AMI Top-1 mAP NMI AMI Top-1 mAP

MoCo-v2 54.41 51.84 41.18 42.15 54.81 47.34 34.05 32.74
SeLa-v2 57.02 54.66 45.04 46.42 56.72 49.76 37.46 36.48
SwAV 57.30 54.65 44.84 46.48 57.96 50.44 39.08 38.34
DeepCluster-v2 58.09 55.62 46.23 48.06 58.30 50.94 39.54 39.35

are distinguished by scene type; one contains volcanos, while the other contain mountains
and creeks (categories from Places-365). With MATERIAL, we can predict the shipwreck cluster
more accurately, while TEXTURE can explain the difference in the more stratified appearance
of cliffs for the cluster on the right. Thus, it appears that, despite the object-centric nature of Ima-
geNet, self-supervised representations rely significantly on context (e.g., SCENE and MATERIAL),
and concept combinations. This likely also explains why in (Van Horn et al., 2021) self-supervised
models perform equally or better than the supervised baseline at context, counting and gestalt tasks,
and why structural downstream tasks benefit more from self-supervision Kotar et al. (2021).

4.5 TRANSFER TO OTHER DATASETS

We finally evaluate the representations learned by selected methods by transferring them to a dif-
ferent domain. For this experiment, the self-supervised methods are not fine-tuned or adapted on
the new data. We perform the quantization on representations extracted on images from Places-365
and use all concepts from Table 5 but IN-1K (now using the available ground truth for Places-365
instead). We report the performance in Table 4 and observe that the same ranking generally holds.

5 CONCLUSION

We have introduced reverse linear probing, a measure of representation interpretability that allows
to explain representations by combining multiple concepts. Driven by the need to better understand
and characterize the representations learned by self-supervised methods, the proposed measure has
a rigorous foundation in information theory and provides complementary information to existing
benchmarks as well as insights into the semanticity and the importance of different concepts for
such models. Our approach is applicable to any representation and is considerably faster to train, as
all concepts can be pre-extracted on any given image collection.
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A EXPERTS: IMPLEMENTATION DETAILS

We provide all information about the concepts and experts used in our experiments in full detail.
Expert models are trained on various tasks and image datasets to extract information about the scene
and its objects, material, texture and miscellaneous (other). Then, the trained models are applied to
the target dataset (e.g., ImageNet (Russakovsky et al., 2015)). While the tasks differ in nature — e.g.,
segmentation (dense), detection, classification — in all cases we convert the predictions to binary
vectors. For example, in the case of segmentation and detection, we return only a (binary) label
vector denoting whether a class is present in a given image, discarding dense/location information.
We concatenate the experts’ binary predictions forming the concept vector y(x) for image x, i.e.

y(x) = [y(1)(x); y(2)(x); . . . ; y(m)(x)],

for m expert models with y(i) denoting the i-th expert. In the following, we provide some expert-
specific details and summarize them in Table 5.

Detection on Open Images. We use the Tensorflow Object Detection API and publicly available
Faster R-CNN model (Ren et al., 2016), trained on Open Images (600 object categories). We apply
the model to our target datasets and keep only object categories predicted with a confidence higher
than 0.5.

Segmentation on MS COCO. We use a DeepLab-v2 model (Chen et al., 2017) trained for seg-
mentation on MS COCO 2017 (Lin et al., 2014; Caesar et al., 2018), which includes 91 ‘thing’ and
91 ‘stuff’ categories. ‘Thing’ categories include common, countable objects with a well-defined
shape, such as person, dog, bicycle, etc.; ‘stuff’ categories typically include background regions,
such as sky, snow, wall, grass, etc. and are thus closely related to material properties. While we
experimented with confidence and minimum area thresholds for a predicted class to be considered
in our scenario, we found that simply returning all predicted categories performed best.

Scene Classification and Scene Attributes. Although ImageNet is an object-centric dataset, a lot
of images are related to specific scene types, e.g., outdoor scenery (mountains, seaside) or indoor
scenery (houses, shops). In fact, some ImageNet categories can even further subdivided by scene
type, for example dogs sitting indoors or playing in the park. It is thus crucial to consider scene
classification in our investigations. We use a pre-trained ResNet-50 model provided by the official
repository of the Places-365 database (Zhou et al., 2017) and assign each image of our target dataset
to a scene category. Further, we use the provided unified model (wide ResNet-18) to predict multiple
scene attributes per image. The model is trained on the SUN Attribute Database (Patterson and
Hays, 2012), which contains 102 categories describing scene properties, e.g., man-made vs. natural
or enclosed vs. open area.

Texture and Material Classification. For further detecting material concepts, we train a Deep
Encoding Network (DEP) (Xue et al., 2020) on the Materials in Context (MINC) dataset (Bell et al.,
2015), which consists of 23 categories (include a background class). We then do the same on the
Describable Textures Dataset (DTD) (Cimpoi et al., 2014), which consists of close-up images for 47
texture categories. DEP uses ResNet-50 (He et al., 2016) as backbone and is trained for single-label
classification. We apply the trained models to our target datasets, thus returning a single label per
image in each case.

Text Detection. Next, we wish to identify the presence of text in the images to investigate whether
this is a deciding factor in clustering the image features (e.g., camera dates or watermarks). As
a text detection expert, we use CRAFT (Baek et al., 2019) (official implementation) without the
refinement step. We only return one bit representing whether the image contains text or not, rather
than character recognition. Overall, we found that text as a concept did not contribute significantly
in our experiments.

Sentiment Analysis. We use a VGG-19 classifier (Simonyan and Zisserman, 2014) trained on the
Twitter for Sentiment Analysis Dataset (T4SA) to classify the sentiment for each image into one of
three classes (positive/neutral/negative) and use the sentiment prediction as an additional concept.
As with text, we found that sentiment does not significantly affect the performance. We found the
predictions of the expert model to be somewhat unreliable; this is also likely due to the fact that
sentiment is a rather subjective quality.
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Table 5: Summarization of expert models and datasets used in our work for concept extraction.

Category Datasets #Classes Task Model Source

OBJECTS
Open Images
MS COCO (thing)

600
91

Segmentation
Detection

Faster R-CNN
DeepLab-v2 (ResNet-101)

*
*

SCENES
Places-365
SUN Attribute

365
102

Single-label Classification
Multi-label Classification

ResNet-50
WideResNet-18 *

MATERIAL
MS COCO (stuff)
MINC

91
23

Segmentation
Single-label Classification

DeepLab-v2 (ResNet-101)
DEP (ResNet50)

*
*

TEXTURE
DTD
Color

47
11

Single-label Classification
Quantization

DEP (ResNet-50)
-

*
*

OTHER
SynthText, IC13, IC17
T4SA
OpenAI Data (unreleased)

1
3
9

Text Detection
Sentiment Classification
Image/Text Similarity

CRAFT
VGG-19
CLIP

*
*
*

Photography. We have observed differences in the photographic style, quality and type of images
in ImageNet, e.g., ranging from macro photography, usually for flowers or insects, to vector illus-
trations. In order to probe the representations for style and image quality, we use the recent CLIP
model (Radford et al., 2021), trained on 400 million image-text pairs collected from the web and
create a set of candidate sentences: “a high quality photo”, “a noisy, grainy image”, “a blurry im-
age of low quality”, “macro photography”, “a photo with out of focus background, bokeh effect”,
“an animated picture, a vector illustration”, “a painting”, “a portrait”. We use the pre-trained CLIP
model to compute image and sentence features (normalized to unit norm) and use the dot product
to find the similarity between each image and each one of the sentences. We pick the sentence with
the highest similarity as the predicted class for each image if the score is at least 0.5, else we assign
a background class. Since CLIP operates on free-form text rather than a fixed set of categories, its
use is not limited to this type of queries; it can be used as an expert where a labelled dataset might
unavailable.

B SSL MODELS

We have evaluated a wide array of self-supervised models, which we divide into the following
categories.

(ÝÄ) Contrastive methods make use of positive and negative examples and learn representations
by drawing positive samples together while pushing negative samples apart. Based on the idea of
instance discrimination, positive examples are constructed from different views of the same im-
age, thus the representation learns invariance to the choice of transformations, which are typically
rather aggressive. We have evaluated MoCo, SimCLR, CMC, InfoMin and MoChi as contrastive
approaches.

(Ý) Positive-only methods do not discriminate between instances, eliminating the need for negative
examples altogether. However, simply removing negative examples can result in collapse (features
can be a single constant vector). For this reason methods that use only positive examples avoid
feature collapse through other techniques such as regularization or distillation. From this family of
methods, we have evaluated BYOL, DINO and Barlow Twins.

(�) Another family of methods can be categorized as clustering-based. Clustering is another way
to enforce invariance and it relies on the assumption that meaningful groups exist in the data, such
that intra-group similarities can be maximized and inter-group similarities should be low. Offline
clustering methods typically alternate two steps, i.e. assign datapoints to clusters based on their
representations and optimize the model given the current cluster assignments. Online approaches,
like SwAV, perform clustering in a minibatch and only enforce consistent assignments for differ-
ent views of the same image. We have evaluated ClusterFit, SeLa, DeepCluster-v2 and SwAV as
clustering-based approaches, as well as PCL which combines clustering and a contrastive objective.

(á) Earlier methods on self-supervised visual representation learning devised handcrafted pretext
tasks. As a representative of this category, we have evaluated Jigsaw, which trains the model to
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solve puzzles as the pretext task. We also evaluated PIRL, which combines the Jigsaw task with
NCE, to learn representations that are invariant to the input perturbations.

C TRAINING DETAILS

Linear model We evaluate representations from a number of pre-trained self-supervised feature
extractors (Table 2). For ResNet-50 models, we evaluate features at the output of the average pooling
layer (2048-d). For ViT-Base models we evaluate the [CLS] token of the last self-attention layer
(768-d). For each model, we pre-extract and store features for the entire training set of ImageNet
and, prior to clustering, we standardize them to zero mean and unit standard deviation. We then
run K-means for 100 steps using faiss (Johnson et al., 2017) and choose the best out of 5 runs.
We divide the data into train and test sets by splitting all cluster assignments with a 80/20 ratio and
stratified sampling; from the training split we also reserve 20% of the data for validation. Finally, we
train the linear model with the cluster assignments as targets and concept vectors as inputs (where
the concepts are pre-extracted on a given image collection, e.g., ImageNet). We train for up to 100
epochs with batch size 512 and optimize using SGD with a momentum of 0.9 and initial learning rate
of 3.5 which is further reduced by a factor of 10 at epochs 60 and 80. We also add L2-regularization
with weight 3× 10−6.

Computation Given a dataset (e.g., ImageNet) and a set of experts (e.g., the ones listed in Table 5),
all labels can be pre-computed for all images in the dataset. Feature vectors for a given model can
be also pre-extracted and stored for the whole dataset. Our method computes cluster assignments
using the efficientK-means implementation of faiss (which takes less than 5min for 256k 2048-d
vectors on 4 NVIDIA RTX A4000). Training of the linear model converges in less than 100 epochs
in a matter of minutes on a single GPU (1 epoch takes 2sec). We should note that standard linear
probing on ImageNet typically requires full images (including online augmentations) and multiple
forward passes through the frozen feature extractor, which makes it significantly slower to train.

D FURTHER ANALYSIS

In addition to the results and discussion in the main paper, we provide more investigations and
insights.

D.1 MUTUAL INFORMATION BETWEEN CONCEPTS AND IMAGENET CATEGORIES

One interesting question that arises is to which extent the elementary concepts we are considering
are predictive of ImageNet labels. We answer this question by training a linear model to predict the
ground truth label (instead of a pseudo-label) for each image from its concepts. This results in top-1
accuracy of 46.8% (NMI: 64.2, AMI: 54.2) — and significantly less if we exclude ‘object’ concepts
that overlap with ImageNet labels. This suggests that using additional concepts provides information
which is complementary to the fixed label set of ImageNet, further justifying our approach.

D.2 VARYING K

As discussed in Section 3, the mutual information between a representation f(x) and a fixed set of
concepts y(x) is maximized when f(x) = x, i.e. any processing of x cannot increase the amount
of information. It is thus expected that with an increasing number of clusters (K), I(fK(x), y(x))
will monotonically increase, as we approximate f(x) (i.e. when each sample is its own cluster).
We verify this empirically in Fig. 6. For a fair comparison across methods, we have fixed K =
1000 for all experiments on ImageNet experiments in the main paper. To better understand the
effect of the number of clusters, in Fig. 7 we also show the performance of most methods for K ∈
{500, 1000, 1500, 2000, 2500, 3000}, measuring NMI, AMI and top-1 accuracy, for the predictions
of the reverse linear probe trained with all concepts. Importantly, we observe that for K ≥ 1000
the relative ranking of methods remains mostly consistent regardless of the number of clusters. The
top three methods, MoCo-v3, OBoW and DeepCluster-v2 perform similarly and converge for larger
K, followed by SeLa-v2, SwAV, BarlowTwins and DINO. Further, we observe that BYOL scales
gracefully for larger K, reaching the performance of the top methods; the opposite is observed for
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Figure 6: Empirically estimated mutual information between fK(x) and y(x) for varying K.

500 1000 1500 2000 2500 3000

K

64

66

68

70

72

N
M

I(
%

)

500 1000 1500 2000 2500 3000

K

45

50

55

60

65

A
M

I(
%

)

500 1000 1500 2000 2500 3000

K

35

40

45

50

55

60

65

To
p-

1
A

cc
ur

ac
y

(%
)

MoCo-v3
BYOL
DeepCluster-v2
OBoW
SeLa-v2
SwAV
MoCHi
MoCo-v2
SimCLR
PCL-v2
DINO
BarlowTwins

Figure 7: Performance of self-supervised methods (architecture: ResNet-50) for varying number of
clusters K. The ranking remains mostly consistent.

PCL-v2 which does not scale as well. Though it is important to study the effect of varying K, we
should also note that our results do not appear sensitive to it, as similar trends are observed for all
methods.

D.3 DISCUSSION ON CLUSTERING-BASED METHODS

We have observed that methods that employ a clustering mechanism during training have gener-
ally more interpretable representations. A natural question that arises is whether clustering-based
evaluation naturally favors such approaches.

However, clustering has already been shown to work well even for contrastive ap-
proaches (Zheltonozhskii et al., 2020), which is also further confirmed by our experiments. In our
evaluations, the highest ranked models are MoCo-v3 (1k epochs) and OBoW (200 epochs). MoCo-
v3 uses a contrastive objective, while OBoW follows a different approach from previous methods
with a bag-of-words prediction task that puts emphasis on contextual information and local feature
statistics. Our results align with the intuition behind OBoW (Gidaris et al., 2021) that encoding
local concepts via a bag-of-visual-words approach yields richer, context-aware representations. An-
other example, SeLa, uses Sinkhorn-Knopp optimization to compute the cluster assignments, while
DeepCluster-v2 uses spherical K-means. All these clustering mechanisms differ from the one used
specifically in our experiments. Moreover, SeLa and DeepCluster-v2 train with K = 3000 proto-
types, and there is no reason to believe that their representations are optimal for all values of K, and
as we discussed above, the relative ranking of methods does not depend on the choice of K.
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Method NMI AMI Top-1 mAP

SeLa-v1 (K-means) (Asano et al., 2020) 64.66 37.37 33.05 29.29
SeLa-v1 (self-label) (Asano et al., 2020) 62.02 31.92 29.22 24.51

SCAN (K-means) (Van Gansbeke et al., 2020) 69.02 61.56 54.17 60.44
SCAN (self-label) (Van Gansbeke et al., 2020) 73.76 73.76 62.10 63.63

Table 6: Evaluation of self-labelling methods. “Self-label” denotes clusters which are predicted
directly from the model and which are used to train the reverse probe. We compare these to the
clusters obtained with K-means on the representation vectors (as in the main paper). K = 3000 for
SeLa and K = 1000 for SCAN to match the number of pseudo-labels predicted by the respective
models.

Method Top-1 Top-5 NMI AMI

MoCo(v2) 40.30 75.57 60.14 50.38
12.67 32.45 26.73 16.53

MoCHi 41.03 75.62 59.89 50.48
12.64 31.71 25.66 15.98

SwAV 45.73 78.56 62.75 53.77
17.71 43.64 26.39 18.72

OBoW 46.92 78.73 64.82 55.75
12.23 31.72 27.45 16.82

DeepCluster(v2) 47.20 79.90 63.25 54.77
19.73 46.81 26.84 19.43

SeLa(v2) 47.62 80.87 62.88 54.91
20.61 48.83 25.32 18.36

Table 7: Reverse probes evaluated on ObjectNet in comparison to ImageNet (in black).

D.4 K-MEANS FOR SELF-LABELLING METHODS

We now look specifically at self-labelling methods, SeLa (Asano et al., 2020) and SCAN (Van Gans-
beke et al., 2020), to investigate the difference between (a) the pseudo-labels predicted directly by
each method and (b) clustering the learned representations with K-means, i.e. same as the experi-
ments reported in the main paper. SeLa follows an optimal transport approach that yields clusters
of approximately equal size. We found that this weakens the quality of its self-labels but results
in stronger clusters after K-means and consequently in improved performance in our evaluations.
Since SeLa is originally trained with 3000 classes1, in Table 6 we compare its pseudo-labels with
K = 3000-means clustering in Table 6. SCAN builds on top of a representation learning method,
i.e. MoCo (He et al., 2020) and, with a learnable clustering approach that removes adverse effects
of low-level features, it produces more semantic pseudo-labels, improving upon K-means. Thus
SCAN (self-label) results in improved performance in Table 6.

D.5 TESTING ON OBJECTNET

Next we provide an evaluation of selected self-supervised methods using the reversed probes on the
challenging test set ObjectNet (Barbu et al., 2019), evaluating the transferability of the quantized
representations. Specifically, we use the the reversed probes trained for each method on ImageNet
to assign ObjectNet samples to clusters, measuring the success of the classification (accuracy, NMI,
AMI) against the corresponding K-means assignments, i.e. we measure if we can successfully pre-
dict the cluster assignments from predicted concepts, without any further training/adaptation. Here,
we use the probes trained with all experts as input, except for the real ImageNet labels to account for

1https://github.com/yukimasano/self-label
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ObjectNet categories that do not appear in ImageNet. We notice a significant drop in performance
which suggests that a domain gap is indeed present, though the ranking stays again roughly the same
(with the exception of OBoW).

E QUALITATIVE EXAMPLES

Finally, in Figs. 8, 9, 10 and 11 we present several additional qualitative examples that highlight
the usefulness of reverse probing. Similar to Fig. 5 in the main paper, we begin by showing self-
supervised clusters which are similar; they often contain images belonging to the same ImageNet
categories. As a result, when training a (reverse) linear probe from ImageNet labels to pseudo-labels
(cluster assignments), pairs of clusters with overlapping concepts will typically have high confusion
(computed from the confusion matrix). We then add a concept group on top of the ImageNet labels
and train a second linear probe, e.g., in Fig. 9 we include concepts from Places-365 and SUN At-
tributes. We can then identify pairs of clusters for which the inclusion of these concepts significantly
reduced the ambiguity of the mapping, therefore reducing the confusion. Finally, for each pair of
clusters we show the difference in linear model’s coefficients as a word cloud, with larger differ-
ences denoted by larger font size. In other words, we show the concepts that are most important to
distinguish the two clusters (blue for (i) and red for (ii)).

In this way, we were able to discover and understand fine-grained differences between clusters and
even problematic cases when considering only ImageNet labels. For example, we find that several
ImageNet categories appear in combination with people (e.g., musical instruments). The quantized
space of self-supervised representations (for all methods) appears to separate the corresponding
images based on whether they contain people or not (examples shown in Fig. 8 (a), (c) and (d)).
Noteworthy are the clusters in Fig. 8 (d), both of which correspond to the same ImageNet label
(hockey puck), although they are visually very different. Including additional concepts, such
as person or sports equipment, justifies their distinction into separate clusters and aligns
with human intuition — perhaps even more so than assigning them to the same class. In Fig. 9 we
show examples where clusters with images from the same ImageNet category differ by scene-related
concepts such as flying vs. perched birds, wolves and orcas in different environments and even the
inside vs. outside of a building. Material categories (Fig. 10) are helpful to understand environment
or context and whether images contain hands (skin). Finally, texture (Fig. 11) can be used to tease
apart details at a macro level, e.g., cut and whole fruits or peacocks with open or closed plumage.
Overall, texture becomes less relevant models which are better at semantic discrimination. We also
found that other concepts, such as text, sentiment and image quality do not significantly affect the
clustering.

To summarize, we have proposed reverse linear probing as a way to understand whether interpretable
clusters form in the representation space of self-supervised methods. While we provide a quantifi-
able measure for this — more interpretable clusters will be predicted with higher accuracy — we also
show that we can qualitatively identify how concepts are encoded in the quantized representations
through the linear probe’s coefficients. We finally show that such concepts are often complemen-
tary to ImageNet labels and can in fact correctly push clusters which are seemingly semantically
close — based on a fixed label set — farther apart (e.g., Fig. 9(d)).
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(a)

( i ) ( ii )

MoCo(v2)

(b)

SwAV

(c)

DeepCluster(v2)

(d)

SimCLR

Figure 8: Clusters found by unsupervised methods, where each pair (i)-(ii) contains the same (or
similar) ImageNet label(s). Confusion is high when probing with ImageNet categories alone, but
is significantly reduced after including Object concepts from experts trained on COCO-thing and
Open Images (OID) categories. The word clouds show the difference in the regressor coefficients
for each pair (absolute value is denoted by increasing font size with blue: (i) > (ii) and red: (ii) >
(i)).
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(a)

( i ) ( ii )

SeLa(v2)

(b)

SwAV

(c)

DeepCluster(v2)

(d)

MoCHi

Figure 9: Clusters found by unsupervised methods, where each pair (i)-(ii) contains the same (or
similar) ImageNet label(s). Confusion is high when probing with ImageNet categories alone, but is
significantly reduced after including Scene concepts from experts trained on Places-365 categories
and SUN Attributtes. The word clouds show the difference in the regressor coefficients for each pair
(absolute value is denoted by increasing font size with blue: (i) > (ii) and red: (ii) > (i)).
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(a)

( i ) ( ii )

SeLa(v2)

(b)

MoCHi

(c)

BYOL

(d)

OBoW

Figure 10: Clusters found by unsupervised methods, where each pair (i)-(ii) contains the same (or
similar) ImageNet label(s). Confusion is high when probing with ImageNet categories alone, but
is significantly reduced after including Material concepts from experts trained on COCO-stuff and
Material in Context (MINC). The word clouds show the difference in the regressor coefficients for
each pair (absolute value is denoted by increasing font size with blue: (i) > (ii) and red: (ii) > (i)).
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(a)

( i ) ( ii )

MoCHi

(b)

MoCo(v2)

(c)

SwAV

(d)

MoCo(v2)

Figure 11: Clusters found by unsupervised methods, where each pair (i)-(ii) contains related Ima-
geNet label(s). Using Texture concepts from experts on the Describable Textures Dataset (DTD)
and 11 elementary colors helps reduce the confusion comparing to using only ImageNet categories.
Clusters where texture helps are usually of lower quality and more recent methods depend less on
textures.
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F RELATION TO TOPIC MODELS

Probabilistic topic models, such as LDA (Blei et al., 2003), often used in natural language process-
ing, aim to recover the latent semantic structure, i.e. a set of abstract “topics”, from a collection
of documents. The goal is to find the collection of the topics that best represent the corpus, with
each document typically containing multiple topics in different proportions. However, the unsuper-
vised nature of these models and the lack of a gold standard makes their evaluation a long-standing
problem. For this reason, several automatic “topic coherence” measures have been proposed that
evaluate the degree of semantic similarity of the top words in a topic (Mimno et al., 2011; Aletras
and Stevenson, 2013; Newman et al., 2010; Röder et al., 2015), while human evaluations are also
common (Chang et al., 2009; Morstatter and Liu, 2018).

There is a similarity between topic coherence and the way we evaluate models. However, this
analogy breaks down rather quickly. To discuss this, we can directly map the terms of topic models
(topics, documents and words) to our scenario (clusters, images and concepts) in this order. The
semantic coherence of a topic (cluster) is often measured by the co-occurrence of words (concepts)
across documents (images). One immediate difference that arises is that in topic modeling the
original space (corpus) is authored by humans and can be thus considered interpretable. Measures
of coherence are introduced to understand whether the topics found by a model are also interpretable,
i.e. evaluating the model producing the topics. In our case, we do not know the degree to which the
original space (representation) is interpretable and this is precisely what we aim to quantify with our
method.

Another conceptual difference is that topic models operate on a higher level of abstraction: a topic
is a collection of words that describe a higher-level idea defined by this collection of words. This
is sensible as the goal in topic modelling is to discover which words describe higher-level ideas and
can be likely grouped together vs. irrelevant words.

In our case, this is not necessary, as the expert annotations already define the relevant concepts. A
further abstraction is unnecessary and in fact it may even be undesirable because we are interested
in the minimum number of concepts that may explain a cluster. For example, a topic of “animals”
may be coherent, yet a cluster of “animals” lacks specificity because it may contain a multitude of
classes.

Finally, the main mechanism in evaluating topic coherence is co-occurrence of words in the general
corpus (documents). In our case, this translates to visual concepts co-occurring in the same image
and models relationships between concepts in the images/the real world, whereas we are interested
in the relationship between clusters and concepts as they have been learned by the model.

26


