
ML Reproducibility Challenge 2021
[Re] Differentiable Spatial Planning using Transformers

Anonymous Author(s)
Affiliation
Address
email

Reproducibility Summary1

Scope of Reproducibility2

This report covers our reproduction effort of the paper ‘Differentiable Spatial Planning using Transformers’ by Chaplot3

et al. [1]. In this paper, the problem of spatial path planning in a differentiable way is considered. They show that4

their proposed method of using Spatial Planning Transformers outperforms prior data-driven models and leverages5

differentiable structures to learn mapping without a ground truth map simultaneously. We verify these claims by6

reproducing their experiments and testing their method on new data. We also investigate the stability of planning7

accuracy with maps with increased obstacle complexity. Efforts to investigate and verify the learnings of the Mapper8

module were met with failure stemming from a paucity of computational resources and unreachable authors.9

Methodology10

The authors’ source code and datasets are not open-source yet. Hence, we reproduce the original experiments using11

source code written from scratch. We generate all synthetic datasets ourselves following similar parameters as described12

in the paper. Training the mapper module required loading our synthetic dataset over 1.6 TB in size, which could not be13

completed.14

Results15

We reproduced the accuracy for the SPT planner module to within 14.7% of reported value, which, while outperforming16

the baselines [3] [5] in select cases, fails to support the paper’s conclusion that it outperforms the baselines. However,17

we achieve a similar drop-off in accuracy in percentage points over different model settings. We suspect that the18

vagueness in the accuracy metric leads to the absolute difference of 14.7% despite the paper being reproducible. We19

further improve the reproduced figures by increasing model complexity. The Mapper module’s accuracy could not be20

tested.21

What was easy22

Model architecture and training details were enough to easily reproduce.23

What was difficult24

We lost significant time in generating all synthetic datasets, especially the dataset for the Mapper module that required25

us to set up the Habitat Simulator and API [4]. The ImageExtractor API was broken, and workarounds had to be26

implemented. The final dataset approached 1.6 TB in size, and we could not arrange enough computational resources27

and expertise to handle the GPU training. Furthermore, the description of the action prediction accuracy metric used is28

vague and could be one of the possible reasons behind the non-reproducibility of the results.29

Communication with original authors30

The authors of the paper could not be reached even after multiple attempts.31

Submitted to ML Reproducibility Challenge 2021. Do not distribute.



1 Introduction32

In the original paper [1], the problem of spatial path planning in a differentiable way is considered. The authors show33

that their proposed method of using Spatial Planning Transformers outperforms prior data-driven models that propagate34

information locally via convolutional structure in an iterative manner. Their proposed model also allows seamless35

generalisation to out-of-distribution maps and goals and simultaneously leverages differentiable structures to learn36

mapping without a ground truth map.37

2 Scope of reproducibility38

We seek to investigate the following major claims made in the paper:39

• Claim 1:40

Their proposed SPT planner module provides a definite improvement of 7-19% over state-of-the-art CNN41

based planning baselines in average action prediction accuracy.42

• Claim 2:43

Their proposed SPT planner module maintains stability in accuracy as complexity increases and the number of44

obstacles increases.45

• Claim 3:46

Their proposed SPT module outperforms classical mapping and planning baselines under an end-to-end47

mapping and planning setting.48

3 Methodology49

The entire codebase is written from scratch for the SPT modules and the synthetic dataset generation in Python 3.6.50

Pytorch Lightning was used for the SPT modules. For dataset generation, similar parameters were used, as mentioned51

in the paper, to the maximum extent. The vagueness of parameters in terms of obstacle size allowed us to test out a52

range of obstacle sizes and the accuracy of the model on them. All runs were logged on the WandB platform. The53

training was done using NVIDIA Tesla T4 and P10 GPUs on Google Colaboratory Pro.54

3.1 Model descriptions55

Our implementation of the model follows the description provided in the paper taking liberties where details are vague.56

The input map and the goal map are stacked vertically and then fed into a CNN Encoder. The Encoder has 2 fully57

connected layers with a kernel size=1 and ReLU activation function. The first layer increases the number of channels58

from 2 to 64, while the second layer maintains the number of channels and outputs a 64 channel encoded input.59

As described in the original paper, Positional encoding is added to the encoded input, which is then reshaped and fed60

into the Encoder part. Their are five encoder layers, each with nheads = 8, dmodel = 512 and dropout = 0.1. This61

output is fed into a Decoder made of a fully connected layer. The Decoder gives one output for each cell. The output is62

then reshaped to regain its original map shape.63

We carry further investigations on how the number of layers in the CNN Encoder, nheads and layers in the Encoder64

and embedding size affect the SPT Planner Module. Improvements were gained and are detailed in the Results section.65

3.2 Datasets66

3.2.1 The SPT Planner Module67

We create 3 datasets for the SPT planner module, each with a map size = {15 30 50} and up to 5 randomly generated68

obstacles. The position of the goal is randomly chosen from a free-space cell. 2 different datasets are generated at map69

size = 15 with up to 10 and 15 obstacles, respectively. Each of these datasets has 100,000 maps for training, 5,000 for70

validation and 5,000 for testing.71

2



Figure 1: Code-flow diagram for our implementation.

3.2.2 The End-to-End Mapper and Planner Module72

We further used the Habitat Simulator, and Habitat API [4] to generate 36000 maps for training the end-to-end model.73

Seventy-two scenes from the Gibson dataset [6] from Stanford is loaded onto the simulator, and 500 maps with a grid74

cell dimension of 0.5 meters and map size of 15, are rendered from each scene. Ground truths for all datasets were75

generated using the classical Dijkstra’s algorithm. This dataset is over 1.6 TB and made it difficult to hand-engineer76

training on limited GPU resources.77

All datasets generated and used have been released for open-source and can be found on the project’s github page.78

3.3 Hyperparameters79

An extensive hyperparameter grid search led us back to the same hyperparameters cited in the paper. The model is80

trained for 40 epochs with a learning rate decay of 0.9 per epoch, a starting learning rate of 1.0 and a batch size of 20.81

The model is separately trained for each of the map distributions using mean squared error loss and stochastic gradient82

descent [2].83

4 Reproducibility Results84

We reproduced the accuracy for the SPT planner module to within 14.7% of reported value, which, while outperforming85

the baselines [3] [5] in select cases, fails to support the paper’s conclusion that it outperforms the baselines. However,86

we achieve a similar drop-off in accuracy in percentage points over different model settings. We suspect that the87

3

https://anonymous.4open.science/r/Differentiable-Spatial-Planning-using-Transformers-7107


Navigation Manipulation Overall

Method M=15 M=30 M=50 M=18 M=36

VIN (Paper) 86.19 83.62 80.84 75.06 74.27 80.00
GPPN (Paper) 97.10 96.17 91.97 89.06 87.23 92.31
SPT (Paper) 99.07 99.56 99.42 99.24 99.78 99.41
SPT (Ours) 84.40 84.83 * 86.49 * 84.74

Table 1: Reproducibility Results.

vagueness in the accuracy metric leads to the absolute difference of 14.7% despite the paper being reproducible. The88

Mapper module’s accuracy could not be tested.89

Figure 2: Accuracy : 86.71 Figure 3: Accuracy : 83.95

Figure 4: Sample output for Navigation Task (left) and Manipulation Task (right) visualised.
∗ Could not be trained due to lack of enough computational resources.

5 Further Investigation Results and Discussion90

5.0.1 The CNN Encoder91

The CNN Encoder takes the map and the goal location as the input and encodes the information into an embedding of92

size dmodel. This is achieved by a multi-layer, fully connected convolutional neural network. The kernel size for the93

convolutions is fixed at 1 to have the Encoder generate the same embedding for all input map cells. The CNN Encoder94

4



M=15

Accuracy Validation Loss Accuracy Validation Loss

layers = 2 84.40 1.537 d_model = 32 84.76 1.201
layers = 4 84.88 1.166 d_model = 64 84.40 1.537
layers = 8 84.90 1.033 d_model = 128 85.00 0.79

Table 2: Investigation Results on CNN Encoder parameters.

M=15

Accuracy Validation Loss

obstacles = N (0,5) 84.40 1.537
obstacles = N (0,10) 84.31 2.327
obstacles = N (0,15) 84.67 1.614

Table 3: Investigation Results on increasing obstacle complexity and number.

plays a vital role in distilling the input map and representing it in the best way possible for the Transformer to act on.95

Table 2 lists all investigation results on the CNN Encoder parameters.96

Our experiments reveal that while embedding sizes in a reasonable domain have similar accuracies, a higher embedding97

size provides more expressive power to the model and provides the best accuracy beating the original SPT parameters.98

We also see an increase in accuracy with increasing CNN Encoder layers. layers = 8 achieves the best accuracy as well99

as the best validation loss which shows the increase in expressive power of the encodings.100

5.0.2 Obstacle Complexity101

Obstacle complexity refers to the distribution of obstacles in the input map. The paper only cites results on input maps102

with a normal distribution of up to 5 obstacles. We found it crucial to test the SPT’s spatial awareness and learning103

capabilities as this complexity is heightened. For this purpose, we created two new datasets with a higher distribution of104

obstacles. Table 3 lists our investigation results on these datasets.105

We achieved the best accuracy on the distribution with up to 15 obstacles. However, the best validation loss is achieved106

with the lowest obstacles setting. This leads us to conclude that only looking at accuracy figures might be misleading107

because an increase in obstacles decreases the number of free spaces and consequently the number of predictions the108

SPT model has to generate.109

5.0.3 The Transformer Encoder110

The Transformer Encoder takes input that has been encoded into higher embedding space and has been appended111

with positional encoding. It is followed by a Decoder, a fully connected layer that decodes the embeddings finally112

given out by the Encoder. The number of multi-attention heads and encoder layers affects the expressive power of the113

Transformer. We conduct investigations by changing these parameters. Table 4 lists these results.114

The best accuracy is achieved with nheads = 4 and nlayers = 8. A severe drop in accuracy is found with nlayers =115

12. This leads us to conclude that while increasing nlayers increases learning capabilities of the SPT Planner module,116

excessive parameters might not be learnt properly from our dataset of size 100,000. The same reason suffices for an117

increase in nheads.118

5.0.4 The Best Model119

The prior discussion points out that increasing the expressive power of the CNN Encoder and increasing the complexity120

of the Transformer Encoder helps increase the accuracy of the model. We combine all these changes to train our best121

model.122

The parameters used are: nlayers = 8, dmodel = 128, nheads = 4 and nlayers = 8. The accuracy achieved is 85.14 with a123

validation loss of 0.651. These figures beat the reproduced SPT Planner Module by 0.87% and 57.64% respectively.124

5



Figure 5: Accuracy : 83.49 Figure 6: Accuracy : 78.37

Figure 7: Sample output for lower obstacle distribution(left) and higher obstacle distribution (right) visualised.

M=15

Accuracy Validation Loss Accuracy Validation Loss

n_heads = 4 84.65 1.471 n_layers = 5 84.40 1.537
n_heads = 8 84.40 1.537 n_layers = 8 84.96 1.009
n_heads = 16 84.24 1.762 n_layers = 12 52.33 40.469

Table 4: Investigation Results on Transformer Encoder parameters.

6 Discussion125

6.1 What was easy126

The easiest part of the reproduction effort was getting the Spatial Planning Transformer model up and ready from127

scratch. The authors’ instructions regarding the layer parameters and encoder-decoder structure were abundantly clear.128

Furthermore, although initialisation information was missing, the model was robust enough to learn under various129

settings.130

6.2 What was difficult131

We lost significant time generating all synthetic datasets, especially the dataset for the mapper module that required us132

to set up the Habitat Simulator and API. The ImageExtractor API was broken, and workarounds had to be implemented.133

6



The final dataset approached 1.6 TB in size, and we could not arrange enough compute resources and expertise to134

handle the GPU training. The SPT Planner Module could not be trained on the M=50 dataset following the same issue.135

6.3 Reproducibility of results of SPT Planner Module136

Our results lag those mentioned in the paper by a margin of over 14.7%, which makes us believe that the paper is not137

reproducible in its exact form. However, we achieve a similar drop-off in accuracy in percentage points over different138

model settings. We suspect that the paper is indeed reproducible, but the datasets’ vagueness and accuracy metric139

lead to the exaggerated absolute difference. The lack of openly available standard datasets in the domain presents a140

challenge. Different papers have to report results on datasets of their choice using a metric they design themselves.141

The original paper’s authors also did this with their synthetic datasets and a novel action prediction accuracy metric.142

Furthermore, these datasets are not open-sourced, and generation parameters in the paper are vague in terms of obstacle143

complexity and size. Our reproduction would have led to higher accuracies if the authors had provided the accuracy144

metric code and datasets.145

Our experiments with maps of increasing obstacle complexity result in a slight increase in validation loss. This points146

to a plausible explanation for non-reproducibility. The non-uniformity of dataset-generation guidelines could have147

resulted in obstacles of greater size in our synthetic dataset.148

6.4 Stability of the SPT Planner Module149

Our results show comprehensively that the SPT Planner Module is stable concerning average action prediction accuracy150

for slight changes in obstacle complexity and model parameters ranging from CNN Encoder to the Transformer Encoder.151

This lays the ground for further research that can apply SPTs to mazes and increasingly complex scenes without152

considerable loss of accuracy.153

6.5 Communication with original authors154

The authors of the paper could not be reached even after multiple attempts.155

7 Conclusion156

We have tried to reproduce the paper to the best of our abilities, following the textual descriptions for source code157

and dataset generation to the maximum extent. We were able to improve the reproduced accuracy and loss of the158

SPT Planner Module by 0.87% and 57.64%, respectively, by increasing the CNN Encoder depth, embedding size and159

Transformer Encoder complexity. This provides ground for further research into increased complexities models that160

might draw deeper insights and plan more accurately.161

We could not train the End-to-End Mapper and Planner Module due to a paucity of computational resources. The results162

that could not be reproduced are so prohibitively expensive that only very few can afford it, hence it would be better for163

the community if subsequent authors to this topic make their code and dataset public.164

References165

[1] Devendra Singh Chaplot, Deepak Pathak, and Jitendra Malik. Differentiable spatial planning using transformers.166

In International Conference on Machine Learning, pages 1484–1495. PMLR, 2021.167

[2] Nikhil Ketkar. Stochastic gradient descent. In Deep learning with Python, pages 113–132. Springer, 2017.168

[3] Lisa Lee, Emilio Parisotto, Devendra Singh Chaplot, Eric Xing, and Ruslan Salakhutdinov. Gated path planning169

networks. In International Conference on Machine Learning, pages 2947–2955. PMLR, 2018.170

[4] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans, Bhavana Jain, Julian Straub,171

Jia Liu, Vladlen Koltun, Jitendra Malik, et al. Habitat: A platform for embodied ai research. In Proceedings of the172

IEEE/CVF International Conference on Computer Vision, pages 9339–9347, 2019.173

[5] Aviv Tamar, Yi Wu, Garrett Thomas, Sergey Levine, and Pieter Abbeel. Value iteration networks. arXiv preprint174

arXiv:1602.02867, 2016.175

7



[6] Fei Xia, Amir R Zamir, Zhiyang He, Alexander Sax, Jitendra Malik, and Silvio Savarese. Gibson env: Real-176

world perception for embodied agents. In Proceedings of the IEEE Conference on Computer Vision and Pattern177

Recognition, pages 9068–9079, 2018.178

8


	Introduction
	Scope of reproducibility
	Methodology
	Model descriptions
	Datasets
	The SPT Planner Module
	The End-to-End Mapper and Planner Module

	Hyperparameters

	Reproducibility Results
	Further Investigation Results and Discussion
	The CNN Encoder
	Obstacle Complexity
	The Transformer Encoder
	The Best Model


	Discussion
	What was easy
	What was difficult
	Reproducibility of results of SPT Planner Module
	Stability of the SPT Planner Module
	Communication with original authors

	Conclusion

