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Abstract

Selective prediction [Drul3, QV19] models the scenario where a forecaster freely
decides on the prediction window that their forecast spans. Many data statistics
can be predicted to a non-trivial error rate without any distributional assumptions
or expert advice, yet these results rely on that the forecaster may predict at any
time. We introduce a model of Prediction with Limited Selectivity (PLS) where
the forecaster can start the prediction only on a subset of the time horizon. We
study the optimal prediction error both on an instance-by-instance basis and via
an average-case analysis. We introduce a complexity measure that gives instance-
dependent bounds on the optimal error. For a randomly-generated PLS instance,
these bounds match with high probability.

1 Introduction

In selective prediction [Drul3, QV19], a forecaster observes n numbers in [0, 1] one by one. At
any time ¢, having observed the first ¢ numbers, the forecaster may predict the average of the next
w < n — t unseen numbers. Both the stopping time ¢ and the window length w are freely chosen by
the forecaster, and only one such prediction needs to be made. The goal is to minimize the expected
prediction error—the expected squared difference between the forecast and the actual average. How
small can this error be?

Surprisingly, Drucker [Drul3] showed that the forecaster can guarantee an error that vanishes as
n — 400, even though the sequence might be arbitrarily and adversarially chosen. Specifically, this
result holds without any distributional assumption on the sequence (other than boundedness), and is
thus robust to any misspecification, non-stationarity, or adversarial corruption in the data. Moreover,
it directly addresses the prediction error, rather than a regret with respect to a class of experts.

In this paper, we study a variant of the selective prediction model where the forecaster only has
limited selectivity. Concretely, the forecaster is given a subset of the time horizon, which specifies
the timesteps on which they are allowed to make a prediction. This model captures many natural
scenarios where predictions are either infeasible or unnecessary during certain time periods. For
example, people tend to care about weather forecasts primarily when they have plans for outdoor
activities. An investor may be restricted from trading specific commodities during particular seasons,
making market predictions less relevant at those times. Similarly, epidemic forecasts are most critical
before and during pandemics.

The main contributions of this work are summarized as follows:
* We introduce a theoretical model of Prediction with Limited Selectivity (PLS), which generalizes
the selective prediction models of [Drul3, QV19].

* We define a complexity measure termed “approximate uniformity”, which gives instance-dependent
bounds on the optimal error that a forecasting algorithm can achieve on a PLS instance.

* For PLS instances that are randomly generated according to a k-monotone sequence (Definition 4),
we show that the instance-dependent bounds match up to a constant factor with high probability.
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1.1 Problem Formulation

Definition 1 (Prediction with limited selectivity). The forecaster is given n and a stopping time set
T C{0,1,2,...,n — 1}, and the nature secretly chooses a sequence x € [0,1]". At each timestep
t = 1,2,...,n, the forecaster observes x;. At any timestep t € T, after seeing x1,...,xs, the
forecaster may optionally choose a window length w € {1,2,...,n —t} and make a prediction [i on
the average i = - Y| Tyt Once a prediction is made, the game ends and the forecaster incurs
an error of (i — w)2. The forecaster must make one prediction before all n numbers are revealed.

An instance of PLS consists of a sequence length n and a stopping time set 7. When the forecaster is
fully-selective (namely, 7 = {0, 1,2,...,n — 1}), PLS recovers the selective mean prediction setup
of [Drul3, QV19]. For simplicity, we focus on the special case of mean prediction, which already
captures most of the interesting aspects of PLS. Nevertheless, the problem setup and our results can
be easily extended to the more general prediction settings in [QV 19]; see Section 5 for more details.

Following prior work on selective prediction, we measure the performance of a forecaster using its
worst-case error over all possible choices of the sequence z € [0, 1]™.

Definition 2. The worst-case error of algorithm A is error"”*'(A) = sup,c(g 1» error(A, z),
where error(A, x) denotes the expected squared error that A incurs on sequence x € [0, 1]™.

We will frequently use the following equivalent yet more convenient representation for a PLS instance.

Definition 3. The block representation of a PLS instance with sequence length n and stopping time
set T is
L= (117123 .. 7lm) = (tQ - tlatB 7t2; e atm 7tm—17n - tm,)a

where m = |T| and t, < ty < --- < t,, are the elements of T in ascending order.

In the rest of the paper, we will use the stopping time set 7 and the block representation £ inter-
changeably to represent a PLS instance. Intuitively, each block length l; corresponds to [; consecutive
timesteps t; + 1,¢; + 2,...,t; + l; = t;11 between adjacent stopping times in 7. During these
timesteps, the forecaster observes new data but cannot make predictions.

The fully-selective setup of [Drul3, QV19] corresponds to the block representation £ that is an
all-one sequence. When L consists of block lengths of various magnitudes, we naturally expect that
the PLS instance becomes harder in the sense that the optimal forecaster has a higher worst-case error.
We will formalize this intuition and derive instance-dependent error bounds for every PLS instance £
in terms of a simple and combinatorial complexity measure of L.

In addition to the instance-dependent analysis, we will also study settings where the stopping time set
T is randomly generated. Concretely, we consider a setup where each timestep between 0 and n — 1
gets included in the stopping time set 7 independently, possibly with different probabilities.

Definition 4 (Random stopping time set). For integer n > 1 and (p§,pY,...,pi_1) € [0,1]", a
p*-random stopping time set T is a random subset of {0, 1, ..., n — 1} obtained by independently
including each element t with probability p.

1.2 Our Results

We prove both upper and lower bounds on the optimal worst-case error in PLS, both on an instance-
by-instance basis and via an average-case analysis.

Approximate uniformity. We introduce a complexity measure, termed approximate uniformity,
that captures the hardness of a PLS instance.

Definition 5. The approximate uniformity of PLS instance L = (l1,la, ..., Ly,) is

(L) = li+ligi+-+1;

— max .
1<i<j<m max{li, li+1, e ,lj}

For the fully-selective case that £ = (1,1,...,1), we have U(L) = m. More generally, U(L)
captures the “effective horizon length” in instance £. As we show in the following, the approximate
uniformity roughly characterizes the lowest worst-case error that a forecasting algorithm can achieve.



Instance-dependent error bounds. Our main algorithmic contribution is a forecasting algorithm
with a worst-case error upper bounded in terms of U(L). This generalizes the O(1/logn) error
bound of [Drul3] for the fully-selective case.

Theorem 1. For every PLS instance L, there is a forecasting algorithm with a worst-case error of

O(1/log U(L)).

We prove Theorem 1 in two steps. First, we establish an O(1/logm) upper bound for the special
case that the m block lengths are approximately uniform in the sense of being within a constant factor.
Then, we reduce a general PLS instance £ to the special case by merging the blocks into longer
blocks with approximately uniform lengths. We show that at least Q(U(L£)) longer blocks can be

obtained in this way, so the result for the special case implies the O(1/log U (L)) upper bound.

Complementary to Theorem 1, we give two lower bounds on the worst-case error.
Theorem 2. For every PLS instance L = (l1,ls, ..., ly), every forecasting algorithm has a worst-
case error of Q(max{1/[U(L)]?, 1/ logm}).

While the first lower bound of ©(1/U?) does not match the upper bound in Theorem 1, it already has
some interesting applications. The following corollary (proved in Appendix A) presents concrete
examples where both the sequence length n and the number of blocks m tend to infinity, yet the
worst-case error remains lower bounded by a constant. In the first example, the block lengths are
geometrically increasing, so m is at most logarithmic in the sequence length n. The second example,
inspired by the Cantor set, shows that an Q(1) error is still unavoidable even if m is polynomial in n.
Corollary 3. For every m > 1, on the PLS instance L,,, = (2°,21,22,...,2™~1) with sequence
length n = 2™ — 1 and m blocks, every forecasting algorithm has an Q(1) worst-case error.
Furthermore, for every k > 1, there is a PLS instance L) with sequence length n = 3% and
m = 28T — 1 blocks, on which every forecasting algorithm has an (1) worst-case error.

The second lower bound of €2(1/log m) shows that an m-block PLS instance is the easiest when
all blocks have the same length: An O(1/logm) worst-case error can be achieved when Iy = [y =
-+« = l, while no algorithm can achieve a worst-case error < 1/logm on any instance with m
blocks. While this result might sound intuitive, our proof of the €2(1/logm) bound is non-trivial.
The proof involves a novel hierarchical decomposition of the m blocks into a ternary tree and the
design of a random process on the resulting tree. This extends a construction of [QV19] for m blocks
of equal lengths, which is based on representing the m blocks as a full binary tree of depth log m.

An average-case analysis. While the instance-dependent upper and lower bounds do not match on
every PLS instance, they do match with high probability when the instance is randomly generated. A
sequence is k-monotone if it can be partitioned into at most k£ contiguous monotone subsequences.
Our next result states that, if 7 is a p*-random stopping time set (Definition 4) for a k-monotone

sequence p*, both | 7| and U(T) can be bounded in terms of ||p*||; with high probability.
Theorem 4. Suppose that p* € [0,1]" is k-monotone and T is a p*-random stopping time set. Let
mo ‘= Z;:ol py. The following two hold simultaneously with probability 1 — e~mo/3 _ 1/n over
the randomness in T: (1) |T| = O (mq); (2) U(T) = Q(my/(klog? n)).

As a direct corollary, our bounds on the optimal worst-case error are tight up to a constant factor with
high probability. We prove this corollary in Appendix A.

Corollary 5. If k-monotone sequence p* € [0,1]" satisfies Z?:_Ol pr > Q((klog? n)'+¢) for some
constant ¢ > 0, with high probability over the randomness in the p*-random stopping time set T, the
forecasting algorithm from Theorem I has a worst-case error that is optimal up to a constant factor.

Concretely, if k = O(1) is a constant, Corollary 5 applies whenever the expected number of stopping
times, Z?Z_Ol Py, is at least polylog(n). If K = O(n®) is polynomial in n for some o € (0, 1), we
have nearly-tight bounds as long as Z?:_Ol pr = Q(nP) for some B € (a, 1].

1.3 Related Work

Most closely related to our study is the prior work on selective prediction. Drucker [Drul3] introduced
the problem of selective mean prediction under the name of “density prediction game” and proved an
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O(1/logn) upper bound on the expected error. Qiao and Valiant [QV19] proved a matching lower
bound, and extended the positive result of [Drul3] to the setting of predicting more general functions.

Chen, Valiant, and Valiant [CVV20] introduced a more general framework that encompasses selective
prediction as well as other data-collection procedures including importance sampling and snowball
sampling. Brown-Cohen [BC21] subsequently obtained a faster algorithm under this framework.
Qiao and Valiant [QV21] studied a “learning” variant of selective prediction, in which the learner
observes multiple sequences and aims to identify the sequence with the highest average inside a
prediction window of their choice.

All the positive results above are based on the Ramsey-theoretic observation that a sufficiently long,
bounded sequence must be “predictable” or “repetitive” at some scale. This allows a selective
forecaster to randomly select a timescale and achieve a vanishing error as the sequence length goes to
infinity. Similar observations have been made in different contexts [Feil5, FKT17, MHO25].

More broadly, our setting is related to the recent work on online prediction with abstention, where the
forecasting algorithm is allowed to occasionally abstain from making predictions at an additional
cost [ZC16, CDG ™' 18, NZ20, GKCS21, GHMS23, PRT"24].

2 Instance-Dependent Upper Bounds

2.1 Special Case: Approximately Uniform Block Lengths

Recall from Definition 3 that a PLS instance can be represented by a list of block lengths £ =
(l1,12, ...,y ). Towards proving Theorem 1, we start with the case that the block lengths do not vary
drastically and prove an O(1/log m) upper bound on the worst-case error. Our algorithm is defined
in Algorithm 2. It calls RandomSelect (Algorithm 1) to obtain a randomized prediction position ¢
and length j. The algorithm then reads the first 7 — 1 blocks of the sequence, and uses the mean of
the last j blocks (namely, blocks ¢ — j,i — j + 1,...,7 — 1) to predict the mean of the next j blocks
(2 through ¢ + 5 — 1).

Algorithm 1 (RandomSelect(s, k)) is a recursive procedure that prescribes a prediction position and
a window length within 2¥ consecutive blocks (with indices s to s + 2% — 1). With probability 1/,
it outputs (s + 2¥~1 2k=1) i e, predicting the average of the last 2°~! blocks using that of the first

2k=1_ Otherwise, it computes p, the proportion of the total length of the first 28~1 blocks within the
2% blocks. It then recurses on one of the two halves with probability p and 1 — p, respectively.

Algorithm 1: RandomSelect(s, k)

Input: Integers s,k > 1.
Output: A pair (,7) such that s <i — jand i+ j < s+ 2F.
With probability 1/k, return (s + 2F~1 2F=1);

2kl 1 2k -1
D<= (Zizo ls+i) / (Zi:o ls+i)§
return RandomSelect(s, k — 1) with probability p, and RandomSelect(s + 2¥~1 k — 1) with
the remaining probability 1 — p;

Proposition 6. On PLS instance L = (I1,la, . .., 1) that satisfies M < C, Algorithm 2

min{ly,l2,...,0Im
has a worst-case error of O(C/logm).

This extends the result of [Drul3] for C' = 1, i.e., all blocks have the same length. The proof is
similar to those in prior work and deferred to Appendix B. We provide a brief proof sketch below.

Proof sketch. For k > 1 and p € [0, 1], let L(k, ut) be the maximum squared error that Algorithm 2

incurs on a sequence of 2* blocks with average . We prove by induction that L(k, 1) < O(C/k) -
(1 — w). The proposition then follows from C'/k = O(C/logm) and pu(1 — ) = O(1). O
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Algorithm 2: Prediction with Limited Selectivity on Approximately Uniform Blocks

Input: Instance £ = (I1,lq,...,1,). Sequential access to sequence = € [0, 1] of length
n=Ii+lo+ -+

k < |logym|;

(i,4) + RandomSelect(1, k);

teli+l+- -+l

Read z1, 29, ..., 2y

wo < licjtlijpr+- -+l

fu = wio(xt + i1+ Twet1);

wli+liva 4l

Predict the mean of x4 1, ..., Ty4q aS [L;

2.2 The General Case

To prove Theorem 1, we merge the m blocks of possibly different lengths into ~ U (L) blocks with
lengths within a constant factor, so that Proposition 6 can be applied to obtain an O(1/log U (L))
error bound. Formally, we say that a PLS instance £’ is a merge of another instance £, if £’ can be
obtained from £ by merging consecutive blocks and taking a contiguous subsequence.

Definition 6. £ = (I1,15,...,1..,) isamerge of L = (I1,la, ..., 1) if there are 1 < i1 < iy <

»'m/

cos < Uy < U1 < m+ 1 such that l;— = lij +lij+1 + -+ liHl_lforeveryj S [m’]

For instance, (5,9) is a merge of (1,2,3,4,5,6) witnessed by (i1,i2,43) = (2,4,6): we merge
consecutive elements to obtain (1,5, 9, 6) and take the contiguous subsequence (5, 9). Naturally, if
the merge of a PLS instance can be solved with a low worst-case error, so can the original instance.
We prove the following lemma in Appendix B.

Lemma 7. If L' is a merge of L, the minimum worst-case error that can be obtained on L is smaller
than or equal to that on L'.

The next lemma states that any instance £ has a merge of length Q(U' (L)) that consists of elements
within a constant factor.

Lemma 8. For every C > 1, every PLS instance L has a merge L' = (11,15, ...,1.,) such that: (1)
m' > [(1-1/C)-U(L)]; (2) max{l{,15,...,0,}/min{l},l5,...,0 .} <C.

Lig tlig+1+-+l;,
max{lig,lig+1,-5ljg}
U(L). Using the shorthands L = l;; + ;41 + - -+ + [j, and M = max{l;,, lig41,-- .., }, we
have L = U(L) - M. Then, we construct L' by merging the block lengths l;,, l;;+1, . . ., [j,- We set
T := M/(C — 1) and greedily form longer blocks of length ~ T'. Formally, we run the following
procedure:

Proof. By definition of U , there exist indices 1 < iy < jo < m such that

1. Start with 7; = 7¢ and counter cnt = 1.

2. Check whether l;_,, + l; .41+ -+ 1, < T.Ifso,setm’ =cnt — 1, L' = (I1,15,...,1,),
and end the procedure.

3. Otherwise, find the smallest k € {icnt,éent + 1,...,j0r suchthatl;  +1; 41+ -+ >T.
4. Setll . =l + ligy+1 + -+ lg and éepey1 = k + 1. Increment cnt by 1 and return to Step 2.
!/

Clearly, the resulting £' = (I1,15,...,1.,,) is a merge of £ witnessed by indices 41,42, . . ., im/+1.
The construction ensures that I, € [T, T+ M) for every j € [m’]. Therefore,

max{ly, by, by} T+M _ M/(C—1)+M _

min{l}, 1, .., 1/} T Mic—1 ¢

The size of the merge is at least LTfMJ = {%J = {(1 -1/C)- ﬁ(ﬁ)J O



Theorem 1 directly follows from Proposition 6, Lemma 7, and Lemma 8.

Proof of Theorem 1. Applying Lemma 8 with C' = 2 shows that £ has amerge £' = (I1,15,...,0,)
such that m’ > |U(L£)/2] and max{l{,15,..., 0/, }/min{l},15,...,1/ .} < 2. By Proposition 6,
there is a forecasting algorithm for £’ with a worst-case error of O(1/logm’) = O(1/logU(L)).
Then, Lemma 7 gives a forecasting algorithm for £ with the same error bound. O

3 Instance-Dependent Lower Bounds

3.1 Lower Bound in Terms of Approximate Uniformity

Theorem 9 (First part of Theorem 2). For every PLS instance L, every forecasting algorithm A has
1

a worst-case error of error”?™! >
f (A) = 16[U(L)]?

Recall from Definition 3 that the block representation £ = (I1,ls,...,l,,) corresponds to a PLS
instance with sequence length n = Iy + Iy + - - - + [,,,.! The n timesteps are naturally divided into m
blocks, where each block i € [m] consists of timesteps B; := {l1 +la+---+1;—1+7 : j € [l;]}. We
prove Theorem 9 using the following observation: Regardless of the prediction window [t + 1,¢ + w]

chosen by the forecasting algorithm, an Q(1/U (L)) fraction of the timesteps within the window must
come from the same unseen block.

Lemma 10. Ler £ = (I1,12,...,Ly) be a PLS instance with sequence length n and stopping time
set T. Then, for every ig € [m|, t =11 +lo+---+ 11 € T and w € [n — t|, there exists

i € {ig,io + 1,...,m} such that |B; N [t + 1,t + w]| > 25“(’11).

The proof is deferred to Appendix C. Next, we show how Theorem 9 follows from Lemma 10.

Proof of Theorem 9 assuming Lemma 10. Consider the random sequence = € {0, 1}" constructed
by setting all entries within each block to the same bit chosen independently and uniformly at random.
Formally, we draw fi1, 12, . . ., i ~ Bernoulli(1/2) independently. Then, for each ¢ € [m] and
Jj € By, wesetx; = ;.

Fix a forecasting algorithm .A. For ¢t € T and w € [n — t], let & ,, denote the event that .4 makes a

prediction at time ¢ on X ,, = % Z;"Il Z¢44. We will show that, conditioning on event &, ,, and any

observation 1.y = (z1,Z3,...,x;), the conditional variance of X, is at least Q(1/[U(£)]?). This
would imply that the conditional expectation of the squared error incurred by A is lower bounded by

Q(1/[U(£)]?). and the theorem would then follow from the law of total expectation.

Recall that t € 7 must be of form I; + I3 + - -+ + I;,—1 for some iy € [m]. Then, X;,, can be
equivalently written as X; ,, = Z:’;zo o - i, where o == % |B; N[t+1,t+w]| denotes the fraction
of timesteps in [t + 1,¢ + w] that fall into block B;. Since we sample p1, . . ., ii,, independently,
conditioning on event &, ,, and the observations z.;—both of which are solely determined by the
randomness in p1, po, . . ., fi,—1 and A—each of gy, fig+1, - - - » b Still follows Bernoulli(1/2)
independently and has a variance of 1/4. Therefore, the conditional variance of X} ,, is given by

Z Qg | Et,zz;,Il:t] = i Z ai2'

i=ig 1=1g

Var [Xt,w | gt,w, xl:t] = Var

By Lemma 10, there exists ¢ € {ig, 79+ 1,...,m} such that a; > #(,c)’ so Var [ Xy | Etws 1.4
O

2
. 1 1 =t
is at least ; - (m) 6002

"Here and in the following, we assume that 0 € 7 in the PLS instance. If not, we note that the forecasting
algorithm is not allowed to predict until timestep £, := min 7, so the analysis goes through after shifting the
timesteps by to.



3.2 Hard Instance via Tree Construction

Theorem 11 (Second part of Theorem 2). For every PLS instance L = (l1,la,...,ly), every
Sorecasting algorithm A has a worst-case error of error*™(A) > Q (1/logm).

Similar to the proof of Theorem 9, we randomly generate a sequence x by first choosing p € [0, 1]™,
and setting every entry within the i-th block to u;. The key difference is that, instead of drawing
each p; independently, we carefully design the correlation between different entries of . This
correlation structure is specified by a tree construction similar to [QV19]: We build a tree whose
leaves correspond to the m entries u1, ..., t,. We assign a noise to each edge of the tree, and the
value of a leaf is set to the sum of noises on the root-to-leaf path. Again, we will argue that for every
possible prediction window [t + 1, ¢ 4+ w], even after seeing the first ¢ entries, the conditional variance
in the average of x; 11, ..., T4y i8 still sufficiently high.

A key difference between our construction and that of [QV19] is that they focused on the special
case where [; = ly = --- = [,,, = 1, so that a full binary tree of depth log, m suffices. In contrast,
to handle the general case, our construction involves a ternary tree in which every internal node has
either two or three children, depending on whether the current subtree contains a long block whose
length dominates the total block length.

We formally introduce our tree construction as follows.

Definition 7 (Tree construction). Given a PLS instance (11,12, ..., 1), we construct a tree using the
following recursive procedure:

o If m =1, return a tree with a single leaf node that corresponds to l;.

o Let S =11 + 1o+ -+ + L. If there exists i* € [m]| such that l;x > S/2, such index i* must be
unique, and we construct a ternary tree where: (1) The left subtree of the root node is the tree
construction for (11, . .., l;«_1); (2) The middle subtree is a single leaf node corresponding to the
i*-th block; (3) The right subtree is the tree construction for (Li« 1, ..., lm).

* Otherwise, every l; is at most S/2. We choose the cutoff i* € [m] as the smallest index such that
lLi+lo+---+1;x > S/4. Note that we must have Iy +lo+- - -+ 1w = (lh+lo+- -+ lw_1)+1ix <
S/4+ S/2 = 35/4. We recursively build two trees for (11,1la, ..., lix) and (lix11,liyo, -« lm),
and return the tree obtained from joining these two subtrees.

By construction, the tree has m leaf nodes, each of which corresponds to one of the m blocks. For
each node v in the tree, let Z(v) denote the set of block indices that correspond to one of the leaves in
the subtree rooted at v. It is clear that every Z(v) is of form {i,i+1,...,j} forsome 1 < i < j < m.
We write size(v) := |Z(v)]| as the number of leaves in the subtree rooted at v.

Next, we assign a noise magnitude to each node in the tree.
In(size(v))

Definition 8. The noise magnitude at node v is set to o (v) = /1 — ===,

The noise magnitude is always in [0, 1]: it takes value O at the root node and takes value 1 at every
leaf node. Then, we assign random values in [0, 1] to the nodes in the tree construction as follows.

Definition 9 (Node value). The root node r is assigned value ., = 1/2 deterministically. Then, for
every edge (u,v) in the tree, after ., is determined, we independently draw ., such that:

1-0o() 14+ 0(v)
“”e{ 2 T 2

} and  Eljty | ] = pra.

Note that the above is well-defined: By Definition 8, it always holds that o (u) < o(v). So, regardless

of whether p,, equals %(“) or H%(“), we always have p,, € [%@), H%(”) . Therefore, there
exists a unique distribution over {%(v), H%(v)} with an expectation of .

Finally, we construct the hard instance by setting the value of each block to the corresponding node
value in the tree construction.

Definition 10 (Hard instance). Given a PLS instance L = (l1,la,... 1), we construct a tree
Sollowing Definition 7 and assign values to its nodes following Definitions 8 and 9. For each i € [m],



let p; denote the value of the leaf node that corresponds to the i-th block. Finally, the sequence x
consists of 11 copies of p1, la copies of o, . .., Ly, copies of p, in order.

3.3 Structural Properties

Towards proving Theorem 11 using the hard instance from Definition 10, we make some observations
on the tree structure as well as the node values. We first note that, for each edge (u, v) in the tree, the
conditional variance of u, given ., takes a simple form. Indeed, this is the main motivation behind
the choices of the noise magnitudes and node values.

Lemma 12. For every edge (u,v) in the tree and conditioning on any realization of ., it holds that

Var [/J'U | Mu} _ ln(siZE(ui)l;LI}L(size(v)).

Proof. Since adding a constant does not change the variance, Var [p, | ] = Var [p, — 1/2 | po] =
E [(1o —1/2)2 | pu] — [E [po — 1/2] ta]]?. By Definition 9, we have E [fiy | tu] = ftu, so the
second term [E [11, — 1/2 | p1u]]? reduces to (1, — 1/2)2. Then, we note that |1, — 1/2| = o(u)/2
and |, — 1/2] = o(v)/2 always hold, which further simplifies Var [y, | ] into [o(v)]?/4 —
[o(u)]? /4. Finally, the lemma follows from the choices of of o(u) and o(v) in Definition 8. O

The next technical lemma (which we prove in Appendix C) states that, for any 1 < i < 5 < m, there
exists an edge (u,v) in the tree such that: (1) Observing the first i — 1 blocks does not reveal the
value of p,; (2) The remaining variance of p, has a significant contribution to the average of blocks
1,74+ 1,...,j. To state the lemma succinctly, we define the “total length” of a set .S. We will mostly
use this notation for S = Z(v) (where v is a node in the tree) or S = [i, j] (where 1 <1 < j < m).

Definition 11. The total length of set S is totlen(S) == >_7" ;- 1[i € S].

Lemma 13. For any 1 < i < j < m, there exists an edge (u,v) in the tree such that: (I)

Z(w)n{1,2,...,i—1} =0; (2) totlen(Z(v)) > Q(1) - totlen([¢, 5]); (3) size(v) < size(u)/2.

3.4 Lower Bound in Terms of Number of Blocks

We prove Theorem 11 by putting together Lemmas 12 and 13. As in the proof of Theorem 9, we can
decompose any prediction window [t + 1, ¢ 4 w] into several complete blocks ig,io + 1,...,j0 — 1
and a possibly incomplete block jg. If the complete blocks constitute at least half of the window, we
apply Lemma 13 to identify an edge (u, v) in the tree, such that the noise in p,, | ., contributes an
Q(1/logm) variance to the average to be predicted. Otherwise, we lower bound the variance directly
by considering the edge above the leaf that corresponds to block jo.

Proof of Theorem 11. We consider the random sequence = € {0, 1}" constructed in Definition 10
and fix a forecasting algorithm A. Fort € 7 and w € [n — ¢], let &, denote the event that A
makes a prediction at time ¢ on X; ,, := i > i1 4. We will show that, conditioning on any event
Et.w as well as the observations x1.; = (21, %2, ..., T¢), the conditional variance of X, ,, is at least
Q(1/log m). This would lower bound the conditional expectation of the squared error incurred by A

by 2(1/logm), and the theorem would then follow from the law of total expectation.

Recall that ¢ € 7 must be of form I; + Iy + - -+ + ;,—1 for some iy € [m]. Let jo € [m] be the
smallest number such that I;, + l;;41 + -+ 1j, > w. Let 6 .= w — (liy + lig41 + - + Ljg—1)-
Consider the following two cases, depending on whether § exceeds half of the window length w:

* Casel: 6 > w/2. Let v be the leaf that corresponds to the jo-th block in the tree construction, and u
be the parent of v. Note that size(v) = 1 and size(u) > 2. By Lemma 12, Var [p, | ] is given by
In(size(u))—In(size(v)) > _In2 _ Q ( 1

). Furthermore, since event & ,, and z1.; only depend

4Inm — 4lnm logm
on the realization of p1, ft2,. .., ftiy—1, the value of u;, (namely, p,) still has an Q(1/logm)
variance conditioning on &, ,, and x1.;. Then, since § > w/2 entries among =41, Ty42, - - -, Titw

are set to f15,, Var [Xy . | Ew, T1.) is atleast 1 - Var [, | £, 214) = Q(1/ logm).

« Case 2: § < w/2. In this case, we have totlen([io, jo — 1]) = liy + lig+1 + -+ + ljp—1 =
w— 06 > w/2. Applying Lemma 13 with i = ig and j = jo — 1 gives an edge (u,v) such



that: (1) Z(v) N {1,2,...,ip — 1} = 0; (2) totlen(Z(v)) > Q(1) - totlen([ig, jo — 1]); (3)
size(v) < size(u)/2.

By Lemma 12, Var [, | p] is equal to ln(me(“i)l In(size(v)) » 22— ()(1/log m). Since event
&t and the observation of z;.; only depend on the realization of fi1, tt2, . . ., li,—1, and none of
these i io — 1 leaves is inside the subtree rooted at v, p,, still has an (1/log m) conditional variance.
Furthermore, within the length-w prediction window, the number of entries that are affected by
Ly is exactly totlen(Z(v)) > Q(1) - totlen([ig, jo — 1]) > Q(1) - w. Therefore, the conditional
variance of X ,, is at least Q(1) - Var [ty | Epw, x1:4] > Q(1/logm).

O

4 An Average-Case Analysis

As a warm-up towards proving Theorem 4, we analyze the special case that p* consists of n identical
entries. The full proof is presented in Appendix D.

Proposition 14. Let T be a p*-random stopping time set for p* = (p,p,...,p) € [0,1]™. With
probability at least 1 — e~"P/3 — 1/n over the randomness in T: (1) |T| < 2np = O(np); (2)

U(T) = n/[(2lnn)/p] — 1 = Q(np/ logn).

Proof. We first note that |7| follows Binomial(n,p), so a multiplicative Chernoff bound gives
Pr[|T] > 2np] < e "?/3. Towards lower bounding U(T), let £ = (I1,ls, . .., ly) be the block
representation of 7 and let Lo == [(2Inn)/p]. By definition, U(T) is at least —atlet—tlm  —

max{ly,l2,..., Im}

T If we additionally have max{ly,ls,...,ln} < Lo and min 7 < Lg, we would

n—min 7
max{li,ls,...

have U(T) > - LOLO =n/[(2lnn)/p] — 1. Thus, it remains to show that, with probability at least
1 —1/n, both max{ly,ls,...,ln} < Lopand min T < L hold.

Consider the complementary event: for either max{l1,ls,...,l;n} > Lo or min7T > Lg to hold,
there must be some ¢ € {0,1,...,n — Lo — 1} such that T N[t + 1,t + Lo] = 0. For each fixed ¢,
t+1,t+2,...,t+ Lo getincluded in 7 independently with probability p. Thus, TN[t+1,¢+ Lo = 0
holds with probability (1—p)Lo. By the union bound, Pr [max{l1,l2,...,ln} > Lo Vmin T > L]
is at most (n — Lg) - (1 — p)¥°, which is further upper bounded by ne PF0 < ne=2"" = 1 /n using
1—p<ePand Ly > (2lnn)/p. This completes the proof. O

Our proof of Proposition 14 implies that, when p* consists of n copies of the same value p € [0, 1],
the resulting value of U is at least ~ np/ log n with high probability. Furthermore, the proof of this
lower bound still holds if each entry of p* is lower bounded by p instead of exactly equal to p. To
prove Theorem 4, the addition step is then to show that, within each k-monotone sequence p*, we
can always find a consecutive subsequence of length n’ such that each entry is at least p’, and n'p’
is at least ~ Y., p;/(klogn). This is done by identifying a monotone subsequence in p* that
contributes at least a (1/k)-fraction of the sum, and then finding an appropriate prefix or suffix of
that subsequence.

5 Discussion

An obvious open problem is to tighten the instance-dependent error bounds (Theorems 1 and 2).
Since the optimal error is ©(1/logn) for the full- select1v1ty case [Drul3, QV19], one might hope to
strengthen the 1/[U(£)]2 lower bound to 1/log U (L), or at least 1/polylog(U(£)). Unfortunately,
as we show in Proposition 16 (Appendix E), this is not possible: there exists a family of instances
(L)} such that U(Ly) — +00 as k — oo, but a worst-case error of O(1/U(Ly)) can be
achleved on each L.

Therefore, to obtain tighter instance-dependent bounds, we need to identify a complexity measure
that characterizes the hardness of PLS more exactly. A concrete starting point is to examine the
instance family from Proposition 16, which is based on a construction that resembles the Cantor set.
Roughly speaking, these instances suggest that a sharper complexity measure should account for



the number of approximately uniform blocks that can be obtained via not only merging consecutive
blocks, but also “skipping” some shorter blocks at the cost of an additional term in the prediction
error.

While we focus on predicting the average of a number sequence, our results can be easily extended
to the setting of predicting more general functions (including smooth and concatenation-concave

functions studied by [QV19]). In particular, they imply an O(1/ log!/? U (L)) upper bound (on the

worst-case absolute error) for predicting smooth functions and an O(1/log U (L)) bound (on the
squared error) for concatenation-concave functions. Since the average function is both smooth and
concatenation-concave, the lower bounds in Theorem 2 also apply to these broader function classes.

Yet another natural direction is to revisit other classic online learning settings (such as the experts
problem) from the perspective of limited selectivity, i.e., when the learner is only allowed to change
its prediction or action on some given timesteps. The approximate uniformity measure as well as
some of our proof techniques would be natural first steps towards understanding these models.
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A Proofs of Corollaries

A.1 Proof of Corollary 3

Corollary 3. For every m > 1, on the PLS instance L,,, = (2°,21,22,...,2™~1) with sequence
length n = 2™ — 1 and m blocks, every forecasting algorithm has an (1) worst-case error.
Furthermore, for every k > 1, there is a PLS instance L) with sequence length n = 3% and
m = 21 — 1 blocks, on which every forecasting algorithm has an (1) worst-case error:

Proof. In light of the (1/[U(£)]2) lower bound in Theorem 2, it suffices to show that each of these
instances has an O(1) approximate uniformity.

The first family. Fix m > 1 and consider £,, = (2°,2%,...,2m71). Forevery 1 <i < j < m,

we have . ] ) ,
Lkl +otly 27 42 g2t o
max{li,l,;+1,...,lj} - 271 - 251

It follows that U (£,,) < 2 = O(1).

=2

The second family. We construct the instances £}, £5, . .. recursively: £} issetto (1,1, 1). For
each k > 2, £} is defined as £} _, o (3*71) o £} _,, where o denotes sequence concatenation. Then,
we prove by induction on k that: (1) each £}, corresponds to a PLS instance with n; = 3% and
my =21 — 1, U(L}) < 3.

For the base case that k = 1, we indeed have ny = 3 = 3F, my = 3 = 281 — 1 and U(L}) = 3.
For k& > 2, assuming that the statements hold for £, we have ny = ng_1 + 31 fny_q =3k
and mp = mp_1 +1+mp_; = (28 —1) + 1+ (2¥ — 1) = 281 — 1. To upper bound Ij’(ﬁ;c),
consider an arbitrary contiguous subsequence (l;,l;11,...,1;) in £}.. If this subsequence contains
the entry 3*~! in the middle, we have

li+lig1 + -+ ng 3F
max{li,lis1,...,l;} — 3k—1  3k-1

If the subsequence does not contain the middle entry, it must be a contiguous subsequence of £} _,,
so the upper bound

li+ligr+- 41 <3
max{li,li+1,...,lj} -
would follow from the induction hypothesis. This completes the proof. O

A.2  Proof of Corollary 5

Corollary 5 follows from Theorems 1, 2 and 4.

Corollary 5. If k-monotone sequence p* € [0, 1]" satisfies Z?;ol pr > Q((klog? n)'+¢) for some
constant ¢ > 0, with high probability over the randomness in the p*-random stopping time set T, the
forecasting algorithm from Theorem 1 has a worst-case error that is optimal up to a constant factor.

Proof. Letmg == Y}~ pt. Assuming that mgo > Q((klog? n)'*¢), we have mo = w(logn) and

klog®n = O(m(l)/(1+c)). By Theorem 4, it holds with probability 1 — e~"0/3 —1/n =1 —O(1/n)
that |7] < O(my) and

7 mo mo c/(14c)
U(T) >0 >Q ———— | =Q .
(7= <klog2n) - <m(1)/(1+0)> (mg )

By Theorem 1, there is a forecasting algorithm with a worst-case error of at most

1 1 1
O ——|=0|————+———=1]=0
<IOg U(T)> log [mg/(lﬂ)} (10g m0>
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on the PLS instance 7. By Theorem 2, the upper bound |7| < O(mg) implies that every forecasting
algorithm must have an 2(1/ log m) worst-case error on instance 7. This completes the proof. [J

B Proofs for Section 2

B.1 Proof of Proposition 6

Proposition 6. On PLS instance L = (l1,1a, . .., 1) that satisfies max{lil b} < O Algorithm 2

T P -
has a worst-case error of O(C/logm).

Proof. For integer k > 1 and 1 € [0, 1], let L(k, ) denote the maximum expected squared loss that

Algorithm 2 incurs on a sequence of 2* blocks with average p. Let o := (CZ} and ¢(z) = x(1—x).
We prove by induction that L(k, ) < & - ¢(u). The proposition would then follow from the above
together with the observations that « = O(C), 1/k = O(1/logm), and ¢(u) = O(1).

The base case. When k = 1, Algorithm 2 calls RandomSelect(1, 1), which always returns (4, j) =
(2,1). Then, Algorithm 2 sets

1
t=1, w=ly, wo=1Iy, ﬂ—l($1+$2+ -4 xy,),
1

and predict that the average of z;, 1 through x;, 1, is equal to ji. Then, the resulting error is given
by (p1 — p2)?, where

1
M1 = r(ml +3’J2+-"+l‘11) and M2 = r(xl1+1 +xll+2+"'+xl1+lz)
1 2

are the averages of the two blocks. Let ¢ := l5/l;. Note that we have
b+l po=x1+ze+ 4 x4, =0 +1l) p

Dividing both sides by I; gives p1 + cus = (¢ + 1)p.

Then, the squared error can be upper bounded as follows:

L(l,p) < sup  (m —p2)*.
w1,pu2€[0,1]
pitepz=(c+1)p

For any p1, 2 € [0,1], ¢ > 0and o = ﬁul + T4 2, it holds that

0(0) = T2 0m) + T 0l0a) + oy — ) n
Rearranging the above gives
R S oL N PV SISV (1+0)
(h1 = p2)” = — O(n) — 7o 0l) — ool | < ———o(n),

where the second step holds since ¢(u1) and ¢(p2) are non-negative for any p1, 2 € [0, 1].

Noting that ¢ € [1/C, C] and that the function z — (wH)

on (0, 1), we obtain the base case

L < CEE g < CED 5 = @ o,

is increasing on [1, +00) and decreasing

Inductive step. Now, consider the case that £ > 2, assuming that the induction hypothesis holds for
L(k — 1, p1). Shorthand N := 2F~! for brevity. When Algorithm 2 calls RandomSelect(1, k), with
probability 1/k, the pair (N + 1, N) is returned, causing Algorithm 2 to predict that the average of
blocks N + 1 through 2N (denoted by p2) is the same as the average of the first /V blocks (denoted
by j11). In this case, the squared loss is given by (p1 — ).

13



With the remaining probability £-1, RandomSelect recurses on either the first NV blocks or the last
N blocks. Note that the resultlng behav10r of Algorithm 2 is exactly identical to when the algorithm

runs on either the instance £1 = (I1,12,...,Iy) or the instance Lo = (In41,IN42,- ., l2n), Which
N .
can be controlled using L(k — 1,-). Let ¢ := Zziéil’f Note that we have ¢ € [1/C, (], since the
i=1"?
max{l1,ls,..., I }

assumption that < C implies

min{ll7l2a-~7l7n}

Q \

N N N
Z < N-min{ly, by, e} € Ings < N -max{ly, g, b} <C- D L

i=1

Dividing the above by 21\11 ; gives 1/C < ¢ < C. The probability of recursing on the first half
is given by (1 — 1) - 1= +C, and that of recursing on the second half is (1 — }) - 1 < Then, by the

induction hypothesis, the conditional expectation of the squared loss in this case is at most

1
L(k = L) + T Lk = 1) < 7 - (1 —0(m) + ¢<u2>)

1+c 1 1+c¢

Then, we get

1 k—1 e’ 1
I < - _ 2 . R
(hp) = s a1 [kw A k1(1+c¢<“1)+1+ Wz)ﬂ

pitepz=(c+1)p

« « 1 c
< — . — 2_|_f
< & -+ (et + 1o )
pitepz=(c+1)p

o c , .
=—. Lo L
k m,:leI:)[OJ] {(C +1) (1 = pr2) c ¢(p1) . 1¢(H2)]
pitcpz=(c+1)p
a .
Tk o (Equation (1))

where the second step applies o = (021)2 > (CH) , which follows from ¢ € [1/C,C]. This
completes the inductive step and thus the proof. O

B.2 Proof of Lemma 7

Lemma 7. If L' is a merge of L, the minimum worst-case error that can be obtained on L is smaller
than or equal to that on L'.

Proof. Let L' = (I1,15,...,1,,,) be a merge of L = (ll,lg,..., ;) witnessed by indices
01,02,y imy1. Letn =1l +lo+ -+ lpandn’ =1 + 15 +--- + 1, denote the sequence
lengths in £ and L', respectively.

Suppose that a forecasting algorithm A" has a worst-case error of € on £’. Then, the following is a
forecasting algorithm for £, which we denote by .A:
* Letty :==13 + 1o+ ---+1;, 1. Read the first ¢y elements in the sequence and disregard them.

 Simulate A’. Whenever A’ tries to read the next element in the sequence, read the next element
and forward it to A’.

» When A’ predicts /i as the average of the next w elements, make the same prediction.

Clearly, whenever A runs on sequence = € [0, 1], it has the same behavior as A’ running on the
length-n’ sequence @' = (Z¢,41,%ty+2; - - -, Lto+n ). Therefore, the expected error of A on z is
exactly the expected error of A’ on 2/, which is further upper bounded by e. O

14



C Proofs for Section 3

C.1 Proof of Lemma 10

Lemma 10. Let £ = (I1,12, ..., 1) be a PLS instance with sequence length n and stopping time
set T. Then, for everyig € [m|, t =11 +lo+ -+ 1liy—1 € T and w € [n — t], there exists
i€ {ig,ip+1,..., [t+1,t+w]\225“(’£).

Proof. Fix ig € [m],t =13 +1la + -+ 4+ l;,—1 and w € [n — t]. Recall that the i-th block is
defined as B; == {ly + 1o+ -+ 1;—1+Jj : j € [li]}- Let jo be the index of the last block
that intersects [t + 1,¢ + w|. Formally, j, is the smallest number in {ig,io + 1,...,m} such that
lio +li0+1—|—-~-+lj0 > w.

Let 6 :== w — (liy, + liy+1 + -+ + 1j,—1). Note that the prediction window [t + 1,¢ + w] consists
of jo — i¢p complete blocks (B;, through 5B;,_1) along with the first  timesteps in block B;,. We
consider the following two cases, depending on whether J exceeds half of the window length w:

e Case 1: § > w/2. In this case, block j, would satisfy the lemma. This is because jo €
{io,io—F 1,...,m} and
w

2U (L)

|Bj, N[t+1,t+w]| =48>

o 8

>

)

where the last step holds since (7([:) > 1 for every L.

* Case 2: 6 < w/2. In this case, we have l;, + ;41 + -+ + lj,—1 = w — 0 > w/2. Furthermore,
by definition of U (L),
~ li+lipi+- 41 > Lig +ligy1+ -+ 1j—1

UL) = .
( ) 1§rz%aj)ém max{li7li+1,...,lj} - max{lio,li0+1,...7ljo,1}
It follows that
1 w
max{li,, lig+1, - lig—1) > =—— Ly + lige1 + -+ 1jy—1) > ——.
{ 03 Yio+1 Jo 1} U(ﬁ)(m io+1 Jo 1) QU(E)
In particular, there exists i € {ig, 49 + 1,...,7j0 — 1} such that
w

Bin[t+ 1Lt =l > ———.
20 (L)

C.2 Proof of Lemma 13

Lemma 13. For any 1 < z < j < m, there exists an edge (u,v) in the tree such that: (1)
Zw)N{1,2,...,i—1} =0; (2) totlen(Z(v)) > Q(1) - totlen([z, 5]); (3) size(v) < size(u)/2.

Proof. Let u; be the deepest node in the tree such that {¢,7 + 1,...,5} € Z(u1). Note that such a
node must exist, since the root node r satisfies Z(r) = {1,2,...,m} 2 {i,i+1,...,j}. Then, we
consider two cases, depending on whether Z(u;) contains a long block that constitutes more than
half of the total length.

Case 1: Z(u;) contains a long block. Let i* € Z(u;) be the unique index such that I;« >
totlen(Z(u1))/2. Then, by construction of the tree (Definition 7), u; has a child us that is a leaf node
corresponding to the *-th block. We claim that ¢* must be in [i, j]. Otherwise, by Definition 7, u;
has two other children: one corresponding to blocks Z(u;) N [1,* — 1] and the other corresponding
to Z(uq) N [i* + 1,m]. Then, one of these two children must contain the set {¢,7 + 1,...,j},
contradicting our choice of u.

Then, (u1,us) would be the desired edge. For the first condition, since Z(us) = {i*} an
i, we have Z(ug) N {1,2,...,i — 1} = 0. For the second, we have totlen(Z(uz)) =
totlen(Z(u1))/2 > totlen([¢, j])/2. Finally, since size(u;) > 2 and size(us) = 1, it
size(ug) < size(uq)/2.

holds that
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Case 2: Z(uq) has no long blocks. By Definition 7, u; has two children uo and ug such that
Z(uy) can be partitioned into Z(us) and Z(ug). It follows that {é,4 + 1,...,j} is partitioned into
T(uz) N [¢, 4] and Z(us3) N [i, §]. In particular, we must have

max{totlen(Z(uz) N [4, j]), totlen(Z(us) N [¢, j]) } > totlen([i, j])/2.

Without loss of generality, we assume that totlen(Z(ugz) N [¢, j]) is at least totlen([z, j])/2 in the
following; the other case can be handled in a symmetric way.

Let ¢’ be the smallest number in Z(u3). Then, we have Z(u3) N [¢,5] = {¢',4' +1,...,j}. Let vy
denote the deepest node in the subtree rooted at uz such that {i’,i’ + 1,...,5} C Z(v;).> Then,
we further consider the following two subcases, depending on whether Z(v;) contains a long block
(compared to totlen(Z(v1))):

* Case 2a: There exists i* € Z(v1) such that [;« > totlen(Z(v;))/2. By Definition 7, v; has a child
vo that is a leaf node corresponding to the ¢*-th block. Furthermore, we claim that ¢* must be in
[/, j]; otherwise, we have i* > j + 1, and vy has another child with an index set that contains
{¢/;¢ +1,...,i* =1} D {¢,i +1,...,j}, which contradicts our choice of v;.

Then, (v1,vy) would be the desired edge: Z(vy) = {i*} and i* > i’ > i together give the first
condition Z(vg) N {1,2,...,i — 1} = (). For the second condition, we note that totlen(Z(vy)) =
i+ > totlen(Z(v1))/2 > totlen([¢', 5])/2 > totlen([i, j]) /4. Finally, the third condition follows
from size(ve) = 1 < size(vy)/2.

* Case 2b: Every block in Z(v; ) has a length of at most totlen(Z(v;))/2. By Definition 7, v; has a
left child v, that satisfies
totlen(Z
totlen(Z(vs)) > M
Since Z(v1) contains {i',3’ + 1,..., 7}, we have

) > totlen([z',j]).

totlen(Z(vy)) > totlen([¢’, j] D)

Combining the above gives totlen(Z(v2)) > totlen([z, j])/8.

At this point, the edge (v1,v2) already satisfies the first two conditions: For the first, we note
that Z(ve) C {¢',7’ + 1,...,j} and is thus disjoint from {1,2,...,i — 1}. For the second, we
have already shown that totlen(Z(vz)) > totlen([¢, j])/8. However, the last condition size(vy) <
size(v1)/2 might not hold in general.

Fortunately, this issue can be resolved via yet another case analysis. If vy is a leaf node, we
immediately have the third condition, as size(ve) = 1 < size(v;)/2. If there exists i* € Z(vy)
such that [;» > totlen(Z(v2))/2, vo would have a child vs that is a leaf corresponding to the i*-th
block. In this case, (v2,v3) would be the desired edge, since totlen(Z(vs)) > totlen(Z(vz))/2 >
totlen([7, 5])/16 and size(vs) = 1 < size(vz)/2. Finally, if Z(v2) does not contain a long block,
vo must have two children v3 and v4 such that

totlen(Z
size(vs) + size(vq) = size(ve) and min {totlen(Z(vs)), totlen(Z(v4))} > M.
Without loss of generality, assume that size(vs) < size(vs)/2. Then, (ve, v3) gives the desired
edge, since totlen(Z(vs)) > totlen(Z(v2))/4 > totlen([s, 5])/32.

O

D Proof of Theorem 4

We prove Theorem 4 in this appendix. Compared to the proof for constant probability sequences
(Proposition 14), our analysis essentially reduces the k-monotone case to the constant p* case by
showing that every k-monotone p* contains a sufficiently long subsequence, such that the length of

the subsequence times the minimum value almost matches 2?2—01 D

?Again, such a node must exist, since u3 satisfies {i’,3’ +1,...,5} C Z(u3).
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Lemma 15. For any k-monotone sequence p* = (p§,p%,...,p5_1) € [0,1]", there exists a contigu-
ous subsequence (p;,py,1,---,D}) such that

o ) Zt Opt
(j_Z+1)~m1n{pf7pf+1a---vpa}— O(klogn)

Proof. By definition of k-monotone sequences, p* can be partitioned into at most k contiguous
subsequences, each of which is monotone. Therefore there exist O <9 < jo < n — 1such that: (1)

(pfg,pfoﬂ, ... 717;'0) is monotone; (2) S = t io A Zt o Dr-
Without loss of generality, we assume that (pz-o s Diog1s - - 7pjo) is non-decreasing; the non-increasing
case can be handled symmetrically. We claim that there exists ¢ € {ig,i9 + 1, ..., jo} such that

(jo—i+1)'p:ZFn7

where H,, =1 + 2 + .-+ % = O(logn). Assuming this claim, (p},p;;y,...,Dpj},) gives the
desired subsequence, as it is non-decreasing and satisfies
n—1 4
Zt o Pt
H, — O(klog n)’

(Jo =i+ 1) - min{p}, pji1,.. - pj} = (Jo—i+1)-p] =

To prove this claim, suppose towards a contradiction that, for every i € {ig,i9 + 1,...,jo}, it holds
that (jo —i+1) - pf < Hi It then follows that

S
°7 Zp‘z( i) T T <5

=10 =10

a contradiction. O

Finally, we prove Theorem 4 using Lemma 15 and an argument similar to that of Proposition 14.

Proof of Theorem 4. We start with the high-probability upper bound on |T|. Let mg = Z? 01 Py
Since |7 is the sum of n independent Bernoulli random variables with means p, p%,...,pJ_, we
have E [|T|] = my, and a multiplicative Chernoff bound gives
Pr[|T] > 2mg] < e~™0/3,
To lower bound 17(7') we apply Lemma 15 to obtain a contiguous subsequence (p; ,p; 11, - - 7p;‘.o)
of p* such that
. . Z? 01 P; Mo
- 1 i = )
Uo =do+1)-pmin 2 5AT 05 = Glklogn)
where ppin ‘= rnin{p;‘0 s Dig1s s p;o} denotes the minimum entry in the subsequence. Let Ly =
Ppln_ ”W = O(k:;frz ). (jo — i0 + 1). Note that we may assume jo — io + 1 > 2L( without loss of

generality; otherwise, we would have mg = O(klog? n), in which case the Q(mg/(klog? n)) lower
bound on U(7") would trivially follow from U(T) > 1.

Good event £. Next, we define a “good event” which will be shown to imply a lower bound on
U(T) and happen with high probability. For each ¢t € {ip,i0 + 1,...,50 — Lo + 1}, let & denote
the event that 7 N [¢,¢ + Lo — 1] # (. Let £ := ﬂj o~ Lo+l g, be the intersection of these events. In

other words, € is the event that {ip,io + 1,...,Jo} contains no Lg consecutive elements such that
none of them is included in 7.
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Event £ implies lower bound on U. When event & happens, both
T Nlio,i0o+ Lo —1] and T N[jo — Lo + 1, jo]
are non-empty. Thus, if we list the elements in 7 N [ig, jo] in increasing order:
to <t1 < -+ <t
we must have tg < 0+ Lo—1and ¢,,» > jo— Lo+ 1. Furthermore, for every neighboring entries ¢;_1

andt; (i € [m']), wemusthave t;—t; 1 < Lo; otherwise, t;_1+1,¢;_1+42,...,t;—1+Lo € (ts—1,t;)
would give Ly consecutive elements that are outside 7, contradicting event £.

Let £ = (I1,12,...,1m) be the block representation of instance 7. Note that £ contains a contiguous
subsequence

(tl - tO,tQ - tl, “ee ,t7n/ - tm/_l)
that corresponds to the m’ + 1 stopping times (o, ¢1,. .., ¢y, ). Then, event £ implies that every
entry t; — t;_1 is at most Lg. Furthermore, the sum of these m’ entries is given by

’
m

D (ti—tio1) =t —to > (jo— Lo+ 1) = (io + Lo — 1) = (jo — do + 1) = 2Lo + 1.
i=1

Therefore, by definition of U , € implies that

0T > Doy (ti—tio1) S (jo—ido+1) —2Lg+1 2jo*ioJrl_

2.
- max{t1 —to,ta —t1, ...yt —tmlfl} - Lo Lo

O(klog?n
(klog )_(

Finally, since Ly = p—

Jjo — g + 1), the above gives a lower bound of {2 (kh’)”ﬁ)

Event & happens with high probability. It remains to show that Pr[£] > 1 — 1/n. Fix t €
{ip,i0 +1,...,j0 — Lo + 1}. Foreachi € {0,1,...,Ly — 1}, we have t + ¢ € [ig, jo], which
implies py, ; > min{p; ,p} 1, - ,p;fo} = Pmin. It follows that

Pr[&] =Pr[TN[t,t+ Lo—1] =]

Lo—1 Lo—1
= H (1 - p:_tﬂ) g (1 - pmin) (Pfﬂ Z pmin)
i=0 i=0
1
= exp(_pmin : LO) < ﬁ 1-p<e™®, Lo > (2 lnn)/pmin)
By the union bound, we have
jo—Lo+1 1 1
Pri€]>1-— Pri&|>1—-n-—=1——.
r[€] > tz: r [—t] > n 3 -
=10
This completes the proof. O

E Instance with O(1/U(L)) Worst-Case Error

Proposition 16. For every k > 2, there is a PLS instance L such that: (1) (7([:) = 2k, (2) There is
a forecasting algorithm with an O(1/k) worst-case error on L.

Proof. Fix k > 2. We construct a sequence of instances L1, Lo, . . . as follows:

* L1 =(1,1,...,1) is the all-one sequence of length 2k.
» Forevery h > 2, we set
Ly = ((k=1)Lh1) 0 (2 (2K)" ) o ((k = 1)Ly-1),

where o denotes sequence concatenation, and (k — 1)L, _1 denotes the sequence obtained
from £;_; by multiplying every entry by £ — 1.
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By a simple induction on h, the sum of entries in each £, is given by n;, = (2k)": When h = 1, we
indeed have n; = 2k = (2k)!. For each h > 2, assuming ns,_1 = (2k)"~!, we have

np =2(k—1)-np_1 +2- (2k)" 1 = (2k)".

Therefore, for each i > 2, the middle entry in £y, 2 - (2k)h_1, constitutes a (1/k)-fraction of the
entire sequence length n;,. Before and after this middle entry are two copies of £;,_; scaled up by a
factor of k — 1.

In the rest of the proof, we show that U (Ly) = 2k for every h > 1. Furthermore, for all sufficiently
large h, L, admits a forecaster with an O(1/k) worst-case error. These two claims would then prove
the proposition.

Analyze the approximate uniformity. We start with the direction that U (Lp) > 2k. By construc-
tion, the first 2k entries of Ly, (I1,la, . . ., lay ), are exactly given by (k — 1)"~! times £;. Thus, the
definition of U gives

~ I+l -+l
> = 2k.
U(Eh) - maX{ll,lg,...,lgk} K

For the other direction, we show that U (L) < 2k by induction on h. When h = 1, we clearly
have U(L;) = 2k. Assuming U(Lp_1) < 2k, we analyze L},. Consider an arbitrary contiguous

subsequence (I;,i11,...,l;) in Ly. If the subsequence contains the middle entry 2 - (2k)"~1, we
would have .
li+li+1+"'+lj < np _ (Qk) — k< 2k
max{li, li-l—la ey l]} 2- (2k>h_1 2- (2]€>h_1
Otherwise, (l;,li+1, . ..,l;) must be a contiguous subsequence of £, scaled up by a factor of k — 1.

It then follows from the induction hypothesis that
Litlipi+- 41
max{li, liJrl, ce ,l]}

Therefore, (NI(ﬁh) = 2k holds for every h > 1.

< U(Ln-1) < 2k

Upper bound the worst-case error. Next, we give a forecasting algorithm for £, which is similar
to both the algorithms of [Drul3, QV19] as well as our Algorithm 2:

o If b = 1, there are 2k blocks of equal length. Predict that the average of the last k£ blocks is the
same as that of the first k£ blocks.

s If h > 1, £}, consists of three parts: the left half, the middle entry 2 - (2k)"~!, and the right half.
With probability 1/h, predict that the average of the right half is the same as that of the left half.
With the remaining probability 1 — 1/h, run the same algorithm recursively on either the left or the
right half, with equal probability.

Foreach h > 1 and u € [0, 1], let L(h, 1) denote the highest possible squared error that the algorithm
above incurs on instance £, when the sequence has an average of 1. We will prove by induction that

4 4
L(h,p) < —- -
(ho1o) < 5 - 6(1) + 7
where ¢(x) = x(1 — z). It then follows that, for every h > k, there is a forecasting algorithm for £},
with a worst-case error of O(1/k) = O(1/U(Lp,)).

Base case. For the base case that h = 1, let ;11 and p» be the averages of the two halves, respectively.
Clearly, p11 + p2 = 24 and the algorithm incurs a squared error of (g3 — ju2)?. It follows that
L(L,p) < sup (1 — pa)?.

mny,mz€[0,1]
n1tpo=2p

We note the identity

@)

5 (a —2|— b) _ ¢(a) +6(b)



which is a special case of Equation (1) when ¢ = 1. Therefore, for any p1, po € [0, 1] that satisfy
w1 + po = 2u, we have

(= = 16 (512~ ) + o)) < 4000

Thus, we verified the base case that

L(1,p) < 4o(p) <

s

-¢(u)+%

Inductive step. Consider & > 2 and assume that the induction hypothesis holds for L(h — 1, u1).
Recall that £}, consists of a left half, a middle block that constitutes a (1/k)-fraction of the total
length, and a right half. Moreover, the two halves are scaled copies of L5, _;. Let x; and po denote
the averages of the two halves, respectively. Let ;o denote the average of the middle block. Then, we
have _k—l 1+ o )

H="% 2 TRt
It follows that

’u1+uz _u‘:’(eruz)/?—uo

1
< -,
2 k ~k

Therefore, we have

L(h,p) < sup
p1,m2€[0,1]
lp1+ro—2n]<2/k

(11 — p2)? n h—1 L(h—1,pu)+ L(h—1, p2)
h h 2 '

Plugging the induction hypothesis L(h — 1, 1) < ﬁ “p(p) + % into the above gives

{(/‘1—#2)2 4.¢(u1)+¢(u2)}+h—1.4

L(h,p) < sup
w1,m2€[0,1]
|n1+pe—2p|<2/k

n h 9 ok

Applying Equation (2) to the supremum above shows that

p1 + 2 h—1 4
)

4
L(h,p) < - sup ¢ (
h 0.1]

K12 €[
ln1+ug—2n<2/k

Finally, since ¢(z) = (1 — x) is 1-Lipschitz on [0, 1], the constraint |z1; + p2 — 2p| < 2/k implies
that ¢ (#1342 is (1/k)-close to ¢(y1). Therefore, we conclude that

4 1 h—1 4 4 4
L(h>ﬂ)§h'[¢(ﬂ)+k}+h'kh'¢(ﬂ)+k-

This completes the inductive step and thus finishes the proof. O
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction are formally stated in
Section 1.2, and they apply to the problem setting formally introduced in Section 1.1. They
accurately reflect the paper’s contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The discussion in Section 5 discusses the remaining gap in the theoretical
results, and suggests directions for future work.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: The assumptions are clearly stated either as part of the problem formulation
(Section 1.1) or in the theorem statements (Section 1.2). All the theoretical results have
proofs, in either the main paper or the appendices.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]
Justification: The paper does not include experiments requiring code.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized

versions (if applicable).

Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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8.

10.

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: The paper does not include experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This work is purely theoretical and there is no immediate societal impact of
the work performed.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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