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Abstract

Meta-gradient Reinforcement Learning (RL) allows agents to self-tune their hyper-
parameters in an online fashion during training. In this paper, we identify a bias
in the meta-gradient of current meta-gradient RL approaches. This bias comes
from using the critic that is trained using the meta-learned discount factor for the
advantage estimation in the outer objective which requires a different discount
factor. Because the meta-learned discount factor is typically lower than the one
used in the outer objective, the resulting bias can cause the meta-gradient to favor
myopic policies. We propose a simple solution to this issue: we eliminate this
bias by using an alternative, outer value function in the estimation of the outer
loss. To obtain this outer value function we add a second head to the critic network
and train it alongside the classic critic, using the outer loss discount factor. On an
illustrative toy problem, we show that the bias can cause catastrophic failure of
current meta-gradient RL approaches, and show that our proposed solution fixes it.
We then apply our method to a more complex environment and demonstrate that
fixing the meta-gradient bias can significantly improve performance.

1 Introduction

Recently, reinforcement learning (RL) methods have embraced ideas from meta-learning either
to train an agent to quickly adapt to new tasks [6, 12] or to improve the learning process online
within a single task [27, 29, 23, 26, 28]. RL algorithms are known to be highly sensitive to their
hyperparameters such as the discount factor [1]. Thus, self-tuning these hyper-parameters online can
greatly improve performance and has yielded state-of-the-art performance for model-free RL [7].
Meta-gradient RL is the backbone underlying self-tuning and relies on an inner loss function used to
update the agent’s parameters, as well as an outer loss to evaluate (or ground) the updated parameters
in order to compute a meta-gradient. This meta-gradient is then used to update the meta-parameters
(e.g. the discount factor).

In this paper, we focus on the outer loss used by current meta-RL algorithms and show that its
estimation has a bias. This bias comes from using the critic that is trained using the meta-learned
discount factor for the advantage estimation in the outer loss. Meta-gradients obtained using this
biased estimate can lead to a failure of self-tuning, potentially resulting in a myopic policy. We
propose a computationally cheap approach that eliminates the meta-gradient bias and we observe that
it solves catastrophic failure in a toy environment and improves performance on a more challenging
deep RL task.

There have been several works focusing on bias and variance in meta-gradients. (Bonnet et al.,
2021) [5] focuses on bias-variance trade-off within multi-step meta-gradients. (Vuorio et al.,
2022) [24] studies a different bias, namely the sampling bias, and (Liu et al., 2021) [15] addresses a
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(a) Meta-gradients (MG) (b) Bootstrapped meta-gradients (BMG)

Figure 1: The two paradigms of meta-gradients for self-tuning. First, parameters θ are updated
using an inner loss and meta-parameters η. Then, a meta-loss is computed from the updated θ1.
Meta-gradients (MG) and bootstrapped meta-gradients (BMG) differ in their choice of meta-loss.

compositional bias. Although these aforementioned works are complementary to ours, the bias we
highlight is different as it is related to the outer loss of meta-gradient algorithms.

2 Background

Reinforcement Learning: The goal of an RL agent is to learn the policy π that maximizes the
γ-discounted expected return: Eπ|st“s

“
ř8

k“0 γ
krt`k

‰

, where rt and st are the reward and state at
timestep t. Actor-critic algorithms [13, 17] learn a policy πθp with parameters θp and a critic V π,γ

θc

with parameters θc that approximates the value function V π,γ “ Eπ|st“s

“
ř8

k“0 γ
krt`k

‰

. The critic
is used to inform the direction of the policy update. More specifically, the policy is trained using the
policy gradient [25, 20], ĝpg, estimated by Monte Carlo using

ĝpgpτq “
`

rt ` γV π,γ
θc

pst`1q
˘

∇θp log πθppat|stq (1)

where τ “ tst, at, rt, st`1u are transitions. One could use the advantage [20] instead of the action
value function in the estimate to reduce variance [8, 18], but we stick to the action value function for
simplicity. The full actor-critic update combines the policy gradient with entropy regularization [21,
17, 10, 9] and a critic update using the mean squared error of the TD error [22]. We provide further
discussion and definitions in Appendix A.

Self-Tuning RL: We refer to the aforementioned actor-critic update as the inner update with loss
Linnerpθ, ηq where η are the hyper-parameters. Self-tuning meta-RL purposely exposes η as trainable
meta-parameters and adapts them online during training by computing meta-gradients. This makes
use of the fact that the inner update is differentiable with respect to η. The meta-gradient ∇ηLmeta is
defined as the gradient of a meta-loss with respect to the meta-parameters. It is computed in two phases
(see figure 1): (1) The agent takes one (or multiple) parameter update(s) by running the actor-critic
algorithm with meta-parameters η to obtain updated parameters θ1pηq. (2) The meta-loss is computed
from the updated parameters θ1pηq to derive the meta-gradient ∇ηLmetapθ1pηqq. One can distinguish
two kinds of meta-loss (see figure 1). Firstly, meta-gradients (MG) [27, 26, 28, 23] compute the
gradient of an outer loss Louter applied to updated parameters θ1pηq. Secondly, bootstrapped meta-
gradients (BMG) [16, 7] further update the parameters by taking one (or several) gradient step(s) to
obtain a target θ̃ from which to compute a matching loss between θ1pηq and θ̃. The target updates
proposed by [7] can be done with respect to the inner loss Linner for all but the last step, which is
computed with an outer loss Louter. Both methods of computing meta-gradients necessitate an outer
loss, Louter, that is defined to be an actor-critic loss similar to Linner but uses different hyper-parameters
η1 than the inner loss. In particular, the policy gradient term of the outer loss uses a different discount
factor γ1, leading to the following policy gradient estimate ĝ1

pg.

ĝ1
pgpτq “

´

r ` γ1V π,γ1

θ1 ps1q

¯

∇θ1 log πθ1 pa|sq (2)

3 Solution to the meta-gradient bias

In this section, we highlight a bias in the meta-gradient estimation of current meta-RL methods and
propose a simple and computationally-efficient way to solve it.
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Bias in the meta-gradient: Both MG and BMG methods rely on the estimation of the outer loss
to compute the meta-gradient (see figure 1). As seen in section 2, the policy gradient terms from
the inner and outer loss differ in terms of what hyper-parameters they use. While the inner loss
necessitates estimating the value function V π,γ , the outer loss requires V π,γ1

. Since the critic is
trained to estimate the value function V π,γ , a bias consequently arises when using the critic to
estimate the advantage in the policy gradient term of the outer loss:

ĝ1
pgpτq “

´

r ` γ1V π,γ1

ps1q

¯

∇θ1 log πθ1 pa|sq ff
`

r ` γ1V π,γps1q
˘

∇θ1 log πθ1 pa|sq (3)

The right-hand side of equation 3 is the biased estimate of the outer policy gradient used by current
self-tuning methods.

Removing the bias with an outer-critic head: We propose to learn another critic that we call
the outer-critic, whose goal is to estimate the outer value function, i.e. the value of the policy
with (constant) discount γ1. More precisely, the outer-critic V π,γ1

θc̄
, parameterized by θc̄, is trained

to approximate the outer value function : V π,γ1

psq “ Eπ|st“s

”

ř8

k“0 γ
1krt`k

ı

. This way, one
can use the outer-critic to remove the aforementioned bias in the estimation of the outer-loss:
´

r ` γ1V π,γ1

θc̄
ps1q

¯

log πθ1
p
pa|sq. To implement the outer-critic, we modify current critic architectures

by adding a second head whose goal is to learn the outer value function V π,γ1

. As a consequence, our
way of removing the bias in the outer loss advantage estimation is computationally cheap and easy to
implement on top of current self-tuning methods to improve meta-gradient estimation. Further details
are provided in appendix B.

4 Experiments

We demonstrate the catastrophic failure of current meta-gradient approaches in a toy problem, then
we scale to a deep RL experiment where we observe that our method improves performance over
biased meta-gradients. It is important to note that for these self-tuning experiments, we initialize γ to
a low value (0.95 and 0.8), in fact too low for a converged policy to be optimal (both experiments
require optimizing over long horizons). This is to accentuate the effect of the meta-gradient bias. We
open-source the code to reproduce all the experiments, see https://github.com/instadeepai/
outer-value-function-meta-rl.

4.1 Discounting Chain

Figure 2: Discounting chain experiment. (left) A visualization of the environment. (middle) Discount
during training. (right) Return during training (shares the legend with (middle)). Red curves show
current self-tuning methods (MG and BMG) while blue curves are obtained by using an outer-critic
to estimate the outer loss. Shaded areas correspond to one standard deviation across 10 random seeds.

For our first experiment, we provide a simple illustration of the effects of the bias caused by using the
inner critic in the outer loss. For this purpose, we experiment on the Gymnax [14] JAX implementation
of the toy Discounting Chain environment originally proposed in bsuite2 [19]. The Discounting

2We use the environment as an illustrative case rather than according to the specification of the bsuite setup.
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Chain environment, shown in Figure 2, has a structure designed to highlight the effect of different
discount horizons and is therefore highly sensitive to the discount factor. Since we have access to the
true value function for this environment, we use it in the policy gradient advantage when training
the policy. Having the true value function allows us to focus on the bias induced by using the wrong
value of γ in the outer loss. We train the MG and BMG agents with and without the outer critic,
with an initial γ “ 0.95. We apply a modified sigmoid activation between 0.9 and 1.0 to ensure the
discount remains bounded. We provide further details on the experimental setup in Appendix C.1. In
figure 2, the standard MG and BMG agents fail catastrophically, as they are unable to increase the
discount factor and therefore converge to the myopic policy. The reason is that if the inner-critic is
used in the outer-loss advantage, then myopic policies are preferred (because V π,γ ă V π,γ1

), which
then causes the meta-gradient to push γ down instead of up. On the other hand, the MG and BMG
agents equipped with the outer critic are able to successfully self-tune the discount factor to converge
to the optimal policy and solve the task.

4.2 Snake

Figure 3: Snake experiment. (a) A visualization of the environment. (b) Discount during training. (c)
Return during training. Shaded areas represent half a standard deviation across 10 seeds.

Next, we scale our experiments to the deep RL setting using the Snake environment from Jumanji [4,
5]. This environment is sensitive to the discount factor, as the snake agent must plan ahead to
maximize return without bumping into itself. We compare an MG algorithm with and without the
outer critic. Unlike in the Discounting Chain experiment, where we had access to the true value
function, we now train a value function for the inner and outer critic. We give γ a relatively poor
initialization of 0.8, as this makes the self-tuning more challenging. We provide further details for
the setup of the experiment in Appendix C.2. In figure 3, the agent with the second critic shows
a stronger meta-gradient signal, which results in γ being increased faster. Although both agents
asymptotically converge to the maximum return, fixing the meta-gradient bias results in a significant
improvement in training performance.

5 Conclusion

We have shown that current meta-gradient RL algorithms suffer from a meta-gradient bias induced by
having the critic, trained using the meta-learned discount factor, estimate the advantage of the outer
objective which necessitates a different discount factor. In our experiments, we have demonstrated
that this meta-gradient bias can lead to catastrophic failure of meta-gradient RL algorithms, which
we fix with a simple, yet efficient solution. We augment the critic network with an outer critic head
whose goal is to estimate the value function discounted by the outer discount factor. Furthermore, we
have shown that our method results in performance improvements in more complex environments.

Bootstrapped meta-gradient [7], the state-of-the-art meta-gradient RL agent, has worse than human
performance on Bowling, Solaris, and Skiing from the Atari ALE benchmark. These environments
are known to be challenging due to delayed reward/credit assignment [3, 2]. Thus, correcting the
bias we highlight in this work may be important for improving meta-gradient RL approaches in these
increasingly challenging environments, which we hope to study in future work.
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A Background

The goal of an RL agent is to maximize the γ-discounted state value function: V π,γpsq “

Eπ|st“s

“
ř8

k“0 γ
krt`k

‰

.

The action value function is analogously defined below.

Qπ,γps, aq “ Eπ|st“s,at“a

«

8
ÿ

k“0

γkrt`k

ff

“ Eπ|st“s,at“a

«

rt ` γ
8
ÿ

k“0

γkrt`1`k

ff

“ Eπ|st“s,at“a rrt ` γV π,γpst`1qs

The policy gradient theorem [25, 20] in equation 4 provides a way to derive the gradient of the
expected discounted return using the value function of the policy.

∇θEπθ

«

ÿ

t

γtrt

ff

“ Eπθ

«

ÿ

t

γtrt∇θ log πθpat|stq

ff

“ Eπθ

«

ÿ

t

Qπ,γpst, atq∇θ log πθpat|stq

ff

“ Eπθ

«

ÿ

t

prt ` γV π,γpst`1qq∇θ log πθpat|stq

ff

(4)

Actor-critic algorithms [13, 17] learn a parameterized value function (the critic) and a parameterized
policy which is updated in a direction informed by the critic. More precisely, the critic learns the
value function V π,γ

θc
with critic parameters θc, and policy πθp with policy parameters θp. Estimated

action value function Q̂π,γps, aq “ r ` γV π,γ
θc

ps1q where r and s1 are respectively the reward and the
next state obtained from taking action a in state s. The goal of an RL agent is to learn the policy π
that maximizes the γ-discounted expected return: Eπ|st“s

“
ř8

k“0 γ
krt`k

‰

, where rt and st are the
reward and state at timestep t.

An actor-critic update (A2C) [17] is composed of 3 terms:

• Policy gradient:
`

r ` γV π,γ
θc

ps1q
˘

∇θp log πθppa|sq

• Critic gradient:
`

V π,γ
θc

psq ´
`

r ` γV π,γ
θc

ps1q
˘˘

∇θcV
π,γ
θc

psq

• Entropy regularization: ∇θpHpπθpp.|sqq

Therefore, the full actor-critic update is: θ Ð θ ` αfpθ, η, τq where θ “ tθp, θcu and η “ tγu or
η “ tγ, λu if TD(λ) is used for advantage estimation, and

fpθ, η, τq “ cPG
`

r ` γV π,γ
θc

ps1q
˘

∇θp log πθppa|sq

` cTD
`

V π,γ
θc

psq ´
`

r ` γV π,γ
θc

ps1q
˘˘

∇θcV
π,γ
θc

psq ` cEN∇θpHpπθpp.|sqq

B Outer Critic

To learn the outer value function, we augment the critic network with a second head that outputs the
value with discount γ1. To avoid conflicting gradients between the two value functions being learned,
we use a stop-gradient between the common torso and the outer-critic head (see figure 4). This way,
the critic learning dynamic is not changed by adding the outer-critic.

To learn the outer value function, we proceed akin to the standard value function with a TD loss louter
TD

with γ1 instead of γ.

louter
TD “

´

V π,γ1

θc̄
psq ´

´

r ` γ1V π,γ1

θc̄
ps1q

¯¯2
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Figure 4: Augmented critic architecture to learn two value functions: the inner and outer values.
"sg" means that the stop_gradient operation is used to prevent gradients from flowing from the
outer-critic head to the common torso.

C Experiments

C.1 Discounting Chain Experiment Details

We initialize γ “ 0.95 such that the value function will initially favor the myopic policy. For
simplicity, we use only a policy gradient loss for both the inner and outer loss functions. Furthermore,
for BMG we do a single gradient step with the outer loss to obtain the target, which we use for policy
matching. We optimize the parameters of the actor for MG and BMG with SGD and use Adam [11]
to optimize the discount factor γ.

For all agents, we use a policy network composed of a single linear layer. We generate a new batch
of data online for both the inner and outer loss functions. Using an adaptive optimizer (e.g. Adam or
RMSProp) to optimize the parameters would change the meta-gradient for BMG since there would
be some inertia from the inner update biasing the direction of the target update. As we would like our
inner update step to be in the direction of the unbiased meta-gradient, we use SGD instead of Adam.
More details on the hyper-parameters used in this experiment can be found in table 1.

To solve the environment, the self-tuning agent has to increase the discount factor to a sufficient
level so that it can receive a signal from the long-term effect of the first action. However, if the
meta-objective is sufficiently biased, the meta-gradient will not encourage the agent to increase the
discount.

C.2 Snake Experiment Details

We use the environment "Snake-6x6-v0" from Jumanji [4] by calling Jumanji’s registry:
jumanji.make("Snake-6x6-v0"). In this environment, a snake agent navigates a grid in or-
der to eat apples, while avoiding bumping into its own body which causes it to die. Because good
policies require the agent to zigzag and reason about long horizons, the discount factor plays a very
important role in the learning dynamics and is well suited to studying any meta-gradient biases. The
hyper-parameters used in the experiments are provided in table 1.

D Outer Loss Advantage

D.1 Quantify the Meta-Gradient Bias

One way to quantify the meta-gradient bias we highlight in this paper is to observe the advantage
in the outer loss. By definition, the advantage is centered, i.e. its expectation over actions is 0.
However, we can see in figure 5 that current self-tuning methods (MG, BMG) suffer from a bias in
their advantage estimation. Using the outer value function in the outer loss fixes the bias and the
advantage remains centered.
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Parameters Discounting Chain Snake
architecture Linear Conv + MLP

γstart 0.95 0.8
λ 0.0 0.95
cPG 1.0 1.0
cTD 0.0 0.5
cEN 0.005 0.01

learning rate 0.5 5e-4
inner optimiser SGD RMSProp

gradient clipping norm None None
batch size 128 512

sequence length 100 5
γ1 1.0 1.0
λ1 0.0 1.0
c1

PG 1.0 1.0
c1

TD 0.0 0.0
c1

EN 0.005 0.0
MG meta-learning rate 0.1 3e-3

BMG meta-learning rate 0.1 6e-3
meta optimiser Adam Adam

meta-gradient clipping norm None 0.1
Table 1: Hyper-parameters used in the experiments.

(a) Discounting Chain (b) Snake

Figure 5: Advantage estimation in the outer loss using the standard critic versus the outer-critic. We
see that the bias caused by using the standard critic in the outer loss results in the advantage being
biased such that it is no longer centered on 0 as it should be. Using the outer critic fixes this bias as
the advantage is now centered around 0.

D.2 Normalizing Advantages

We show that the advantages in the outer loss are not centered, which leads to a meta-gradient bias.
One could argue that normalizing the advantages across a batch would fix this issue. We show in this
section that this is not the case.

Indeed, in a batch, all the samples’ advantages are biased. Removing this offset on the batch level
does not fix the direction of the meta-gradient. This leads to the normalized advantages being centered
but the meta-gradient still keeps its bias as shown in figure 6.
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Figure 6: Experiments on both environments (Discounting Chain and Snake) with advantage normal-
ization on 1 seed. (First row): Discounting Chain with all curves being with advantage normalization.
(Second row): Snake with both advantage normalization or not. (Left): mean episode return during
training. (Middle): meta-parameter curves. (Right): outer loss advantage. We observe that normaliz-
ing the advantage is misleading because it does not fix the meta-gradient though it shows a centered
outer loss advantage.
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