
ResMem: Learn what you can and memorize the rest

Zitong Yang
Stanford University
Stanford, CA 94305

zitong@berkeley.edu

Michal Lukasik
Google Research

New York, NY, 10011
mlukasik@google.com

Vaishnavh Nagarajan
Google Research

New York, NY, 10011
vaishnavh@google.com

Zonglin Li
Google Research

New York, NY, 10011
lizonglin@google.com

Ankit Singh Rawat
Google Research

New York, NY, 10011
ankitsrawat@google.com

Manzil Zaheer
Google Research

New York, NY, 10011
manzilzaheer@google.com

Aditya Krishna Menon
Google Research

New York, NY, 10011
adityakmenon@google.com

Sanjiv Kumar
Google Research

New York, NY, 10011
sanjivk@google.com

Abstract

The impressive generalization performance of modern neural networks is attributed
in part to their ability to implicitly memorize complex training patterns. Inspired by
this, we explore a novel mechanism to improve model generalization via explicit
memorization. Specifically, we propose the residual-memorization (ResMem)
algorithm, a new method that augments an existing prediction model (e.g., a neural
network) by fitting the model’s residuals with a k-nearest neighbor based regressor.
The final prediction is then the sum of the original model and the fitted residual
regressor. By construction, ResMem can explicitly memorize the training labels,
even when the base model has low capacity. We start by formulating a stylized
linear regression problem and rigorously show that ResMem results in a more
favorable test risk over a base linear neural network. Then, we empirically show that
ResMem consistently improves the test set generalization of the original prediction
model across standard vision and natural language processing benchmarks.

1 Introduction

Large neural networks achieve remarkable generalization on test samples despite memorization of
training samples, in the sense of achieving zero training error [54]. Several recent analyses have
established that, under certain settings, memorization is sufficient to achieve generalization [3, 15, 5,
40, 4], and, more surprisingly, can even be necessary [17, 19, 11]. These works suggest that suitable
memorization can be a valuable desiderata for learning. While increasing model size is a conceptually
simple strategy to enable memorization, this has the obvious downside of significantly increasing the
cost of model training and serving. This raises a natural question: are there alternate mechanisms to
improve the memorization (and thus generalization) of a relatively small model?

In this paper, we propose residual memorization (ResMem), a simple yet effective mechanism that
achieves this goal (cf. Figure 1). Compared to the implicit memorization performed by large neural
models, the key idea behind ResMem is to perform explicit memorization via a separate k-nearest
neighbor component. Specifically, ResMem involves first training a standard neural network fDeepNet,
and then explicitly memorizing the model’s residuals with a k-nearest neighbor based regressor rkNN.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Response

Features

fDeepNet

(a) Step 1: learn the training set.

Features

Residual

(b) Step 2: compute the residual.

rkNN

Residual

Features

(c) Step 3: memorize the residual.

Figure 1: Illustration of the residual memorization (ResMem) algorithm. In a nutshell, we first
fit a small deep network fDeepNet on the training sample (Figure 1(a)). When this network is non-
memorizing, it incurs non-zero residual errors in its predictions (Figure 1(b)). We then fit a k-nearest
neighbor based regressor on these residuals (Figure 1(c)). The final prediction is given by the sum
of the initial network and k-NN regressor predictions. In all three figures, the x-axis represents
the features in a supervised learning problem. In Figure 1(a), the y-axis represents the targets of
prediction. In Figure 1(b) and 1(c), the y-axis represents the residual of the initial fitting from Step 1.

Memorization through k-nearest neighbor can be efficiently computed with various approximation
schemes (e.g. [24]). Subsequently, the ResMem prediction on an instance x is given by the sum of
the two components, i.e., fDeepNet(x) + rkNN(x).

We start by formulating a stylized linear regression problem that captures the essence behind
ResMem (cf. Section 3). Our analysis (Theorem 3.3) shows that, without ResMem, the test risk of
the base linear neural network decreases to an irreducible constant as the number of samples goes to
infinity. In contrast, the test risk of ResMem decreases to zero. The insight of theoretical analysis is
that ResMem augments the capacity of the parametric linear network by adding a non-parametric
component (i.e., nearest-neighbor).

Empirically, we show that such explicit memorization indeed leads to generalization benefits:
ResMem consistently improves the test accuracy of a baseline DeepNet on image classification
tasks with CIFAR100 [33], and autoregressive language modeling on C4 [42] (Section 4). Towards
understanding this improved performance, we hypothesize that ResMem works by learning in two-
stages (cf. Section 4.4). Specifically, we posit that the initial DeepNet fDeepNet learns some coarse
structure, and ResMem rkNN supplements the DeepNet prediction with fine-grained details (cf. Figure
3). We verify our hypothesis via qualitative analysis on CIFAR100 and C4 (Section 4.4).

To summarize, our contributions are:

(1) We propose residual-memorization (ResMem), a two-stage learning algorithm that combines a
base prediction model with a nearest neighbor regressor (cf. Figure 1);

(2) We theoretically analyze the rate of convergence of ResMem on a stylized linear regression
problem, and show that it can improve upon the base prediction model (Section 3).

(3) We empirically demonstrate that ResMem improves test performance of neural networks (cf. Sec-
tion 4), particularly when the training set is extremely large;

1.1 Applicable scenarios of ResMem

From our theoretical and empirical analysis, we posit that ResMem (Figure 1) yields the largest
margin of improvement over a base DeepNet when it is infeasible to perform implicit memorization
with the latter. We discuss three such scenarios below. Each of our main empirical or theoretical
results roughly corresponds to one of these settings.

• Complex dataset. In this scenario, the Bayes-optimal decision boundary is very complex, and is
beyond the capability of the neural network itself. To demonstrate this, we analyze a theoretical
linear regression problem where the target regression function is not contained in the hypothesis
class of linear neural networks (cf. Section 3).

2

• Large sample size. Here, the number of training samples is large enough to make training set
interpolation (i.e., achieving zero training error) infeasible for a given neural network model.
For example, current large language models (LLMs) may be trained for at most a single epoch
over trillions of examples [12]. By contrast, ResMem can circumvent this issue by explicitly
memorizing the training samples. We emulate this scenario by considering a causal language
modeling task on the C4 dataset (cf. Section 4.3).

• Small model. In many practical settings, one may prefer a smaller model over a state-of-the-art
model due to the training and deployment cost constraints. We emulate such a setting through an
image classification task where it is indeed feasible to memorize the training data perfectly using
state-of-the-art neural networks, but instead, we use smaller neural networks for computational
efficiency (cf. Section 4.2).

2 Related work

We discuss two types of related work: Section 2.1 for literature on memorization and generalization
that motivates the ResMem algorithm; Section 2.2 for other related algorithms similar to ResMem.

2.1 Memorization for generalization: prior work

Memorization is compitable for generalization. Overparameterized neural models with many
more parameters than training samples have the capacity to perfectly fit (or interpolate) even random
training labels [54]; i.e., they can drive the empirical loss to zero for any training set. At the same
time, when trained on real-world datasets, increasing model complexity tends to improve model
performance [40, 52]; that is, the models do not simply memorize the training sample, but rather learn
generalizable patterns. Several works have sought to understand the reasons behind this behaviour,
both empirically [2] and theoretically [3, 15, 8, 5, 40, 36, 38, 4, 48, 50, 53]. One recurring message
from the theory is that memorization (in the form of interpolation) can be sufficient for generalization.

Memorization can be necessary for generalization. Some recent works [17, 11] showed that
memorization — either in the sense of interpolation, or in a more general sense of stability [18] —
may be necessary for generalization. Feldman [16] considered a setting where the label distribution
exhibits a long-tailed distribution, and showed that to prevent incurring a large error on the large
number of under-represented classes, it may be necessary to memorize many of their associated
training samples. Cheng et al. [11] considered a linear regression setting where it is beneficial to fit
the training targets to error lower than the Bayes-error (i.e., the inherent noise in the targets).

2.2 Relation to existing algorithms

Nearest neighbor method. The k-nearest neighbor (k-NN) [14, 32, 26, 7] method assigns label to
a test sample based on the label of its nearest neighbor(s) in the training set. Owing to its simplicity,
flexibility in defining input similarity, and computational efficiency with various approximation
schemes [22, 39], this method remains popular. However, the performance of k-NN drops as data
becomes high dimensional [10, 39]. Therefore, to apply it to high dimensional data such as image
and text [55], one approach is to learn a representation of data using neural networks [44]. Following
this approach, [13] finds that applying k-NN directly to memorize the training labels yi yields similar
performance with the original softmax based neural network classification. In contrast, ResMem
applies k-NN to memorize the residual ri over the predictions of a base network.

Boosting and residual fitting. Boosting algorithms such as AdaBoost [20] seek to construct an
ensemble of “weak learner” models with good generalization. AdaBoost achieves this in an iterative
manner, and can be interpreted as a particular instantiation of forward stage-wise regression [21], a
classical procedure from statistics [23, 1, 47]. Intuitively, at each round, one builds a new weaker
learner by fitting the residual of the ensemble of weak learners constructed thus far. This fitting is
performed iteratively. ResMem can be loosely regarded as a two round boosting algorithm where the
first “weak learner” is the base neural network and the second “weak learner” is the nearest-neighbor
component. Note that there is no need for the thrid “weak learner”, because the nearest-neighbor
component already perfectly memorizes the neural network residuals.

3

Memory-augmented language models. In the language modelling literature, several works explore
combining neural models with an external database or memory, which can be queried to retrieve
additional context [34, 25, 6, 35]. Closer to our work, Khandelwal et al. [30] employ a linear
combination of neural network and k-NN classifier components. However, a crucial difference is
that our k-NN components memorizes the residual of the DeepNet prediction, whereas Khandelwal
et al. [30] memorizes the target label directly; i.e., their approach is akin to an ensemble of k-NN
and a deep network. Various forms of memory have also been considered in generic classification
problems [41, 48, 51]. This line of literature again differs from ResMem in that their memory tries to
memorize labels directly, whereas ResMem memorizes the residuals, leading to a natural combination
of the neural network and the memory component.

Model compression for large neural networks. Since ResMem boosts the test accuracy of a
small, non-memorizing neural network, we can also view it as a technique that allows a small
network to match the performance of a larger one. This relates to the model compression literature.
Distillation [29, 9] is a popular strategy for compressing a large neural model to a smaller one. For
a survey of other effective strategies, including pruning, see Menghani [37]. In Appendix C.2, we
discuss how ResMem can be regarded as a “dual procedure” of distillation.

3 Theoretical results

As discussed in Section 1.1, ResMem yields the largest improvement when implicit memorization is
infeasible. In this section, we formulate (cf. Section 3.1) and analyze (cf. Theorem 3.3) a stylized
linear regression problem that concretizes such a setting.

Recall that ResMem (Figure 1) involves first training a base neural network fDeepNet, and then fitting
the residual of fDeepNet on the same training data using a nearest-neighbor regressor rkNN. For
feasibility of theoretical analysis, we simplify fDeepNet with a single layer linear neural network, i.e.
linear regression, and we consider 1-nearest neighbor instead of k-nearest neighbor to memorize the
residual of this network. Our results suggests that ResMem improves test-time generalization by
augmenting the capacity of the base model with a non-parametric nearest-neighbor component.

3.1 Assumptions and setting

In this section, we present the setup and assumptions for the stylized linear regression problem. We
consider a setting where the function class that we minimize over does not include the ground-truth
function that relates the covariates to the response. Therefore, even with infinite samples, the test
loss will decay to a positive constant. We exactly characterize the rate of decay, and show that it
converges to 0 under ResMem. Our analysis rests on the following assumptions.

Assumption 3.1 (Distribution of covariates). The distribution of covariate x ∈ Rd, denoted by Px,
is the uniform distribution1 over a Euclidean norm ball centered at the origin of radius

√
d+ 2. The

choice of radius ensures that Ex∼Pxxx
T = I .

Assumption 3.2 (Linear regression over norm ball). Consider the problem of learning a linear
function f⋆(x) = ⟨x,θ⋆⟩ with ∥θ⋆∥ = 1 from training data {(xi, yi)}i=1:n where xi

i.i.d.∼ Px and
yi = f⋆(xi) using the function class

F = {x 7→ ⟨x,θ⟩, ∥θ∥ < L}. (1)

We assume L < 1 so that the problem belongs to the “hard generalization” scenario discussed in
Section 1.1, where the hypothesis space is inadequate to fit the function on its own.

ResMem proceeds by first learning a linear function fn(x) = ⟨θn,x⟩ from F through empirical risk
minimization (ERM):

θn = argmin
∥θ∥≤L

1

n

n∑
i=1

[⟨xi,θ⟩ − yi]
2
. (2)

1For more general distributions, the theoretical result will depend on quantities like Px(B(x̃, h)), where
B(x̃, h) means a ball of radius h that is centered at x̃. We took uniform distribution for simplicity and to obtain
exact dependence on d.

4

The empirical risk minimizer fn should be thought of as the analog of fDeepNet in the deep learning
context. It defines a ground-truth residual function r⋆(x) = f⋆(x) − fn(x). Now we fix a test
covariate x̃ ∼ Px. ResMem “memorizes” the residual function through the 1-nearest neighbor to x̃

rn(x̃) = r⋆(x̃(1)) = f⋆(x̃(1))− fn(x̃(1)), (3)

where x̃(1) is the nearest neighbor to x̃ among the training covariates x1, . . . ,xn:

x̃(1) = argmin
x∈{x1,...,xn}

∥x− x̃∥.

The final prediction is
fResMem
n (x̃) = fn(x̃) + rn(x̃). (4)

Observe that if x̃ coincides with any training sample, fResMem
n (x̃) = f⋆(x̃), i.e., we have explicit

memorization. Note that we worked with 1-nearest neighbor regressor for simplicity instead of the
general k-nearest neighbor algorithm. The effect of choosing different k is not the main focus of this
theoretical analysis.

3.2 A decomposition of the target function

Next, we introduce a decomposition of f⋆, which will help us analyze various components that make
up the risk. Define

θ∞ = argmin
∥θ∥≤L

Ex∼Px
[⟨θ,x⟩ − ⟨θ⋆,x⟩]2 ,

= argmin
∥θ∥≤L

∥θ − θ⋆∥ = Lθ⋆,

which is what ERM learns in the limit of n → ∞. We can think of θ∞ as the best function
that ERM can learn. Then, we can decompose θ⋆ into θ⋆ = θ∞ + θ⊥, where θ⊥ = θ⋆ − θ∞.
This decomposition can be generalized beyond linear regression. Since θ∞ defines a function
f∞(x) = ⟨x,θ∞⟩, for general non-linear functions, the argument above can be generalized to the
decomposition of f⋆ to an learnable and non-learnable part

f⋆ = f∞ + f⊥.

Intuitively, f∞ is the best function in F that ERM can learn, and f⊥ is beyond the capacity of ERM
due to the particular choice of function class. ResMem approximates f⊥ using the non-parametric
nearest neighbor method, and therefore expanding the capacity of the original hypthesis class.

3.3 A decomposition of the prediction error

We now introduce a decomposition of the prediction risk that reveals how ResMem algorithm boosts
generalization. Note that the prediction error of ResMem is

E
[(
fResMem
n (x̃)− f⋆(x̃)

)2]
. (5)

It can be decomposed into two components: E
[
fResMem
n (x̃)− f⋆(x̃)

]2 ≤ 3×

[E(fn(x̃)− f∞(x̃))2 + E(fn(x̃(1))− f∞(x̃(1)))
2︸ ︷︷ ︸

T1

+E(f∞(x̃)− f⋆(x̃)− f∞(x̃(1)) + f⋆(x̃(1)))
2︸ ︷︷ ︸

T2

].

We provide the detail of the decomposition in Section B.1. We can see that T1 arises due to the
difference between fn and f∞ (i.e., the estimation error), which, as we will show later, goes to 0 as n
goes to infinity:

T1 → 0 as n → ∞.

On the other hand, T2 arises due to the limited capacity of F . It captures an irreducible error of the
risk, which in general is not asymptotically zero. However, because of the explicit memorization
ResMem algorithm introduces (x̃(1) → x̃ as n → ∞), we also have

T2 → 0 as n → ∞.

This decomposition provides a statistical perspective on ResMem: it preserves the asymptotic
consistency of T1 as in classical learning problems while enforcing the asymptotic consistency of T2

through the nearest-neighbor method.

5

3.4 Main theoretical result

Given the set up above, we are ready to state the main theoretical result of the paper, which character-
izes the rate at which test risk of ResMem approaches 0. The proof is in Appendix B.
Theorem 3.3 (Risk for ResMem algorithm). For the problem defined in Assumption 3.2 with covari-
ates distribution in Assumption 3.1, the ResMem prediction rule fResMem

n (x̃) defined in equation (4)
achieves risk (5)

E
[
fResMem
n (x̃)− f⋆(x̃)

]2
≲ d2L2n−2/3 + d2(1− L)2

[
log
(
n1/d

)
n

]1/d
,

where ≲ denotes inequality up to a universal constant independent of d, n and L.

The result includes contribution from two terms introduced in Section 3.3:

• T1 ≲ d2L2n−2/3 that arises due to the difference between fn and f∞.

• T2 ≲
[
log
(
n1/d

)
/n
]1/d

that vanishes as the nearest neighbor of the test point approaches
the test point itself x̃(1) → x̃.

The two terms T1 and T2 can be viewed as “two stages of learning”. Without the ResMem memoriza-
tion component, we have the usual story of machine learning: T1 → 0 at the usual parametric rate,
and T2 stays as an irreducible error, so the overall test error diminishes to a constant at a very fast
rate. With the introduction of nearest neighbor memorization procedure, T2 can also be reduced to 0
at a slower rate, whereas the fast decay of T1 is still preserved.

This result shows why it is not favorable to use the k-nearest neighbor component to memorize the
response directly: as a corollary of setting L = 0 in Theorem 3.3, pure nearest neighbor would result
in an overall slow rate of ≈ n−1/d. However, with ResMem, we can enjoy benefit of having the test
loss being asymptotically 0, while also enjoying the fast rate of n−2/3 for smaller sample sizes.

4 Empirical results

In this section, we present empirical results on image classification and language modeling that
showcase the efficacy of ResMem. In Section 4.1, we present details of applying the ResMem
algorithm to classification problems on real dataset. In Section 4.2 and Section 4.3, we present the
setup and the result for vision and language experiments, respectively. In Section 4.4 we conduct
an empirical analysis to explain where the improved accuracy of ResMem comes from. Finally,
in addition to evaluating the improvement ResMem algorithm over DeepNet itself, we compare
ResMem with other reasonable baselines including [31] in Appendix F.

4.1 Details of ResMem algorithm for classification

We consider multi-class classification problems over instances X and labels Y .
= {1, 2, . . . , L} = [L].

Given training examples S = {(xi, yi)}i∈[n] ∈ (X× Y)n, the goal is to learn a scorer f : X → RL

that, given an instance, assigns an affinity score for each label. Such an f should minimize the
misclassification error on test samples:

L01(f)
.
= P(x,y)(y ̸= pred(f(x))), (6)

where pred(z)
.
= argmaxy′∈[L] zy′ , and P is the distribution over labelled instances. To achieve

this, one typically minimizes the empirical loss

L̂ℓ(f)
.
=

1

n

∑
i∈[n]

ℓ(yi, f(xi)),

where ℓ : [L] × RL → R+ is a loss function. Ideally, one would like to use ℓ01(y, f(x))
.
= 1(y ̸=

pred(f(x))); for computational tractability, it is popular to instead use a surrogate loss, such as the
softmax cross-entropy.

Given the notation above, ResMem operates as follows:

6

resnet8
resnet14

resnet20
resnet32

resnet44
resnet56

DeepNet architecture

0.575
0.600
0.625
0.650
0.675
0.700
0.725

Te
st

 a
cc

ur
ac

y
DeepNet
ResMem

resnet8
resnet14

resnet20
resnet32

resnet44
resnet56

DeepNet architecture

0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Tr
ai

ni
ng

 a
cc

ur
ac

y

DeepNet
ResMem

(a) Test(left)/Training (right) v.s. architectures.

10
%

20
%

30
%

40
%

50
%

60
%

70
%

90
%

80
%

10
0%

Percentage of CIFAR100 used

0.40

0.45

0.50

0.55

0.60

Te
st

 a
cc

ur
ac

y

DeepNet
ResMem

10
%

20
%

30
%

40
%

60
%

50
%

70
%

90
%

80
%

10
0%

Percentage of CIFAR100 used

0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Tr
ai

ni
ng

 a
cc

ur
ac

y

DeepNet
ResMem

(b) Test(left)/Training (right) acc. v.s. sample size.

Figure 2: ResMem improvement on CIFAR100 with respect to training sample size and deep
network architecture. (a): Using progressively larger CIFAR-ResNet architecture. (b): Using
10%, 20%, . . . , 100% of training data.

1. Train the base DeepNet. Train a neural network fDeepNet on the training samples S as usual.

2. Prepare the residual data. Compute the residual 2 prediction of each training example as

ri = onehot(yi)− softmax(fDeepNet(xi)/T), ∀ i ∈ [n],

where onehot : Y → RL is the standard encoding that maps the label to a probability vector.
Here, T is a hyperparameter corresponding to the “temperature” scaling of the softmax operation.
Then, we employ the output of an intermediate layer of the base network fDeepNet, denoted by
zi = ϕ(xi), as an embedding for the training instance xi. These embeddings are utilized for the
nearest neighbor search in the next step.

3. Predict via memorized residuals. To obtain a prediction on a test sample x̃ ∈ X, first compute
its embedding z̃ = ϕ(x̃). Then, use soft k-nearest neighbor method to build a function rkNN
defined by weights wi(x̃):

rkNN(x̃) =

n∑
i=1

wi(x̃) · ri. (7)

The weights wi(x̃) satisfy
∑

i wi(x̃) = 1, and are computed from raw weights wi as follows:

wi = exp(−∥z̃ − zi∥2/σ), wi(x̃) ∝ 1
(
wi ≥ w(k)

)
wi,

where w(k) represents the k-th largest entry of wi’s. Note that k and σ are two hyperparameters
that collectively controls the locality of nearest neighbor search.

We make the final prediction based on the following scorer:

fResMem(x̃) = softmax(fDeepNet(x̃)/T) + rkNN(x̃). (8)

Remark 4.1 (Explicit memorization). Smaller k or σ corresponds to putting higher weight on residuals
of the closest neighboring training examples. For sufficiently small k and σ, fResMem achieves exact
memorization of the training sample, i.e., pred(fResMem(xi)) = yi for all i ∈ [n].
Remark 4.2 (Computation cost). The vision experiments have moderate training sample size, so
we perform exact nearest neighbor search and discuss the computation cost in Section 4.2. For
language experiments, the training sample size is so large that the exact nearest neighbor computation
is infesible, so we rely on approximate nearest neighbor search discussed in Section 4.2.

4.2 Image classification

In this subsection, we mainly consider image classification task on ResNet [27] with CIFAR100 [33]
dataset. We provide additional ImageNet [43] results in Apendix D.

Setup. We use CIFAR-ResNet-{8, 14, 20, 32, 44, 56} as the base DeepNet. For all six DeepNet
training, we use SGD with batch size 128, trained for 256 epochs. We use a peak learning rate 0.4,
and momentum 0.9. We warm up the learning rate linearly for the first 15 epochs, and decay the
learning rate by 0.1 after epochs {96, 192, 224}. For ResMem, we use the pre-logit layer as the

2For an overparameterized network that perfectly fits the training sample, the residuals will all be 0. However,
we are interested in either smaller networks or extremely large dataset where implicit memorization is infesible.

7

...allow for plenty of headroom
inside whilst still being less than
2.5m in height.rose poppy

cup plate

squirrel rabbit

butterfly bee

palm
tree

pine
tree

Graphic now consists of all cities
with greater than 30,000 locals.
Acquiring a home in Spain…

Filmed around 7:30-8:30 a.m. on
Friday, March 9, 2012.

...that will not affect the superior
quality of your job. That is possible
because we understand how to save...

...answer your questions and schedule
the initial meeting. We consistently
arrive at the scheduled hour...

height length

home residence

March June

possible feasible

consistently always

Image classification Language modeling

yResMem yResMem yDeepNetyDeepNet

Figure 3: Examples from CIFAR100 and C4 test set with the property that (i) yResMem is correct; (ii)
yDeepNet is wrong but close in meaning. We use red to denote the ResMem prediction and blue to
denote DeepNet prediction. The DeepNet predictions capture coarse structure (e.g., predicting poppy
for a sample whose true label is rose), which can be refined by ResMem capturing the remaining
fine-grained structure.

image embedding, which has dimension 64. For the nearest neighbor search (Step 3, Section 4.1),
we define the distance between two images to be the ℓ2 distance between their embeddings. We use
σ = 0.7, k = 53, and T = 1.4 to compute the weights for the nearest neighbor regressor. We provide
the sensitivity analysis of test accuracy against ResMem parameters in Appendix C (cf. Figure 5).

Results. The results for CIFAR-ResNet-{8, 14, 20, 32, 44, 56} are reported in Figure 2(a). We
can see that ResMem boosts the test accuracy of CIFAR-ResNet8 from 56.46% to 59.66%, which
is between the base DeepNet test accuracy for CIFAR-ResNet8 and CIFAR-ResNet14. To access
the statistical reliability of the improvement, we repeat the CIFAR-ResNet-8 experiment 5 times
over random initialization of DeepNet etc. We and that the average ResMem accuracy is 59% with
standard deviation 0.7%, and the average DeepNet accuracy is 56.5% with standard deviation 0.8%.

Computationally, we estimate the CPU latency of a CIFAR-ResNet-8 to be 15.9 ms for a single
test image. By contrast, the k-NN step takes 4.8 ms for the same test image. To contextualize the
latency cost, the total cost of ResMem with ResNet-8 (15.9 ms + 4.8 ms) is lower than the cost of
the next-sized model, i.e., ResNet-14 (26.2 ms). Regarding the memory cost, for a batch size of 1
and images of size 32 x 32, a ResNet-8 (68K params) requires 2.5MB, while a ResNet-14 (128K
params) requires 4MB. Embeddings from a ResNet-8 and ResNet-14 are both 64 dimensional. To
embed the entire CIFAR100 training set (50K examples) requires 15MB of disk space.

Varying sample size. We repeat the above experiment on CIFAR-ResNet-8 with subsets
(10%, 20%, . . . , 100%) of CIFAR100 training data (subsampled uniformly across different classes).
The size of the index set for nearest-neighbor search is the same as the training set for base neural
networks (e.g., model with 10% CIFAR100 data also uses the same 10% data for nearest-neighbor
search). On the left (right) of Figure 2(b), we report the test (training) accuracy of ResMem and
baseline DeepNet. As a sanity check, we can see that ResMem always achieves perfect training
accuracy, and the DeepNet training accuracy decreases as samples increase (since it’s harder to fit
larger dataset). We can see that ResMem yields progressively larger margin of improvement when
more data is used. This trend suggests a desirable property of ResMem: in real problems where the
dataset is extremely large, ResMem is expected to bring even greater benefit.

8

4.3 Language modeling

Setup. For the language experiment, we use a Decoder-Only T5-{small, large} [42] model and
C4 [42] dataset. C4 is generated from scraping the internet and commonly used as a pretraining
dataset or part of the pretraining mix. We pre-trained the DeepNet on C4 training split with auto-
regressive language modeling task. For experimental efficiency, we used 1% of the C4 training split
(which corresponds to 1,639 million tokens) as the retrieval database, and extracted last transformer
layer’s pre-MLP, post-LayerNorm representations as the key embeddings for kNN search, and we
created the query embeddings using the whole validation split and the same representation location.
For each query, we retrieved 50 neighbors with L2 distance using approximate nearest neighbor
search algorithm ScaNN [24]. We used the temperature T = 1 for the residual computation and
σ = 1 for computing the neighbor weights. The predicted token is the one with highest probability,
similar to greedy decoding, and we measured the prediction accuracy to match the vision experiments.

Results. On T5-small, ResMem boosts test accuracy from 38.01% to 40.87%, which is around
the accuracy (40.08%) of a T5-base model without ResMem. On T5-large, ResMem boosts the test
accuracy from 44.8% to 45.6%. This demonstrates that with explicit memorization, we may leverage
smaller base language models while reaping the performance benefits of large language models.
Computationally, as the index set is quite large (1.6 billion tokens), exact k-nearest neighbor search
is infeasible. So we use the approximate nearest neighbor search algorithm ScaNN [24] to reduce
compute time. Please see Appendix E for details on base model training and data processing.

4.4 Where does the improvement come from?

In this section, we identify test samples that contributes to the accuracy improvement of CIFAR100
with CIFAR-ResNet-8 and C4 with T5-small. Let GainResMem be the difference between the test
accuracy of ResMem and baseline DeepNet:

GainResMem = L01(fResMem)− L01(fDeepNet),

where L01 is the misclassification error as defined in equation (6). We offer a decomposition of
GainResMem that sheds light into the mechanism behind ResMem. For a test set {(xi, yi)}mi=1, let
yResMem
i be the ResMem prediction on instance xi and let yDeepNet

i be the baseline neural network
prediction on xi. When yResMem

i = yDeepNet
i , sample xi does not contribute to GainResMem. When

yResMem
i ̸= yDeepNet

i , this could arise either from the desirable event where the deep network mis-
classifies while ResMem classifies correctly; or from the undesirable event where the ResMem
misclassifies, while the deep network classifies correctly. These can be summarized by the TPR (true
positive rate) and FPR (false positive rate) respectively:

TPR =
1

m

∑m

i=1
1{yDeepNet

i ̸= yi and yResMem
i = yi}. (9)

FPR =
1

m

∑m

i=1
1{yDeepNet

i = yi and yResMem
i ̸= yi}. (10)

Note that GainResMem = TPR−FPR. The decomposition of GainResMem says that the gain of ResMem
came from the TPR samples, provided they outweigh the FPR samples.

On CIFAR-ResNet-8, we find TPR=5.89% and FPR=2.70%, leading to GainResMem=3.19%. On T5-
small with C4 validation split, we find TPR=5.37% and FPR=2.44%, leading to GainResMem=2.93%.

Analysis of TPR samples Focusing on the test samples where ResMem helps (yi = yResMem
i ̸=

yDeepNet
i), we identify a common underlying pattern: while the DeepNet makes an incorrect prediction,

it still captures some coarse structure. For example, in CIFAR100, one sample has correct label
yi = yResMem

i = rose, but the DeepNet predicts yDeepNet
i = poppy, i.e., the label of a different type

of flower. (cf. Figure 3). We find similar behavior for the language modeling task (cf. Figure 3).

This empirical analysis suggests the DeepNet in isolation can already learn some large scale structures,
but is unable to make fine-grained distinctions. This is where ResMem helps: ResMem helps memorize
information in the training label that the DeepNet cannot learn.

9

Additional insights from the decomposition. In this paper, we choose the ResMem hyperparame-
ters that minimizes the test error on the validation set or, equivalently, maximize GainResMem. Inspired
by the decomposition of GainResMem, we propose an alternative hyperparameter selection procedure
based on the following optimization problem:

maximizeFPR(hyperparam.)<0.05TPR(hyperparam.),

which ensures that ResMem modifies the DeepNet predictions in a more conservative manner. In
particular, bounding FPR implies that ResMem has minimal impact on the examples where DeepNet
already makes correct predictions. At the same time, a higher value of TPR corresponds maximizing
the desirable occurrences where ResMem can correct a wrong prediction by DeepNet.

5 Discussion and future works

Joint training of kNN and DeepNet. The current formulation of ResMem builds the base DeepNet
and kNN components sequentially. Consequently, the DeepNet is trained completely oblivious to the
fact that there is a subsequent kNN model that will memorize its residuals. A natural direction of
future work is to consider the joint training of DeepNet and kNN, so that the models can dynamically
interact during training to determine which portion of label is for DeepNet to learn, and the remaining
is for kNN to memorize.

To explore the role of training during the first stage, we re-evaluate the CIFAR-ResNet-8 experiment
by stopping DeepNet training at different epochs (Table 1). We can see that when the #epoch is small,

Table 1: Comparison of DeepNet and ResMem accuracy over epochs on CIFAR-ResNet-8 experiment.

#epoch 128 160 192 224 256

DeepNet acc. 34.0% 56.2% 55.6% 57.2% 56.6%
ResMem acc. 49.3% 60.2% 58.6% 59.2% 59.5%

ResMem has a dramatic improvement in accuracy. One of the key roles of the first training phase
is to learn good representations of the training data so the nearest neighbor retrieval is performed
on more meaningful representations. This simple experiments suggests that the proposed direction
has the potential to dramatically reduce the training time of DeepNet – while obtaining similar test
accuracy with the help of ResMem.

Calibration of ResMem. A potential problem with applying ResMem to classification is scorer
mis-calibration. The output of the ResMem prediction vector fResMem(x) (8) is not guaranteed to
lie on the probability simplex. This is not an issue when we only care about the predicted class
membership, since we take the argmax of fResMem(x). However, this limitation hinders us to access
the confidence of the ResMem prediction. To remedy this, a possible future work is to consider
alternative notions of residual. For example, we can do memorization in the logit space instead of the
probability space. Then, the one-hot encoding of the true label may be replaced by class mean when
defining the residual.

Distribution shift. Finally, ResMem can be a promising approach to tackle test-time covariate shift.
The nearest neighbor modifies the prediction of DeepNet based on the training covariate that are
closer to the test covariate, making the algorithm more adaptive to the specific test covariate [46].

Acknowledgements

Part of the work is done while Zitong Yang is at Google Research, New York. We would like to
thank Chong You, Yu Sun, Yaodong Yu and anonymous reviewers for their feedback on the final
draft. Zitong Yang would like to thank Shuangping Li for discussion regarding the proof of Lemma
A.1. Zitong Yang would also like to acknowledge the support of Albion Walter Hewlett Stanford
Graduate Fellowship.

10

References
[1] William M. Alley. A note on stagewise regression. The American Statistician, 41(2):132–134,

1987. doi: 10.1080/00031305.1987.10475461. URL https://www.tandfonline.com/doi/
abs/10.1080/00031305.1987.10475461.

[2] Devansh Arpit, Stanisław Jastrzebski, Nicolas Ballas, David Krueger, Emmanuel Bengio,
Maxinder S. Kanwal, Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio, and
Simon Lacoste-Julien. A closer look at memorization in deep networks. In Proceedings of the
34th International Conference on Machine Learning - Volume 70, ICML’17, pages 233–242.
JMLR.org, 2017.

[3] Peter L. Bartlett, Dylan J. Foster, and Matus Telgarsky. Spectrally-normalized margin bounds for
neural networks. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob
Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors, Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA, pages 6240–6249, 2017.

[4] Peter L. Bartlett, Philip M. Long, Gábor Lugosi, and Alexander Tsigler. Benign overfitting in
linear regression. Proceedings of the National Academy of Sciences, 117(48):30063–30070,
2020. doi: 10.1073/pnas.1907378117. URL https://www.pnas.org/doi/abs/10.1073/
pnas.1907378117.

[5] Mikhail Belkin, Daniel Hsu, and Partha P. Mitra. Overfitting or perfect fitting? risk bounds for
classification and regression rules that interpolate. In Proceedings of the 32nd International
Conference on Neural Information Processing Systems, NIPS’18, pages 2306–2317, Red Hook,
NY, USA, 2018. Curran Associates Inc.

[6] Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie
Millican, George van den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark,
Diego de Las Casas, Aurelia Guy, Jacob Menick, Roman Ring, Tom Hennigan, Saffron Huang,
Loren Maggiore, Chris Jones, Albin Cassirer, Andy Brock, Michela Paganini, Geoffrey Irving,
Oriol Vinyals, Simon Osindero, Karen Simonyan, Jack W. Rae, Erich Elsen, and Laurent Sifre.
Improving language models by retrieving from trillions of tokens. CoRR, abs/2112.04426, 2021.
URL https://arxiv.org/abs/2112.04426.

[7] Léon Bottou and Vladimir Vapnik. Local Learning Algorithms. Neural Computation, 4
(6):888–900, 11 1992. ISSN 0899-7667. doi: 10.1162/neco.1992.4.6.888. URL https:
//doi.org/10.1162/neco.1992.4.6.888.

[8] Alon Brutzkus, Amir Globerson, Eran Malach, and Shai Shalev-Shwartz. SGD learns over-
parameterized networks that provably generalize on linearly separable data. In International
Conference on Learning Representations, 2018. URL https://openreview.net/forum?
id=rJ33wwxRb.

[9] Cristian Bucilǎ, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In
Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’06, pages 535–541, New York, NY, USA, 2006. ACM.

[10] Kamalika Chaudhuri and Sanjoy Dasgupta. Rates of convergence for nearest neighbor
classification. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K.Q. Wein-
berger, editors, Advances in Neural Information Processing Systems, volume 27. Curran
Associates, Inc., 2014. URL https://proceedings.neurips.cc/paper/2014/file/
db957c626a8cd7a27231adfbf51e20eb-Paper.pdf.

[11] Chen Cheng, John Duchi, and Rohith Kuditipudi. Memorize to generalize: on the necessity of
interpolation in high dimensional linear regression, 2022. URL https://arxiv.org/abs/
2202.09889.

[12] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker
Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes,
Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson,

11

https://www.tandfonline.com/doi/abs/10.1080/00031305.1987.10475461
https://www.tandfonline.com/doi/abs/10.1080/00031305.1987.10475461
https://www.pnas.org/doi/abs/10.1073/pnas.1907378117
https://www.pnas.org/doi/abs/10.1073/pnas.1907378117
https://arxiv.org/abs/2112.04426
https://doi.org/10.1162/neco.1992.4.6.888
https://doi.org/10.1162/neco.1992.4.6.888
https://openreview.net/forum?id=rJ33wwxRb
https://openreview.net/forum?id=rJ33wwxRb
https://proceedings.neurips.cc/paper/2014/file/db957c626a8cd7a27231adfbf51e20eb-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/db957c626a8cd7a27231adfbf51e20eb-Paper.pdf
https://arxiv.org/abs/2202.09889
https://arxiv.org/abs/2202.09889

Reiner Pope, James Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier
Garcia, Vedant Misra, Kevin Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David
Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani
Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat,
Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei
Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei,
Kathy Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm: Scaling
language modeling with pathways, 2022. URL https://arxiv.org/abs/2204.02311.

[13] Gilad Cohen, Guillermo Sapiro, and Raja Giryes. Dnn or k-nn: That is the generalize vs.
memorize question, 2018. URL https://arxiv.org/abs/1805.06822.

[14] T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE Transactions on Information
Theory, 13(1):21–27, 1967. doi: 10.1109/TIT.1967.1053964.

[15] Gintare Karolina Dziugaite and Daniel M. Roy. Computing nonvacuous generalization bounds
for deep (stochastic) neural networks with many more parameters than training data. In
Proceedings of the 33rd Annual Conference on Uncertainty in Artificial Intelligence (UAI),
2017.

[16] Vitaly Feldman. Does learning require memorization? A short tale about a long tail. CoRR,
abs/1906.05271, 2019. URL http://arxiv.org/abs/1906.05271.

[17] Vitaly Feldman. Does Learning Require Memorization? A Short Tale about a Long Tail,
page 954–959. Association for Computing Machinery, New York, NY, USA, 2020. ISBN
9781450369794. URL https://doi.org/10.1145/3357713.3384290.

[18] Vitaly Feldman and Chiyuan Zhang. What neural networks memorize and why: Discovering the
long tail via influence estimation. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and
H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages 2881–
2891. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/
2020/file/1e14bfe2714193e7af5abc64ecbd6b46-Paper.pdf.

[19] Vitaly Feldman and Chiyuan Zhang. What neural networks memorize and why: Discovering
the long tail via influence estimation. In Proceedings of the 34th International Conference
on Neural Information Processing Systems, NIPS’20, Red Hook, NY, USA, 2020. Curran
Associates Inc. ISBN 9781713829546.

[20] Yoav Freund and Robert E. Schapire. A desicion-theoretic generalization of on-line learning
and an application to boosting. In Paul Vitányi, editor, Computational Learning Theory, pages
23–37, Berlin, Heidelberg, 1995. Springer Berlin Heidelberg. ISBN 978-3-540-49195-8.

[21] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Additive logistic regression: a statistical
view of boosting (With discussion and a rejoinder by the authors). The Annals of Statistics, 28
(2):337 – 407, 2000. doi: 10.1214/aos/1016218223. URL https://doi.org/10.1214/aos/
1016218223.

[22] A. Gionis, Piotr Indyk, and Rajeev Motwani. Similarity search in high dimensions via hashing.
In Very Large Data Bases Conference, 1999.

[23] Arthur S. Goldberger and D. B. Jochems. Note on stepwise least squares. Journal of the Ameri-
can Statistical Association, 56(293):105–110, 1961. doi: 10.1080/01621459.1961.10482095.
URL https://www.tandfonline.com/doi/abs/10.1080/01621459.1961.10482095.

[24] Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern, and Sanjiv
Kumar. Accelerating large-scale inference with anisotropic vector quantization. In International
Conference on Machine Learning, 2020. URL https://arxiv.org/abs/1908.10396.

[25] Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang. Realm:
Retrieval-augmented language model pre-training. In Proceedings of the 37th International
Conference on Machine Learning, ICML’20. JMLR.org, 2020.

12

https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/1805.06822
http://arxiv.org/abs/1906.05271
https://doi.org/10.1145/3357713.3384290
https://proceedings.neurips.cc/paper/2020/file/1e14bfe2714193e7af5abc64ecbd6b46-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1e14bfe2714193e7af5abc64ecbd6b46-Paper.pdf
https://doi.org/10.1214/aos/1016218223
https://doi.org/10.1214/aos/1016218223
https://www.tandfonline.com/doi/abs/10.1080/01621459.1961.10482095
https://arxiv.org/abs/1908.10396

[26] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning.
Springer Series in Statistics. Springer New York Inc., New York, NY, USA, 2001.

[27] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 770–778, 2016. doi: 10.1109/CVPR.2016.90.

[28] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network,
2015. URL https://arxiv.org/abs/1503.02531.

[29] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural
network. CoRR, abs/1503.02531, 2015.

[30] Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis. Generaliza-
tion through memorization: Nearest neighbor language models. In International Conference on
Learning Representations, 2020. URL https://openreview.net/forum?id=HklBjCEKvH.

[31] Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis. Gener-
alization through memorization: Nearest neighbor language models. In ICLR, 2020. URL
https://openreview.net/forum?id=HklBjCEKvH.

[32] Donald Knuth. The Art Of Computer Programming, vol. 3: Sorting And Searching. Addison-
Wesley, 1973.

[33] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
CIFAR, 2009.

[34] Guillaume Lample, Alexandre Sablayrolles, Marc’Aurelio Ranzato, Ludovic Denoyer, and
Hervé Jégou. Large memory layers with product keys. In Hanna M. Wallach, Hugo Larochelle,
Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances
in Neural Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada,
pages 8546–8557, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
9d8df73a3cfbf3c5b47bc9b50f214aff-Abstract.html.

[35] Zonglin Li, Ruiqi Guo, and Sanjiv Kumar. Decoupled context processing for context augmented
language modeling. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun
Cho, editors, Advances in Neural Information Processing Systems, 2022. URL https://
openreview.net/forum?id=02dbnEbEFn.

[36] Tengyuan Liang and Alexander Rakhlin. Just interpolate: Kernel “Ridgeless” regression can
generalize. The Annals of Statistics, 48(3):1329 – 1347, 2020. doi: 10.1214/19-AOS1849. URL
https://doi.org/10.1214/19-AOS1849.

[37] Gaurav Menghani. Efficient deep learning: A survey on making deep learning models smaller,
faster, and better. CoRR, abs/2106.08962, 2021. URL https://arxiv.org/abs/2106.
08962.

[38] Andrea Montanari and Yiqiao Zhong. The interpolation phase transition in neural networks:
Memorization and generalization under lazy training, 2020. URL https://arxiv.org/abs/
2007.12826.

[39] Marius Muja and David G. Lowe. Fast approximate nearest neighbors with automatic algorithm
configuration. In International Conference on Computer Vision Theory and Applications, 2009.

[40] Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, Yann LeCun, and Nathan Srebro.
The role of over-parametrization in generalization of neural networks. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019.

[41] Rina Panigrahy, Xin Wang, and Manzil Zaheer. Sketch based memory for neural networks.
In Arindam Banerjee and Kenji Fukumizu, editors, Proceedings of The 24th International
Conference on Artificial Intelligence and Statistics, volume 130 of Proceedings of Machine
Learning Research, pages 3169–3177. PMLR, 13–15 Apr 2021. URL https://proceedings.
mlr.press/v130/panigrahy21a.html.

13

https://arxiv.org/abs/1503.02531
https://openreview.net/forum?id=HklBjCEKvH
https://openreview.net/forum?id=HklBjCEKvH
https://proceedings.neurips.cc/paper/2019/hash/9d8df73a3cfbf3c5b47bc9b50f214aff-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/9d8df73a3cfbf3c5b47bc9b50f214aff-Abstract.html
https://openreview.net/forum?id=02dbnEbEFn
https://openreview.net/forum?id=02dbnEbEFn
https://doi.org/10.1214/19-AOS1849
https://arxiv.org/abs/2106.08962
https://arxiv.org/abs/2106.08962
https://arxiv.org/abs/2007.12826
https://arxiv.org/abs/2007.12826
https://proceedings.mlr.press/v130/panigrahy21a.html
https://proceedings.mlr.press/v130/panigrahy21a.html

[42] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of Machine Learning Research, 21(140):1–67, 2020. URL
http://jmlr.org/papers/v21/20-074.html.

[43] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV), 115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

[44] Ruslan Salakhutdinov and Geoff Hinton. Learning a nonlinear embedding by preserving
class neighbourhood structure. In Marina Meila and Xiaotong Shen, editors, Proceedings of
the Eleventh International Conference on Artificial Intelligence and Statistics, volume 2 of
Proceedings of Machine Learning Research, pages 412–419, San Juan, Puerto Rico, 21–24 Mar
2007. PMLR. URL https://proceedings.mlr.press/v2/salakhutdinov07a.html.

[45] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
Mobilenetv2: Inverted residuals and linear bottlenecks. In 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 4510–4520, 2018. doi: 10.1109/CVPR.2018.
00474.

[46] Yu Sun, Xiaolong Wang, Liu Zhuang, John Miller, Moritz Hardt, and Alexei A. Efros. Test-time
training with self-supervision for generalization under distribution shifts. In ICML, 2020.

[47] Ryan J. Tibshirani. A general framework for fast stagewise algorithms. J. Mach. Learn. Res.,
16(1):2543–2588, jan 2015. ISSN 1532-4435.

[48] Vladimir Vapnik and Rauf Izmailov. Reinforced SVM method and memorization mechanisms.
Pattern Recognition, 119:108018, 2021. ISSN 0031-3203. doi: https://doi.org/10.1016/j.
patcog.2021.108018. URL https://www.sciencedirect.com/science/article/pii/
S0031320321002053.

[49] Martin J Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, volume 48.
Cambridge University Press, 2019.

[50] Ke Wang, Vidya Muthukumar, and Christos Thrampoulidis. Benign overfitting in multiclass
classification: All roads lead to interpolation, 2021. URL https://arxiv.org/abs/2106.
10865.

[51] Zhen Wang and Yuan-Hai Shao. Generalization-memorization machines, 2022. URL https:
//arxiv.org/abs/2207.03976.

[52] Zitong Yang, Yaodong Yu, Chong You, Jacob Steinhardt, and Yi Ma. Rethinking bias-variance
trade-off for generalization of neural networks. In Hal Daumé III and Aarti Singh, editors,
Proceedings of the 37th International Conference on Machine Learning, volume 119 of Pro-
ceedings of Machine Learning Research, pages 10767–10777. PMLR, 13–18 Jul 2020. URL
https://proceedings.mlr.press/v119/yang20j.html.

[53] Zitong Yang, Yu Bai, and Song Mei. Exact gap between generalization error and uniform
convergence in random feature models. In Marina Meila and Tong Zhang, editors, Proceedings
of the 38th International Conference on Machine Learning, volume 139 of Proceedings of
Machine Learning Research, pages 11704–11715. PMLR, 18–24 Jul 2021. URL https:
//proceedings.mlr.press/v139/yang21a.html.

[54] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings.
OpenReview.net, 2017.

[55] Hao Zhang, Alexander C. Berg, Michael Maire, and Jitendra Malik. Svm-knn: Discriminative
nearest neighbor classification for visual category recognition. In CVPR (2), pages 2126–2136,
2006. URL https://doi.org/10.1109/CVPR.2006.301.

14

http://jmlr.org/papers/v21/20-074.html
https://proceedings.mlr.press/v2/salakhutdinov07a.html
https://www.sciencedirect.com/science/article/pii/S0031320321002053
https://www.sciencedirect.com/science/article/pii/S0031320321002053
https://arxiv.org/abs/2106.10865
https://arxiv.org/abs/2106.10865
https://arxiv.org/abs/2207.03976
https://arxiv.org/abs/2207.03976
https://proceedings.mlr.press/v119/yang20j.html
https://proceedings.mlr.press/v139/yang21a.html
https://proceedings.mlr.press/v139/yang21a.html
https://doi.org/10.1109/CVPR.2006.301

A Some concentration results for uniform random variables

In this section, we state some concentration results that are useful for the theoretical analysis in
Section 3. Let x̃,x1, . . . ,xn

i.i.d.∼ Unif(B0,
√
d+2) be i.i.d. samples from the uniform distribution over

the Euclidean norm ball of radius
√
d+ 2 in Rd. Let

Zn = min
x∈{x1,x2,...,xn}

∥x̃− x∥2. (11)

If n = 1, EZ1 is the sum of the variance of each coordinate of Unif(B0,
√
d+2). Therefore, EZn

provides a generalized measure of concentration. Intuitively, EZn → 0 as n → ∞. The proposition
below provides a upper bound on the rate of convergence.

Lemma A.1 (Nearest Neighbor concentration). Given the assumptions above

EZn ≲ d2

[
log
(
n1/d

)
n

]1/d
, (12)

where ≲ means inequality up to an universal constant independent of d and n.

Proof. Define
E1 = {Zn ≤ δ2},
E2 = {δ ≤

√
d+ 2− ∥x̃∥}.

(13)

We will compute two probabilities P(E1|E2) and P(E2) that will be useful latter.

P(Ec
1 |E2) = P(Zn ≥ δ2|E2) = P(∥x̃− xi∥ ≥ δ, ∀i|E2),

= Ex̃P(∥x̃− xi∥ ≥ δ|E2, x̃)n = Ex̃(1− P(∥x̃− xi∥ ≤ δ|E2, x̃))n,

= Ex̃

[
1−

Vol(Bx̃,δ)

Vol(B0,
√
d+2)

]n
=

[
1−

(
δ√
d+ 2

)d
]n

,

≤ exp

[
−n

(
δ√
d+ 2

)d
]
.

(14)

Next, we compute P(E2)

P(E2) = P(∥x̃∥ ≤
√
d+ 2− δ) =

(√
d+ 2− δ√
d+ 2

)d

=

(
1− δ√

d+ 2

)d

. (15)

We use E1 and E2 to compute the following upper bound

EZn = E(Zn|E1 ∩ E2)P(E1 ∩ E2) + E(Zn|(E1 ∩ E2)c)P ((E1 ∩ E2)c),
≤ δ2 + (2

√
d+ 2)2 (1− P(E1 ∩ E2)) ,

= δ2 + 4(d+ 2) [1− P(E1|E2)P(E2)] .
(16)

To find an upper bound for EZn, we need to find an upper bound for 1− P(E1|E2)P(E2).

1− P(E1|E2)P(E2) = 1− [1− P(Ec
1 |E2)]P(E2),

= 1− P(E2) + P(Ec
1 |E2)P(E2),

≤ 1− P(E2) + P(Ec
1 |E2).

(17)

Now choose δ =
√
d+ 2n−1/d

[
log
(
n1/d

)]1/d
.

P(Ec
1 |E2) ≤ exp

[
−n

(
δ√
d+ 2

)d
]
= exp

[
−nn−1 log

(
n1/d

)]
= n−1/d, (18)

15

and

P(E2) =
(
1− δ√

d+ 2

)d

≥ 1− d
δ√
d+ 2

= 1− dn−1/d
[
log
(
n1/d

)]1/d
. (19)

Thus

1−P(E1|E2)P(E2) ≤ 1−1+dn−1/d
[
log
(
n1/d

)]1/d
+n−1/d ≲ dn−1/d

[
log
(
n1/d

)]1/d
. (20)

Combining everything together, we get

EZn ≤ (d+ 2)n−2/d
[
log
(
n1/d

)]2/d
+ 4(d+ 2)× dn−1/d

[
log
(
n1/d

)]1/d
,

≲ d2n−1/d
[
log
(
n1/d

)]1/d
,

= d2

[
log
(
n1/d

)
n

]1/d
.

(21)

This completes the proof.

Proposition A.2 ([49] Corollary 6.20). Let xi
i.i.d.∼ Unif (B0,

√
d+2) for i = 1, . . . , n be uniformly

distributed over a ball of radius B in Rd centered at 0. Let

Σn =
1

n

n∑
i=1

xix
T
i

be the sample covariance matrix. Then

P(∥Σn − I∥op > ε) ≤ 2d exp

[
− nε2

2(d+ 2)(1 + ε)

]
.

16

B Proof of Theorem 3.3

In this section, we present the proof of Theorem 3.3. In Section B.1, we provide the detail of the
decomposition of the risk into T1 and T2. Then in Section B.2 we compute an upper bound for T1,
and compute an upper bound for T2 in Section B.3. Finally, we combine everything together in
Section B.4 and completes the proof.

B.1 Decomposition of the test risk

E
[
fResMem(x̃)− f⋆(x̃)

]2
= E [fn(x̃) + rn(x̃)− f⋆(x̃)]

2
,

= E
[
fn(x̃)− f⋆(x̃)− fn(x̃(1)) + f⋆(x̃(1))

]2
,

= E
[
fn(x̃)− f∞(x̃) + f∞(x̃)− f⋆(x̃)− fn(x̃(1)) + f∞(x̃(1))− f∞(x̃(1)) + f⋆(x̃(1))

]2
,

≤ 3× [E(fn(x̃)− f∞(x̃))2 + E(fn(x̃(1))− f∞(x̃(1)))
2︸ ︷︷ ︸

T1

+E(f∞(x̃)− f⋆(x̃)− f∞(x̃(1)) + f⋆(x̃(1)))
2︸ ︷︷ ︸

T2

],

(22)
where in the last inequality, we used the fact that (a+ b+ c)2 < 3(a2 + b2 + c2) for any a, b, c ∈ R.

B.2 Upper bound on T1.

Since Px = Unif(B0,B), we apply the bound ∥x̃∥, ∥x̃(1)∥ ≤ B to obtain

T1 = E[fn(x̃)− f∞(x̃)]2 + E[fn(x̃(1))− f∞(x̃(1))]
2,

= E⟨θn − θ∞, x̃⟩2 + E⟨θn − θ∞, x̃(1)⟩2,
≤ E∥θn − θ∞∥2∥x̃∥2 + E∥θn − θ∞∥2∥x̃(1)∥2,
≤ 2B2E∥θn − θ∞∥2.

(23)

As n gets large, the empirical covariance matrix Σn = XTX/n is concentrated around its mean
I . Let ∆n = I −Σn denote this deviation. For some ε ∈ (0, 1), define the following “good event”
over the randomness in Σn

A = {∥∆n∥op < ε}, (24)

where ∥∆n∥op denotes the operator norm of the deviation matrix. The high level idea of the proof is
to condition on the event A and deduce and upper bound of ∥θn − θ∞∥ in terms of ε. Then, we use
the fact that A happens with high probability.

Recall that θ∞ = Lθ⋆, and

θn = argmin
∥θ∥≤L

1

n
∥Xθ − y∥2. (25)

Since y = Xθ⋆ by definition, the Lagrangian of the convex program above is

L(θ, λ) = 1

n
∥Xθ −Xθ⋆∥2 + λ(∥θ∥2 − L). (26)

The KKT condition suggests that the primal-dual optimal pair (θn, λn) is given by

∥θn∥ ≤ L,

λn ≥ 0,

λn(∥θn∥ − L) = 0,

(27)

and at optimality

∇θL(θn, λn) = 0 ⇐⇒ 2

n
XTX(θ − θ⋆) + 2λnθ = 0,

⇐⇒ θn = (Σn + λnI)
−1Σnθ⋆.

(28)

17

The complementary slackness condition λn(∥θn∥−L) = 0 suggests that either λn = 0 or ∥θn∥ = L.
But if λn = 0, the stationary condition ∇θL(θ, λ) = 0 would suggest that θn = Σ−1

n Σnθ⋆ =
θ⋆ ⇒ ∥θn∥ = 1 > L, a contradiction. (Note that here Σn is invertible condition on the event A.)
Therefore, we must have ∥θn∥ = L. As a result, the primal and dual pair (θn, λn) is determined by
the system of equations 

θn = (Σn + λnI)
−1Σnθ⋆,

∥θn∥ = L,

λn > 0.

(29)

Next, we proceed to compute the deviation ∥θn − θ∞∥.

θn = [(λn + 1)I −∆n]
−1

Σnθ⋆,

= (λn + 1)−1

[
I − ∆n

λn + 1

]−1

Σnθ⋆,

= (λn + 1)−1

[
I +

∞∑
k=1

∆k
n

(λn + 1)k

]
(I −∆n)θ⋆,

= (λn + 1)−1

[
I +

∞∑
k=1

∆k
n

(λn + 1)k
−∆n −

∞∑
k=1

∆k+1
n

(λn + 1)k

]
θ⋆,

= (λn + 1)−1θ⋆ + (λn + 1)−1∆n

[∞∑
k=1

∆k−1
n

(λn + 1)k
− I −

∞∑
k=1

∆k
n

(λn + 1)k

]
θ⋆,

= (λn + 1)−1θ⋆ + (λn + 1)−1∆n

[∞∑
k=1

∆k−1
n −∆k

n

(λn + 1)k
− I

]
θ⋆.

(30)

Define

Dn = ∆n

[∞∑
k=1

∆k−1
n −∆k

n

(λn + 1)k
− I

]
. (31)

Then θn = (λn + 1)−1θ⋆ + (λn + 1)−1Dnθ⋆, and

∥Dn∥ ≤ ∥∆n∥

[
1 +

∞∑
k=1

∥∆n∥k−1 + ∥∆n∥k

(λn + 1)k

]
,

≤ ε

[
1 + 2(1 + λn)

−1
∞∑
k=1

(
ε

1 + λn

)k
]
,

= ε

(
1 +

2

1 + λn

1

1− ε
1+λn

)
≤ 3ε.

(32)

Therefore

L = ∥θn∥2 = (λn + 1)−2 + (λn + 1)−2θT
⋆D

T
nDnθ⋆ + 2(λn + 1)−2θ⋆Dnθ⋆,

⇒(λn + 1)2L2 = 1 + δn, δn = θT
⋆D

T
nDnθ⋆ + 2θT

⋆Dnθ⋆.
(33)

We can obtain the following bound for δn:

|δn| ≤ ∥θ⋆∥2∥Dn∥2 + 2∥θ⋆∥2∥Dn∥ ≤ 9ε2 + 6ε ≤ 15ε. (34)

Since 1− δn/2 ≤
√
1 + δn ≤ 1 + δn/2, and |δn| ≤ 15ε, we obtain

|(λn + 1)L− 1| ≤ 15ε

2
⇒
∣∣L− (λn + 1)−1

∣∣ ≤ 15ε

2
(λn + 1)−1 ≤ 15ε

2
, (35)

18

where the last inequality follows as we have λn > 0. Finally,

θn − θ∞ = (λn + 1)−1θ⋆ − Lθ⋆ + (λn + 1)−1Dnθ⋆,

⇒ ∥θn − θ∞∥2 = [(1 + λn)
−1 − L]2 + (1 + λn)

−2θ⋆D
T
nDnθ⋆ + 2(λn + 1)−1[(1 + λn)

−1 − L]θ⋆Dnθ⋆,

≤ 64ε2 + 9ε2 + 45ε2 = 118ε2,

⇒ ∥θn − θ∞∥2 ≲ ε2.
(36)

Combine the above result with Proposition A.2, we get that

E∥θn − θ∞∥2 = E(∥θn − θ∞∥2|A)P(A) + E(∥θn − θ∞∥2|Ac)P(Ac),

≤ ε2 + 4L2 × 4d exp

[
− nε2

2(d+ 2)(1 + ε)

]
,

(37)

If we choose ε = n−1/3, we get

E∥θn − θ∞∥2 ≲ dL2n−2/3, (38)

which implies that
T1 ≲ d2L2n−2/3. (39)

B.3 Upper bound on T2.

Plugging in the formula for f⊥(x̃) = f⋆(x̃)− f∞(x̃) = ⟨x̃,θ⊥⟩, we get

T2 = E[f⊥(x̃(1))− f⊥(x̃)]
2,

= E⟨θ⊥, x̃(1) − x̃⟩2,
≤ (1− L)2∥θ⋆∥2E∥x̃− x̃(1)∥2,
= (1− L)2E∥x̃− x̃(1)∥2,

(40)

where in the last inequality, we used the relation that θ⊥ = (1− L)θ⋆. Proposition A.1 suggests that

E∥x̃− x̃(1)∥2 ≲ d2

[
log
(
n1/d

)
n

]1/d
, (41)

which implies

T2 ≲ d2(1− L)2

[
log
(
n1/d

)
n

]1/d
. (42)

Remark B.1 (Comparison with pure nearest neighbor and ERM). If we rely solely on nearest neighbor
method, the prediction error is

E[f⋆(x̃)− f⋆(x̃(1))]
2 = E⟨x̃− x̃(1),θ⋆⟩2 ≤ E∥x̃− x̃(1)∥2. (43)

On the other hand, if we solely rely on ERM, even with infinite sample, we get

E[f⋆(x̃)− f∞(x̃)]2 = E⟨x̃,θ⋆ − θ∞⟩2 ≤ (1− L)2E∥x̃∥2. (44)

We can see from the upper bound that ResMem takes advantage of both

• Projecting f⋆ onto f∞, so that the dependence on the prediction function is reduced from 1
to (1− L)2.

• Memorizing the residuals using nearest neighbor, so that the variance is reduced from E∥x̃∥2
to E∥x̃(1) − x̃∥2.

19

B.4 Test loss for ResMem.

If we combine the previous two parts together, we get

E
[
f̂(x̃)− f⋆(x̃)

]2
≲ d2L2n−2/3 + d2(1− L)2

[
log
(
n1/d

)
n

]1/d
. (45)

This completes the proof of Theorem 3.3.

20

C Additional CIFAR100 Results

This section includes additional experiment results on applying ResMem to CIFAR100 dataset.

C.1 Additional robustness results

In addition to the results already presented in Section 4.2, we also evaluate ResMem performance for
each architecture in CIFAR-ResNet{8, 14, 20, 32, 44, 56} and each subset (10%, 20%, ..., 100%) of
CIFAR100 training data. We use the same training hyperparameter and the ResMem hyperparameter
as described in Section 4.2. Generally, we see that ResMem yields larger improvement over the
baseline DeepNet when the network is small and dataset is large.

10
%

20
%

30
%

44
%

60
%

50
%

70
%

90
%

80
%

10
0%

Percentage of CIFAR100 used

0.40

0.45

0.50

0.55

0.60

Te
st

 a
cc

ur
ac

y

DeepNet
ResMem

10
%

20
%

30
%

44
%

60
%

50
%

70
%

90
%

80
%

10
0%

Percentage of CIFAR100 used

0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Tr
ai

ni
ng

 a
cc

ur
ac

y

DeepNet
ResMem

(a) CIFAR-ResNet-8

10
%

20
%

30
%

44
%

60
%

50
%

70
%

90
%

80
%

10
0%

Percentage of CIFAR100 used

0.40

0.45

0.50

0.55

0.60

0.65

Te
st

 a
cc

ur
ac

y

DeepNet
ResMem

10
%

20
%

30
%

44
%

60
%

50
%

70
%

90
%

80
%

10
0%

Percentage of CIFAR100 used

0.80

0.85

0.90

0.95

1.00

Tr
ai

ni
ng

 a
cc

ur
ac

y

DeepNet
ResMem

(b) CIFAR-ResNet-14

10
%

20
%

30
%

44
%

60
%

50
%

70
%

90
%

80
%

10
0%

Percentage of CIFAR100 used

0.45

0.50

0.55

0.60

0.65

0.70

Te
st

 a
cc

ur
ac

y

DeepNet
ResMem

10
%

20
%

30
%

44
%

60
%

50
%

70
%

90
%

80
%

10
0%

Percentage of CIFAR100 used

0.825
0.850
0.875
0.900
0.925
0.950
0.975
1.000

Tr
ai

ni
ng

 a
cc

ur
ac

y

DeepNet
ResMem

(c) CIFAR-ResNet-20

10
%

20
%

30
%

44
%

60
%

50
%

70
%

90
%

80
%

10
0%

Percentage of CIFAR100 used

0.45

0.50

0.55

0.60

0.65

0.70
Te

st
 a

cc
ur

ac
y

DeepNet
ResMem

10
%

20
%

30
%

44
%

60
%

50
%

70
%

90
%

80
%

10
0%

Percentage of CIFAR100 used

0.90

0.92

0.94

0.96

0.98

1.00

Tr
ai

ni
ng

 a
cc

ur
ac

y

DeepNet
ResMem

(d) CIFAR-ResNet-32

10
%

20
%

30
%

44
%

60
%

50
%

70
%

90
%

80
%

10
0%

Percentage of CIFAR100 used

0.45

0.50

0.55

0.60

0.65

0.70

Te
st

 a
cc

ur
ac

y

DeepNet
ResMem

10
%

20
%

30
%

44
%

60
%

50
%

70
%

90
%

80
%

10
0%

Percentage of CIFAR100 used

0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00

Tr
ai

ni
ng

 a
cc

ur
ac

y

DeepNet
ResMem

(e) CIFAR-ResNet-44

10
%

20
%

30
%

44
%

60
%

50
%

70
%

90
%

80
%

10
0%

Percentage of CIFAR100 used

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Te
st

 a
cc

ur
ac

y

DeepNet
ResMem

10
%

20
%

30
%

44
%

60
%

50
%

70
%

90
%

80
%

10
0%

Percentage of CIFAR100 used

0.96

0.97

0.98

0.99

1.00
Tr

ai
ni

ng
 a

cc
ur

ac
y

DeepNet
ResMem

(f) CIFAR-ResNet-56

Figure 4: Test(left)/Training (right) accuracy for different sample sizes.

C.2 Sensitivity analysis for CIFAR100

100 200 300 400 500
#neighbours k in ResMem

0.565

0.570

0.575

0.580

0.585

0.590

0.595

Te
st

 a
cc

ur
ac

y

ResMem
DeepNet

(a) # of neighbours k.

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
 parameter in ResMem

0.46
0.48
0.50
0.52
0.54
0.56
0.58
0.60

Te
st

 a
cc

ur
ac

y

ResMem
DeepNet

(b) Radius parameter σ.

0 1 2 3 4 5
Softmax temperature

0.55

0.56

0.57

0.58

0.59

Te
st

 a
cc

ur
ac

y

ResMem
DeepNet

(c) Temperature T .

Figure 5: Sensitivity analysis of ResMem hyperparameters. The y-axis represents the CIFAR100
test accuracies, and the x-axis represents the sweeping of respective hyperparameters.

21

Varying locality parameter k and σ. We vary the number of neighbours from k = 27 to k = 500.
We find that ResMem test accuracy is relatively stable across the choice of the number of neighbours
(cf. Figure 5(a)). The trend of the curve suggests that as k → ∞, the ResMem test accuracy seems to
be converging to a constant level. For σ, we explored different values of σ ∈ (0.1, 2.0). We observe
that the test accuracy has a unimodal shape as a function of σ, suggesting that there is an optimal
choice of σ (cf. Figure 5(b)).

Varying temperature T and connection to distillation. We tried T = 0.1 to T = 5, and also
identified an unimodal shape for the test accuracy (Figure 5(c)). The fact that we can use different
temperatures for (a) training the network and (b) constructing the k-NN predictor reminds us of the
well-established knowledge distillation procedure [28]. In knowledge distillation, we first use one
model (the teacher network) to generate targets at a higher temperature, and then train a second model
(the student network) using the combination of the true labels and the output of the first network.

ResMem operates in a reversed direction: Here we have a second model (kNN) that learns the
difference between true labels and the output of the first model. In both cases, we can tune the
temperature of the first model to control how much information is retained. This connection offers an
alternative perspective that regards ResMem as a “dual procedure” to knowledge distillation.

D ResMem on ImageNet

This section includes additional experiment results on applying ResMem to ImageNet dataset.

ImageNet. In addition to CIFAR100, we also evaluate the performance of ResMem on Ima-
geNet [43]. We employ a family of pre-trained MobileNet-V2 models [45] from Keras3, with
varying widths controlled by a multiplier a. For ResMem, we again use the second last layer of
DeepNet as a 1280-dimensional embedding of an image and rely on the ℓ2 distance between the
embeddings for nearest neighbor search (Step 3, Section 4.1). We specify the ResMem parameter of
(k, σ, T) in the table below. We repeat the experiment over several MobileNet-V2 architectures, with
MobileNet-V2-a0.35 being the smallest model and MobileNet-V2-a1.3 being the largest one.

Table 2: Test accuracy for ResMem and baseline deep network for ImageNet data.

Architecture ResMem param. Test accuracy

k σ T DeepNet ResMem

MobileNet-V2-a0.35 10 0.6 0.4 60.2% 61.2%
MobileNet-V2-a0.5 10 0.6 0.4 65.3% 66.1%
MobileNet-V2-a0.75 10 0.8 0.6 69.6% 70.1%
MobileNet-V2-a1.0 20 0.4 0.4 71.3% 71.8%
MobileNet-V2-a1.3 30 0.4 0.4 74.7% 75.1%

We can see that (c.f. Table 2) ResMem boosts the test accuracy by 1% on the smallest model and by
0.4% on the largest model.

E Additional details of NLP experiments

The Decoder-Only model used in our experiments is essentially the normal Encoder-Decoder archi-
tecture with Encoder and Cross-Attention removed. We pretrained both the T5-small and T5-base
model on C4 [42] dataset with auto-regressive language modeling task for 1,000,000 steps, with
dropout rate of 0.1 and batch size of 128. The learning rate for the first 10,000 steps is fixed to 0.01
and the rest steps follow a square root decay schedule.

During the inference for retrieval key, query embeddings and residuals, we ensured every token has
at least 64 preceding context by adopting a sliding window strategy, where a window of 256 token
slides from the beginning to the end on each of the articles, with a stride of 256− 64 = 192.

3https://keras.io/api/applications/mobilenet/

22

https://keras.io/api/applications/mobilenet/

For residuals, we only stored the top 128 residuals measured by the absolute magnitude, as the
residual vector is as large as T5 vocabulary size (i.e., 32128), and storing all 32128 residuals for each
token is too demanding for storage. However, when weight-combining the residuals, we zero filled
the missing residuals so that all the residual vectors have 32128 elements.

F Comparison with other algorithms

We mainly compare ResMem against [31], where the algorithm uses kNN to retrive labels directly
instead of the residual of the label. In their algorithm, a key aparameter is λ ∈ [0, 1] which specifeis
how much weight to give to the neural network and how much for the kNN component. In the
extreme case of λ=1, their algorithm reduces to using kNN to memorize data directly.

For the language modeling task, we use the C4 dataset and T5-large architecture. As we change the
weight [31, Equation (3)] of the DeepNet component, we find the best performing kNN-LM methods
has accuracy 44.88% which is lower accuracy than the ResMem accuracy 45.55%. In particular, we
obtain the table below

Table 3: Test accuracy for kNN-LM (ResMem accuracy 45.55%)

kNN weight Λ 0 0.2 0.4 0.5 0.6 0.8 1

kNN-LM accuracy 44.76% 44.88% 44.83% 44.66% 44.27% 42.97% 40.95%
ResMem acc. - kNN-LM acc. 0.79% 0.67% 0.72% 0.89% 1.28% 2.58% 4.60%

For image classification with CIFAR-ResNet-8, we run the simple baseline of using k-nearest
neighbor to directly memorize the labels . We observe the performance: we observe that pure
DeepNet has accuracy 56.46%; pure kNN memorization has accuracy 54.44%; and ResMem has
accuracy 59.66%.

23

	Introduction
	Applicable scenarios of ResMem

	Related work
	Memorization for generalization: prior work
	Relation to existing algorithms

	Theoretical results
	Assumptions and setting
	A decomposition of the target function
	A decomposition of the prediction error
	Main theoretical result

	Empirical results
	Details of ResMem algorithm for classification
	Image classification
	Language modeling
	Where does the improvement come from?

	Discussion and future works
	Some concentration results for uniform random variables
	Proof of Theorem 3.3
	Decomposition of the test risk
	Upper bound on T1.
	Upper bound on T2.
	Test loss for ResMem.

	Additional CIFAR100 Results
	Additional robustness results
	Sensitivity analysis for CIFAR100

	ResMem on ImageNet
	Additional details of NLP experiments
	Comparison with other algorithms

