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Abstract
Reducing a graph while preserving its overall properties is an important problem
with many applications. Typically, reduction approaches either remove edges
(sparsification) or merge nodes (coarsening) in an unsupervised way with no
specific downstream task in mind. In this paper, we present an approach for
subsampling graph structures using an Ising model defined on either the nodes or
edges and learning the external magnetic field of the Ising model using a graph
neural network. Our approach is task-specific as it can learn how to reduce a
graph for a specific downstream task in an end-to-end fashion, without requiring
a differentiable loss function for the task. We showcase the versatility of our
approach on four distinct applications: image segmentation, explainability for
graph classification, 3D shape sparsification, and sparse approximate matrix
inverse determination.

1 Introduction

Hierarchical organization is a recurring theme in nature and human endeavors [1]. Part of its appeal
lies in its interpretability and computational efficiency, especially on uniformly discretized domains
such as images or time series [2–5]. On graph-structured data, it is, however, no longer as clear what
it means to, e.g., “sample every second point”. Solid theoretical arguments favor a spectral approach
[6], wherein a simplified graph is found by maximizing the spectral similarity to the original graph [7].
On the other hand, instead of retaining as much of the original information as possible, it may often be
more valuable to distill the critical information for the task at hand [8, 9]. The two main approaches
for graph simplification, coarsening, and sparsification, involve removing nodes and edges. However,
it is impossible to tailor coarsening or sparsification to a particular task using existing methods.

We take inspiration from the well-known Ising model in physics [10], which emanated as an
analytical tool for studying magnetism but has since undergone many extensions [11, 12]. Within the
Ising model, each location is associated with a binary state (interpreted as pointing up or down), and
the configuration of all states is associated with an energy. Thus, the Ising model can be seen as an
energy-based model with an energy function comprising a pairwise term and a pointwise “bias” term.
As illustrated in Figure 1, the sign of the pairwise term determines whether neighboring states attract
or repel each other, while the pointwise term (corresponding to the local magnetic field) controls
the propensity of a particular alignment.

In this paper, we consider the Ising model defined on a graph’s nodes or edges and augment it with a
graph neural network that models the local magnetic field. There are no particular restrictions on the
type of graph neural network, which means that it can, e.g., process multidimensional node and edge
features. Since a node (or edge) is either included or not, we use techniques for gradient estimation in
discrete models to train our model for a given task. Specifically, we show that the two-point version
of the REINFORCE Leave-One-Out estimator [13] allows non-differentiable task-specific losses.
We demonstrate the broad applicability of our model through examples from four domains: image
segmentation, explainability for graph classification, 3D shape sparsification, and linear algebra.
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Third Learning on Graphs Conference (LoG 2024), PMLR 269, Virtual Event, November 26–29, 2024.
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Figure 1: The external magnetic field h (left) can vary spatially and influences the sampling proba-
bility relative to its strength. The sign of the coupling constant J determines whether neighboring
spins attract (top right) or repel each other (bottom right).

2 Background

Energy-based Models. Energy-based models (EBMs) are defined by an energy function Eθ : Rd →
R, parameterized by θ, where d represents the dimensionality of the input space. The density defined
by an EBM is given by the Boltzmann distribution [14]

pθ(x) = Z−1
θ exp(−βEθ(x)), (1)

where β > 0 is the inverse temperature and the normalization constant Z =
∫
exp(−βEθ(x))dx,

also known as the partition function, is typically intractable.

A sample with low energy will have a higher probability than a sample with high energy. Many
approaches have been proposed for training energy-based models [15], but most of them target the
generative setting where a training dataset is given and training amounts to (approximate) maximum
likelihood estimation.

Ising Model. The Ising model corresponds to a deceptively simple energy-based model that is
straightforward to express on a graph G = (V, E) consisting of a tuple of a set of nodes V and a set
of edges E ⊆ V × V connecting the nodes. Specifically, the Ising energy is of the form [12]

E(x) = −
∑

(i,j)∈E

Jijxixj −
∑
i∈V

hixi, (2)

where the nodes (indices i, j) are associated with spins xi ∈ {±1}, the interactions Jij ∈ R determine
whether the behavior is ferromagnetic (J > 0) or antiferromagnetic (J < 0), and hi is the external
magnetic field.

It follows from Equation (2) that in the absence of an external magnetic field, neighboring spins strive
to be parallel in the ferromagnetic case and antiparallel in the antiferromagnetic case. An external
magnetic field that can vary across nodes influences the sampling probability of the corresponding
nodes. The system is disordered at high temperatures (small β) and ordered at low temperatures.

Graph Neural Network. A graph neural network (GNN) consists of multiple message-passing
layers [16]. Given a node feature xk

i at node i and edge features ekij between node i and its neighbors
{j : j ∈ N (i)}, the message passing procedure at layer k is defined as

mk
ij = fm(xk

i , x
k
j , e

k
ij), x̂k+1

i = f a
j∈N (i)(m

k
ij), xk+1

i = f u(xk
i , x̂

k+1
i ), (3)

where fm is the message function, deriving the message from node j to node i, and f a
j∈N (i) is a

function that aggregates the messages from the neighbors of node i, denoted N (i). The aggregation
function f a is often just a simple sum or average. Finally, f u is the update function that updates the
features for each node. A GNN consists of message-passing layers stacked onto each other, where
the node output from one layer is the input of the next layer.
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Algorithm 1 Monte Carlo Sampling of the Ising Model

Input: Graph {Gc}Cc=1 grouped by color c, interactions term J , external magnetic field h, iterations T .
Output: State configuration x ∈ {±1}|V|.
for i = 1 to |V| do

xi ∼ U({−1, 1}) {Sample an initial state}
for t = 1 to T do

for c = 1 to C do
for all nodes xi ∈ Gc do
∆Ei = 2xi

(
J
∑

j∈N (i) xj + hi

)
r ∼ U([0, 1]) {Sample r uniformly at random}
if ∆Ei < 0 or exp(−2β∆E) > r then

xi = −1 · xi {Flip the spin of node i}

Note that we can rewrite the energy in Equation (2) to reveal the message-passing structure of the
Ising model as

E(xk) = −
∑
i∈V

xk
i ·

hi +
∑

j∈N (i)

Jijx
k
j

 = −
∑
i∈V

xk
i h

eff
i (xk), heff

i (xk) = hi +
∑

j∈N (i)

Jijx
k
j ,

(4)
where heff

i (xk) is the effective magnetic field at the k-th iteration. Equation (4) can be viewed as a
message-passing step in a GNN, where the message function fm is mk

ij = Jijx
k
j , the aggregation func-

tion f a is the sum x̂k+1
i =

∑
j∈N (i) m

k
ij , and the update function f u is xk+1

i = −xk
i

(
hi + x̂k+1

i

)
.

Here, hi is the external magnetic field at node i, while xk
i is the spin state of node i at iteration k.

The spin state updates based on hi and the states of neighboring nodes {xk
j }j∈N (i).

Gradient Estimation in Discrete Models. Let pθ(x) be a discrete probability distribution and assume
that we want to estimate the gradient of a loss defined as the expectation of a loss ℓ(x) over this
distribution, i.e.,

L(θ) = Ex∼pθ(x) [ℓ(x)] . (5)
Because of the discreteness, it is impossible to compute a gradient directly using backpropagation.
Through a simple algebraic manipulation, we can rewrite this expression as

∇θEx∼pθ(x) [ℓ(x)] = Ex∼pθ(x) [ℓ(x)∇θ log pθ(x)] , (6)

which is called the REINFORCE estimator [17]. Though general, it suffers from high variance. A
way to reduce this variance is to use the REINFORCE Leave-One-Out (RLOO) estimator [13],

(∇θL)KLOO =
1

K

K∑
k=1

(
ℓ(x(k))− ℓ̄j

)
∇θ log pθ(x

(k)), where ℓ̄j =
1

K − 1

K∑
j=1,j ̸=k

ℓ(x(j)). (7)

3 Method
In GNN terminology, the interactions Jij represent edge features, while the external magnetic fields hi

serve as node features. The spin state of each node xi is a dynamic variable that can take values
in {±1}. In particular, we use a GNN to parameterize the external magnetic field, hθ : G → R|V|,
defining the Ising model according to Equation (1). The final output is a binary partitioning of the
input graph, given by sampling this energy-based model.

Sampling. We use the Metropolis-Hastings algorithm [18] for the sampling, see Algorithm 1.
However, to make it computationally efficient, we parallelize it by first coloring the graph so that
nodes of the same color are never neighbors. Then, we can perform simultaneous Metropolis-Hastings
updates for all nodes of the same color. A simple checkerboard pattern perfectly colors grid-structured
graphs, such as images. For general graphs, we run a greedy graph coloring heuristic [19] that
produces a coloring with a limited, but not necessarily minimal, number of colors C (see Appendix B).

Controlling the Sampling Fraction. For some tasks, the obvious way to minimize the loss is to
either sample all nodes or none. To counteract this, we need a way to control the fraction of nodes to

3



Ising on the Graph: Task-specific Graph Subsampling via the Ising Model

sample or, equivalently, to control the average magnetization η, which is defined as

η =
1

|V|

|V|∑
i=1

Ex∼pθ(x) [xi] , (8)

where x ∈ {±1}|V| denotes the vector containing all states and xi is the ith entry in x. Let
x̄i = Ex∼pθ(x) [xi] denote the local magnetization at node i. Since the Markov blanket of a node is
precisely its neighborhood, we can use Equation (4) to rewrite the local magnetization as

x̄i = Ej∈N (i) [Ei [xi | xj ]] = Ej∈N (i)

[
tanh(βheff

i (x))
]
. (9)

The corresponding mean-field (variational) approximation is a nonlinear system of equations in x̄ [18]:

h̄eff
i (x̄) = hi +

∑
j∈N (i)

Jij x̄j , x̄i = tanh(βh̄eff
i ). (10)

Solving this yields a deterministic way of approximating the average magnetization η. However,
we are primarily interested in the ordered regime, where βh̄eff

i is large, and it approximately holds
that xj = Jijxi, which implies that x̄i = tanh(βhi) and, thus,

η̃det =
1

|V|

|V|∑
i=1

tanh (βhi) . (11)

This can be contrasted with the stochastic estimate we get from using a one-sample Monte Carlo
estimate in Equation (9):

η̃sto =
1

|V|

|V|∑
i=1

tanh
(
βheff

i (x))
)
, x ∼ pθ(x). (12)

Learning. In contrast to most other energy-based models [15], ours is not an unconditional generative
model. Neither is it a supervised regression task [20], since we learn to subsample without requiring
ground truth labels on which nodes are the correct ones to choose. Instead, we target the scenario
where it is challenging to specify useful subgraphs for a downstream task but we have access to an
associated, possibly non-differentiable, loss (which may use labels for the downstream task, as in
Section 4.2). However, supervised training is also possible, as we demonstrate in Section 4.1.

We need the gradient of the log probability for gradient-based training of the GNN in our Ising model,
which can be decomposed as a sum of two terms:

∇θ log pθ(x) = −β∇θEθ(x)−∇θ logZθ. (13)

We are particularly interested in training the model for a downstream task associated with a loss
ℓ(x) defined in terms of samples x ∼ pθ(x) from the Ising model. The goal is then to minimize the
expected loss as defined in Equation (5).

Since we are operating in a discrete setting, we use the gradient estimation technique described in
Section 2. Specifically, using K = 2 in Equation (7), the problematic logZθ terms cancel in the
RLOO estimator, and we obtain

(∇θL)2LOO = −β

2

(
ℓ(x(1))− ℓ(x(2))

)
· ∇θ

(
Eθ(x

(1))− Eθ(x
(2))

)
. (14)

To train the model, we can thus draw two independent samples x(1), x(2) ∼ pθ(x) from the Ising
model and estimate the gradient using Equation (14), where ∇θ

(
Eθ(x

(1))− Eθ(x
(2))

)
can be

computed by automatic differentiation.

To control the sampling fraction, as described in Section 3, we could either include a regularization
term that depends on the stochastic sampling fraction (Equation (12)) directly in the task-specific
loss ℓ, or use a deterministic approximation based on Equation (11) to move it outside the expectation
and thereby enable direct automatic differentiation. Empirically, we found the latter option to work
better. Specifically, we use the training loss

Ltot(θ) = Ex∼pθ(x) [ℓ(x)] + (η̃det(θ)− η)2, (15)

where the desired value of the average magnetization η is defined as in Equation (8).
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h, Ising+Mag Logits U-net Pred Ising+Mag Pred U-net Target

Figure 2: Comparison of a U-Net trained with a cross-entropy loss against an Ising model with a
learned magnetic field. From left to right are the image, the Ising model magnetic field, the U-Net
output (the logits), the Ising model prediction, the U-Net prediction, and the true segmentation mask.

4 Applications
We apply the proposed energy-based graph subsampling method across four distinct areas: image
segmentation, explainability for graph classification, 3D shape sparsification, and sparse approximate
matrix inverses. Code is available at https://github.com/mariabankestad/IsingOnGraphs.

4.1 Illustrative Example on Image Segmentation

To provide an intuitive visual demonstration, we first apply our approach to an image segmentation
task, even though our main objective is learning Ising models on general graphs. An image can be
represented as a graph, where pixels are nodes and edges denote neighboring pixel relationships [21].
In the ferromagnetic case (J = 1), the Ising model encourages nearby pixels to have similar values,
resulting in smooth, coherent segmentations. Using a probabilistic graphical model to post-process
neural network outputs can significantly improve object boundary localization [22]. Unlike the
general setting in Section 3, this example has ground-truth labels (segmentation masks), allowing for
a supervised approach with no downstream task involved.

Our Approach. Because of the grid structure, the message from the 8-connected neighbors can be
implemented as a convolutional layer with kernel size three and zero padding. Specifically, we define
the energy per pixel as:

Ei = −xi (ConvW (xi) + hθ(xi)) , W =

[
w∗ w w∗

w 0 w
w∗ w w∗

]
.

Here, ConvW is an image convolutional operator with weights w, and hθ(xi) is an external magnetic
field with learnable parameters θ. The weights w and w∗ have the same sign but can have different
values. In contrast to Zheng et al. [23], who use the mean-field approximation in Equation (10) to
learn a fully-connected conditional random field end-to-end, our approach applies to graph-structured
energy functions and allows task-specific losses.

Since we consider binary segmentation, we use a pixel-wise supervised misclassification loss

ℓ(x) =
1

|V|

|V|∑
i=1

|xi − yi|, where the target value is yi ∈ {−1, 1}. (16)

Results. We use the Caltech-UCSD Birds-200-2011 dataset [24] and model the magnetic field of the
Ising model by a U-Net [25]. See Appendix C for details and additional results. Directly training the
model for segmentation using a standard cross-entropy loss yields an average Dice score of 0.857 on
the test set. In contrast, using a learned magnetic field in the Ising model, the average Dice score
increases to 0.870 on the test set. Figure 2 compares two predictions from the two models. Notably,
the output from the magnetization network of the Ising model exhibits clearer and sharper borders
compared to the logits predicted by the plain segmentation model. This distinction is also reflected in
the predictions, where the Ising model’s segmentation mask appears more even and self-consistent.
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Figure 3: Left: Quantitative evaluation of IGExplainer and IGExplainerS using a synthetic dataset
BA-2motifs and a real-world dataset Mutag. We report the graph explanation accuracy (GEA) and
the fidelity score; higher is better for both scores. The theoretical limit of GEA is 0.43 for Mutag and
1 for BA-2motifs. Right: Qualitative analysis of the explanations generated by IGExplainer with the
magnetic field h, the sample average, the top-k nodes, and the truth. See Appendix D.2 for baselines.

4.2 Explainability for Graph Classification

GNNs integrate information from features with the graph topology. While being a key ingredient
of their success, this makes their predictions challenging to explain [26]. Nevertheless, there is a
clear need for such explanations in high-stakes applications like drug design. We focus on the most
studied class of problems in GNN explainability: graph classification. However, our approach, the
Ising Graph Explainer (IGExplainer), is equally applicable to explain node and edge classifications.

Our Approach. Like PGExplainer [27], we derive subgraph explanations from a trained probabilistic
classifier. More specifically, we consider a subgraph to be an explanation when the model’s prediction
on that subgraph agrees with the prediction on the whole graph. In the taxonomy of Kakkad et al. [26],
this makes it a perturbation-based post-hoc method. To find such subgraph explanations, we train
the external magnetic field of a ferromagnetic Ising model (J > 0) by minimizing the cross-entropy
between predictions y ∼ p(y | G) for the whole graph G and predictions ys ∼ p(y | Gs) for sampled
subgraphs Gs. Specifically, subgraphs are sampled by subsampling nodes according to the Ising
model and including all edges between those nodes. In the special case of binary classification, the
cross-entropy reduces to the familiar expression

H(y, ys) = − (p log ps + (1− p) log(1− ps)) , (17)
where we use the shorthand notation p := p(y = 1 | G) and ps := p(y = 1 | Gs). To avoid the trivial
solution Gs = G, we normalize the external magnetic field to be zero-sum.

Results. We train our IGExplainer using a three-layer graph isomorphism network (GIN) [28] as
the magnetic field hθ(·), with the cross-entropy from Equation (17) as the task-specific loss. We
consider two standard explainability datasets: BA-2Motifs [27] and Mutag [29, 30]. On each dataset,
we first train a classification model M (also a GIN network), then use M to compute the loss for the
IGExplainer via the probability distributions p and ps. We propose two inference procedures: IGEx-
plainer, which uses the top-k nodes according to the trained magnetic field score, and IGExplainerS,
which generates an expandability mask by performing five MCMC iterations on the Ising model.

We evaluate the explanations using two metrics: graph explanation accuracy (GEA) [30] and char-
acteristic fidelity [31], which measures how well ys aligns with y. In BA-2Motifs, k is set to 5, the
exact number of true nodes, while in Mutag, k is set to 40% of the total graph size. Figure 3 (left)
illustrates that IGExplainer and IGExplainerS both outperform all baselines in terms of GEA and
fidelity, with IGExplainerS further improving accuracy through the use of Monte Carlo sampling
compared to IGExplainer’s static top-k selection. Figure 3 (right) visualizes the magnetic field
hθ(·) for a representative graph from each dataset, where the magnetic field strength indicates node
importance. We also present the average sample from IGExplainerS, highlighting its preference for
sampling cohesive node groups, contributing to higher fidelity. Appendix D.4 provides details on
the inference times, showing that IGExplainerS, with an average inference time of 0.02 seconds, is
approximately 1000 times faster than GStarX. Additional experimental details, model architecture,
and dataset descriptions are provided in Appendix D.
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Figure 4: Left: Mean and standard deviation of the test vertex-to-mesh distance from the five-fold
cross-validation of the four datasets. Here, lower is better. For an explanation of the other methods
and the results as a table, see Appendix E. Middle: Learned magnetic field of an object. Right:
Sampled vertices using the Ising model with a learned magnetic field. Black vertices are retained in
the coarser mesh and are more important for the overall shape preservation (see the ears and nose).

4.3 3D Shape Sparsification

An object’s 3D mesh tends to have a densely sampled surface, resulting in numerous redundant
vertices. These redundant vertices increase the computational workload in subsequent processing
stages. Consequently, mesh sparsification (representing the object with fewer vertices and edges) is a
common preprocessing step, e.g., in computer graphics [32] and fluid dynamic simulations [33]. The
main techniques for sparsifying a mesh are based on preserving the spectral properties of the original
mesh [34, 35]. However, these methods cannot be adapted to specific downstream tasks.

We aim to create a nested mesh using a subset of nodes from the fine mesh. Unlike methods such
as QSlim [36], which repositions vertices, our approach ensures continuity between mesh levels, a
valuable feature for scientific applications (e.g., finite element analysis [33]). Fixing vertex positions
also allows for clearer comparisons of subsampling methods by isolating the effects of sampling alone.

A triangular mesh M is composed of vertices V , edges E and faces F , where the faces define the
triangles formed by the vertices. To sparsify the mesh, we remove selected vertices and collapse the
connected edges to their nearest neighboring vertex. The distance between the vertices V1 of the
original mesh and the surface of the coarser mesh M2 is defined as:

d(V1,M2) =
∑
x∈V1

min
y∈M2

||x− y||22. (18)

For each vertex in M1, the algorithm finds the nearest point in M2 and sums the squared distances.

Our Approach. We approach mesh sparsification as a sampling problem, using the antiferromagnetic
Ising model to select vertices for the coarse mesh. This model is well-suited because its “every other”
pattern helps to distribute the samples more evenly across the mesh. Additionally, the magnetic field
hθ(x) guides sampling toward regions that are most relevant to the task, i.e., shape preservation.

The 3D shapes are represented as graphs, with vertex positions as node features and relative distances
as edge features, eij = xi − xj . To model the magnetic field hθ(·), we use a three-layer Euclidean
GNN [37], capturing 3D geometry while remaining equivariant to rotations and translations. We also
use the mesh Laplacian [38] to assess surface geometry (see Appendix E).

Results. We use the vertex-to-mesh distance in Equation (18) as our task-specific loss and train
the Ising model with η = 0 in Equation (15), aiming to reduce the number of vertices in each mesh
by half. As datasets, we use bust, four-leg, human, and chair [39], where each dataset contains 20
different meshes. We evaluate the model using five-fold cross-validation. Figure 4 demonstrates that
the Ising model with the magnetic field (ISING+MAG) achieves the lowest point-to-mesh distance
since it is trained for this specific task. ISING and Spectral coarsening (SPECTRAL) [6] perform
similarly, both producing an every-other pattern, where SPECTRAL selects nodes via the graph
Laplacian’s largest eigenvector. While farthest point sampling [40, 41] distributes points evenly,
it misses key areas. ISING+MAG combines geometric insights with effective mesh preservation.
Additional details on the model, dataset, baselines, and time complexity are presented in Appendix E.
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ISING+MAG

Figure 5: Sparsity patterns of A, its inverse A−1, our sparse
approximate inverse (50% elements, Setting 3), and predicted
magnetic field h for two test matrices (non-zeros in white).

Table 1: Mean and standard deviation
of the loss in Equation (20) over the test
set for each setting and model using a
single sample from the learned Ising
model. Lower is better.

Model Setting 1 Setting 2 Setting 3

ISING+MAG 3.28 (0.12) 2.06 (0.26) 1.15 (1.24)
ISING 3.86 (0.12) 3.69 (0.23) 3.78 (0.42)
RANDOM 4.04 (0.16) 3.86 (0.18) 3.86 (0.30)
ONLY A 4.12 (0.08) 4.12 (0.08) 2.00 (1.89)

4.4 Sparse Approximate Matrix Inverses

Large linear systems Az = b, where A ∈ Rn×n is a sparse matrix, are frequently solved in many
scientific and technical domains. With increasing problem size, direct methods are replaced by
iterative methods, e.g., Krylov subspace methods. However, if the problem is ill-conditioned, these
methods require preconditioning [42] for which sparse approximate inverses (SAIs) are often suitable.

Our goal is to find a sparse approximate inverse M ≈ A−1 ∈ Rn×n, acting as a right preconditioner
for the sparse linear system Az = b. Let I be the identity matrix and s ∈ S denote the sparsity
pattern of M , with S representing the space of all possible sparsity patterns. The pattern s specifies
the m indices of non-zero entries, while s′ ∈ Rm provides their corresponding values. Further, M ′(s)
denotes the approximate inverse with sparsity pattern s and non-zeros s′. We find M by solving

min
s′∈Rm

∥AM ′(s)− I∥F, (19)

where ∥ · ∥F denotes the Frobenius norm. However, this approach requires an a priori assumption
on s, which affects the quality of the preconditioner. Various modifications to the described sparse
approximate inverse approach exist, aiming to refine the sparsity pattern iteratively [43].

Our Approach. Symmetric sparse linear systems can be represented as graphs [44] where A is
viewed as the adjacency matrix of a weighted undirected graph where the matrix elements correspond
to edge features. The idea is to use the Ising model to sample sparsity patterns of the SAI. However,
our Ising model is defined over nodes; hence, we move the graph representation to its line graph [45].
A sample x from our model then corresponds to a proposed sparsity pattern s of the predicted SAI M .
As before, we parametrize our model by θ and learn it by minimizing Equation (15) using η = 0 and

l(x) = ∥AM(sθ(x))− I∥F. (20)

We aim to reduce the number of elements of an a priori sparsity pattern (possibly including all
elements) by 50%. We obtain the specific SAI M(sθ(x)) by solving Equation (19) using the sampled
sparsity pattern of the Ising model given its current parameters. The external magnetic field is
modeled by a graph GCN [46], and we use the RLOO gradient estimator according to Equation (14).
We let A and A2 enter as edge features. Contrary to conventional approaches, our method is flexible
in terms of a priori sparsity patterns. Appendices F.1 and F.2 contain further details.

Datasets. Dataset 1 consists of 1600 synthetic binary sparse matrices of size 30× 30 and Dataset 2
consists of 1800 sparse 30× 30 submatrices constructed from the SuiteSparse Matrix Collection [47],
thus resembling real-world sparse matrices. See Appendix F.3 for details.

Results. We consider three experimental settings. Setting 1 uses A and A2 as edge features on
Dataset 1. Here, the a priori sparsity pattern of the SAI is the same as that of A2, and our model
selects 50% of those positions for M . Setting 2 is similar but allows for using 50% of all possible
positions. Setting 3 follows the same approach as Setting 2 but is applied to Dataset 2. See Appendix
F.1 for implementation details. Figure 5 shows two test samples from Setting 3, illustrating how the
learned magnetic field adapts to generate an appropriate sparsity pattern even when the true inverses
have different structures. More detailed results can be found in Appendix F.1. Table 1 compares
the performance of our model (ISING+MAG) with three baselines: (i) an Ising model with a small
constant magnetic field, tuned for the same sampling fraction as the test set (ISING), (ii) uniform
random sampling from the allowed sparsity pattern with the same sampling fraction (RANDOM),
and (iii) the quality of the sparse approximate inverse using only the input matrix A (ONLY A). In all
cases, ISING+MAG significantly outperforms the baselines.
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5 Related Work
Statistical Physics and Random Fields. The Ising model is a foundational model for magnetic
systems, with generalizations such as the Potts model for multiple states [11]. The Ising model with
random interactions represents spin glass systems [12], closely linked to Hopfield networks—models
of associative memory that have seen renewed interest [48–50]. These have, in turn, inspired the
development of Markov random fields [51]. Since we output the external magnetic field as an
intermediate variable that defines an Ising model, it belongs to the class of conditional random fields
[52], which are widely used in structured prediction tasks [22, 23, 53].

Combinatorial Optimization. Recent research has employed Ising models to tackle combinatorial
optimization across domains such as collaborative filtering, traffic prediction, and graph learning
[54–56]. These approaches infer coupling parameters and biases from historical data, which remain
fixed post-inference. This method works well for static graphs, where inference minimizes energy
configurations based on node values. In contrast, Salehinejad and Valaee [57] apply an Ising model to
enforce sparsity and prune convolutional neural networks, treating the network as a graph and using
the model as a regularizer akin to dropout. Our approach differs by introducing a parametric mapping
from graph data to the magnetic field, allowing for task-specific learning of Ising parameters.

Graph Sparsification and Coarsening. Graph sparsification and coarsening aim to create a smaller
graph while retaining the global structure of the original. Bravo-Hermsdorff and Gunderson [58]
presents a unifying framework for both operations by reducing the graph while preserving the
Laplacian pseudoinverse. Unlike our approach, theirs is algorithmic rather than learned, focusing
on structural preservation without training data to adapt the reduction. Many algorithms for graph
coarsening aim to preserve spectral properties [7, 59–61]. Building on top of this idea are approaches
based on neural networks [8]. A graph coarsening can also be computed based on optimal transport
[62], graph fusion [63], and Schur complements to obtain embeddings of relevant nodes [64]. The
coarsening of graphs is also done for the scalability of GNNs [65] and dataset condensation [9, 66].
The goal is that GNNs perform similarly on the condensed data but are faster to train. Finally, Chen
et al. [34] provides an overview of successful coarsening techniques for scientific computing. As for
graph sparsification, spectral sparsification [67] and information-theoretic formulations [68] can be
used. Graph partitioning can be done using quantum annealing by minimizing an Ising objective
[69]. Batson et al. [70] provides an overview on the topic of sparsification, and Hashemi et al. [71]
presents a general survey on graph reduction, including sparsification, coarsening, and condensation.

6 Discussion and Conclusion
We proposed a new method for graph subsampling by first learning the external magnetic field in the
Ising model and then sampling from the resulting distribution. Our approach has shown potential in
various applications and does not require the differentiability of the loss function of a given application.
We achieved this using the REINFORCE Leave-One-Out gradient estimator and a carefully chosen
regularization structure that allowed us to adjust the sampling fraction. Within a diverse set of
experiments on four applications, we demonstrated the effectiveness of our method. In image
segmentation, our approach generated segmentation masks with sharp borders. Our IGExplainer
produced explanations with high accuracy and fidelity for graph classification. In mesh coarsening,
the learned magnetic field increased the sampling rate in high-curvature regions while maintaining
the characteristic “every other” pattern. Finally, we illustrated that our approach can learn sparsity
patterns for determining sparse approximate matrix inverses via Frobenius norm minimization.

Limitations and Future Work. For our applications, the computations were fast (see Figures 19
and 20 in Appendix E), but this may change for other large-scale applications, where the sampling
(incl. graph coloring) can become a bottleneck. This is something we want to address in future work.
Another limitation is that the Ising model only allows for binary states, whereas some applications,
e.g., image classification, require multiple classes. We believe it is possible to extend our approach to
such cases by instead using the Potts model or the even more general random cluster model [72].
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Appendix
The appendix first presents some details on Ising sampling and graph coloring. It then continues with
extra information on our four applications. We only used a single GPU, an NVIDIA GeForce RTX
3090, for all applications and performed all experiments using less than 10 GPU hours.
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A Ising Sampling
To illustrate the convergence rate of the Ising model, we plot the energy against the number of Monte
Carlo iterations in Figure 6. These simulations are done on the 20 meshes in the Bust dataset of
Section 4.3. We plot the mean plus one standard dedication of the model energy at each iteration. We
observe that the ferromagnetic (J = 1) and antiferromagnetic (J = −1) Ising models converge fast,
even though the antiferromagnetic one converges faster in just a handful of iterations.
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Figure 6: The mean and standard deviation of the Ising model energy against the number of Monte
Carlo iterations for the (J = 1) or antiferromagnetic (J = −1) Ising model. The simulation is also
done for three different temperatures: 0.01, 0.1, and 1.
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B Graph Coloring
The graph coloring is based on the greedy graph coloring algorithm explained in [73]. We use the
implementation of NetworkX [74]. The computational complexity of the greedy coloring method is
O(m+ n), where n is the number of vertices and m is the number of edges in the graph. Figure 7
shows the coloring time plotted against the number of vertices for the graph coarsening dataset
of Section 4.3. This indicates that the time taken for coloring is insignificant compared to the
time required for sampling and coarsening. However, the coloring time could potentially become
problematic for exceptionally large graphs. It is worth noting that coloring an image is extremely fast
and straightforward due to its simple structure.

Figure 7: The time it takes to color a graph, plotted against the number of vertices in the graph.
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C Binary Segmentation Details
We train a U-Net for the bird segmentation task in Section 4.1 using three down-sampling blocks, one
middle layer, and three up-sampling blocks. The implementation is inspired by https://github.
com/yassouali/pytorch-segmentation/tree/master. The dimensions of the blocks/layers
are presented in Table 2.

Table 2: Dimensions of the U-Net blocks.

LAYER INPUT DIM OUTPUT DIM

INPUT LAYER 3 16
ENCODER 1 16 32
ENCODER 2 32 64
ENCODER 3 64 128
MID LAYER 128 128
DECODER 1 128 64
DECODER 2 64 32
DECODER 3 32 16
OUTPUT LAYER 16 1

We train the model using the Adam optimizer [75], a batch size of 32, and a learning range of 1e− 4.
The dataset contains 6537 segmented images. We split the dataset in a train/val/test split using the
ratios 0.8/0.1/0.1. We train the model for 300 epochs and test the model with the lowest validation
error. Here, the Ising model uses a temperature of one and J = 1. Figure 8 illustrates that the Ising
segmentation model is relatively robust to noise compared to using solely a U-Net.
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Figure 8: Dice score comparison of the two segmentation models under varying levels of noise,
characterized by different standard deviations (σ), added to the input images.

D Explainability for Graph Classification Details
This section contains the details of the explaining graph classification experiments of Section 4.2.

D.1 Datasets

The BA-2motif dataset, first presented in [27], contains 1000 random Barabasi-Albert (BA) graphs
where 50% of the graphs have a house motif attached to it, while the other half has a cycling motif
attached to it. The aim is to classify which of the two a graph belongs to. All graphs in the dataset
contain 25 nodes. Figure 9 depicts some samples.

The Mutag (or Mutagenicity) dataset [29] consists of 1,768 molecular graphs, categorized based on
their mutagenic effects on the Gram-negative bacterium S. Although the original dataset contains
4,337 graphs, we utilize a curated version from [30], which emphasizes the presence or absence
of the toxicophores: NH2, NO2, aliphatic halides, nitroso, and azo groups. Upon reviewing the
dataset and its ground truth explanations, we observe that they are occasionally incomplete. While
the labels correctly identify the relevant atoms, they often fail to account for the atomic neighborhood.
For example, as illustrated in Figure 10, a chlorine (Cl) atom alone does not consistently result in
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Figure 9: Samples from the two different classes in the BA-2motif dataset.

a mutagenic molecule; the mutagenicity also depends on the atomic environment around the Cl
atom. However, this contextual factor is not considered in the explanation labeling of the dataset.
Consequently, the absolute value of the Graph Explanation Accuracy (GEA) metric should not be
overemphasized; instead, it should be interpreted in relation to other models rather than as an isolated
performance indicator.

Class 1 (has mutagenicity)

Class 0

Figure 10: Samples from the two different classes in the Mutag dataset, with ground truth explanation
labels highlighted for the positive (mutagenic) class. The figure shows that the provided explanations
can be incomplete. For instance, chlorine (Cl) or bromine (Br) atoms attached to a carbon ring are
associated with mutagenicity in the top row. However, in the bottom row, molecules containing Cl or
Br are non-mutagenic, indicating that these atoms alone do not always lead to mutagenicity.

D.2 Baselines

In our experiments, we evaluate six post-hoc explainability baselines: PGExplainer [27], GNNEx-
plainer [76], PGMExplainer [77], SubgraphX [78], GStarX [79], and SAME [80]. These methods
identify significant subgraph structures influencing GNN predictions. PGExplainer uses a neural
network to learn patterns across multiple data points and identify subgraphs of importance, while
GNNExplainer optimizes an edge mask for each instance using gradient descent. PGMExplainer
utilizes probabilistic graphical models to capture node dependencies and offer interpretable expla-
nations of their impact on predictions. SubgraphX applies Monte Carlo Tree Search with Shapley
values to systematically explore subgraphs and generate globally interpretable explanations. GStarX
leverages the HN value from cooperative game theory to efficiently identify influential subgraphs
by considering structure-aware insights. SAME (Structure-Aware Model Explanation) explains
GNNs by analyzing the contribution of each substructure while maintaining the balance of overall
model complexity. We utilize the official PyTorch Geometric [81] implementations for PGExplainer,
GNNExplainer, and PGMExplainer, the implementation from [79] for GStarX and SubgraphX, and
the original implementation for SAME. We follow the hyperparameters recommended by the authors.
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SAME and SubgraphX do not support edge features, so they are only evaluated on the BA-2Motifs
dataset.

D.3 Implementation Details

For the explainability experiments in Section 4.2, we use a three-layer GIN network [28] with a
hidden dimension of 64 for the BA-2Motifs dataset. For the Mutag dataset, we use a three-layer
GINE network [82], which incorporates edge features. The hidden dimension is again 64. In all
experiments, the classification model and the magnetic field model share the same structure, with the
only difference being that a final mean pooling layer is applied to the graph classification model.

We train the classification models using the Adam optimizer [75], with a batch size of 64 and a
learning rate of 10−3, for a total of 500 epochs.

For our IGExplainer model, we use again the Adam optimizer [75] with a batch size of 64 and a
learning rate of 10−3, and train for 300 epochs. The model with the lowest cross-entropy loss (see
Equation (17)) is saved. In these explainability experiments, we evaluate the model on the training set
rather than using a separate test set. The focus of explainability is to interpret and understand the
behavior of the trained model, not to assess its performance on new data.

D.4 Additional Results

The time required for each model to generate an explanation is shown in Figure 11. IGExplainer
and IGExplainerS are faster than all baselines except PGExplainer, which is the fastest model.
IGExplainerS uses a few Monte Carlo samples to achieve the highest accuracy among the models,
which makes it slightly slower than IGExplainer, which instead selects the top-k values of the
magnetic field for its explanations. IGExplainerS, which provides the best performance, is still
significantly faster (0.02 seconds on average for the BA-2Motif dataset) than GStarX, the slowest
model, which takes an average of 25 seconds.

10 3 10 2 10 1 100 101

0.0

0.5
Mutag

10 3 10 2 10 1 100 101

Time (s)

0.5

0.0

0.5
BA-2

PGMExplainer
GNNExplainer
PGExplainer
SubgraphX
GStarX
SAME
IGExplainer
IGExplainerS

Figure 11: Inference time for all models used in the explainability experiments.

When taking samples of the IGExplainer, every sample will differ since the Ising model is stochastic.
This is visualized in Figure 12 for one graph in the BA-2motif dataset. We also visualize several
samples from the distribution and the sample average, i.e., approximately the marginal probability of
including a node. Importantly, this differs from the magnetic field hθ(·).
Additional predictions from the IGExplaner on the Mutag dataset are presented in Figure 13.
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h ( ) Sample 1 Sample 2 Sample 3 Distribution

Figure 12: Samples from the trained IGExplainer. The distribution of the samples is different from
the magnetic field hθ(·).

h ( )  Sample Top-k  True

Figure 13: Output of the IGExplainer on the Mutag dataset. From left to right: the predicted magnetic
field hθ(·), the sample distribution, the top-25% of nodes where hθ(·) is the score, and finally the
ground truth.
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E Mesh Simplification

This section contains extra information on the mesh simplification experiments of Section 4.3.

E.1 Dataset

The details of the mesh dataset are presented in Table 3.

Table 3: Details of the meshes in the dataset used in Section 4.3. The table presents the mean number
and the standard deviation in parentheses.

DATASET BUST FOURLEG HUMAN CHAIR

NUMBER OF VERTICES 25662 (1230) 9778 (3671) 8036 (4149) 10154 (999)
NUMBER OF FACES 51321 (2460) 19553 (7342) 16070 (8302) 20313 (2002)

E.2 Implementation Details

The equivariant GNN is constructed using the e3nn library [37]. As the node input, we derive the
mesh Laplacian according to

Cij =


wij =

cotαij+cot βij

2 , if i, j is an edge,
−
∑

j∈N(i) wij , if i is in the diagonal,
0, otherwise,

(21)

where and αij and βij denote the two angles opposite of edge (i, j) [83]. We get a measure of the
curvature of the node using

z0i =

∥∥∥∥∥∥
∑

i∈N (i)

Cij(r̂i − r̂j)

∥∥∥∥∥∥
2

2

, (22)

where r̂i is the position of node i. We use z0i as the model node input. As edge attributes, we
use the spherical harmonics expansion of the relative distance between node i and its neighbors j,
Y ((r̂i − r̂j)/∥r̂i − r̂j∥)) and the node-to-node distance dij = ∥r̂i− r̂j∥. We construct an equivariant
convolution by first deriving the message from the neighborhood as

ẑk+1
i =

1

nd

∑
j∈N (i)

zkj ⊗fW (dij) Y

(
r̂i − r̂j
∥r̂i − r̂j∥

)
, (23)

where nd is the mean number of neighboring nodes of the graph. For a triangular mesh, the degree
is commonly six. The operator ⊗fW (dij) defines the tensor product with distant dependent weights
fW (dij); this is a two-layer neural network with learnable weights w that derives the weights of the
tensor product. The node features are then updated according to

zk+1
i = zki + α · ẑk+1

i , (24)

where α is a learnable residual parameter dependent on zki . We took inspiration for the model from the
e3nn homepage, see https://github.com/e3nn/e3nn/blob/main/e3nn/nn/models/v2106/
points_convolution.py.

We construct a two-layer equivariant network where the layer irreducible representations are [0e,
16x0e + 16x1o, 16x0e]. This means that the input (0e) consists of a vector of 16 scalars, and the
hidden layers consist of vectors with 16 scalars (16x0e) together with 16 vectors (16x1o) of odd
parity. This, in turn, maps to the output vector of 16 scalars (16x0e). We subtract the representation
with the mean of all nodes in the graph and finally map this representation to a single scalar output.
Here, we use a temperature of one and J = −1 for the Ising model.

For optimization, we employ the Adam optimizer [75] with a learning rate of 0.001 and a batch size
of one. We train the model until convergence on the training set but with a maximum of 50 epochs.
We did not use a validation set as there were no indications of overfitting.
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E.3 Baselines

We compare our ISING+MAG model to five other sampling methods.

• RANDOM is regular random sampling, where every node has a 50% chance of being sampled,
and the samples are independent.

• FPS stands for farthest point sampling, also sometimes called farthest point strategy. FPS selects
a subset of points from a point cloud by iteratively picking the point farthest from the already
chosen points, maximizing the coverage of the original set.

• POINT SAMPLER is the point sampler in [84], which uses a traditional GNN approach. It
aimed to be faster than the iterative FPS and better than random sampling by using a GNN with
a specific DevConv layer to evaluate each point’s importance by analyzing its deviation from
neighboring points.

• SPECTRAL is based on spectral coarsening [6], which uses the polarity of the largest Laplacian
eigenvector, which, just as the Ising models, aims to find an “every other” pattern.

• ISING is the Ising model, but where the magnetic field is set to zero, resulting in a model that
aims to sample in an “every other” pattern.

These methods cannot be trained for specific downstream tasks; they are inherently designed to
distribute samples across the mesh evenly rather than optimize for particular applications.

E.4 Training Time

Table 4 presents the ISING+MAG and POINT SAMPLER training times. The extended training time
for ISING+MAG is primarily due to the need to coarsen the mesh to compute the loss.

Table 4: Training time per epoch (in seconds) for the mesh sparsification problem. We train the
ISING+MAG model for 40-60 epochs and the point sampler for 150. The largest part of the time
comes from redrawing the edges in the coarse mesh.

DATASET BUST FOURLEG HUMAN CHAIR

ISING+MAG 35.22 9.32 11.82 12.99|
POINT SAMPLER 0.48 0.174 0.162 0.213

E.5 Extra Results

The outcome of the experiments presented as a bar chart in Figure 4 is presented in Table 5.

Table 5: Mean and standard deviation of the test vertex-to-mesh distance from the five-fold cross-
validation of the four datasets. Lower is better.

DATASET BUST FOURLEG HUMAN CHAIR

ISING+MAG 0.221 (0.042) 0.339 (0.034) 0.366 (0.031) 0.369 (0.046)
ISING 0.288 (0.055) 0.411 (0.034) 0.409 (0.033) 0.548 (0.045)
RANDOM 0.343 (0.064) 0.498 (0.032) 0.498 (0.032) 0.592 (0.040)
SPECTRAL 0.290 (0.056) 0.415 (0.034) 0.412 (0.034) 0.569 (0.054)
POINT SAMPLER 0.298 (0.057) 0.476 (0.034) 0.494 (0.034) 0.576 (0.046)
FPS 0.303 (0.059) 0.395 (0.029) 0.417 (0.015) 0.619 (0.059)

The results presented in Table 5 show that the Ising model with the magnetic field (ISING+MAG)
surpasses all other models regarding the point-to-mesh distance. This outcome aligns with expecta-
tions, given that our model is trained for this specific task. Their results are virtually identical when
comparing the Ising model without the magnetic field (ISING) to Spectral coarsening (SPECTRAL).
This is anticipated since both approaches result in an every-other pattern. In SPECTRAL, nodes are
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chosen based on the polarity of the largest eigenvector of the graph Laplacian, which divides the
nodes into two equally large subgroups.

While the farthest point sampling (FPS) method ensures that samples are distributed across the graph,
it has its limitations. In some datasets, it may outperform ISING and SPECTRAL. However, it is
important to note that FPS does not guarantee an “every other” pattern and may inadvertently miss
nodes in critical areas of the mesh.

Overall, the Ising model with the magnetic field (ISING+MAG) outperforms all other models. Similar
to ISING and SPECTRAL, it samples an “every other” pattern. However, leveraging a geometry-
aware network also learns to identify nodes crucial for maintaining mesh shape. This behavior, which
defaults to using the “every other” pattern and selectively samples nodes based on the geometric
shape of surrounding nodes, contributes to the model’s effectiveness.

Examples of how the Ising model learns important areas of the mesh are presented in Figures 14,
15, 16, and 17. Here, we visualize the magnetic field from the test split from the four datasets. An
illustration of the course meshes after sampling is presented in Figure 18.

Figure 14: Examples of the magnetic field from the bust dataset (test set).

Figure 15: Examples of the magnetic field from the fourleg dataset (test set).

Figure 16: Examples of the magnetic field from the human dataset (test set).
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Figure 17: Examples of the magnetic field from the chair dataset (test set).

Original

d(V,M) = 0.038 d(V,M) = 0.050 d(V,M) = 0.060

Ising + mag Ising Random

Figure 18: The coarsened mesh using random subsampling, Ising subsampling, and learned Ising
subsampling of the nodes. The point-to-mesh distance is reduced from 0.06 to 0.038 when going
from the random subsampling to the learned Ising graph. The time it takes to sample and create the
course mesh is random, 1.37 sec, Ising 0.67 sec, and Ising+mag 1.31 sec. Random sampling takes
longer due to a more complicated course mesh creation.

Complexity. Given the large graphs in mesh processing, evaluating time complexity is crucial. We
measure the time complexity for coarsening and sampling to complement the results in Table 5.
Figure 19 shows the sampling time alone, excluding mesh reconstruction, as a function of the mesh
size. Notably, only random sampling and the neural network-based point sampler are faster than
the Ising model. The relatively efficient scaling of the Ising model is due to two factors: (i) the
parallelism enabled by the Metropolis-Hastings algorithm through graph coloring, and (ii) the fast
convergence of the Ising model, which requires only a few iterations of the Metropolis-Hastings
algorithm.

Figure 20 illustrates the combined time for sampling and coarsening. It shows that the Ising model’s
coarsening time is lower than that of random sampling. This is because coarsening is less efficient
with unevenly distributed samples. Additionally, coarsening is the major time factor, while the
sampling time is negligible.
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Figure 19: The time it takes to get sample nodes to include in the coarse graph.

Figure 20: The time it takes to sample and coarsen the graph, plotted against the number of vertices
in the graph.
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F Sparse Approximate Matrix Inverses

F.1 Results and Implementation Details

With our initial model architecture, the graph representation induces an a priori assumption on the
sparsity pattern of the predicted sparse approximate inverse in which we aim to select 50% of the
elements in the sparsity pattern of A+A2. Our approach is, however, not limited to the choice of
an a priori sparsity pattern. Implementation-wise, we lift this constraint by adding an extra edge
feature consisting of an all-ones n×n matrix in the graph representation of the input matrix, allowing
for a selection of 50% of all matrix elements in the sparse approximation of the inverse. As the a
priori sparsity pattern is already incorporated into the graph representation of the input matrix, this
renders our method flexible in terms of choice of a priori sparsity pattern, which in our case should
be denser than the desired sparsity level. This flexibility is expected to be especially important for
computational efficiency in use cases involving large matrix dimensions.

Given the current state of the trainable parameters, two samples from the Ising model are required
during training to obtain the gradient estimate. Evaluation is carried out using a single sample. In
both cases, the sample x from the Ising model produced after T MCMC iterations is passed to the
final layer, which solves the the n optimization problems,

s∗k = argmin
s′k∈Rmk

∥AMk(sk)− Ik∥22, (25)

computing the values s∗k ∈ Rm of the non-zero entries of each column Mk of M . Thus, the final
output is the predicted sparse approximate inverse M . Empirically, T = 3 is found to be sufficient.

Independent on which dataset is used, 60% of the samples are used for training, and the remaining
40% are divided equally between a validation set and a test set. We use the magnetic field-dependent
regularization described in Section 3 to optimize for a sampling fraction of 50% of the a priori sparsity
pattern. In all settings, the sampling fraction converges to an average value close to 50% with the
proposed regularization scheme. The mean recorded sampling fraction on the test dataset in Setting 1
and Setting 2 is 52.4% and 50.9%, respectively. The corresponding sampling fraction in Setting 3 is
49.8%. The baseline methods are tuned to allow for the same sampling fraction during evaluation.

Results for two samples from the test dataset in Setting 3 are visualized in Figure 5. The first
sample (top) shows the predicted sparsity pattern when the true inverse is dense. For this sample, the
recorded loss is 2.61 (ISING+MAG) compared to 3.57 (Ising), 4.18 (Random) and 4.12 (Only A). As
discussed in Figure 1, the magnitude of the local magnetic field influences the sampling probability in
that region, which can be seen by comparing the output magnetic field to the obtained sparsity pattern
for both samples. A zero magnetic field in the Ising model can be interpreted as a prior on the sparsity
pattern in which 50% of the elements in each row and column of the matrix are selected, resulting
in an inverse approximation in which the nonzero elements are evenly distributed across the given
matrix. For the second sample (bottom), the sparsity optimized for is lower than the sparsity of the
true inverse. We choose to display this sample as the results clearly illustrate that the learned magnetic
field indeed results in an Ising model from which the sampled sparsity pattern successfully avoids
the most unimportant regions in the true inverse for the particular input matrix. For this sample, the
recorded loss is 1.02 (ISING+MAG) compared to 3.75 (Ising), 3.76 (Random) and 4.06 (Only A).

The current baselines include comparisons to uniform random sampling and an Ising model without
the learned magnetic field key to our approach, both restricted to the allowed sampling fraction. This
restriction is key to fair comparisons since including more nonzeros can improve the performance
metric. With this in mind, comparison to assuming a sparsity pattern corresponding to the sparsity
pattern of input matrix A is a good sanity check, but in this case worse performance can be expected
if the sparsity of the predicted approximate inverse is lower.

F.2 Graph Convolutional Neural Network

Here, we use the simple and deep graph convolutional networks from Chen et al. [46] where we
set the strength of the initial residual connection α to 0.1 and θ, the hyperparameter to compute the
strength of the identity, to 0.5. The network contains four layers, each with a hidden dimension of 64.
We utilize weight sharing across these layers. The dimension of the output of the final convolutional
layer is 64. This output is subtracted with the mean of the node values before a final linear layer
reduces the size to one.
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We employ the Adam optimizer [75] with a learning rate of 0.01 for optimization. We train the model
until convergence on the training set but with a maximum number of 300 epochs, as there were no
indications of overfitting. Here, the Ising model uses a temperature of one and J = −0.4.

The training times per epoch were 1 minute for Setting 1 and three minutes for Setting 2 and Setting 3,
respectively. These models converged in less than 50 epochs.
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F.3 Datasets

Dataset 1. This is a synthetic dataset containing 1600 binary matrices. Each matrix is real, symmetric,
and of dimensionality 30 × 30. The matrices in the dataset are automatically generated based on
the principle that the probability of a nonzero element increases towards the diagonal, with 100%
probability of nonzero diagonal elements. The upper right and lower left corners have a very low
probability of being nonzero, and in between these elements and the diagonal, the probability of a
nonzero element varies according to a nonlinear function. The mean sparsity is 83% zero-elements in
the generated dataset. The maximum sparsity allowed in the data-generating process is 96%, and the
determinant of each matrix is bounded between 0.001 and 50. Figure 21 shows sparsity patterns of
four matrices in the final dataset.

The dataset is available upon request and will be released together with the code used for preprocessing
and generation.

Figure 21: Example of samples from Dataset 1. Nonzero elements are represented in white.

Dataset 2. This is a synthetic dataset containing 1800 submatrices of size 30× 30 constructed from
the SuiteSparse Matrix Collection [47]. Since the original matrices in the dataset are often denser
closer to the diagonal, the submatrices are constructed by iterating a window of size 30× 30 along
the diagonals, such that no submatrix overlaps another submatrix. To ensure that each submatrix is
symmetric, only the upper triangular part of the matrix is used to create each matrix. Each submatrix
is scaled such that the absolute value of the maximum element is one, and submatrices with all
values below 10−6 are removed from the dataset. The mean sparsity in the final dataset is 89%. The
maximum sparsity allowed in the data-generating process is 96%, and the determinant of each matrix
is bounded between 0.001 and 50. Figure 22 shows sparsity patterns of four matrices in the final
dataset.

Figure 22: Example of sparsity patterns of samples from Dataset 2. Nonzero elements are represented
in white.

The original dataset is under the CC-BY 4.0 License. Our modified dataset is available upon request
and will be released with the code used for preprocessing and generation.
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