
Probabilistic Spatial Transformer Networks

Pola Schwöbel1 Frederik Warburg1 Martin Jørgensen2 Kristoffer H. Madsen1, 3 Søren Hauberg1

1 Section for Cognitive Systems, DTU Compute, Technical University of Denmark, Copenhagen, Denmark
2Machine Learning Research Group, Department of Engineering Science, University of Oxford, Oxford, UK

3Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research,
Copenhagen University Hospital Hvidovre, Hvidovre, Denmark

Abstract

Spatial Transformer Networks (STNs) estimate im-
age transformations that can improve downstream
tasks by ‘zooming in’ on relevant regions in an im-
age. However, STNs are hard to train and sensitive
to mis-predictions of transformations. To circum-
vent these limitations, we propose a probabilistic
extension that estimates a stochastic transforma-
tion rather than a deterministic one. Marginalizing
transformations allows us to consider each image
at multiple poses, which makes the localization
task easier and the training more robust. As an
additional benefit, the stochastic transformations
act as a localized, learned data augmentation that
improves the downstream tasks. We show across
standard imaging benchmarks and on a challenging
real-world dataset that these two properties lead
to improved classification performance, robustness
and model calibration. We further demonstrate that
the approach generalizes to non-visual domains by
improving model performance on time-series data.

1 INTRODUCTION

The Spatial Transformer Network (STN) [Jaderberg et al.,
2015] predicts a transformation on input data in order to
simplify a downstream task. For example, a neural network
might benefit from e.g. ‘zooming in’ on relevant parts of
an image, remove unwarranted image rotations, or time-
normalize sequence data before making predictions. In prin-
ciple, this can improve robustness, interpretability and ef-
ficiency of the model. However, in practice, the situation
is not as ideal. Both at training and test time, the STN is
sensitive to small mis-predictions of transformations. For
example, if the STN zooms in on the wrong part of an image,
then the signal is lost for the downstream task, e.g. see crop
A and C in Fig. 1. The empirical impact is that STNs are

S
TN

P
-S
TN

A

B

C

Negative log-likelihood

A

B

C

A

B

C

A

B

C

Figure 1: The Probabilistic Spatial Transformer Network
(P-STN) marginalizes over a distribution of possible input
transformations. By ‘looking in multiple places’ we hope to
stabilize the brittle nature of the regular spatial transformer:
The P-STN loss landscape is significantly more smooth and
with fewer local minima compared to the STN.

difficult to train and often do not live up to their promise.

From a probabilistic perspective, this sensitivity has an ob-
vious solution: we should estimate the posterior over the
applied transformation and marginalize accordingly. This
amounts to ‘trying many different transformations’, and
should improve robustness. It is exactly this approach we
investigate.

STNs consist of two parts. A localization network performs
the transformation task, i.e. it estimates the transformation
parameters θ for a given image I and applies the corre-
sponding transformation Tθ(I). A standard neural network
performs the downstream task on the transformed image, i.e.
computing p(y|Tθ(I)). Since we are concerned with classi-

Accepted for the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022).

mailto:<posc@dtu.dk>?Subject=Your UAI 2022 paper

fication tasks, we will refer to the latter as the classifier, but
note that the approach generalizes to other tasks.

In our probabilistic STN (P-STN), we estimate a distribu-
tion over transformations that we marginalize: p(y|I) =∫
p(y|Tθ(I))dθ. We approximate this intractable integral

via Monte Carlo, i.e. we sample transformations. These
transformation samples produce different transformed ver-
sions of the input image, {T s

θ (I)}s=1...S . The classifier
makes predictions on all samples, and we aggregate the
predictions. Figure 2 shows the model architecture.

We hypothesize that marginalizing image transformation
has benefits for both parts of the model. For the localization
network, our model gets to ‘try many different transfor-
mations’ through random sampling. This should improve
the localization. Secondly, the classifier now gets presented
with different transformed versions of the input image
through Monte Carlo samples {T s

θ (I)}s=1...S . Interestingly,
this corresponds to a type of data augmentation, which
should improve classification.

We verify these hypotheses by making the following contri-
butions:

1. We develop the Probabilistic Spatial Transformer; a hi-
erarchical Bayesian model over image transformations.

2. We perform variational inference to fit the transforma-
tion model as well as downstream model end-to-end,
using only label information.

3. We experimentally demonstrate that our model
achieves better localization, increased classification
accuracy (resulting from learned per-image data
augmentation) and improved calibration.

2 RELATED WORK

Spatial transformer networks apply a spatial transforma-
tion to the input data as part of an end-to-end trained model
[Jaderberg et al., 2015]. The transformation parameters
are estimated from each input separately through a neural
network. Most commonly, STNs implement simple affine
transformations, such that the network can learn to zoom
in on relevant parts of an image before solving the task
at hand. STNs have shown themselves to be useful for
both generative and discriminative tasks, and have seen
applications to different data modalities [Jaderberg et al.,
2015, Detlefsen and Hauberg, 2019, Detlefsen et al., 2018,
Shapira Weber et al., 2019, Sønderby et al., 2015, Lin and
Lucey, 2016, Kanazawa et al., 2016]. We propose a proba-
bilistic extension of this idea, replacing the usual likelihood
maximization with marginalization over transformations.

Bayesian deep learning aims to solve probabilistic compu-
tations in deep neural networks. Priors are put on weights
and marginalized at training and test time, often yielding

useful uncertainties in the posterior predictive. The required
computations are in general intractable, and approaches
differ mainly in the type of approximation to the weight pos-
terior. Gal and Ghahramani [2016] propose to view dropout
as a Bernoulli approximation to the weight posterior (i.e.
randomly switching each weight on or off). The Laplace ap-
proximation [MacKay, 1992, Daxberger et al., 2021] places
a Gaussian posterior over a trained neural network’s weights.
Another generally successful way to obtain predictive un-
certainties is to simply train an ensemble of models. Orig-
inally proposed as an alternative to Bayesian DL [Laksh-
minarayanan et al., 2017], the approach can be interpreted
in the Bayesian framework by interpreting the weights of
the trained ensemble members as samples from a weight
posterior [Gustafsson et al., 2020]. Similar to our method,
Blundell et al. [2015] choose a variational approach with
a simple Gaussian mean field posterior over weights. Our
approach differs from standard Bayesian DL in that we
are not reasoning about distributions over neural network
weights p(w), but instead a subnetwork’s (i.e. the local-
izer’s) outputs p(θ). Drawing from the posterior over image
transformations, we effectively recover data augmentation.

Data augmentation (DA) is a useful way to increase the
amount of available data [LeCun et al., 1995, Krizhevsky
et al., 2012]. DA requires prior knowledge about the struc-
ture of the data: the target y is assumed to be invariant to
certain transformations of the observation I . Invariance as-
sumptions are usually straight forward for natural images.
Thus, DA is common for image data, where the transfor-
mation family is often chosen to be rotations, scalings, and
similar [Goodfellow et al., 2009, Baird, 1992, Simard et al.,
2003, Krizhevsky et al., 2012, Loosli et al., 2007]. The gen-
eral trend is that, beyond ‘intuitive’ data such as images,
gathering an invariance prior is difficult, and DA is often
hard to realize through manual tuning.

Learned data augmentation provides a more principled
approach to artificially extending datasets. Hauberg et al.
[2016] estimate an augmentation scheme from the training
data via pre-aligning images in an unsupervised manner.
The approach allows for significantly more complex trans-
formations than the usual affine family, but the unsupervised
nature and the implied two-step training process render the
approach suboptimal. Similarly, Cubuk et al. [2019, 2020]
use reinforcement learning and grid search to learn data
augmentation schemes, but rely on validation data rather
than an end-to-end formulation.

Learning data augmentation end-to-end requires a loss func-
tion suitable for model selection, as we are effectively trying
to learn an inductive bias. Based on this realization, Van der
Wilk et al. [2018] learn DA end-to-end in Gaussian pro-
cesses (GPs) via the marginal likelihood, a suitable loss
for model selection and thus invariance learning [MacKay,
2003]. The marginal likelihood is hard to compute for NNs,
so Schwöbel et al. [2022] extend this idea to NNs by consid-

Figure 2: The P-STN pipeline. From the observed image I , a distribution of transformations is estimated. Samples from this
distribution are applied to the observed image to produce augmented samples, which are fed to a classifier that averages
across samples. In the deterministic STN case, the localizer only computes one transformation θ(I), which can be thought of
as the maximum likelihood solution. Instead of the multiple transformation samples, we obtain a single Tθ(I) in this case.

ering a deep kernel model, i.e. a neural network with a GP in
the last layer. Benton et al. [2020] instead use the standard,
maximum likelihood loss and explicitly regularize towards
non-zero augmentations. Our model differs from existing
data augmentation approaches — learned and non-learned
— in that we estimate local, i.e. per-image transformations
instead of a global augmentation scheme.

3 BACKGROUND

The STN localiser module estimates a transformation θ(x)
that transforms a coordinate grid and interpolates an image
accordingly. The classifier module takes the transformed im-
age and computes p(y|Tθ(x)). Both the localizer and classi-
fier are neural networks. The STN can be trained end-to-end
with only label information as long as the image transfor-
mations are parameterized in a differentiable manner.

Affine transformations are a simple class of transforma-
tions that can be differentiably parameterized. We limit
ourselves to the subset of affine transformations contain-
ing rotation, isotropic scaling and translation in x and y. In
two dimensions (and the corresponding three-dimensional
homogeneous coordinates), we thus learn θ = (r, s, tx, ty)
which parameterizes the affine matrix

Aθ =

s · cos r −s · sin r tx
s · sin r s · cos r ty

0 0 1

 ∈ R3×3, s > 0. (1)

Since det(Aθ) = s2, the constraint s > 0 ensures invertibil-
ity and can be implemented as seen in Detlefsen et al. [2018].
In practice, the STN estimates well-behaved, non-collapsing
transformations without implementing the constraint explic-
itly. Tθ(I) is applied by transforming a grid of the target
image size by Aθ and interpolating the source image at the
resulting coordinates (see Jaderberg et al. [2015] for details).

Diffeomorphic transformations (i.e. transformations that
are differentiable, invertible and possess a differentiable in-
verse) are more general than affine transformations, and are
not limited to the spatial domain. Freifeld et al. [2017] con-
struct diffeomorphisms from continuous piecewise-affine
velocity fields as follows. The transformation domain Ω is

divided into subsets and an affine matrix is defined on each
cell c of such a tessellation. Each affine matrix Aθc induces
a vector field mapping each point x ∈ c to a new position
vθc : x 7→ Aθcx. These velocity fields are then integrated
to form a trajectory for each image point x

ϕθ(x; 1) = x+

∫ 1

0

vθ(ϕ(x; τ))dτ.

Given boundary and invertibility constraints [Freifeld et al.,
2017], such a collection of affine matrices {Aθc}c⊂Ω defines
a diffeomorphic transformation T θ : x 7→ ϕθ(x, 1).

The libcpab library [Detlefsen, 2018] provides an efficient
implementation for this approach, specifically optimized
for use in a deep learning context where fast gradient
evaluations are crucial. The author successfully employs
CPAB-transformations within a Spatial Transformer Net-
work [Detlefsen et al., 2018].

4 PROBABILISTIC SPATIAL
TRANSFORMER NETWORK

The P-STN is a probabilistic extension of the STN, where
we replace the deterministic transformation θ(I) with a pos-
terior over transformations p(θ|I). Figure 2 illustrates the
proposed pipeline. We assume observed data of the form
D = {yi, Ii}Ni=1, where y is the target variable (e.g. class
label), and I are observations of the covariates. For presen-
tation purposes, we will consider the latter to be images, but
the approach applies to any spatio-temporal data.

4.1 THE MODEL

Recall that STNs are trained end-to-end for the downstream
task using only label information. Thus, while we observe y,
θ is a latent variable. We model it to be governed by a second
latent variable λ. λ is a precision parameter, effectively stop-
ping the localization distribution (i.e. the amount of ‘data
augmentation’ we introduce) from collapsing. The neces-
sity for non-collapsing augmentation is discussed in Benton
et al. [2020], Van der Wilk et al. [2018] and Schwöbel et al.
[2022].

y θ

λI

N

Figure 3: A graphical representation of the model structure.
Grey nodes are observables and white are latents.

We wish to infer the latent variables in a Bayesian manner.
This entails computing the (log-)marginal likelihood of the
observed

log p(I, y) = log

∫∫
p(I, y, θ, λ)dθdλ. (2)

We let the joint distribution factorize as (see Fig. 3)

p(y, I, θ, λ) = p(y|I, θ, λ)p(I, θ, λ) (3)
= p(y|I, θ)p(θ|λ, I)p(λ)p(I). (4)

Notice p(I) is unaffected by model parameters λ and θ, and
in this sense can be specified without affecting the model.
The distribution over θ depends on observed covariates in
the following way

p(θ|λ, I) = N (θ|µ(I), 1/λ), (5)

where µ(I) is a function parametrised by a neural network,
i.e. µ(I) := µΦ(I) for model parameters Φ. The prior over
λ is a Gamma distribution, i.e.

p(λi) = Γ(α0, β0). (6)

We note here that there is one λi associated to
each observation, and they are assumed to factorize:
p(λ) =

∏N
i=1 p(λi). This choice of conjugate priors

for variance estimation is similar to [Stirn and Knowles,
2020, Takahashi et al., 2018, Detlefsen et al., 2019]. Finally,
we assume that, conditional on I and θ, we have marginal
independence in y, i.e. p(y|I, θ) =

∏N
i=1 p(yi|Ii, θi).

4.2 VARIATIONAL APPROXIMATION

The integral equation (2) for the marginal likelihood is in-
tractable and, thus, the posterior p(λ, θ|I, y) is too. We de-
rive a lower bound on the log marginal likelihood to utilize
variational inference [Blei et al., 2017]. We choose the vari-
ational approximation q of the posterior p(θ, λ|I, y) as

q(θ, λ) := p(θ|λ, I)q(λ). (7)

Here p(θ|λ, I) is given as before and q(λ) :=∏N
i=1 Γ (αi, β(Ii)). In our approximation, β is a neural net-

work: hence, we use amortized inference in a similar way to
the VAE model [Kingma and Welling, 2014].

We derive our lower bound using Jensen’s inequality

log p(y, I) = log

∫∫
p(y, I, θ, λ)dθdλ (8)

≥
∫∫

log

(
p(y, I, θ, λ)

q(θ, λ)

)
q(θ, λ)dθdλ (9)

=

∫∫
log

(
p(y|I, θ)p(λ)p(I)

q(λ)

)
p(θ|λ, I)q(λ)dθdλ

= Eq(θ,λ) log p(y|I, θ)︸ ︷︷ ︸
classification loss

+ log p(I)− KL(q(λ)∥p(λ)) .

(10)

Thus, our evidence lower bound (ELBO) objective func-
tion (10), consists of two terms: a classification loss and a
KL-term controlling the distance of the approximate poste-
rior to the prior. During inference, we can disregard log p(I)
as it does not depend on parameters of interest.

4.3 INFERENCE

The choice of variational posterior implies the following for
the classification loss

Eq(θ,λ) log p(y|I, θ) (11)

=

∫∫
log p(y|I, θ)q(θ, λ)dθdλ (12)

=

∫∫
log p(y|I, θ)p(θ|λ, I)q(λ)dθdλ (13)

=

∫
log p(y|I, θ)

∫
N (θ|µ(I), λ)Γ(λ|α, β(I))dλdθ

=

∫
log p(y|I, θ)t2α(θ|µ(I)), β(I)

α)dθ. (14)

Here t denotes a scaled and location-shifted Student’s t-
distribution with mean µ(I), scaling β, and α degrees of
freedom. For clarity, the marginalized q(θ) is t-distributed.
Here p(y|I, θ) is what previously was referred to as
p(y|Tθ(I)), i.e. the classifier conditioned the transformed I .

We approximate Eq. 14 using an unbiased estimate

Eq(θ,λ) log p(yi|Ii, θi) ≈
1

S

S∑
s=1

log p(yi|Ii, θi,s), (15)

with θi,s ∼ t2αi
(·|µ(Ii)), β(Ii)

αi
) (16)

and backpropagate through neural networks µ(I) and β(I)
with the reparametrization trick. In all experiments αi=1.

Combining terms, the final ELBO we maximize becomes

Lp,q(I, y) ≈
N∑
i=1

1

S

S∑
s=1

log p(yi|Ii, θi,s)

− KL (q(λ)||p(λ)) + const,

(17)

which is readily optimized using any gradient-based method.
The KL-term is analytically tractable and differentiable be-
tween two gamma distributions.

In practice, following Higgins et al. [2016] we introduce
a weight parameter w to the KL-term. This requires us to
tune w but in turn makes the model robust to the choice
of prior. We perform a grid-search on a validation set to
find the optimal w. Alternatively, we could have done a grid
search over β0; instead we chose α0 = β0 = 1 for all ex-
periments. Similar to Kingma and Welling [2014], we often
find it sufficient to draw only S = 1 samples during train-
ing. Note that our model naturally implies marginalization,
and correspondingly data augmentation, at test-time as well
as the usual training time. At test time, we draw S = 10
transformation samples.

5 EXPERIMENTS & RESULTS

Our model consists of two parts, the classifier p(y|Tθ(I))
and the probabilistic localizer estimating the distribution
over transformations. In the following experiments, we
aim to disentangle our model’s benefits for localization
(Sec. 5.1), classification (Sec. 5.2) and calibration (Sec. 5.3).

The probabilistic localizer estimates q(θ) =
t2(θ|µ(I), β(I)), i.e. in practice we implement a mean and
a variance network, µ(I) and β(I), respectively (see Fig. 2
for the architecture). We employ a small convolutional
network (Conv2d, Maxpool2d, ReLU, Conv2d,
Maxpool2d, ReLU) followed by two fully connected
layers for both the localizer and classifier unless stated
otherwise. The P-STN localizer has two heads; one for the
mean and one for the variance. The number of parameters
is stated in each experimental subsection. Unless stated
otherwise, we keep the number of parameters constant, i.e.
when adding a localization network we remove the extra
parameters from the classifier for fair comparison.

Our model is implemented in PyTorch and experi-
ments are run on 12 GB Nvidia Titan X GPUs.
The code is available at https://github.com/
FrederikWarburg/pSTN-baselines.

5.1 MARGINALIZING TRANSFORMATIONS
IMPROVES LOCALIZATION ACCURACY

The appeal of STN models is that they are trained end-to-
end, i.e. based only on labels for the downstream task, and
not the transformations. This same property, however, is
what makes the STN hard to fit. The only signal we obtain is
through the supervised downstream task (i.e. the classifica-
tion labels) and thus gradient information is sparse. We will
now investigate whether estimating a posterior over trans-
formations and marginalizing, i.e. ‘getting to try multiple
transformations’, simplifies the task as suggested by Fig. 1.

Figure 4: Rotated MNIST experiment. Left panel: Ground-
truth transformation (rotation angles in radians) against re-
covered transformations (mean). Top right: Example images
from the data set and samples from the P-STN localizer. The
localizer learns to pose-normalize. Bottom right: Outputs of
the variance network. When the transformation recovery is
poor (the error ε is above the median, in orange) the vari-
ances are slightly higher than when the localization works
well (blue).

In order to disentangle the localization from the classifica-
tion task, we construct the following experiments. We first
train a CNN on a pose-normalized dataset (regular MNIST
and Fashion MNIST). We then generate a new dataset by
randomly sampling transformations θtrue and applying them
to the MNIST images. Saving these transformations pro-
vides us with ground truth. We freeze the CNN weights and
train STN and P-STN with this fixed classifier, effectively
learning to recover and ‘undo’ the true transformations.

5.1.1 Rotated MNIST

From this data-generating process, we obtain a rotated ver-
sion of the MNIST dataset (i.e. regular MNIST with ground-
truth transformations given by rotation angles, θtrue(I) =
rtrue(I)). See Fig. 4, top right panel for example data.

Our CNN classifier (28k weights) obtains 99.4% test ac-
curacy on MNIST and 41.2% on rotated MNIST (frozen
weights, no re-training). The STN and P-STN (S=10 train-
ing samples, w=3 · 10−5, same CNN classifier as before
+72k params in the localizer) both learn to pose-normalize,
i.e. to recover these transformations to a satisfactory degree.
When training the localizers only (classifier weights remain
frozen as described above), the STN test acc. is 76.13%, and
82.98% for the P-STN. We compute the expected average
transformation error on the N = 10k rotated MNIST test
images as

ε =
1

N

N∑
i=1

∥θtrue(Ii)− µ(Ii)∥ mod π. (18)

https://github.com/FrederikWarburg/pSTN-baselines
https://github.com/FrederikWarburg/pSTN-baselines

Figure 6: The P-STN learns to localize traffic signs in the challenging MTSD
dataset. At test time, we sample 10 transformations as shown with the various
bounding boxes overlaid the images. These learned variations improve the final
classification.

Acc. ↑ NLL ↓
CNN 76.0 0.49
STN 90.6 0.31
P-STN 92.2 0.29

Table 1: Accuracy
(Acc.) and negative
log-likelihood (NLL) for
CNN, STN and P-STN.

We get ε = 0.76 for the STN and ε = 0.59 for the P-STN.
The P-STN outperforms the STN, i.e. modeling uncertainty
in the transformations helps in the localization task.

Uncertainty. The bottom right panel of Fig. 4 shows a
histogram of β(I), i.e. the localizer variance (or, correspond-
ingly, the magnitude of augmentation) per image. In orange,
we plot variances for images where pose-normalization is
difficult (the transformation error ε is larger than the me-
dian). In blue, we plot variances for images that are correctly
pose-normalized (transformation error ε smaller than the
median). The poorly localized images are, on average, as-
signed 17% larger variances β(I). The localizer uncertainty
and thus the amount of data augmentation applied is some-
what meaningful, corresponding to the difficulty of the task.

5.1.2 Random placement FashionMNIST

We repeat a similar experiment on the slightly more chal-
lenging FashionMNIST dataset [Xiao et al., 2017] . The
CNN baseline accuracy is 90.63% (same model as above
with 28k parameters). We then randomly sample an x and y
coordinate and place the FashionMNIST accordingly on a
black background, after downscaling it by 50%. No rotation
is applied, i.e. θtrue = [0, 0.5, txtrue, t

y
true].

Figure 7: Random Placement Fashion MNIST. Input images
(left) and transformed samples Tθs(I) as learned by the P-
STN. The P-STN learns to correctly pose-normalize and
zoom into the relevant part of the image. The samples look
like plausible candidates for a data augmentation scheme.
We will explore this in Sec. 5.2.

Like in the previous experiment, both localizers success-
fully recover θtrue, with the P-STN (S = 10 training samples,
w = 3e−05, same classifier as before +193k weights in the
localizer) doing slightly better than its deterministic counter-
part: test accuracies are 84.99% and 84.41%, respectively.
Inspecting the transformation posterior and the resulting
samples Tθs(Ii), we find that these look visually pleasing,
and, as hypothesized, might be promising candidates for a
data augmentation scheme. We will explore this in Sec. 5.2.

5.1.3 Mapillary street signs

Detection and classification of objects in images have many
applications, e.g. for autonomous vehicles, detecting traffic
signs is crucial. We compare a top-performing classifier, an
STN and our P-STN on the challenging Mapillary Traffic
Sign Dataset (MTSD) [Ertler et al., 2019].

To focus this comparison, we select images that contain
only one traffic sign. We obtain this subset by selecting all
bounding boxes that do not intersect with other bounding
boxes plus a margin of 150 px to each side. We further select
the ten most common classes from this subset. This gives us
a training set of 4698 images and a test set of 500 images.
Figure 6 shows example images from the chosen subset.

Our classifier is a ResNet18 pre-trained on ImageNet, where
we replace the last fully connected layer. We use the same
ResNet for the localizers in the STN and P-STN, where we
similarly replace the last layer. As before, we wish to study
the behavior of the localizers. Therefore, we again start by
training a classifier on the ground-truth bounding boxes. We
then initialize the classifier module of the STN and P-STN
with this pre-trained classifier and freeze the weights of the
classifier. We train the localizers of the STN and P-STN for
60 epochs with learning rate 10−4 and kl weight w = 10−7.
Figure 6 shows that the P-STN learns to localize the traffic
signs. At test time, we sample 10 transformations illustrated
by the multiple overlaying bounding boxes.

Table 1 shows that both the STN and P-STN clearly outper-
form the baseline classifier when trained on the full images.
Even though the STN and P-STN have exactly the same
classifier, the P-STN achieves better performance because
of the ensemble of classified transformations.

MNIST30 MNIST100 MNIST1000 MNIST3000 MNIST10000

CNN 70.12± 2.46 87.29± 0.58 95.80± 0.33 97.48 ± 0.21 97.82 ± 0.34 -
affine STN 69.26± 4.53 82.16± 2.30 92.05± 0.58 94.71± 0.22 96.96± 0.20
affine P-STN 81.00 ± 3.92 92.70 ± 0.74 96.62 ± 0.58 97.33 ± 0.17 97.63 ± 0.23

optimal w 0.001 0.0003 0.0001 0.00003 0.00001

Table 2: The performance of a CNN, STN and P-STN on differently sized MNIST datasets. Bold numbers indicate that a
model is significantly better than the runner up under a two sample t-test at p = 0.05.

MNIST
30

MNIST
10

0

MNIST
10

00

MNIST
30

00

MNIST
10

00
0

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

MNIST subsets

P-STN
STN
CNN

Figure 8: Performances of P-STN, STN and CNN on
MNIST subsets (mean ± one STD across five folds).

5.2 MARGINALIZING TRANSFORMATIONS
IMPROVES CLASSIFICATION ACCURACY

We have argued that marginalizing transformations via sam-
ples corresponds to learned, localized data augmentations
(the samples Tθs(I)). We will now investigate whether these
augmentations are indeed helpful in the downstream task,
i.e. whether they improve classification performance.

5.2.1 MNIST and subsets

We compare the performance of our P-STN against a stan-
dard convolutional neural network (CNN) and a regular STN
on MNIST. The standard MNIST images are centered and
pose-normalized, so the localization task is easy. Improved
classifier performance can thus be viewed as an indicator
for having learned a useful data augmentation scheme.

Data augmentation is particularly important when training
data is scarce, so we evaluate the models on small subsets
of MNIST: MNIST30 contains 30 images (i.e. 3 per class),
MNIST100, MNIST1000, MNIST3000 and MNIST10000.
STN and P-STN parameterize affine transformations, i.e.
the learned θ is interpreted as the full affine matrix as de-
scribed in Sec. 3. All models have roughly 28k parameters,

architecture as described at the top of Sec. 5. We use the
Adam optimizer with weight decay 0.01 and the default
parameters of its PyTorch implementation. The images are
color-normalized. We repeat the experiment 5 times, each
time with a different k-image subset of the MNIST dataset,
and we report ± one standard deviation in tables and error
bars. From Table 2 and Fig. 8, we see that the P-STN out-
performs both the STN and CNN on the small dataset sizes.
For the larger datasets, the differences vanish. This supports
our hypothesis: data augmentation is especially useful when
data is a limited resource. This intuition is also supported
by the optimal KL-weights (Table 2, bottom row) that we
determine via grid search on validation data. For smaller
datasets, larger w and thus more regularization towards the
variance prior (away from 0) are beneficial.

The fact that the STN performs less well than the standard
CNN on this data set might be explained by the fact that the
images are already nearly perfectly pose-normalized, and
wrong transformations can be detrimental.

5.2.2 UCR time-series dataset

For some data modalities, such as time-series, it is not
trivial to craft a useful data augmentation scheme. In this
experiment, we show that the P-STN can learn a useful,
non-trivial data augmentation scheme that increases perfor-
mance compared to a standard STN on time-series data. The
UCR dataset [Dau et al., 2018] is composed of 108 smaller
datasets, where each dataset contains univariate time-series.
The FordA dataset, for example, contains measurements of
engine noise over time and the goal is to classify whether or
not the car is faulty. We select 5 of those subsets, each large
enough to divide into training and validation sets (75/25%),
which we use to find the optimal w via grid-search; those
are [0.0001, 1e− 05, 0.001, 0.0, 0.0001]. We draw S = 10
training samples. The test-set is pre-defined by the dataset
curators. Learning rate and optimizer are the same as in
Sec. 5.2.1, but we do not perform normalization. All models
have approximately one million parameters. Table 3 shows
that the P-STN achieves higher mean accuracy than both
the STN and the CNN, indicating that we can automatically
learn a useful data augmentation scheme for time-series.

We verify this qualitatively in Fig. 10, which shows an

Figure 10: Examples of augmentations for a time-
series from the FaceAll dataset. The top plot
shows the original time-series and the bottom
plot shows three augmented versions of the time-
series.

CNN STN P-STN

FaceAll 80.83± 0.62 82.28± 0.42 84.31 ± 0.75
TwoPatterns 97.92± 0.53 99.79± 0.04 99.96 ± 0.04
wafer 99.63 ± 0.05 99.18± 0.17 - 98.86± 0.20
uWaveGestureLib.* 74.15± 1.27 79.77± 0.42 - 81.13 ± 0.46
PhalangesOutlC.** 79.88± 1.32 82.26 ± 0.98 81.66 ± 0.59

Mean 86.48 88.65 89.18

Table 3: Accuracies on a subset of the UCR timeseries dataset (full
dataset names are *uWaveGestureLibrary and **PhalangesOutli-
nesCorrect). ±1 STD is reported after 5 repetitions. Bold numbers
indicate that a model is significantly better than the runner up under
a two sample t-test at p = 0.05.

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

MNIST100 Calibration
CNN
STN
P-STN w = 0.0003
P-STN w = 0.0001

Figure 11: Calibration plots for CNN, STN and two P-STN
models. One with KL-weight yielding optimal performance
(w = 0.0003) and one with KL-weight yielding optimal
calibration (w = 0.0001). Both P-STN models are better
calibrated than CNN and STN.

example of the learned data augmentation. We see that the
model does not simply apply a global transformation, but
learns to augment the time-series more in some intervals,
such as in [60; 110], and augment the time-series less in
other intervals, such as in [0; 50].

5.3 MARGINALIZING TRANSFORMATIONS
IMPROVES CALIBRATION

In Sec. 5.1, we have seen that harder images on average
have larger transformation uncertainties. We now investi-
gate whether those meaningful localization uncertainties
translate into meaningful uncertainties downstream, i.e. in
the calibration of our classifier. At test-time, we evaluate

p(y|I) =
∫

p(y|I, θ)q(θ)dθ ≈ 1

S

S∑
s=1

p(y|Tθs(I)). (19)

We will investigate how well the uncertainty in this distri-
bution matches the quality of predictions. Fig. 11 shows a
calibration plot for the MNIST100 subset classification task
from Sec. 5.2.1 for the CNN, STN and P-STN for two differ-
ent w-parameters; w = 0.0003 yields the best performance
(reported in Table 2) and w = 0.0001 yields the best cali-
bration. The expected calibration errors [Guo et al., 2017,
Küppers et al., 2020, 2021] are CNN: 0.0743 ± 0.0094,
STN: 0.1160± 0.0205, P-STN, w = 0.0003 (optimal per-
formance model): 0.0567 ± 0.0065, P-STN, w = 0.0001
(optimal calibration model): 0.0271 ± 0.0088. We report
the mean over 5 folds, ± one STD. The P-STN significantly
improves calibration in the downstream classification task.

5.4 A TYPICAL FAILURE MODE IN STNS

STNs are trained end-to-end, and with only label informa-
tion available. Thus, the aim is to learn the optimal transfor-
mation for solving the downstream task. Depending on the
complexity of the downstream task and the classification
model, it might not be necessary to transform the input at
all, i.e. it might be possible to solve the downstream task
on the original input image. Indeed, this is a failure mode
we observe in practice — often, the localizer simply learns
the identity transform while the classifier learns to classify
the non-transformed image. Using more complex classi-
fier architectures makes the STN more prone to this failure
mode. This has been observed by other authors [Finnve-
den et al., 2021], and we investigate the problem in the
experiment in Fig. 12. We start by training differently-sized
neural networks on MNIST (black, one layer on the x-axis
is [Linear, ReLU, Dropout]). We compare the per-
formance of this model with (P-)STN models trained on
rotated MNIST, test accuracies are plotted in the left panel
of the figure. If the localization task is performed perfectly,
the (P-)STN models should be able to recover the accuracy
on the original, non-rotated dataset. In the right panel, we
plot the variance of the (mean) transformations learned by
the (P-)STN models. Values close to 0 indicate that the
localizer does not transform the image, i.e. it learns the

1 layers 2 layers 3 layers 4 layers 5 layers
Model size

0.6

0.7

0.8

0.9

1.0
Ac

cu
ra

cy

MNIST, NN
rotMNIST, P-STN
rotMNIST, STN
rotMNIST, NN

1 layers 2 layers 3 layers 4 layers 5 layers
Model size

0.0

0.25

0.5

0.75

1.0

1.25

Va
ria

nc
e

of

(I)
 (r

ad
ia

ns
) rotMNIST, STN

rotMNIST, PSTN

Figure 12: Left: Test accuracies for standard NN and (P-)STNs of different depths trained on rotated MNIST, as well as
NN baseline on original MNIST (black). The STN (green) model does not usually recover the original images and thus
behaves more like a standard NN (red) in most runs. P-STN (blue) un-transforms at least some of the rotations and is closer
in accuracy to the NN on original MNIST (black). Right: The variance of the learned transformations as a function of model
depth. The STN learns the identity for deeper downstream models (this is consistent with the test accuracies we see on the
left). P-STN learns to un-transform better, at least when the classifier is simple. For bigger classifiers it predicts the identity
transform as well, but performs relatively well nonetheless (see left panel). We report medians ±1 median absolute deviation
over 5 folds.

identity transform. Larger values indicate that the localizer
learns transformations. Median results are reported over 5
runs, error bars correspond to one mean absolute deviation.
As hypothesized, for larger classifiers the localizers do not
transform the images. Due to the increased capacity of the
model, we nonetheless achieve decent classification accu-
racies (left panel). The P-STN learns to localize the rotated
images somewhat successfully (large variance in the right
panel, and high accuracy on the left) for smaller classifiers.
The STN does not localize the images as well, most runs
behave like the standard NN on rotMNIST (red), predicting
identity transformations only. We conclude that, thanks to
it ‘trying out multiple transformations’, the P-STN avoids
this failure mode to an extent. We also note that this prop-
erty, while useful, is somewhat orthogonal to our interest
in this work, and we have avoided the failure mode in the
experiments of Sec. 5.1 by considering models with fixed,
pre-trained classifiers.

6 CONCLUSION

We have introduced a probabilistic extension to the spa-
tial transformer network (STN) [Jaderberg et al., 2015]. Our
work took motivation from the empirical observation that the
STN is often brittle to train, as a poorly predicted transforma-
tion may prevent the model from getting any gradient signal,
resulting in divergent optimization. Our probabilistic STN
(P-STN) instead approximates the posterior distribution of
transformations using amortized variational inference, and
marginalizes accordingly. As is common, marginalization
improves the robustness of the model.

Empirically, we note the following advantages of the prob-

abilistic formulation over the deterministic. Firstly, the per-
formance of the localization network is improved, since the
Monte Carlo marginalization effectively amounts to trying
many different transformations. Secondly, the probabilistic
formulation improves the overall model performance, since
the sampled transformations act as data augmentation both
during training and during testing. The resulting ensemble of
predictions is more accurate and better calibrated than com-
mon classifiers as well as the original spatial transformer.

Acknowledgements

MJ was supported by a research grant from the Carlsberg
Foundation (CF20-0370). SH was supported by research
grants (15334, 42062) from VILLUM FONDEN. This
project has also received funding from the European Re-
search Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement
No. 757360). This work was funded in part by the Novo
Nordisk Foundation through the Center for Basic Machine
Learning Research in Life Science (NNF20OC0062606).

References

Henry S Baird. Document image defect models. In SDIA,
pages 546–556. Springer, 1992.

Gregory Benton, Marc Finzi, Pavel Izmailov, and An-
drew Gordon Wilson. Learning invariances in neural
networks. arXiv preprint arXiv:2010.11882, 2020.

David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe.
Variational inference: A review for statisticians. ArXiv,
abs/1601.00670, 2017.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu,
and Daan Wierstra. Weight uncertainty in neural net-
works. arXiv preprint arXiv:1505.05424, 2015.

Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Va-
sudevan, and Quoc V Le. Autoaugment: Learning aug-
mentation strategies from data. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 113–123, 2019.

Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V
Le. Randaugment: Practical automated data augmenta-
tion with a reduced search space. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pages 702–703, 2020.

Hoang Anh Dau, Eamonn Keogh, Kaveh Kamgar, Chin-
Chia Michael Yeh, Yan Zhu, Shaghayegh Gharghabi,
Chotirat Ann Ratanamahatana, Yanping, Bing Hu, Nurja-
han Begum, Anthony Bagnall, Abdullah Mueen, Gustavo
Batista, and Hexagon-ML. The ucr time series classifica-
tion archive, October 2018. https://www.cs.ucr.
edu/~eamonn/time_series_data_2018/.

Erik Daxberger, Agustinus Kristiadi, Alexander Immer,
Runa Eschenhagen, Matthias Bauer, and Philipp Hen-
nig. Laplace redux-effortless bayesian deep learning.
Advances in Neural Information Processing Systems, 34,
2021.

Nicki Skafte Detlefsen. libcpab. https://github.
com/SkafteNicki/libcpab, 2018.

Nicki Skafte Detlefsen and Søren Hauberg. Explicit disen-
tanglement of appearance and perspective in generative
models. In Advances in Neural Information Processing
Systems (NeurIPS), 2019.

Nicki Skafte Detlefsen, Oren Freifeld, and Søren Hauberg.
Deep diffeomorphic transformer networks. In 2018
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4403–4412, June 2018.

Nicki Skafte Detlefsen, Martin Jørgensen, and Søren
Hauberg. Reliable training and estimation of variance
networks. In 33rd Conference on Neural Information
Processing Systems, 2019.

Christian Ertler, Jerneja Mislej, Tobias Ollmann, Lorenzo
Porzi, and Yubin Kuang. Traffic sign detection and classi-
fication around the world. CoRR, abs/1909.04422, 2019.
URL http://arxiv.org/abs/1909.04422.

Lukas Finnveden, Ylva Jansson, and Tony Lindeberg. Un-
derstanding when spatial transformer networks do not
support invariance, and what to do about it. In 2020 25th
International Conference on Pattern Recognition (ICPR),
pages 3427–3434. IEEE, 2021.

Oren Freifeld, Søren Hauberg, Kayhan Batmanghelich, and
John W. Fisher. Transformations based on continuous
piecewise-affine velocity fields. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2017.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian
approximation: Representing model uncertainty in deep
learning. In international conference on machine learn-
ing, pages 1050–1059. PMLR, 2016.

Ian Goodfellow, Honglak Lee, Quoc V Le, Andrew Saxe,
and Andrew Y Ng. Measuring invariances in deep net-
works. In NIPS, pages 646–654, 2009.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Wein-
berger. On calibration of modern neural networks. In
Proceedings of the 34th International Conference on Ma-
chine Learning-Volume 70, pages 1321–1330. JMLR. org,
2017.

Fredrik K Gustafsson, Martin Danelljan, and Thomas B
Schon. Evaluating scalable bayesian deep learning meth-
ods for robust computer vision. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition workshops, pages 318–319, 2020.

Søren Hauberg, Oren Freifeld, Anders Boesen Lindbo
Larsen, John W. Fisher, and Lars Kai Hansen. Dream-
ing more data: Class-dependent distributions over diffeo-
morphisms for learned data augmentation. In Artificial
Intelligence and Statistics, pages 342–350, 2016.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess,
Xavier Glorot, Matthew Botvinick, Shakir Mohamed, and
Alexander Lerchner. beta-vae: Learning basic visual con-
cepts with a constrained variational framework. 2016.

Max Jaderberg, Karen Simonyan, Andrew Zisserman, and
Koray Kavukcuoglu. Spatial transformer networks. In Ad-
vances in Neural Information Processing Systems, pages
2017–2025, 2015.

Angjoo Kanazawa, David W Jacobs, and Manmohan Chan-
draker. Warpnet: Weakly supervised matching for single-
view reconstruction. In CVPR, 2016.

Diederik P. Kingma and Max Welling. Auto-encoding vari-
ational bayes. In 2nd International Conference on Learn-
ing Representations, ICLR 2014, Banff, AB, Canada,
April 14-16, 2014, Conference Track Proceedings, 2014.
URL http://arxiv.org/abs/1312.6114.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural
networks. In F. Pereira, C. J. C. Burges, L. Bottou, and
K. Q. Weinberger, editors, Advances in Neural Informa-
tion Processing Systems 25, pages 1097–1105. Curran
Associates, Inc., 2012.

https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://github.com/SkafteNicki/libcpab
https://github.com/SkafteNicki/libcpab
http://arxiv.org/abs/1909.04422
http://arxiv.org/abs/1312.6114

Fabian Küppers, Jan Kronenberger, Amirhossein Shantia,
and Anselm Haselhoff. Multivariate confidence calibra-
tion for object detection. In The IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR)
Workshops, June 2020.

Fabian Küppers, Jan Kronenberger, Jonas Schneider, and
Anselm Haselhoff. Bayesian confidence calibration for
epistemic uncertainty modelling. In Proceedings of the
IEEE Intelligent Vehicles Symposium (IV), July 2021.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles
Blundell. Simple and scalable predictive uncertainty es-
timation using deep ensembles. In Advances in Neural
Information Processing Systems, pages 6402–6413, 2017.

Yann LeCun, LD Jackel, Leon Bottou, A Brunot, Corinna
Cortes, JS Denker, Harris Drucker, I Guyon, UA Muller,
Eduard Sackinger, et al. Comparison of learning algo-
rithms for handwritten digit recognition. In International
conference on artificial neural networks, volume 60,
pages 53–60. Perth, Australia, 1995.

Chen-Hsuan Lin and Simon Lucey. Inverse compositional
spatial transformer networks. CoRR, abs/1612.03897,
2016. URL http://arxiv.org/abs/1612.
03897.

Gaëlle Loosli, Stéphane Canu, and Léon Bottou. Training in-
variant support vector machines using selective sampling.
Large scale kernel machines, pages 301–320, 2007.

David J C MacKay. Model comparison and Occam’s razor.
Information Theory, Inference and Learning Algorithms,
pages 343–355, 2003.

David JC MacKay. Bayesian interpolation. Neural compu-
tation, 4(3):415–447, 1992.

Pola Schwöbel, Martin Jørgensen, Sebastian W Ober, and
Mark Van Der Wilk. Last layer marginal likelihood for
invariance learning. In International Conference on Artifi-
cial Intelligence and Statistics, pages 3542–3555. PMLR,
2022.

Ron A Shapira Weber, Matan Eyal, Nicki Skafte, Oren
Shriki, and Oren Freifeld. Diffeomorphic temporal align-
ment nets. In H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d’ Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems 32,
pages 6570–6581. 2019.

Patrice Y Simard, Dave Steinkraus, and John C Platt. Best
practices for convolutional neural networks applied to
visual document analysis. In 2013 12th International
Conference on Document Analysis and Recognition, vol-
ume 2, pages 958–958. IEEE Computer Society, 2003.

Søren Kaae Sønderby, Casper Kaae Sønderby, Lars Maaløe,
and Ole Winther. Recurrent spatial transformer networks.
arXiv preprint arXiv:1509.05329, 2015.

Andrew Stirn and David A Knowles. Variational variance:
Simple and reliable predictive variance parameterization.
arXiv e-prints, pages arXiv–2006, 2020.

Hiroshi Takahashi, Tomoharu Iwata, Yuki Yamanaka,
Masanori Yamada, and Satoshi Yagi. Student-t varia-
tional autoencoder for robust density estimation. In IJCAI,
pages 2696–2702, 2018.

Mark Van der Wilk, Matthias Bauer, ST John, and James
Hensman. Learning invariances using the marginal like-
lihood. In Advances in Neural Information Processing
Systems, pages 9938–9948, 2018.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-
mnist: a novel image dataset for benchmarking machine
learning algorithms. arXiv preprint arXiv:1708.07747,
2017.

http://arxiv.org/abs/1612.03897
http://arxiv.org/abs/1612.03897

	Introduction
	Related Work
	Background
	Probabilistic Spatial Transformer Network
	The Model
	Variational Approximation
	Inference

	Experiments & Results
	Marginalizing transformations improves localization accuracy
	Rotated MNIST
	Random placement FashionMNIST
	Mapillary street signs

	Marginalizing transformations improves classification accuracy
	MNIST and subsets
	UCR time-series dataset

	Marginalizing transformations improves calibration
	A Typical Failure Mode in STNs

	Conclusion

