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ABSTRACT

Large Language Models (LLMs) have shown impressive abilities in leveraging
pretrained knowledge through prompting, but they often struggle with unseen
tasks, especially in data-scarce scenarios. While cross-task in-context learning
provides a direct solution for knowledge transfer without fine-tuning, it still faces
limitations in terms of robustness, scalability, and efficiency. In this paper, we
investigate whether cross-task transfer can be achieved via latent space steering.
Through analysis of activation patterns under both zero-shot and few-shot prompts,
we have three observations: (1) the activation differences between few-shot and
zero-shot prompts exhibit a nearly parallel structure in low-dimensional space;
(2) these difference vectors correlate strongly with task similarity; (3) Fourier
analysis reveals that low-frequency components encode task-agnostic, information-
enhanced features, while high-frequency components capture task-specific details.
Motivated by these findings, we propose FAST, a Fourier-based Activation Steering
cross-task Transfer framework. It first selects influential and diverse samples from
high-resource tasks, then injects information-enhanced low-frequency components
along with task-similarity weighted high-frequency components during inference.
Extensive experiments in both cross-domain and cross-lingual transfer settings
show that our method consistently outperforms existing methods. The code is
available in https://anonymous.4open.science/r/RETL-BC5B.

1 INTRODUCTION

Large Language Models (LLMs) (OpenAlL 2024; |Guo et al.| 2025) demonstrate remarkable capa-
bilities to store knowledge during pretraining, which can be effectively accessed via prompting.
However, as this paradigm becomes increasingly prevalent, a critical challenge emerges: these models
often struggle with tasks that were not seen during pretraining, particularly in data-scarce scenar-
ios (Bigoulaeva et al.,[2025)). A common strategy to tackle this issue is transfer learning (Zhuang et al.}
2021} |Strangmann et al.| 2024} Somerstep et al., |2025)), which uses knowledge from high-resource
tasks to adapt to low-resource ones. Several studies (Vu et al., 2022 [Li et al., [2022; [Lv et al.,2024)
fine-tune soft prompts on data-sufficient tasks and subsequently apply them to data-scarce tasks
during inference. While effective, such approaches still require training and can not generalize well
across diverse tasks. An alternative line of work investigates cross-task in-context learning (ICL) (Tan
war et al.l 2023} [Li et al.l 2023b; |Chatterjee et al., 2024)), which utilizes labeled examples from
high-resource tasks to improve performance on low-resource tasks without parameter updates.

Despite its promise, cross-task ICL still faces several limitations. (1) Performance is highly sensitive
to the choice of demonstrations (Liu et al.l 2022a; Levy et al.l 2023)), prompt templates (Wang et al.|
2023 Mishra et al., |2022)), and source tasks (Chatterjee et al., 2024), which restricts its adaptabil-
ity (robustness). (2) Few demonstrations can be included due to the constrained context length of
LLMs (scalability). (3) Computational cost increases significantly with more demonstrations due to
the quadratic complexity of Transformers to the input length (efficiency). To address these challenges,
one possible solution is to operate activations in the continuous space, which avoids expanding the
discrete token sequences and mitigates context length constraints. This leads us to raise a research
question: Can we achieve effective cross-task transfer through latent space steering?

To answer this question, we conduct an empirical study of activation patterns under both zero-shot and
few-shot prompts. Our analysis reveals three main findings: (1) The difference in activations between
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few-shot and zero-shot prompts exhibits a nearly parallel structure when projected into a low-
dimensional space across diverse task pairs. This suggests that the enhanced information provided
by in-context examples has consistent directions in the model’s activation space. (2) To explore
whether these difference activations can be directly injected, we measure their directional similarity
across different source and target tasks in the high-dimensional activation space. We observe that their
directions are highly correlated with task similarity, suggesting that directly injecting difference
activations is more effective for related tasks, and less effective for dissimilar ones. (3) Inspired
by Fourier analysis, where representations can be decomposed into broad trends (low-frequency)
and localized details (high-frequency), we apply Fourier-based filtering to disentangle the difference
vectors. We find that low-frequency components capture task-agnostic and information-enhanced
features, and high-frequency components contain task-specific information.

Building on these insights, we propose a Fourier-based Activation Steering cross-task Transfer
framework, namely FAST. We first select a representative subset of high-resource examples that
balance influence and diversity, aiming to improve the efficiency of feature extraction. Specifically,
we first construct a similarity graph of high-resource examples, and then iteratively select a sample
with the highest combined influence and diversity score at each step until the desired subset size
is reached. Next, we compute the activation differences between few-shot and zero-shot prompts
for these selected samples. We then apply Fourier-based filtering to decompose these difference
activations into information-enhanced features (i.e., low-frequency components) and task-specific
features (i.e., high-frequency components). During inference on low-resource queries, we inject
the low-frequency components along with task-similarity weighted high-frequency components
into the forward pass, which guides LLMs toward effective cross-task transfer. This approach is
both efficient and scalable, as it relies solely on pre-computed activations from high-resource tasks
without requiring parameter updates or expanded input length. To validate the effectiveness of our
proposed method, we conduct extensive experiments in both cross-domain and cross-lingual scenarios.
Experimental results demonstrate that FAST consistently outperforms competitive baselines while
maintaining lower computational cost. Our main contributions can be summarized as follows:

e To the best of our knowledge, we are the first to systematically analyze the activation patterns of
both zero-shot and few-shot prompts. We find that: (1) the activation differences between few-shot
and zero-shot prompts exhibit a consistent and nearly parallel structure in low-dimensional space; (2)
these difference vectors are strongly correlated with task similarity in high-dimensional space; (3)
through Fourier-based analysis, these difference activations can be decomposed into task-agnostic,
information-enhanced features (low-frequency) and task-specific features (high-frequency).

e We propose FAST, a novel cross-task transfer framework that leverages Fourier-based activation
steering to transfer knowledge from high-resource to low-resource tasks. We first select a representa-
tive and diverse subset from high-resource tasks and apply Fourier-based activation steering to enable
effective cross-task transfer without requiring parameter updates or input expansion.

e We conduct extensive experiments in both cross-domain and cross-lingual transfer scenarios. The
experimental results demonstrate that our approach consistently outperforms competitive baselines
while maintaining high scalability and computational efficiency.

2 EMPIRICAL STUDY

The Hopfieldian view of cognition (Hopfield, |1982)) posits that neural computation arises from
dynamic transformations in population-level neural activity in response to external stimuli. This
perspective has inspired mechanistic interpretations of artificial neural networks, where activation
steering (Zou et al.,|2023) has emerged as a powerful method for analyzing internal model states. By
treating intermediate activations as fundamental computation units, activation steering helps reveal
high-level concepts and functions encoded within models. In this section, we analyze zero-shot and
few-shot prompts across various source and target tasks from the perspective of activations.

2.1 EXPERIMENTAL SETUP

Following [Liu et al.|(2024a)), we extract activations from the last token position for both zero-shot
and few-shot prompts using Llama3.1-8B (Dubey et al,|2024), as this position aggregates the full
semantics of the input sentence. We use AGnews (Zhang et al.; 2015)), ARC-Easy (Clark et al., [2018)),
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and SST2 (Socher et al.l 2013) as source tasks, and ARC-Challenge (Clark et al., 2018) and Financial
Phrasebank (Malo et al., [2014) as target tasks. For each task, we randomly select 500 samples and
construct zero-shot and few-shot prompts, with the latter including three randomly chosen examples.

2.2 INFORMATION-ENHANCED FEATURES INDUCED BY IN-CONTEXT EXAMPLES EXHIBIT
CONSISTENT PATTERNS ACROSS TASKS

Given that few-shot prompts pro- AGnews Fs ARCE Fs sstors
vide richer contextual information and e T e T e
elicit more diverse features, we inves- oo ——— p "
tigate whether information induced f v /% / .

by in-context examples from high-
resource tasks can facilitate cross-task
transfer via latent space manipulation.
To this end, we analyze the activa-
tion distributions from both zero-shot
and few-shot prompts across various
source and target tasks by project-
ing these high-dimensional activations
into 2D space using t-SNE (van der Maaten & Hinton, |2008). The results are presented in Figure E]
(More visualization is provided in Figure[12)). As we can see, activations from two prompt types form
clearly separated clusters within each task. This indicates that the model develops fundamentally
distinct internal representations under each prompting strategy. Moreover, the vectors connecting
the cluster centers of few-shot and zero-shot activations are nearly parallel across different tasks in
the low-dimensional space. This suggests that information-enhanced features follow a consistent
direction across tasks, supporting the feasibility of cross-task transfer through latent space steering.

Figure 1: T-SNE visualization of model activations under
zero-shot and few-shot prompts. Red and Blue points denote
source and target tasks, respectively.

2.3 DIFFERENCE ACTIVATION DIRECTIONS BETWEEN FEW-SHOT AND ZERO-SHOT PROMPTS
ARE HIGHLY CORRELATED WITH TASK SIMILARITY

Given the consistent directions of information-  : ——

AG-news (Task Sim=0.39)
enhanced features, we examine whether such T ARCE Tk sm=0.36) _ ARCE Tk sme036)
activations can facilitate cross-task transfer in

high-dimensional space. We compute the sim-
ilarity of the difference activation directions be-
tween source and target tasks. For a given layer
I, we define the difference vector dv®(l) and
dvt (1) for a source task s and a target task ¢ as:

Direction Sim

Direction Sim
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dv(l) ={f°@, 1) = 2°(5, )}y, (D) (a) ARC-Challenge (b) Financial Phrasebank

dv' (1) = {f'(i,1) = 2* (4, )}y (2)  Figure 2: Similarity of difference activation direc-
tions across various task pairs.
where f(i,0) and z(i,!) denote few-shot and
zero-shot activations at layer [ for each sample ¢,
respectively. We then quantify the task similarity T's(s, t) between source task s and target task ¢ by
averaging the pairwise cosine similarities of last-token representations across all layers and samples:

To(st) = L33y ) HO) 4
VT I EGIEL]

=1 i=1 j=1

As shown in Figure 2] we find a strong positive correlation between task similarity and directions of
difference activations, indicating that these vectors retain substantial task-specific information. This
makes direct transfer between dissimilar tasks challenging due to the divergence in the activation
spaces. Additionally, we find that directional similarity varies most prominently in middle layers,
possibly because LLMs encode more abstract features (Skean et al.,|2025) in these layers.
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Figure 3: Similarity of low-pass and high-pass Figure 4: Accuracy results of injecting difference,
filtered difference vectors across task pairs. low-pass and high-pass filtered activations.

2.4 LOW-FREQUENCY COMPONENTS ENCODE INFORMATION-ENHANCED FEATURES AND
HIGH-FREQUENCY COMPONENTS RETAIN TASK-SPECIFIC INFORMATION

Considering the challenges of directly injecting the difference vectors, we investigate their spectral
characteristics across all layers. Inspired by Fourier analysis, where low-pass filters preserve broad
trends and high-pass filters capture localized details, we decompose each difference vector dv into
low-frequency dviey and high-frequency components dupign:

dviow = Re [IFFT (My, ® FFT(dv))],  dunign = Re [IFFT (1 — My) @ FFT(dv))].  (4)

Here, FFT(-) and IFFT(-) denote the Fast Fourier Transform and its inverse, ® is the Hadamard
product, Re[-] extracts the real part to eliminate residual imaginary components. The low-pass mask
M, € {0,1}4, with d being the dimensionality of dv, preserves the first k frequency components:

1, ifi<fori>d—%
Mi] =<’ — 2 2 5
L) {0, otherwise. )

As illustrated in Figure 3] low-pass filtered vectors show high similarity across task pairs, suggest-
ing that low-frequency components capture task-agnostic features. In contrast, high-pass filtered
activations are similar only between highly similar tasks, indicating that they encode task-specific
information.

We further evaluate the effect of injecting the full difference vector, low-pass filtered components, and

high-pass filtered components into LLMs across all layers. The average results across all layers are
shown in Figure Our findings reveal that directly injecting the full difference vector strongly corre-
lates with task similarity: it improves performance when tasks are similar, but yields limited or even
negative gains when tasks are dissimilar. Moreover, we observe that adding low-frequency activations
(i.e., information-enhanced features) consistently improves accuracy across tasks, while injecting
high-frequency activations (i.e., task-specific information) only helps when tasks are similar and
harms performance when they are dissimilar. This indicates that low-frequency components encode
information-enhanced features and high-frequency components retain task-specific information.

3 METHOD

In this section, we introduce FAST, a novel framework for cross-task transfer via Fourier-based
activation steering in LLMs. We first formalize the problem of cross-task transfer learning, then
select influential and diverse samples from high-resource tasks, and finally leverage Fourier-based
activations of these samples to adapt LLMs to low-resource tasks through activation steering. The
overall framework is illustrated in Figure 5]

3.1 PROBLEM FORMULATION

Cross-task transfer learning aims to enhance the performance of LLMs on low-resource target tasks
by leveraging knowledge acquired from high-resource source tasks (Vu et al., 2022} |Chatterjee
et all 2024). Let (zs,,ys,)i~; € D denote the source task with abundant labeled data, and
(¢;,yt;)"1 € Dy represent the target task with limited labeled samples. The process typically
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Figure 5: Overview of FAST. (a) Influential and diverse subset selection strategy: (1) construct a
similarity-based graph from high-resource tasks; (2) quantify each sample’s influence and diversity;
(3) iteratively select the highest-scoring sample via greedy search to form the final subset. (b)
Fourier-based activation steering: decompose the difference vectors between few-shot and zero-shot
prompts via Fourier-based filtering into low-frequency (information-enhanced) and high-frequency
(task-specific) components, and selectively inject them to steer LLM outputs for low-resource tasks.

involves extracting transferable information I from the source task and effectively integrating it into
the target task question x;, which can be formalized as:

I, :g(ﬂfsuyslw" azsn7y5n)7 Yt :LLM(ISvIt)' (6)

Here, g denotes the feature extraction function that captures knowledge from the source tasks, and ¥,
is the prediction of LLMs on the target input.

3.2 INFLUENTIAL AND DIVERSE SUBSET SELECTION

Although the source task contains abundant labeled data, utilizing all samples for cross-task transfer
is computationally inefficient and unnecessary. To address this, we propose an influential and
diverse subset selection strategy to identify representative and diverse samples from the source task.
Specifically, we first build a sample graph based on pairwise similarities to model relationships
among examples, then measure the influence and diversity score of each sample, and finally employ
an iterative greedy search algorithm to select the highest-scoring samples for the final subset.

3.2.1 SIMILARITY-BASED GRAPH CONSTRUCTION

Our subset selection strategy begins by modeling sample relationships using a directed graph. We first
encode each sample into a vector using the BGE model (Chen et al.| 2024a). These embeddings are
used to construct a task-specific directed graph G = (V, E, P), where each vertex v; € V denotes a
sample, a directed edge e(4, j) € £ connects node v; to v;, and edge weight p(i, j) € P is the cosine
similarity between the embeddings of the corresponding samples. To reduce structural redundancy,
we follow Su et al.|(2023)) and connect each node to its 150 most similar neighbors.

3.2.2 INFLUENCE AND DIVERSITY-DRIVEN SAMPLE QUANTIFICATION

After constructing the sample graph, we evaluate each sample from two perspectives: (1) its influence
in activating other samples within the task, and (2) its contribution to the overall diversity of the
previously selected samples. The pseudo-code is provided in Algorithm T}

The influence score measures how a sample can propagate information across the graph, which is
computed by simulating an information diffusion process. Specifically, we initialize the process by
adding the candidate node v into an active set Syve- At each step, we randomly select an active node
u € Syetive and attempt to activate each of its 1-hop neighbors w € Nj(u) with success probability
p(u, w). Newly activated nodes are added to Syeive. This iterative process continues until no further
propagations occur. The influence score I(v) of node v is defined as the total number of nodes
activated during the entire diffusion process. In this way, samples that trigger extensive activation
receive higher scores. To ensure the robustness of our method, we follow |Zhang et al.|(2024)) and
repeat the simulation 10 times, reporting the average influence score.
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The diversity penalty measures the redundancy a candidate node introduces relative to the already
selected subset. We perform a hop-based search to examine the i-hop neighbor N;(v) of node v and
compute its overlap with Sgejecea. The diversity penalty D(v) of node v is formulated as:

k
D(U) = - Zﬁl : ‘Nz(v) N Sselected'- @)
=1

Here, (3 is a hop-based decay factor that reduces the penalty for overlaps at larger graph distances.
Consequently, nodes with minimal overlap have smaller penalties. Finally, we balance the influence
score I(v) and diversity penalty D(v) through a hyperparameter + to obtain the overall score Fg(v).

Fg(v) =1(v) +v- D(v). ®)
3.2.3 ITERATIVE GREEDY GRAPH SEARCH

To construct a subset that balances both task representativeness and sample diversity, we use an
iterative greedy graph search strategy. The pseudo-code is provided in Algorithm[2] Our approach
operates over the sample graph G and iteratively selects the candidate sample with the highest
influence-diversity score. In more detail, the process starts with an empty set. At each iteration, we
evaluate all unselected samples using the function F, and the highest-scoring sample is added to the
subset. This procedure is repeated until the subset reaches the desired size.

3.3 FOURIER-BASED ACTIVATION STEERING

Inspired by the observation from our empirical study, we propose a Fourier-based activation steering
method that transfers high-resource information to low-resource tasks. Our method primarily consists
of two components: activation extraction and activation control.

Activation Extraction. The component aims to identify high-level concepts or functional behaviors
encoded in LLMs. Specifically, for each sample : € D, from the high-resource task, we construct
two types of prompts: a zero-shot prompt z; that contains only the sample, and a few-shot prompt f;
that includes three randomly selected in-context examples. To eliminate instance-specific noise and
capture general task-level features, we compute the mean difference activation across all samples.
1 n
dv®(l) = — *(i,1) — 2°(1, 1)), 9

v*(l) n;(f(@) 2°(i,1)) ©
where dv® (1) represents the difference vector from the last token’s hidden state at layer I, and n is the
number of samples.

Activation Control. This component aims to steer model behaviors by leveraging extracted ac-
tivations. Motivated by our earlier finding that low-frequency components encode transferable,
information-enhanced features and high-frequency components capture task-specific details, we apply
Fourier-based filtering to decompose dv*® into dvj,, and duy, using Equation We then inject the
low-frequency component along with the task-similarity weighted high-frequency component into the
hidden state at the final token position of a specific layer, which effectively steers model predictions
without perturbing previously encoded context. The modified hidden state is computed as:

hy=h; + A (dvﬁ)w +1[T's(s,t) > €] - Ts(s,t) - dv,figh) , (10)

where [ is the indicator function, X is the injection strength, h; is the hidden state at layer I, T's(s, t)
represents the task similarity between source s and target task ¢, and ¢ is the similarity threshold.
This approach enhances cross-task transfer by emphasizing task-agnostic and information-enhanced
features and adaptively incorporating task-specific activations for sufficiently similar task pairs.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. In this paper, we evaluate our method in both cross-domain and cross-lingual transfer
settings. For cross-domain experiments, we follow |Chatterjee et al.|(2024) and use seven source



Under review as a conference paper at ICLR 2026

Table 1: Performance comparisons in the cross-domain transfer scenarios.

Model | Method | ARC-C FPB MedMCQA SciQ Social-i-QA | Average

Zero-shot 71.80 37.80 49.40 84.40 55.40 59.76
Promotin Few-shot Random | 69.3140.65 4851565 48.69.1005 84.631085 59.14u1 71 | 6206406
ping Few-shot TopK | 69.5415 45 48.6316.07 48.69:177 84.861098 59371035 | 62.2245.0
Llama Few-shot DPP 69.74:&185 48.891;,_9(5 49.7412_12 85.2612_25 59.6011_36 62.6512_91
3.1-8B PEFT QLoRA | 69.311360 52334604 50.064324 83971453 57.771416 | 62.691431
AdalLoRA | 69.741355 52.69467¢ 50.2313096 84.211479 57.891464 | 62.951448
ICV | 726341095 54511440 52.771111 87464945 61.541162 | 65.784211
Activation Steering SEA | 73491055 55291449 53.2941.04  88.004214 62114798 | 66.4441.90
FAST | 7614052 59.261390 56.09.1067 90431103 64571118 | 69.301 46

Zero-shot 82.80 85.20 52.00 89.60 76.00 77.12
Promptin: Few-shot Random | 85.80+1.32 86.8911.66 54.37+1.20 89.6341 .55 77.0041 .26 78.7441 40
pting Few-shot TopK | 86.314080 87.694199 54.544071 90.034135 76.97108s | 79.1141 15
Qwen Few-shot DPP | 86.311067 87.744146 54.60+076  89.941166 76.8311.16 | 79.0841.14
2.5-7B PEFT QLORA | 86.341334 87.061403 55514370  88.7Tligss  77.311380 | 78.99+389
AdaLoRA | 86.311367 87.7Tli401  55.86+380 89491403  77.6013.75 | 79.39+3.01
ICV | 88491101 90434181 57344140 91911148  80.11x115 | 81.66413s
Activation Steering SEA | 89.1410.99 90.744177 58114150 92.664120 80.4647138 | 82.224; 37
FAST | 92205, 01 93801065 60.861151 95231065 83461086 | 85111000

Table 2: Performance comparisons in the cross-lingual transfer scenarios.

Method ‘ de en es fr ja zh \ Average

Zero-shot 84.40 66.00 81.60 86.60 38.60 30.80 64.67
Promptin Few-shot Random | 85.644530 59.3611558 83.484:958 81401965 39.284711 37.3616.07 | 64421558
pting Few-shot TopK | 86.124531 61.5641565 83.6849.73 81.7549.99 39.404786 38.364558 | 65.1449.02
Few-shot DPP | 86.36150r 644841515 85401540  83.901sg0  39.84xs50 38724681 | 66.45.4g 50
PEFT QLoRA | 85.1646.25 63.48420.01 821641317 79.3511332 37.72113.05 35.9245.76 | 63.97112.43

AdaLoRA | 85.6416.07 65.08+19.85 83.00+14.07 80.20+1443 38.80+11.92 36.804+8.94 | 64.9241255

ICV | 90.164257 82.804392 91.964006 91.70410035 44.321411 41164555 | 73.6813.41
Activation Steering SEA | 90441263 84.164297  92.204162  91.854163  45.084370 42.244555 | T4.3343.02
FAST | 9248.205 89.04:511 95204040 9525:0435 48124061 44.88.417 | 77.5011 97

domains and five target domains. The source domains include: ARC-Easy (Clark et al., [2018)),
AG-news (Zhang et al} 2015)), BoolQ (Clark et al.,|2019), Commonsense-QA (Talmor et al.| 2019),
MNLI (Williams et al2018), QQP (Sharma et al.;|2019)), and SST2 (Socher et al.|[2013). Following
previous work (Chatterjee et al., [ 2024), we select ARC-Challenge (Clark et al., 2018)), Financial-
Phrasebank (Malo et al.| [2014), MedMCQA (Pal et al., [2022), SciQ (Auer et al.,[2023)), and Social-i-
QA (Sap et al.,|2019) as target domains. For cross-lingual settings, we conduct experiments on the
MARC (Keung et al., 2020) dataset, which covers six languages. Due to computational constraints,
we follow previous work (Chatterjee et al.| 2024) and randomly sample 500 examples from each
target domain as the test set. Detailed descriptions of the datasets are provided in Appendix

Baselines. We select several representative approaches for comparison, including prompting methods
(i.e., Zero-shot, Few-shot Random, Few-shot TopK (Liu et al., 2022b), Few-shot DPP (Ye et al.|[2023)),
parameter-efficient fine-tuning methods (i.e., QLoRA (Dettmers et al.|[2023) and AdaLoRA (Zhang
et al., 2023)), and activation steering methods (i.e., ICV (Liu et al.| |2024a) and SEA (Qiu et al.,
2024)). Detailed descriptions of these baselines are presented in Appendix [F|

Implementation Details. Our experiments are conducted using Llama3.1-8B (Dubey et al., [2024)
and Qwen2.5-7B (Yang et al., 2025). In our subset selection strategy, we set the subset size n to 20,
the hop-based decay factor « to 0.2, and the balanced parameter v between influence and diversity to
0.5. For activation steering, we inject the activations into the final token’s hidden state. The injection
layer is determined based on performance on the validation set, the injection strength A is set to 0.2,
the similarity threshold e is set to 0.6, and the preserved frequency component k is set to d/2. We use
accuracy as the evaluation metric. All experiments are computed on 8 A800 GPUs.

4.2 EXPERIMENTAL RESULTS

Cross-domain transfer scenarios. Table|I|shows the results for the cross-domain transfer setting.
Detailed results are provided in Table [§] and Table )] We observe that the performance of the
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cross-task few-shot prompting is highly dependent on the similarity between source and target
domains. When domains are closely related (e.g., ARC-Easy — ARC-Challenge), incorporating
source-domain examples improves performance. In contrast, for dissimilar domain pairs (e.g.,
ARC-Easy — MedMCQA), such examples introduce noise and lead to performance degradation.
For parameter-efficient fine-tuning (PEFT) methods, performance varies more substantially across
different task pairs. Fine-tuning with source task examples generalizes effectively to similar target
tasks, but impairs performance on dissimilar ones. All activation steering methods facilitate effective
cross-domain transfer due to the consistent directions of information-enhanced features in the latent
space across different domains. Among these, FAST consistently outperforms all baselines across all
domain pairs. This is because our approach applies the Fourier transformation method to disentangle
information-enhanced and domain-specific activations within the difference vectors. By injecting
both task-agnostic enhanced features and similarity-weighted domain-specific information, FAST
enhances general model capability while avoiding the injection of irrelevant domain noise.

Cross-lingual transfer scenarios. Table 2| presents the results for the cross-lingual transfer setting.
Detailed statistics are provided in Table[I0] We find that the performance of cross-lingual few-shot
prompting is strongly influenced by the linguistic similarity between source and target languages.
For closely related language pairs (e.g., French — German), incorporating cross-lingual examples
generally improves performance. In contrast, for distant language pairs (e.g., English — Chinese),
such demonstrations often introduce noise and lead to negative transfer. Similar to the cross-domain
scenario, PEFT methods amplify this phenomenon, exhibiting higher variance across language pairs.
Furthermore, activation steering methods effectively facilitate cross-lingual transfer by operating in
the latent space, achieving robust performance across diverse language pairs. Among these, FAST
achieves the best performance by leveraging the Fourier transformation to decouple information-
enhanced features via low-pass filtering. Furthermore, it selectively injects high-frequency domain-
specific features when source and target tasks exhibit high similarity, which enables more effective
and stable latent space steering for cross-lingual transfer.

4.3 ABLATION STUDY

Our approach introduces two key components: Table 3: Ablation study.
(1) Influential and diverse subset selection, and — -
2) Fourier-based activation steering. To verif’ Dataset | ARC-C_FPB_MedMCQA
( . g y FAST ‘ 76.14 59.26 56.09
the effectiveness of each component, we con- _
. . Subset Selection
duct ablation studies on three target tasks: ARC-
. . /o Infl e Sc 75.62 56.91 54.83
Challenge, Financial Phrasebank, and MeQM- Wio Diversity Penalty 7101 3738 3599
CQA. We also compare our subset selection  w/oBoth 7372 5429 53.18
. - - Vote-k 7546 5789 5535
method with two established approaches (i.e.,  DEAL 7569 5804  55.04
Vote-k (Su et al., 2023) and IDEAL (Zhang et al., Activation Steering
2024)). The results are presented in Table We  wio Information-enhanced Activation | 72.25  48.32 51.89
: w/o Task-specific Activation 7548  56.59 57.71
observe that removing any component leads to 0 550 7180 3780 2940

performance degradation across all tasks, con-
firming that both elements are essential to our method. Notably, the removal of information-enhanced
activation causes the most significant performance drop, indicating that these activations provide the
most important signals for cross-task transfer. Furthermore, our selection strategy outperforms both
Vote-k and IDEAL, demonstrating the effectiveness of the proposed approach.

4.4 THE EFFICIENCY OF FAST
Table 4: Efficiency comparison of different meth-
In this part, we analyze the computational ef- ods. “T.C.” denotes time complexity, where n and
ficiency of our method in comparison to base- d represent the length of the question and demon-
line methods. As shown in Table 4 our ap-  girations, respectively.
proach demonstrates significant advantages in
both time complexity and runtime. FAST main-
tains the same time complexity, O(n?), as zero-

Inference
T.C.

Preprocess Training Inference | Total
Time (s) Time (s) Time (s) | Time (s)

. . . . Zero-shot n?) 0 0 212 212
shot prompting, which is substantially more  Few-shot Random | O((d + n)?) 0 0 451 451

o
Ol(d+n)?

efficient than few-shot methods that exhibit o hot PP SES'H”)) 138 0 454 | 592
o(

Method

5 - - - AdaLoRA ) 0 332 215 547
O((d + n)*) complexity due to their longer in-  FasT n?) 172 0 21 393
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Table 5: Experiments on generation tasks.

Method ‘ XSum GSMS8K  LiveCodebench GPQA \ Average
Zero-shot 28.32 76.65 16.67 35.29 39.73
Promptin Few-shot Random | 27.464348 79.9144.95 11.7449.94 31144502 | 37.564+4.10
P g Few-shot TOpK 28~04i2.76 80489i3>47 13-31i2.34 31.68i4_89 3848i357
Few-shot DPP 29~05i3.18 81.20i2.95 13.89i2449 32-97i4.07 39.28i3417
PEFT QLoRA | 23424697 69.2645.08 12.7943.29 29.9746.38 | 33.86+5.43

AdalLoRA 24~01j:6.14 70~91j:5.26 11.9214405 30.48i7,29 34-3315.68

ICV | 31.824248 83.9342.18 18.20+2.11 37.2543.48 | 42.80+2.56
Activation Steering SEA 32.49:{:1‘97 84.91:&2‘11 18.78:(:194 38.8213,05 43.75;&2(27
FAST 34.41i15:§ 86-13i174 20-55i235 40-48i:}75 45-39i2:}4

put sequences. This is because our method injects activations into the model’s latent space during
the forward pass without adding additional tokens to the input. In terms of actual runtime, FAST
requires only 393 seconds in total, which includes 172 seconds for preprocessing (subset selection
and activation extraction) and 221 seconds for inference. This represents a notable improvement
over few-shot methods and PEFT approaches, demonstrating that FAST achieves effective cross-task
transfer while maintaining computational efficiency.

4.5 DETAILED ANALYSIS

In this section, we present a detailed analysis of the proposed method. Unless otherwise stated, we
conduct experiments using ARC-Challenge as the target task.

FAST performs well on different-scale LLMs. We conduct experiments on Qwen-series LLMs
ranging from 0.5B to 32B in Figure [6] with additional results in Figure [0] Notably, activation
steering methods consistently outperform few-shot prompting across all model sizes. Among these,
FAST achieves the best performance by explicitly disentangling information-enhanced features from
task-specific activations, enabling more effective and robust cross-task transfer.

FAST demonstrates strong scalability. To evaluate the scalability of our proposed method, we
conduct experiments using different numbers of examples from the source task, as shown in Figure
(additional results in Figure[T0). We find that the performance of cross-task few-shot learning initially
improves with more examples, but eventually plateaus or even drops when too many examples
are used. This can be attributed to the limited long-context capability of LLMs, which hinders the
effective use of large-scale high-resource data. In contrast, activation steering methods show a positive
correlation between the number of examples and model performance. With more demonstrations,
these methods better isolate instance-level variations and extract more general task-level features,
leading to more effective cross-task transfer. In particular, FAST demonstrates the strongest scalability
among all activation steering methods due to its decoupled activation injection method.

Optimal performance of FAST at middle layers with moderate injection strength. As shown
in Figure [§] (additional results in Figure [TT)), both the injection layer and the injection strength
significantly affect the performance of FAST. We find that injecting activations at middle layers
yields the best results, indicating that these layers encode richer features that are beneficial for
cross-task transfer. Furthermore, FAST achieves optimal results when the injection strength is set to
0.2. Higher values tend to disrupt the model’s inherent representations, while lower values produce
insufficient signals to effectively guide the model’s behavior toward the target task.

Our method performs well on generation tasks. To evaluate the generalizability of our proposed
method beyond classification tasks, we conduct experiments on a variety of generation tasks on
Qwen2.5-7B. We consider four generation benchmarks: XSum (Narayan et al.| 2018) for summariza-
tion, GSM8K (Cobbe et al.,2021) for mathematical reasoning, GPQA (Rein et al., 2024) for scientific
question answering, and LiveCodeBench (Jain et al., 2025) for code generation. The results are
presented in Table[5] We inject activations into the hidden state of the first token, as it steers the sub-
sequent generation process while minimizing disruption to the model’s inherent generation behavior.
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We observe that incorporating cross-task examples via cross-domain in-context learning often leads
to performance degradation in these generation tasks. This suggests that, unlike in classification tasks,
in-context examples from dissimilar tasks may introduce noise that disrupts the generation process.
Besides, parameter-efficient fine-tuning methods also struggle to generalize effectively, likely due to
their limited capacity to adapt to the generation tasks from dissimilarity tasks. Notably, activation
steering methods consistently outperform both prompting-based and parameter-efficient fine-tuning
baselines. Among these, our method achieves the best performance across all tasks. The consistent
improvements highlight FAST can effectively inject transferable information-enhanced activations.

5 RELATED WORK

Transfer Learning. Transfer learning offers a promising solution to alleviate the scarcity of labeled
data in low-resource tasks by leveraging knowledge from high-resource tasks. Existing transfer
learning approaches for LLMs can be broadly categorized into two types: continuous and discrete
cross-task transfer. Continuous methods (Vu et al., 2022} [Li et all, 2022} [Lv et al., [2024) learn
shared continuous soft prompts from source tasks and apply them to the target tasks. While effective,
these approaches require fine-tuning and often generalize poorly. On the other hand, discrete
methods (Tanwar et al] 2023} [Cahyawijaya et all, [2024; [Li et al, [2023D} [Chatterjee et al.| [2024)
incorporate high-resource examples into LLM inputs to solve low-resource tasks without parameter
updates. However, such an approach suffers from limitations in robustness, scalability, and efficiency.
To address these issues, we propose a novel approach to extract activations from high-resource tasks
and inject them into low-resource tasks, which eliminates the need for fine-tuning or input expansion.

Activation Steering. Activation steering is an established technique that treats internal representations
as fundamental units for analysis and manipulation within neural networks. It has been applied
across various scenarios, including model alignment (Liu et al.| 2024b), personality modeling

et al.| [2024), instruction following 2025)), hallucination mitigation 2023a;
|Arditi et al.,[2024), safety enhancement 2024a), and reasoning improvement (Hgjer et al.,

2025} [Tang et al., [2025). In this work, we adopt activation steering to transfer knowledge from
data-sufficient to data-scarce tasks, providing a new pathway for effective cross-task generalization.

6 CONCLUSION

In this work, we explored the potential of achieving cross-task transfer in LLMs via latent space
steering. Through empirical analysis, we found consistent activation patterns between few-shot
and zero-shot prompts across tasks. Besides, we observed that the difference activations can be
decomposed via Fourier transformation into information-enhanced (low-frequency) and task-specific
(high-frequency) components. Based on these insights, we proposed FAST, a Fourier-based activation
steering framework that transfers knowledge from high-resource to low-resource tasks without fine-
tuning or context expansion. Extensive experiments in cross-domain and cross-lingual settings
demonstrated that our method consistently outperformed existing approaches.
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Algorithm 1 Influence and Diversity-driven Sample Quantification(G, Sselected, Ni(+), v, ky 8, 7Y)

Inputs:
Sample directed graph G = (V, E, P), i-hop neighibor function N;(-), Current selected sample subset
Sselecteds Sample node v, Neighborhood depth k, Hop-based decay factor 3, balance hyper-parameter
between diversity and influence ~.

Initialize:
D(U) =0, [(’U) =0, Sactive — 0, Svisited — @
while Sycive 7 ) do > Influencial Calculation

Choose a sample node u € Saciive
for each neighbor w € N (u) do
Select edge (u, w) with probability p(u, w)
if edge (u, w) is selected and w ¢ Syisiea then
Sactive <= Sactive U W, Svisited = Svisited U W
end if
end for
Saclive <~ Sactive \ u
end while
I(U) - ‘Svisited|
fori = 1to k do > Diversity Calculation
Search i-hop neighbors of sample node v: N;(v);
Compute overlap between i-hop neighbors and Seeiectea: 0i <— |N;(v) M Sselected|
D) + D(v) — 8*-0;
end for
return Sample node v evaluation function: Fg(v) « I(v) + - D(v)

Algorithm 2 Tterative Greedy Graph Search(G, S, n)

Inputs:

Sample directed graph G = (V, E, P), Initial sample subset S, Selected sample subset size n.
Initialize:

So — 0,4 = 0, Sample node evaluation function fg : V + R based on Algorithm
while i < n do

v* +— arg max Fg(v)

veEV\S;

Si+1 — S; Uv*

1+ i+1
end while
return S,.

A USAGE OF LLMS

In this paper, Large Language Models are used solely for polishing the writing.

B REPRODUCIBILITY STATEMENT

Our code is provided in the anonymous link to facilitate reproducibility.

C ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. No ethical issues arise from this research.

D ADDITIONAL EXPERIMENTS

D.1 HYPERPARAMETER ANALYSIS

FAST includes a few hyperparameters to tune. In this section, we present a detailed analysis of their
impact on model performance. For the influential and diverse subset selection strategy, we examine
the hop-based decay factor o and the trade-off parameter ~y that balances diversity and influence. The
results are illustrated in Figure[I3a]and Figure[I3b] As we can see, setting « too small or too large
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Figure 11: Different injection layers and strengths

leads to a performance drop. If « is too small, the method may overlook meaningful connections
between nodes that are indirectly linked. In contrast, an excessively large o would decrease the
positional relationships between nodes within graphs. As for balanced hyperparameter v, we find
that choosing an appropriate value helps achieve a good balance, resulting in a subset that is both
representative and diverse.

For the activation steering component, we investigate the effect of frequency cutoff k£, similarity
threshold e and injection position, with results presented in Figure Figure and Table El
We find that the frequency cutoff k = d/2 yields the best performance, as it effectively separates
low- and high-frequency components. Besides, the optimal similarity threshold is 0.6. Performance
remains relatively stable across values from 0.4 to 0.7, with our method consistently outperforming
all baselines in this range. In addition, our finding reveals that injecting activations at the last token
position consistently yields the best performance across models and target tasks. This is because the
final token position aggregates sufficient contextual information, and modifications at this position
can directly affect the output generation without disrupting the encoding of earlier tokens.

D.2 EXPERIMENTS ON MULTI-MODAL TASKS.

To further evaluate our proposed method, we conduct multimodal tasks using MathVista 1,
2024), MMStar (Chen et al.| 2024b) and MMMU 2024) datasets using Qwen2.5-VL-7B-
Instruct (Bai et al.l, M The results are presented in Table |7 The results show that our method
consistently achieves the best performance on these multimodal reasoning tasks, demonstrating its
broad applicability.

E DATASET DETAILS

In this part, we provide detailed descriptions of the datasets used in our experiments, covering both
cross-domain and cross-lingual scenarios.

16



Under review as a conference paper at ICLR 2026

AG-news_Fs ARC-E_Fs SST2_Fs
—— AG-news_Zs —— ARC-E_Zs —— SST2_Zs
ARC-C_Fs ARC-C_Fs ARC-C_Fs
—— ARC-C_Zs —— ARC-C_Zs —— ARC-C_Zs

g /9 ) %
= 3 ¢

AG-news_Fs ARC-E_Fs SST2_Fs
—— AG-news_Zs —— ARC-E_Zs —— SST2_Zs
FPB_Fs FPB_Fs FPB_Fs
—— FPB_Zs —— FPB_Zs —— FPB_Zs

.
e® R

A /
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Figure 13: Hyperparameter Analysis

E.1 CROSS-DOMAIN SCENARIOS

o ARC-Easy: ARC-Easy (Clark et al.| [2018) is a multiple-choice question-answering dataset, which
consists of simple science exam questions from grade 3 to grade 9. These questions are designed to
be straightforward and require basic knowledge.

o AG-news: AG-news (Zhang et al.,|2015) is a news topic classification dataset, which is constructed
by collecting article titles and descriptions from the four main categories: World, Sports, Business,
and Sci/Tech.

e BoolQ: BoolQ (Clark et al.;,2019) is a reading comprehension dataset with yes/no questions. The
task requires answering these binary questions based on the given passages.

o Commonsense-QA: Commonsense-QA (Talmor et al.,2019) is a multiple-choice question answer-
ing dataset that requires different types of commonsense knowledge to find the correct answers.

e MNLI:The Multi-Genre Natural Language Inference (MNLI) (Williams et al.l 2018) is a crowd-
sourced collection of 433k sentence pairs annotated with textual entailment information. The task is
to classify the relationship between two sentences as entailment, contradiction, or neutral.
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Table 6: Performance comparison across different injection positions.

Position | Random  All First  Last
Target Task: ARC-C

Llama3.1-8B 73.12  74.69 76.02 76.14
Qwen2.5-7B 89.60  89.17 91.63 92.20

Target Task: FBR

Llama3.1-8B 5528  55.73 58.48 59.26
Qwen2.5-7B 89.75 87.68 91.86 93.80

Table 7: Experiments on multi-modal tasks.

Method | MathVista MMStar MMMU | Average

Zero-shot 68.52 64.12 58.08 63.57
Few-shot Random 64.43i2_14 62.12:&3.28 59.71;{;2_54 62.09:&2.65

Prompting Few-shot TopK | 64484539 62.281056 59.234047 | 62.0040 47
Few-shot DPP 64.91i294 62.541319 60.1812.39 62.541284
PEFT QLORA 60.53:‘:5,12 65.23:‘:7.19 58.24:‘:4_17 61.33:‘:5,49

AdalLoRA 62-91:i:6.72 65-26:t6.24 58.46i4_28 62.21:&;.75

ICV | 7T1.1747.48 65194993 61.244782 | 65.8741.84
Activation Steering SEA 71-24i1.24 66.501245 61.8511,95 66.531188
FAST | 733415 688315 64.12.1 7 | 68.76.1 53

e QQP: Quora Question Pairs (QQP) (Sharma et al., 2019) is a natural language understanding
dataset comprising over 400k question pairs. Each question pair is annotated with a binary label
indicating whether the two questions are duplicates of each other.

e SST2: The Stanford Sentiment Treebank (SST2) (Socher et al., 2013) is a binary sentiment
classification dataset, which contains the movie reviews labeled as either positive or negative.

e ARC-Challenge: ARC-Challenge (Clark et al., 2018) is a more difficult version of ARC-Easy. It
also includes science exam questions for grades 3 to 9, but requires deeper reasoning and advanced
problem-solving strategies.

o Financial Phrasebank: Financial Phrasebank (Malo et al.| 2014) is a sentiment analysis dataset
focused on financial news, which consists of financial news articles annotated with sentiment labels
such as positive, negative, or neutral.

o MedMCQA: MedMCQA (Pal et al.|[2022) is a large-scale, multiple-choice question answering
dataset, designed to address real-world medical entrance exam questions.

e SciQ: SciQ (Auer et al., [2023) is a multiple-choice question answering dataset comprising science
exam questions in the fields of physics, chemistry, and biology.

e Social-i-QA: Social-i-QA (Sap et al., [2019) is a question-answering benchmark designed to
evaluate social commonsense intelligence, which focuses on understanding people’s actions and their
social implications.

E.2 CROSS-LINGUAL SCENARIOS

e MARC:The Multilingual Amazon Reviews Corpus (MARC) (Keung et al.,2020) is a large-scale
collection of Amazon reviews for multilingual text classification, which contains reviews in six
languages: English, Japanese, German, French, Spanish, and Chinese.
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F DETAILED DESCRIPTION OF BASELINES

In this part, we provide detailed descriptions of all the baselines used in our experiments. Our baselines
include prompting methods (i.e., Zero-shot, Few-shot Random, Few-shot TopK (Liu et al.,|2022b),
Few-shot DPP (Ye et al., [2023))), parameter-efficient fine-tuning methods (i.e., QLoRA (Dettmers
et al., [2023) and AdaLoRA (Zhang et al.,|2023)), and activation steering methods (i.e., ICV (Liu
et al.,[2024a) and SEA (Qi1u et al., [2024)).

e Zero-shot: The model generates predictions using only the input query from the target task, without
any demonstrations or examples from source tasks.

o Few-shot Random: This method randomly selects a set of examples from the source task.

o Few-shot TopK (Liu et al.,|2022b): This approach selects examples from the source task based on
their similarity to the target input.

e Few-shot DPP (Ye et al., 2023): This method uses Determinantal Point Processes (DPP) to select
a diverse and representative set of examples from the source task.

o QLoRA (Dettmers et al.; 2023)): Quantized Low-Rank Adaptation (QLoRA) is a parameter-efficient
fine-tuning method that uses quantized weights and low-rank adapters to achieve cross-task transfer.

o AdalL.oRA (Zhang et al,|2023): Adaptive Low-Rank Adaptation (AdaLoRA) dynamically allocates
parameter budget based on the importance of different weight matrices. It supports cross-task transfer
by fine-tuning on samples from the source task.

¢ ICV (Liu et al.,|20244): In-context Vectors (ICV) steers model behavior by computing and injecting
pre-computed PCA-projected activation vectors to the model’s hidden states during inference.

e SEA (Qiu et al.l 2024): Spectral Editing of Activations (SEA) uses SVD to project activations into
directions derived from positive and negative demonstrations. It then incorporates the difference
representations to steer model behavior toward desired outputs.
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G CASE STUDY

Case Study 1

Zero-shot:

Definition: Given a question answering task from the 3rd to 9th-grade science exam. The
question contains four options "A.", "B.", "C." and "D." Select the most appropriate choice
that answers the question.

Question: A student mixed 25 grams of salt into 1,000 grams of water. What is the mass of
the saltwater mixture?

A. 975 grams

B. 1,000 grams

C. 1,025 grams

D. 2,500 grams

Answer: B

Few-shot:

Definition: Given a context and a question do binary true and false type text classification.
You are given a passage as context and a question related to the passage that can be
answered as "True" or "False". Based on the context, question and your reasoning ability
answer in a "True" and "False".

Context: Usually, the relationship between mass and weight on Earth is highly proportional;
objects that are a hundred times more massive than a one-liter bottle of soda almost always
weigh a hundred times more—approximately 1,000 newtons, which is the weight one would
expect on Earth from an object with a mass slightly greater than 100 kilograms. Yet,
this is not always the case and there are familiar objects that violate this mass / weight
proportionality.

Question: Is mass the same as weight on earth?

Label:False

Definition: Given a question answering task from the 3rd to 9th-grade science exam. The
question contains four options "A.", "B.", "C." and "D." Select the most appropriate choice
that answers the question.

Question: A student mixed 25 grams of salt into 1,000 grams of water. What is the mass of
the saltwater mixture?

A. 975 grams

B. 1,000 grams

C. 1,025 grams

D. 2,500 grams

Answer: A

Ours:

Definition: Given a question answering task from the 3rd to 9th-grade science exam. The
question contains four options "A.", "B.", "C." and "D." Select the most appropriate choice
that answers the question.

Question: A student mixed 25 grams of salt into 1,000 grams of water. What is the mass of
the saltwater mixture?

A. 975 grams

B. 1,000 grams

C. 1,025 grams

D. 2,500 grams

Answer:
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Case Study 2

Zero-shot:

Definition: Given a sentence mined from a financial news article, you are to determine the
sentiment polarity of the sentence. The task deals with financial sentiment analysis. Based
on the sentiment conveyed by the sentence, label the sentence as "negative", "positive" or
"neutral".

Sentence: Equipment will be manufactured in Vaahto ’s workshop in Hollola , Finland and
is scheduled for shipments during the first quarter of 2009 .

Label: positive

Few-shot:

Definition: Given a context and a question do binary true and false type text classification.
You are given a passage as context and a question related to the passage that can be
answered as "True" or "False". Based on the context, question and your reasoning ability
answer in a "True" and "False".

Context: Harley-Davidson India is a wholly owned subsidiary of Harley-Davidson, based
in Gurgaon, Haryana, India. Harley-Davidson India commenced operations in August 2009
and appointed its first dealership in July 2010. Question: does harley davidson have a plant
in india Label:True

Definition: Given a sentence mined from a financial news article, you are to determine the
sentiment polarity of the sentence. The task deals with financial sentiment analysis. Based
on the sentiment conveyed by the sentence, label the sentence as "negative", "positive" or
"neutral".

Sentence: Equipment will be manufactured in Vaahto ’s workshop in Hollola , Finland and
is scheduled for shipments during the first quarter of 2009 .

Label: positive

Ours:

Definition: Given a sentence mined from a financial news article, you are to determine the
sentiment polarity of the sentence. The task deals with financial sentiment analysis. Based
on the sentiment conveyed by the sentence, label the sentence as "negative", "positive" or
"neutral".

Sentence: Equipment will be manufactured in Vaahto ’s workshop in Hollola , Finland and
is scheduled for shipments during the first quarter of 2009 .

Label:
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Case Study 3

Zero-shot:

Definition: Given a multiple choice question containing four options "A.", "B.", "C." and
"D." from a medical entrance exam. The question is related to a sub-field of medical
science like Microbiology, Radiology, Ophthalmology, Surgery, Human anatomy, etc.
Based on the question, the option and your knowledge of the medical field select the most
appropriate answer from the provided choices "A.", "B.", "C." and "D.".

Question: Which of the following is not a component of quick SOFA (qSOFA) scoring?
A. Bilateral undilated pupils

B. Altered Mentation

C. Glasgow Coma Score

D. SBP <= 100 mm Hg

Answer: C

Few-shot:

Definition: Given a context and a question do binary true and false type text classification.
You are given a passage as context and a question related to the passage that can be
answered as "True" or "False". Based on the context, question and your reasoning ability
answer in a "True" and "False".

Context: The series debuted on January 26, 2017 to positive reviews. A 22-episode second
season premiered on October 11, 2017, and concluded on May 16, 2018. On April 2, 2018,
The CW renewed the series for a third season, which is set to premiere October 10, 2018.
Question: is there going to be any more episodes of riverdale

Label: True

Definition: Given a multiple choice question containing four options "A.", "B.", "C." and
"D." from a medical entrance exam. The question is related to a sub-field of medical
science like Microbiology, Radiology, Ophthalmology, Surgery, Human anatomy, etc.
Based on the question, the option and your knowledge of the medical field select the most
appropriate answer from the provided choices "A.", "B.", "C." and "D.".

Question: Which of the following is not a component of quick SOFA (qSOFA) scoring?
A. Bilateral undilated pupils

B. Altered Mentation

C. Glasgow Coma Score

D. SBP <= 100 mm Hg

Answer: C

Ours:

Definition: Given a multiple choice question containing four options "A.", "B.", "C." and
"D." from a medical entrance exam. The question is related to a sub-field of medical science
like Microbiology, Radiology, Ophthalmology, Surgery, Human anatomy, etc. Based on the
question, the option and your knowledge of the medical field select the most appropriate
answer from the provided choices "A.", "B.", "C." and "D.".

Question: Which of the following is not a component of quick SOFA (qSOFA) scoring?
A. Bilateral undilated pupils

B. Altered Mentation

C. Glasgow Coma Score

D. SBP <= 100 mm Hg

Answer:
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Case Study

Zero-shot:

Definition: Given a question from a scientific exam about Physics, Chemistry, and Biology,
among others. The question is in multiple choice format with four answer options "A.",
"B.", "C." and "D.". Using your knowledge about the scientific fields answer the question
and provide the label "A", "B", "C" and "D" as answer.

Question: What happens to energy when work is done by a system?

A. removed

B. stored

C. multiplied

D. added

Answer: B

Few-shot:

Definition: Given a context and a question do binary true and false type text classification.
You are given a passage as context and a question related to the passage that can be
answered as "True" or "False". Based on the context, question and your reasoning ability
answer in a "True" and "False".

Context: The sixth season of the American ABC fantasy-drama Once Upon a Time was
ordered on March 3, 2016. It debuted on September 25, 2016, and concluded on May 14,
2017. In January 2017, it was stated that the sixth season would end the main storyline, and
for a seventh season, the series would be softly rebooted with a new storyline.

Question: is there a season six of once upon a time

Label: True

Definition: Given a question from a scientific exam about Physics, Chemistry, and Biology,
among others. The question is in multiple choice format with four answer options "A.",
"B.", "C." and "D.". Using your knowledge about the scientific fields answer the question
and provide the label "A", "B", "C" and "D" as answer.

Question: What happens to energy when work is done by a system?

A. removed

B. stored

C. multiplied

D. added

Answer: B

Ours:

Definition: Given a question from a scientific exam about Physics, Chemistry, and Biology,
among others. The question is in multiple choice format with four answer options "A.",
"B.", "C." and "D.". Using your knowledge about the scientific fields answer the question
and provide the label "A", "B", "C" and "D" as answer.

Question: What happens to energy when work is done by a system?

A. removed

B. stored

C. multiplied

D. added

Answer:
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Table 8: Experiments on cross-domain scenarios using Llama3.1-8B.

Source Task

Model Target Task Method
| ARC-Easy AG-news BoolQ Com-QA MNLI QQP SST2 | Average
Few-shot Random 72.40 68.00 72.40 70.60 64.60 6720 70.00 | 69.3112.66
Few-shot TopK 74.20 69.20 69.80 71.20 66.20 67.40 68.80 | 69.5415 40
Few-shot DPP 75.20 66.40 71.00 71.40 67.80 67.00 69.40 | 69.741585
ARC-Challenge QLoRA 74.80 64.40 72.40 72.00 6520 68.40 68.00 | 69.3113.60
(Zs: 71.80) AdalLLoRA 75.00 63.80 72.80 71.80 66.40 69.20 69.20 | 69.74 1355
Icv 74.40 72.20 73.20 72.40 72.00 71.20 73.00 | 72.6310.95
SEA 74.20 72.60 73.60 74.00 7340 72.80 73.80 | 73.4940.55
FAST 75.80 76.40 75.60 77.20 7620 75.60 76.20 | 76.14 5o
Few-shot Random 44.80 48.20 46.40 48.80 56.80 48.60 46.00 | 48.511365
Few-shot TopK 42.00 47.20 46.00 47.00 61.60 5240 44.20 | 48.6316.07
Few-shot DPP 40.80 47.60 46.80 49.60 61.80 49.80 45.80 | 48.8915.96
Financial Phrasebank QLoRA 44.40 54.50 52.80 49.00 63.00 56.80 45.80 | 52.33.16.04
(Zs: 37.80) AdaLoRA 43.80 55.80 53.60 49.40 63.20 58.80 44.20 | 52.6916.76
Icv 48.80 56.60 55.00 51.20 61.80 58.20 50.00 | 54.51+4.40
SEA 49.60 57.80 56.20 51.40 62.40  59.00 50.60 | 55.29.44.49
FAST 54.60 60.40 59.40 53.40 64.00 64.40 58.60 | 59.26.3 99
“ Few-shot Random 47.00 50.00 46.80 47.60 53.20 46.60 49.60 | 48.69195.03
f Few-shot TopK 47.80 49.00 47.80 47.40 52.80 47.40 48.60 | 48.6944 77
Pt Few-shot DPP 49.00 49.80 50.20 47.40 54.00 4720 50.60 | 49.7415 15
E MedMCQA QLoRA 49.20 52.00 49.20 48.40 5520 4420 52.20 | 50.064+3.94
= (Zs: 49.40) AdaLoRA 49.40 52.40 49.80 48.80 55.60 4420 51.40 | 50.2313.96
~ Icv 52.60 53.60 51.00 51.80 5420 5220 54.00 | 52.7741.11
SEA 53.80 54.20 51.60 52.40 5420 5240 5440 | 53294104
FAST 57.20 56.80 55.40 55.80 56.00 5520 56.20 | 56.09. .67
Few-shot Random 88.20 84.20 86.60 87.80 80.00 81.80 83.80 | 84.63.1235
Few-shot TopK 87.60 82.20 85.80 87.00 83.20 81.60 86.60 | 84.8615.08
Few-shot DPP 87.40 86.40 87.00 87.80 82.60 82.00 83.60 | 85.2649.96
SciQ QLoRA 88.60 83.00 88.80 88.00 77.00 7820 84.20 | 83.9744.53
(Zs: 84.40) AdaLoRA 88.40 82.80 88.60 87.80 7820 78.40 85.30 | 84.214419
Icv 89.80 89.20 90.20 88.20 84.00 83.80 87.00 | 87.4649.45
SEA 90.20 89.40 90.60 88.40 8520 84.80 87.40 | 88.0042.14
FAST 91.60 92.00 91.00 90.00 89.00 89.80 89.60 | 90.43_., 3
Few-shot Random 60.40 58.00 59.60 62.40 59.00 57.20 57.40 | 59.1441 71
Few-shot TopK 61.80 60.80 58.80 62.80 58.60 56.80 56.00 | 59.3742.35
Few-shot DPP 60.20 61.00 60.00 60.00 60.00 59.60 56.40 | 59.60+1 36
Social-i-QA QLoRA 61.40 56.00 61.00 64.40 55.20 5420 52.20 | 57.77+4.16
(Zs: 55.40) AdaLoRA 62.00 56.40 60.60 65.40 56.00 53.80 51.00 | 57.8944.64
Icv 63.00 61.40 61.00 64.80 60.20 60.20 60.20 | 61.5411 62
SEA 62.80 61.80 61.80 64.80 61.40 61.80 60.40 | 62.1141 98
FAST 65.60 63.20 64.20 66.40 6340 65.60 63.60 | 64.57. 13
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Table 9: Experiments on cross-domain scenarios using Qwen2.5-7B.

Model ‘

Target Task

Method

Source Task

‘ ‘ ‘ ARC-Easy AG-news BoolQ Com-QA MNLI QQP SST2 ‘ Average
Few-shot Random 86.80 86.60 83.20 86.60 84.40 86.20 86.80 | 85.80+1 32
Few-shot TopK 87.40 86.40 86.00 86.60 84.60 86.60 86.60 | 86.314950
Few-shot DPP 87.20 86.60 86.00 86.80 85.00 86.00 86.60 | 86.31+0¢7
ARC-Challenge QLoRA 91.20 82.20 84.00 87.80 82.20 87.20 89.80 | 86.341334
(Zs: 82.80) AdaLoRA 91.40 83.40 82.60 87.60 81.20 87.60 90.40 | 86.3113¢7
cv 90.80 88.00 88.20 88.00 87.40 89.00 88.00 | 88.49.41 04
SEA 91.20 89.40 89.00 88.40 87.80 89.40 88.80 | 89.14.19.49
FAST 93.40 92.20 92.40 92.80 90.00 91.80 92.80 | 92.20., ;
Few-shot Random 87.60 86.80 89.80 87.00 85.60 84.00 87.40 | 86.89.1 66
Few-shot TopK 89.20 88.00 89.60 86.40 84.00 86.60 90.00 | 87.6941.99
Few-shot DPP 87.60 87.80 90.40 86.20 86.20 86.80 89.20 | 87.7441 .46
Financial Phrasebank QLoRA 89.20 84.20 92.40 82.20 84.80 83.80 92.80 | 87.06.1403
(Zs: 85.20) AdaLoRA 89.40 83.80 93.60 83.60 8520 8520 93.20 | 87. 714140
Icv 90.20 89.80 92.80 89.60 88.00 89.20 93.40 | 90.43 451
SEA 90.80 90.40 93.60 89.80 88.60 89.00 93.00 | 90.74 41 77
FAST 94.60 93.20 94.60 93.80 92.60 93.60 94.20 | 93.80. (s
Few-shot Random 54.80 53.60 55.80 55.40 52.00 55.00 54.00 | 54371190
g Few-shot TopK 54.80 54.20 55.40 55.00 53.00 54.80 54.60 | 54541071
" Few-shot DPP 55.60 53.40 54.20 55.00 53.80 55.40 54.80 | 54.6040.76
E MedMCQA QLoRA 56.20 51.20 54.20 60.40 50.20 60.40 56.00 | 55.514372
z (Zs: 52.00) AdaLoRA 56.40 50.80 54.80 60.80 50.80 61.20 56.20 | 55.86.43.59
4 Icv 59.20 55.00 57.40 58.60 55.80 5820 57.20 | 57.3441.49
SEA 59.60 56.20 57.80 60.20 56.40 59.40 57.20 | 58.1145
FAST 62.00 59.00 60.60 63.00 60.00 62.40 59.00 | 60.86..; 5;
Few-shot Random 91.20 89.60 91.60 91.00 88.40 88.20 87.40 | 89.634155
Few-shot TopK 91.20 89.20 92.20 91.20 88.80 88.80 88.80 | 90.034 35
Few-shot DPP 91.40 89.00 92.00 91.60 88.60 89.80 87.20 | 89.94 . ¢6
SciQ QLoRA 93.20 86.20 94.60 93.80 8520 84.60 83.40 | 88.711454
(Zs: 89.60) AdaLoRA 93.80 87.40 94.60 94.40 86.40 8520 84.60 | 89.49.403
cv 93.80 90.00 93.00 93.60 90.00 91.20 91.80 | 91.914 48
SEA 94.40 91.60 93.40 94.00 91.00 91.80 92.40 | 92.66+1 .9
FAST 96.40 94.20 95.80 95.40 94.80 95.00 95.00 | 95.23_ 6
Few-shot Random 78.60 75.60 78.40 77.00 78.00 76.00 75.40 | 77.00 26
Few-shot TopK 78.00 76.20 77.60 77.20 78.00 76.00 75.80 | 76.97 195
Few-shot DPP 78.00 75.40 78.80 76.60 7720 75.60 76.20 | 76.831; 16
Social-i-QA QLoRA 81.20 73.20 79.20 80.40 81.40 72.40 73.40 | 77314350
(Zs: 76.00) AdaLoRA 81.80 73.00 79.80 80.20 81.40 73.20 73.80 | 77.604375
Icv 81.60 80.20 79.80 81.20 80.80 78.00 79.20 | 80.114 15
SEA 82.00 80.80 80.20 81.60 81.60 78.00 79.00 | 80.464 35
FAST 84.20 83.80 83.60 84.40 83.80 81.80 82.60 | 83.46. (56
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Table 10: Performance comparison in the cross-lingual scenarios.

Target | Method \ Source Language
Language \ | de en es fr ja zh | Average
Few-shot Random - 76.80 84.00 93.00 87.60 86.80 | 85.6415.30
Few-shot TopK - 7720 8540 93.80 86.80 87.40 | 86.1245.31
Few-shot DPP - 7720 86.20 92.60 87.20 88.60 | 86.36+5.07
de QLoRA - 7520 88.40 9420 83.20 84.80 | 85.1646.25
(Zs: 84.40) Adal.oRA - 75.80 88.00 94.60 84.40 8540 | 85.64+i6.07
ICv - 86.60 88.20 94.00 9140 90.60 | 90.1642.57
SEA - 87.00 88.60 94.80 91.00 90.80 | 90.441263
FAST - 89.80 90.80 9580 93.20 92.80 | 92.48.50s
Few-shot Random | 77.40 - 4280 58.00 76.80 41.80 | 59.36+15.58
Few-shot TopK 76.80 - 51.00 6240 79.60 38.00 | 61.56+15.65
Few-shot DPP 76.80 - 58.80 68.80 80.00 38.00 | 64.48+15.13
en QLoRA 71.40 - 60.60 72.80 85.80 26.80 | 63.48120.01
(Zs: 66.00) Adal.oRA 73.60 - 62.40 74.60 86.40 28.40 | 65.08+19.85
Icv 85.40 - 80.40 85.80 86.20 76.20 | 82.80+3.92
SEA 86.80 - 81.60 8740 8520 79.80 | 84.16+2.97
FAST 90.60 - 86.00 9120 90.40 87.00 | 89.04:5 11
Few-shot Random | 83.80 83.80 - 83.60 81.60 82.20 | 83.484+9.5s
Few-shot TopK 84.00 83.00 - 84.20 83.00 83.20 | 83.68+9.73
Few-shot DPP 84.00 84.20 - 83.60 83.40 83.40 | 85.40+8.42
es QLoRA 87.80 85.20 - 84.60 8140 74.80 | 82.16413.17
(Zs: 81.60) AdalLoRA 88.60 84.40 - 84.20 80.20 76.80 | 83.00+14.07
Icv 92.20 91.60 - 9240 9120 89.40 | 91.9642.06
SEA 9140 92.40 - 93.20 92.00 89.60 | 92.2041.62
FAST 95.20 95.60 - 9520 94.60 93.80 | 95.20-+0.40
Few-shot Random | 91.80 65.60 84.00 - 91.80 84.20 | 81.40+9.65
Few-shot TopK 91.40 6540 86.80 - 92.00 82.80 | 81.75+9.99
Few-shot DPP 91.40 69.40 89.40 - 9220 84.60 | 83.90+5.80
fr QLoRA 9340 58.20 88.00 - 93.00 78.20 | 79.35+13.32
(Zs: 86.60) AdalLoRA 9420 56.80 90.20 - 93.80 80.00 | 80.20+14.43
ICcv 93.00 91.40 9240 - 94.60 88.40 | 91.704+2.23
SEA 93.60 92.00 91.60 - 9420 89.60 | 91.85+1.63
FAST 95.00 95.20 95.80 - 9540 94.60 | 95.25.¢.43
Few-shot Random | 49.00 27.80 40.60 43.00 - 36.00 | 39.2847.11
Few-shot TopK 49.40 26.00 4140 43.60 - 36.60 | 39.4047.s6
Few-shot DPP 50.40 2520 43.40 44.00 - 36.20 | 39.8441s.59
ja QLoRA 50.40 15.60 45.60 46.80 - 30.20 | 37.72+13.05
(Zs: 38.60) AdalLoRA 50.80 18.40 46.00 46.40 - 32.40 | 38.80+11.92
ICv 51.20 4040 44.80 45.40 - 39.80 | 44324411
SEA 51.80 42.00 4540 44.80 - 41.40 | 45.08+3.70
FAST 53.20 47.00 47.60 47.00 - 45.80 | 48.12.9 61
Few-shot Random | 49.00 35.00 33.60 32.00 37.20 - 37.36+6.07
Few-shot TopK 49.20 36.60 35.80 33.20 37.00 - 38.3645.58
Few-shot DPP 51.60 35.80 37.00 3140 37.80 - 38.72+6.81
zh QLoRA 5120 28.60 34.00 26.80 39.00 - 35924876
(Zs: 30.80) Adal.oRA 52.40 28.20 3520 28.40 39.80 - 36.80+8.94
ICcv 52.00 38.00 39.00 36.60 40.20 - 41.1645.55
SEA 5320 39.20 38.80 38.80 41.20 - 422445 55
FAST 53.20 42.80 42.20 43.20 43.00 - 44.881 4. 17
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