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Abstract

Dimensionality reduction is a key ingredient of many machine learning algorithms and is
paramount to their success. For manifold-valued data, the nonlinear equivalent of the well-
known principal component analysis (PCA), called, principal geodesic analysis (PGA) is
used quite often. An alternative to PGA that is more general and flexible, called ”Nested
Homogeneous Spaces (NHS)” for dimensionality reduction of manifold-valued data was re-
cently introduced. In this paper, we present a novel probabilistic version of the NHS model
(PNHS) for dimensionality reduction of high dimensional manifold-valued data in Rieman-
nian homogeneous spaces. The PNHS model has several advantages over its deterministic
counterpart namely, the NHS model. In particular, the ability to, quantify uncertainty in
parameter estimates and tackle missing data. We demonstrate these advantages via real
and synthetic data examples.

Keywords: Probabilistic model, Homogeneous space, Dimensionality reduction

1. Introduction

Dimensionality reduction is a fundamental technique in data analysis. At the core of this
endeavor lies principal component analysis (PCA) (Jolliffe and Cadima, 2016), a funda-
mental approach in the extraction of representative features from data. Building upon this,
probabilistic PCA (PPCA) (Tipping and Bishop, 1999) was developed to overcome PCA’s
limitation of lacking an associated probabilistic model for observed data. PPCA interprets
PCA as the following latent variable model:

x = µ+Wz + ϵ, (1)

on Rn with mean µ, coefficient matrix W , latent variables z ∈ Rm ∼ N(0, I)(m < n) and
noise ϵ ∼ N(0, σ2I). This probabilistic approach not only facilitates statistical analysis but
also provides practical benefits, such as handling missing data. PCA and PPCA, however,
are limited to data in vector spaces and are not applicable to manifold-valued data.

Manifolds naturally arise as a relevant choice for data representation in many scenarios.
For example, directional data involving unit vectors in Rn is best represented by the unit
sphere (Mardia et al., 2000). More recently, hyperbolic space has become popular in machine
learning for efficiently modeling hierarchical data (Sarkar, 2011; Nickel and Kiela, 2017).
Manifolds also represent shapes in shape analysis (Kendall, 1984) and symmetric positive
definite (SPD) matrices, which are useful in computer vision tasks as they correspond to
covariance matrices (Tuzel et al., 2006, 2008).

In the context of dimensionality reduction, PCA is not applicable to data on curved
manifolds, as vector space operations in PCA are undefined on manifolds. To address this,
principal geodesic analysis (PGA) (Fletcher et al., 2004) was introduced as a generalization
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of PCA to manifolds. PGA involves projecting data onto principal geodesic submanifolds
centered around an intrinsic (Frechét) mean (FM), with the objective of identifying lower-
dimensional geodesic submanifolds that minimizes the geodesic distance from the original
data to the projected data. Zhang and Fletcher (2013) proposed probabilistic PGA (PPGA)
as a latent variable model for PGA, akin to PPCA, thereby introducing the probabilistic
framework to PGA. In particular, considering an n-dimensional manifold Mn, the latent
space in PPGA is an m-dimensional linear subspace Rm (m < n) of the tangent space at
the FM µ, TµMn. The latent variable z ∈ Rm ∼ N(0, I). A linear transformation of the
latent variable z forms a new tangent vector Wz ∈ TµMn. Next, Wz is mapped back to
Mn using the exponential map to generate the location parameter of a Riemannian normal
distribution, from which the data x is drawn. Note that the latent space in PPGA is a
Euclidean space rather than a manifold, and the tangent space approximation of data would
lead to inaccuracies when the data are not clustered near the FM.

A distinctive feature of PCA is its ability to produce nested linear subspaces, where
reduced-dimensional principal subspaces are hierarchically organized. Exploiting this no-
tion, Jung et al. (2012) proposed principal nested spheres by embedding an (n− 1)-sphere
into an n-sphere. As a result, principal nested spheres surpasses PGA in flexibility by not
requiring the learned submanifold to be a geodesic submanifold passing through the FM.
Similar methods were applied to SPD matrices in (Harandi et al., 2018) and to hyperbolic
space in (Fan et al., 2022), which developed nested hyperbolic spaces. Moreover, Yang
and Vemuri (2021) undertook the task of unifying and generalizing the concept of nesting
to encompass various Riemannian homogeneous manifolds — an extensive category that
includes hyperspheres, hyperbolic spaces, SPD matrices, Grassmannians, Lie groups, etc.
These nested constructions excel at dimensionality reduction, consistently outperforming
PGA. This superiority of nested homogeneous spaces (NHS) primarily stems from the fact
that the learned lower-dimensional subspace is not restricted to be a geodesic submanifold
passing through the FM. In addition, Fan et al. (2022) extended the nested framework to
design an encoding layer in a hyperbolic neural network for feature extraction, leveraging
the nested construction to create a low-dimensional feature space while preserving hyper-
bolic geometry. Despite this progress, contemporary nested space techniques on Riemannian
homogeneous spaces are still deterministic models and lack a probabilistic interpretation.

Our Contributions: Analogous to PPCA and PPGA, this work introduces a latent
variable model for NHS, termed Probabilistic Nested Homogeneous Spaces (PNHS). The
theoretical novelty lies in the development of a novel manifold-valued model and an asso-
ciated Expectation Maximization (EM) algorithm tailored for parameter (manifold-valued)
inference. The advantage of our PNHS model over the deterministic NHS model is further
demonstrated by the inclusion of uncertainty in parameter estimates for dimensionality re-
duction and the ability to handle missing data. Quantifying the uncertainty in parameter
estimates provides a confidence interval which is highly beneficial in capturing the recon-
struction error in dimensionality reduction problems. Further this confidence interval is
also highly desirable in all predictive applications, e.g., classification, recognition, etc. In
contrast to the NHS, note that the PNHS is a latent space model and hence a generative
model. This generative feature of our framework will be explored in future work.
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Probabilistic Nested Homogeneous Spaces for Dimensionality Reduction

2. Background

In this section, we provide a very brief overview of important concepts concerning Rie-
mannian manifolds (Lee and Lee, 2012) and Riemannian homogeneous spaces (Helgason,
1979). We then formulate the problem of dimensionality reduction for manifold-valued data.
Thereafter, we review the idea of nested homogeneous spaces as a method for achieving di-
mensionality reduction on the manifold.

2.1. Riemmanian Manifolds and Riemannian Homogeneous Spaces

Let (M, g) be a n-dimensional Riemannian manifold. The tangent space at p ∈ M is
denoted TpM , which is a n-dimensional vector space. The Riemannian distance dM(p, q)
between any two points p, q ∈ M is defined as the length of the geodesic, the shortest curve
connecting them, thereby generalizing the concept of a straight line in Euclidean space.

A Riemannian manifold is called Riemannian homogeneous space (Gallier and Quain-
tance, 2012, §2) if there exists a group G that acts transitively on it, with G being the
isometry group. In this case, M can be written as quotient space M ∼= G/H where H is
the isotropy subgroup of G. Examples include but are not limited to, the n-dimensional
spheres Sn−1 ∼= SO(n)/SO(n − 1), the n-dimensional Lorentz model of the hyperbolic
space Ln ∼= SO+(1, n)/SO(n), and others. Here SO(n) is the special orthogonal group and
SO+(1, n) is the positive special Lorentz group (Gallier and Quaintance, 2012, §2.3).

2.2. Notations and Problem Setup

Consider an n-dimensional manifold Mn and the target lower-dimension manifold Mm,
m < n. Given the observations {xi}Ni=1 ∈ Mn, the objective of dimensionality reduction is
to identify a projection function π : Mn → Mm and its corresponding embedding function,
ι : Mm → Mn s.t, the reconstruction error

∑N
i=1 dM(xi, ι(π(xi)))

2 is minimized. Note that
the reconstruction error can be interpreted as the unexplained variance in PCA. For a given
observation xi, we denote its lower-dimensional representation on Mm by zi = π(xi) and
the point x̂i = ι(zi) is the reconstructed point of xi on the original manifold Mn.

2.3. Nested Homogeneous Spaces Gm Gm+1

Gm/Hm Gm+1/Hm+1

Mm Mm+1

ι̃

ψ ψ

f f

ι

π

Mm Mm+1 · · · Mn
ιm

πm+1

ιm+1

πm+2

ιn−1

πn

Figure 1: Commutative diagram of
NHS.

The steps for constructing NHS are illustrated in
the commutative diagram Fig 1 (Yang and Vemuri,
2021). Let Mm ∼= Gm/Hm be a m-dimensional Rie-
mannian homogeneous space and its quotient space
representation. The main idea is described as follows:
define an embedding ι̃ of the isometry group G in a
suitable manner. With this embedding of the isom-
etry group G, the embedding of the homogeneous
space G/H follows naturally from the quotient struc-
ture. Specifically, since the Riemannian submersion
ψ from the isometry group to the quotient space and
the identification map f between the quotient space
and the manifold is well defined and hence we can
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follow the path shown in red in the commutative diagram Fig 1. Further, we can induce
the embedding ι from the low dimensional manifold to the high dimensional manifold from
ι̃, ψ and f . Finally, the projection π : Mm+1 → Mm can be obtained accordingly.

Let ιd : Md → Md+1 and πd+1 : Md+1 → Md. The embedding ι and projection π
between any dimensions Mm and Mn can be achieved through a sequence of compositions
involving embeddings ιd and projections πd, as depicted in Fig 1 (below), i.e., ι := ιn−1 ◦
· · · ◦ ιm+1 ◦ ιm and π := πm+1 ◦πm+2 ◦ · · · ◦πn. We refer readers to Appendix A for examples
of nested constructions for the sphere and hyperbolic space.

3. Probabilistic Nested Homogeneous Spaces

In this section, we first introduce Riemannian normal distribution which is employed as our
noise model. Then, we present the probabilistic nested homogeneous spaces (PNHS) model
which allows one to interpret the NHS as a latent variable model and the parameters of this
latent variable model can be solved by using an expectation maximization (EM) algorithm.

Riemannian normal. Following (Zhang and Fletcher, 2013; Pennec, 2006), we adopt
the Riemannian normal distribution, a generalization of normal distribution for the Rie-
mannian manifolds as our noise model. Let x be a manifold-valued random variable defined
on a Riemannian manifold M. Its probability density function (pdf) is given by:

p(x|µ, τ) = 1

Z(τ)
exp

(
−τ
2
dM(µ,x)2

)
, where Z(τ) =

∫
M

exp
(
−τ
2
dM(µ,x)2

)
dx (2)

is the normalizing constant. Cheng and Vemuri (2013) were the first to show that the
normalizing constant Z(τ) is independent of µ in the case of Riemannian normal distribution
on the manifold of SPD matrices and this property holds for all Riemannian homogeneous
spaces, as shown in (Pennec et al., 2019, §2.5.1.1). We denote it as x ∼ NM(µ, τ−1).
The parameter µ ∈ M is the location parameter on the manifold, while τ > 0 ∈ R is the
dispersion parameter, analogous to the precision in a Gaussian distribution. While different
extensions of the normal distribution can be employed, e.g., the von Mises distribution
and the wrapped normal distribution (Mardia et al., 2000, §3.5.4 & §3.5.7), the inference
procedure presented in the subsequent sections can be adapted accordingly.

3.1. The Probabilistic Nested Homogeneous Spaces (PNHS) Model

We are now ready to present our proposed PNHS model, for a manifold-valued random
variable x on a n-dimensional Riemannian homogeneous space Mn, that is

x|z ∼ NM(ι(z), τ−1) (3)

where z ∼ NM(µ0, τ
−1
0 ) is latent variable in Mm, with µ0 and τ0 being predetermined

parameters of the latent distribution and τ a scale parameter for the noise (See Fig 2).
In this model, a latent variable z ∈ Mm, sampled from the latent distribution (which

is assumed to be a Riemannian normal distribution with known parameters), is embedded
into Mn using the embedding map ι. This process generates the location parameter ι(z)
for a Riemannian normal distribution on Mn, from which the data point x is then drawn.
Our method aligns with PPCA in Euclidean space, where the Euclidean space is also a
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z ∼ NM(µ0, τ
−1
0 ) x|z ∼ NM(ι(z), τ−1)

Mm Mnι

π

Figure 2: Illustration of the probabilistic nested homogeneous space.

homogeneous space and thus an embedding ι : Rm → Rn, z 7→ µ + Wz can be defined.
We would like to emphasize that, in both PPCA and PPGA, the location parameter µ
represents the center (mean/FM) of the data and is derived by maximizing the likelihood.
However, the distinctive characteristics of the NHS namely, that the learned subspace does
not pass through the FM, result in the exclusion of the mean parameter in PNHS.

3.2. Inference

We now present a maximum likelihood procedure for estimating the parameters of the PNHS
model described in Eq 3. These parameters, denoted as θ = (θι, τ), include the unknown
parameter in the embedding ι, denoted as θι and the noise parameter τ . Our approach
involves using an expectation maximization (EM) procedure to estimate the parameters.
To handle the expectation step over the latent space, we employ a Hamiltonian Monte
Carlo (HMC) technique on manifolds proposed in (Brubaker et al., 2012) to draw samples
z ∈ Mm from the posterior distribution p(z|x; θ). Given the observations {xi}Ni=1 on Mn,
the logarithm of the posterior distribution is given by the following expression:

N∑
i=1

log p(zi|xi; θ) ∝ −N logZ(τ)−
N∑
i=1

τ

2
dM(ι(zi),xi)

2 −
N∑
i=1

τ0
2
dM(µ0, zi)

2. (4)

By integrating this into a Monte Carlo Expectation Maximization (MCEM) framework, we
effectively estimate the parameter set θ. The two primary stages, namely the E-step and
the M-step, are detailed in the subsequent sections. More details about the EM algorithm
(computation time, pseudo code) can be found in Appendix B.

3.2.1. E-Step

The E-step involves computing the expectation over latent space with respect to the poste-
rior distribution. Specifically, our objective during iteration k+1 is to evaluate the following
Q function based on current estimate of the parameters θk:

Q(θ|θk) = Ezi|xi;θk

[
N∑
i=1

log p(zi|xi; θk)

]
(5)

Given the absence of a closed-form solution of Eq 5 in our case, we approximate the Q
function using the following approach. For each zi, we employ the HMC method to draw a
set of samples {zij}Sj=1, consisting of S samples, from the posterior distribution p(zi|xi; θk).
Thus the Q function can be approximated as:

Q(θ|θk) ≈ 1

S

S∑
i=1

N∑
i=1

log p(zij |xi; θk). (6)
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HMC (Duane et al., 1987; Neal, 1996) is a sampling method combining Markov Chain

Monte Carlo (MCMC) techniques with Hamiltonian dynamics, using gradient information
from the target distribution to propose distant moves to explore complex probability dis-
tributions efficiently. In PPGA, the standard HMC method can be applied since one is
interested in generating latent samples from Euclidean space, as long as the derivatives
(w.r.t. the Euclidean variable) are appropriately calculated. However, in our case, we aim
to sample from a posterior distribution on a Riemannian manifold, which introduces addi-
tional complexity due to the manifold’s constraints. This requires careful attention when
defining parameter updates. Note that while (Girolami and Calderhead, 2011) proposed the
Riemann manifold Langevin and Hamiltonian Monte Carlo (RMHMC) which employs Rie-
mannian metric on the probability space, RMHMC is not directly applicable for parameters
on Riemannian manifolds – the specific focus of the present context. A non-comprehensive
list of MCMC methods on manifolds includes (Brubaker et al., 2012; Byrne and Girolami,
2013; Kim et al., 2015; Lelievre et al., 2019), we refer readers to the recent review article
(Liu and Zhu, 2022) for more details. For our purposes, we opt to use the constrained HMC
(CHMC) presented in (Brubaker et al., 2012), which is applicable to a variety of Riemannian
manifolds of interest, including the sphere, hyperbolic space, special orthogonal group and
many others. Specifically, CHMC is an extension of HMC that can be applied to manifolds
which can be characterized as a subset of Euclidean space defined by constraints. The sim-
ulation process involves employing the standard ’leapfrog’ method (Neal et al., 2011, §2.3)
within the embedded space while adhering to both the imposed constraint on the sample
and the induced constraint on the momentum. In HMC, an auxiliary ’momentum’ variable
is introduced, associated with each of the variables of interest, to guide the Markov chain
exploration of the target distribution.

3.2.2. M-Step

There are two kinds of parameters of interest in our model, the parameter θι from the nested
construction and τ , the noise parameter. Our objective is to maximize the approximated
Q function shown in Eq 5. To achieve this, we obtain θι by minimizing the reconstruction
error and using the gradient ascent method to update the noise parameter τ .

Estimation of θι. The parameter θι from the embedding ι within the NHS can be
obtained by minimizing the following reconstruction error,

L(θι) =
1

2

N∑
i=1

S∑
j=1

dM(ι(zij),xi)
2. (7)

This typically involves optimizing over manifolds or product spaces, as detailed in the works
on nested spheres, hyperbolic spaces and Grassmanians respectively (Jung et al., 2012; Fan
et al., 2022; Yang and Vemuri, 2021).

Estimation of τ . The gradient of the Q function in Eq 6 w.r.t. τ involves calculating
the derivative of the normalizing constant Z(τ) in Eq 2, i.e.,

∇τQ = −NZ ′(τ)

Z(τ)
− 1

2S

N∑
i=1

S∑
j=1

dM(ι(zij),xi)
2 (8)
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Table 1: Comparison between ground truth and estimates from NHS and PNHS on the
sphere and the hyperbolic space respec. I3 is an identity matrix. For matrix
parameter R (in Eq. 12 & 13 (sphere) and Eq. 14 & 15 (hyperbolic space)) –
in Appendix A, the distance d(R̂, I3) is reported.

Sphere S2 d(R, R̂) r τ Hyperbolic space L2 d(R, R̂) r τ

Ground Truth I3 1.00 100 Ground Truth I3 1.00 100

NHS 0.012 1.01 N/A NHS 0.029 0.97 N/A
PNHS 0.011 0.99 101.68 PNHS 0.027 0.97 102.53

As discussed in (Pennec et al., 2019, §2.5.1.2), applying a change-of-variables technique to
the integration of the normalizing constant transforms it into the following integral.

Z(τ) = Am−1

∫ R

0
exp

(
−τ
2
r2
)
×

m∏
k=2

|κk|−1/2fk(
√
|κk|r)dr (9)

where Am−1 is the surface area of the (m− 1)-dimensional sphere Sm−1, R is the maximum
distance of geodesics originating from µ in a Riemannian normal distribution NM(µ, τ−1),

fk(r) =


1√
κk

sin(
√
κkr) if κk > 0,

1√
−κk

sinh(
√
−κkr) if κk < 0,

r if κk = 0,

(10)

here κk denotes the sectional curvature of the manifold. Then we can obtain Z ′(τ):

Z ′(τ) = Am−1

∫ R

0
−r

2

2
exp

(
−τ
2
r2
)
×

m∏
k=2

|κk|−1/2fk(
√
|κk|r)dr (11)

4. Experiments

This section evaluates the PNHS model on two common Riemannian homogeneous spaces:
the sphere and hyperbolic space. We show parameter estimation results using synthetic data
and highlight PNHS’s effectiveness as a dimensionality reduction method on real data. We
also present reconstruction errors for real data with missing values. We mainly compare our
PNHS model with nested sphere (Jung et al., 2012) on the sphere, and with the NHS model
(Fan et al., 2022) on the hyperbolic space, We collectively refer to these two methods as
NHS (nested homogeneous spaces) throughout this section. We also include PGA (Fletcher
et al., 2004) in the comparison. In all the experiments, PNHS stands out for its ability to
quantify uncertainty in estimates and manage missing data. More details on the experiments
(initialization, dataset,etc.) are provided in Appendix C.

4.1. Parameter Estimation on the Sphere and the Hyperbolic Space

We present parameter estimation results for synthetic data from the sphere and hyperbolic
space. Using the latent variable model of our PNHS as shown in Fig 2, we set the latent space
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(a) (b) (c)

Figure 3: Ground truth, PNHS, NHS
and PGA on sphere.

(a) (b) (c)

Figure 4: Ground truth, PNHS, NHS
and PGA on hyperbolic space.

dimension to 1 with a latent distribution NM(µ0, τ0), where µ0 = (1, 0)T and τ0 = 0. We
generate 100 random data points on both the 2-dimensional sphere S2 and the 2-dimensional
Lorentz model of hyperbolic space L2. The ground truth parameters θ = (θι, τ), θι = (R, r)
are listed in Table 1. We use our EM algorithm to assess the model’s ability to estimate these
parameters accurately. Table 1 shows that both NHS and PNHS provide accurate parameter
estimates, but PNHS additionally estimates the dispersion within a small error margin of
about 2.5%. Fig 3 compares the ground truth, PNHS, NHS, and PGA on the sphere,
while Fig 4 shows a similar comparison on hyperbolic space, using the Poincaré disk model
for visualization. The close overlap between PNHS results and the ground truth indicates
effective parameter recovery by our model. PNHS results are nearly indistinguishable from
NHS, as both aim to minimize reconstruction errors. We also compare with PGA/PPGA,
which struggles to capture the main trend of the data due to its limitation to geodesic
submanifolds through the FM, leading to higher reconstruction errors, see Table C.2 in
Appendix C.

4.2. Sphere: CallFish-100

Figure 5: Reconstruction errors.

For data on the sphere, we demonstrate the effective-
ness of the PNHS model on a 2D point cloud dataset
from the publicly available CallFish-100 dataset (Pe-
ter and Rangarajan, 2008), which includes 100 di-
verse fish shapes extracted from digitized fish draw-
ings. Sample images from this dataset are shown in
Fig 6 (Appendix A). Each image is first rescaled to
40×80, then boundary points are extracted and rep-
resented using the Schrödinger Distance Transform
(SDT) (Gurumoorthy and Rangarajan, 2009; Deng
et al., 2014), which maps these point sets onto a hy-
persphere (S3199). The SDT representation, normal-
ized to have unit L2 norm, allows these point sets to be represented as probability densities
using square-root density parameterization, resulting in points on a high-dimensional unit
sphere in the discrete case, specifically S3199, totaling 100 samples in the dataset. We apply
several dimensionality reduction methods to reduce dimensions to a range of 1 to 5. The
resulting reconstruction errors for PGA, NHS, and PNHS are compared in Fig 5 . The
estimated dispersion τ̂ in PHNS for dim. 1 to 5 are 9.55, 11.03, 12.38, 13.58 and 14.99, re-
spectively. As expected, NHS and PNHS produce nearly identical results due to their shared
objective functions in learning the low-dimensional representation space, similar to how the
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Table 2: Reconstruction errors (mean and std. dev.) in dim. reduction from L10 to L2.
Etimated dispersion param. τ̂ in PNHS is included.

Datasets balancedtree phylo tree diseasome ca-CSphd

PGA 5.75 121.19 21.53 71.67
HoroPCA 7.80 ± 0.06 108.62 ± 9.20 26.94 ± 0.99 87.99 ± 4.69
NHS 3.35 ± 0.05 24.11 ± 0.68 9.18 ± 0.10 22.68 ± 0.40

PNHS 3.34 ± 0.06 24.14 ± 0.78 9.17 ± 0.09 22.59 ± 0.47
τ̂(dispersion) 0.456 0.055 0.173 0.058

principal components in PPCA match those in PCA. Additionally, NHS/PNHS significantly
outperform PGA in terms of reconstruction error, which aligns with our expectations since
the nested construction offers more flexibility than PGA discussed earlier.

Missing Data Experiment: Our EM algorithm for estimating PNHS model parame-
ters can handle missing data, similar to the approach in PPCA This involves starting with
an initial guess for the missing values, which are then iteratively updated in each E-step
to minimize reconstruction error. We simulated missing data by randomly dropping 10%
of values from the CallFish-100 dataset. We then applied our PNHS model to reduce di-
mensionality to between 1 and 5. The reconstruction errors, shown in Fig 5, reveal that
performance decreases with missing data but still exceeds that of PGA. Notably, neither
PGA nor NHS can handle missing data. These results highlight PNHS’s effectiveness in
managing missing data while maintaining performance comparable to complete datasets.

4.3. Hyperbolic Space: Embeddings of Trees

In hyperbolic space, we focus on reducing the dimensionality of trees embedded in this
space. We validate our method on four datasets from (Chami et al., 2021). We use (Gu
et al., 2018) to embed these tree datasets into a 10-dimensional Poincaré ball, then apply
various dimensionality reduction methods to reduce the dimension to 2. In addition to
PGA and NHS, we compare with HoroPCA (Chami et al., 2021), which uses horospherical
projection to map points onto a geodesic submanifold. Reconstruction errors for each
method across datasets are reported in Table 2. PNHS and NHS perform similarly and
better than PGA and HoroPCA. This highlights the effectiveness of PNHS in hyperbolic
space. Additionally, we report the estimated dispersion parameter τ̂ for PNHS, which
quantifies variance/uncertainty and is not available in the NHS model.

5. Conclusion

In this paper, we presented PNHS, a probabilistic nested homogeneous spaces model for
dimensionality reduction. NHS, a SOTA dimensionality reduction technique for high-
dimensional Riemannian homogeneous spaces, is adapted into PNHS by treating it as a
latent variable model. We estimate the model parameters with a novel adaptation of the
EM algorithm to manifold-valued data. Empirical tests show PNHS’s effectiveness using
sphere and hyperbolic space data, highlighting its advantage over other models and its abil-
ity to provide uncertainty estimates, unlike deterministic models. We also address missing
data with a slight adjustment to the EM algorithm. Future work will explore PNHS’s use
as a neural network decoding layer and its extension to multi-class generative modeling.
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sionality reduction via horospherical projections. In International Conference on Machine
Learning, pages 1419–1429. PMLR, 2021.

Guang Cheng and Baba C Vemuri. A novel dynamic system in the space of spd matrices
with applications to appearance tracking. SIAM journal on imaging sciences, 6(1):592–
615, 2013.

Yan Deng, Anand Rangarajan, Stephan Eisenschenk, and Baba C Vemuri. A riemannian
framework for matching point clouds represented by the schrodinger distance transform.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 3756–3761, 2014.

Simon Duane, Anthony D Kennedy, Brian J Pendleton, and Duncan Roweth. Hybrid monte
carlo. Physics letters B, 195(2):216–222, 1987.

Xiran Fan, Chun-Hao Yang, and Baba C Vemuri. Nested hyperbolic spaces for dimension-
ality reduction and hyperbolic nn design. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 356–365, 2022.

P Thomas Fletcher, Conglin Lu, Stephen M Pizer, and Sarang Joshi. Principal geodesic
analysis for the study of nonlinear statistics of shape. IEEE transactions on medical
imaging, 23(8):995–1005, 2004.

Jean Gallier and Jocelyn Quaintance. Notes on differential geometry and lie groups. Uni-
versity of Pennsylvannia, 4:3–1, 2012.

Mark Girolami and Ben Calderhead. Riemann manifold langevin and hamiltonian monte
carlo methods. Journal of the Royal Statistical Society Series B: Statistical Methodology,
73(2):123–214, 2011.

Albert Gu, Frederic Sala, Beliz Gunel, and Christopher Ré. Learning mixed-curvature rep-
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Appendix A. Examples of Nested Homogeneous Spaces

We illustrate the explicit nested structures of two specific Riemannian homogeneous spaces:
sphere S and the Lorentz model of the hyperbolic space L. This is accomplished by detailing
the embedding and projection employed within these spaces.

Nested spheres (Jung et al., 2012; Yang and Vemuri, 2021). An m-dimensional
sphere Sm encompasses all points in Rm+1 with unit length, i.e., Sm = {x = (x0, x1, . . . , xm)

T ∈
Rm+1 :

∑m
i=0 x

2
i = 1}. Sphere can be written as quotient space Sm ∼= SO(m + 1)/SO(m),

where SO(m) is is the group ofm×m orthogonal matrices with determinant 1. The induced
embedding ιm : Sm → Sm+1 is

ιm(z) = R

[
sin(r)z
cos(r)

]
= sin(r)R̃z + cos(r)v (12)

where z ∈ Sm, r ∈ R, R = [R̃ v] ∈ SO(m+ 2), R̃ is an (m+ 2,m+ 1) matrix consisting
of the first m+ 1 columns of R, v is the last column of R. Corresponding to ιm, we have
projection πm+1 : Sm+1 → Sm:

πm+1(x) =
1

sin (r)
R̃
T
x =

R̃
T
x

∥R̃T
x∥

x ∈ Sm+1 (13)

The geodesic distance between x,y ∈ Sm is dS(x,y) = cos−1(xTy).

Nested hyperbolic spaces (Fan et al., 2022). The Lorentz (hyperboloid) model
is one of the five isometric models (Cannon et al., 1997) of hyperbolic space which can be
regarded as a homogeneous space. An m-dimensional Lorentz model of hyperbolic space
Lm is defined as Lm = {x = (x0, x1, . . . , xm)

T ∈ Rm+1 : −x20 +
∑m

i=1 x
2
i = −1, x0 > 0}

which can be written as quotient space Lm ∼= SO+(1,m)/SO(m), where SO+(1,m) is the
positive specical Lorentz group (see (Gallier and Quaintance, 2012; Fan et al., 2022) for
more details). The induced embedding ιm : Lm → Lm+1 is

ιm(z) = Λ

[
cosh(r)z
sinh(r)

]
= cosh(r)Λ̃z + sinh(r)v (14)

where z ∈ Lm, r ∈ R, Λ = [Λ̃ v] ∈ SO+(1,m+1), Λ̃ is an (m+2,m+1) matrix consisting
of the first m + 1 columns of Λ, v is the last column of Λ. Corresponding to ιm, we have
projection πm+1 : Lm+1 → Lm:

πm+1(x) =
1

cosh (r)
JmΛ̃

T
Jm+1x =

JmΛ̃
T
Jm+1x

∥JmΛ̃
T
Jm+1x∥L

x ∈ Lm+1 (15)

The geodesic distance between x = (x0, x1, . . . , xm)
T ,y = (y0, y1, . . . , ym)

T ∈ Lm is dL(x,y) =
cosh−1(−(−x0y0 +

∑m
i=1 xiyi)).

Dimensionality Reduction. With the outlined embedding ι and projection π, as well
as the geodesic distance measure, the task of dimensionality reduction on the manifold is
carried out by determining the unknown parameters in ι and π. This involves minimizing
the reconstruction error for the given observations. The detailed optimization procedure
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is presented in detail in the original contributions (Jung et al., 2012; Fan et al., 2022). In
the case of nested spheres, for a set of samples {xi}Ni=1 ∈ Sn , the unknown parameters
are identified as (R, r) ∈ SO(n + 1) × R, as per Eq. 12 and 13. The loss function is then
formulated as L(R, r) = 1

N

∑N
i=1 dS(x̂i,xi)

2, where x̂i = ι(π(xi)) is the reconstructed point
of xi in Sn. The minimization of this loss function is an optimization process over the
product space (R, r) ∈ SO(n + 1) × R. This can be solved using a Riemannian gradient-
based optimization technique, e.g., Pymanopt (Koep and Weichwald, 2016).

Appendix B. Supplementary Details about EM Algorithm

B.1. Computation Time

The computation time of the iterative process within the EM algorithm is dependent upon
the distinct characteristics of both the E-step and the M-step, which vary across different
manifolds. The E-step involves a sampling procedure that can be expedited through parallel
computation of multiple Markov chains. Meanwhile, the compute time for the M-step
mainly depends on the updation of θι. We refer the readers to (Jung et al., 2012; Yang
and Vemuri, 2021; Fan et al., 2022) for details of the optimization methods which are also
applicable in our nested homogeneous spaces model.

B.2. Pseudo Code for PNHS

Algorithm 1: EM Algorithm for PNHS

Input: Data x on manifold Mn, reduced dimension m
Output: Optimized parameters θ = (θι, τ)
Initialize θ = (θι, τ);
repeat

E-step: Sample according to Eq. 6 in Sec 3.2.1 ;
M-step: Update parameters θ = (θι, τ) according to Eq. 7 and Eq. 8 in Sec 3.2.2;

until convergence;

Appendix C. Supplementary Details about Experiments

C.1. Initialization of Parameters

For each experiment, we first initialize the parameters, specifically, θ = (θι, τ), using the
same approach as in solving PPCA with the EM algorithm. In our PNHS, the initial-

ization of θι, denoted as θ
(0)
ι , is obtained by applying the corresponding NHS model,

for instance, as Nested Spheres. The initialization of τ is derived from its estimates

τ̂ (0) = 1
2

(∑N
i=1

1
N dM(ι

θ
(0)
ι
(zi),xi)

2
)−1

.

C.2. Comparison with PPGA on Synthtic Data

In the context of comparing state-of-the-art (SOTA) methods for dimensionality reduction
on manifold-valued data, the PPGA is the primary method relevant to our study. A direct
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Table 3: Comparison of dispersion estimates and reconstruction errors between NHS/PNHS
and PGA/PPGA on synthetic data.

Sphere τ̂
Reconstruction
Error

Hyperbolic
Space

τ̂
Reconstruction
Error

ground truth 100 ground truth 100

NHS N/A 0.016 NHS N/A 0.014
PNHS 101.68 0.016 PNHS 102.53 0.014

PGA N/A 0.038 PGA N/A 0.036
PPGA 42.63 0.038 PPGA 39.86 0.036

comparison between PPGA and our proposed PNHS method is challenging due to the differ-
ing latent space models, which prevent straightforward parameter comparisons. However,
a practical approach to evaluating the methods is through an assessment of dispersion in
reconstruction accuracy.

To this end, we present a comparison of the dispersion estimates for PPGA and PNHS
using synthetic data on both spherical and hyperbolic manifolds in Sec 4.1. This evaluation
is restricted to the synthetic data setting, as it requires the availability of ground truth to
accurately measure reconstruction error. The results shown in Table C.2 demonstrate that
PNHS provides more accurate estimates of dispersion compared to PPGA, aligning more
closely with the ground truth values.

C.3. Samples from CallFish-100

(a) (b) (c)

Figure 6: Digitized fish shapes from CallFish-100.
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