
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ENHANCING CROSS-TASK TRANSFER OF LARGE LAN-
GUAGE MODELS VIA FOURIER ACTIVATION STEERING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have shown impressive abilities in leveraging
pretrained knowledge through prompting, but they often struggle with unseen
tasks, especially in data-scarce scenarios. While cross-task in-context learning
provides a direct solution for knowledge transfer without fine-tuning, it still faces
limitations in terms of robustness, scalability, and efficiency. In this paper, we
investigate whether cross-task transfer can be achieved via latent space steering.
Through analysis of activation patterns under both zero-shot and few-shot prompts,
we have three observations: (1) the activation differences between few-shot and
zero-shot prompts exhibit a nearly parallel structure in low-dimensional space;
(2) these difference vectors correlate strongly with task similarity; (3) Fourier
analysis reveals that low-frequency components encode task-agnostic, information-
enhanced features, while high-frequency components capture task-specific details.
Motivated by these findings, we propose FAST, a Fourier-based Activation Steering
cross-task Transfer framework. It first selects influential and diverse samples from
high-resource tasks, then injects information-enhanced low-frequency components
along with task-similarity weighted high-frequency components during inference.
Extensive experiments in both cross-domain and cross-lingual transfer settings
show that our method consistently outperforms existing methods. The code is
available in https://anonymous.4open.science/r/RETL-BC5B.

1 INTRODUCTION

Large Language Models (LLMs) (OpenAI, 2024; Guo et al., 2025) demonstrate remarkable capa-
bilities to store knowledge during pretraining, which can be effectively accessed via prompting.
However, as this paradigm becomes increasingly prevalent, a critical challenge emerges: these models
often struggle with tasks that were not seen during pretraining, particularly in data-scarce scenar-
ios (Bigoulaeva et al., 2025). A common strategy to tackle this issue is transfer learning (Zhuang et al.,
2021; Strangmann et al., 2024; Somerstep et al., 2025), which uses knowledge from high-resource
tasks to adapt to low-resource ones. Several studies (Vu et al., 2022; Li et al., 2022; Lv et al., 2024)
fine-tune soft prompts on data-sufficient tasks and subsequently apply them to data-scarce tasks
during inference. While effective, such approaches still require training and can not generalize well
across diverse tasks. An alternative line of work investigates cross-task in-context learning (ICL) (Tan-
war et al., 2023; Li et al., 2023b; Chatterjee et al., 2024), which utilizes labeled examples from
high-resource tasks to improve performance on low-resource tasks without parameter updates.

Despite its promise, cross-task ICL still faces several limitations. (1) Performance is highly sensitive
to the choice of demonstrations (Liu et al., 2022a; Levy et al., 2023), prompt templates (Wang et al.,
2023; Mishra et al., 2022), and source tasks (Chatterjee et al., 2024), which restricts its adaptabil-
ity (robustness). (2) Few demonstrations can be included due to the constrained context length of
LLMs (scalability). (3) Computational cost increases significantly with more demonstrations due to
the quadratic complexity of Transformers to the input length (efficiency). To address these challenges,
one possible solution is to operate activations in the continuous space, which avoids expanding the
discrete token sequences and mitigates context length constraints. This leads us to raise a research
question: Can we achieve effective cross-task transfer through latent space steering?

To answer this question, we conduct an empirical study of activation patterns under both zero-shot and
few-shot prompts. Our analysis reveals three main findings: (1) The difference in activations between
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few-shot and zero-shot prompts exhibits a nearly parallel structure when projected into a low-
dimensional space across diverse task pairs. This suggests that the enhanced information provided
by in-context examples has consistent directions in the model’s activation space. (2) To explore
whether these difference activations can be directly injected, we measure their directional similarity
across different source and target tasks in the high-dimensional activation space. We observe that their
directions are highly correlated with task similarity, suggesting that directly injecting difference
activations is more effective for related tasks, and less effective for dissimilar ones. (3) Inspired
by Fourier analysis, where representations can be decomposed into broad trends (low-frequency)
and localized details (high-frequency), we apply Fourier-based filtering to disentangle the difference
vectors. We find that low-frequency components capture task-agnostic and information-enhanced
features, and high-frequency components contain task-specific information.

Building on these insights, we propose a Fourier-based Activation Steering cross-task Transfer
framework, namely FAST. We first select a representative subset of high-resource examples that
balance influence and diversity, aiming to improve the efficiency of feature extraction. Specifically,
we first construct a similarity graph of high-resource examples, and then iteratively select a sample
with the highest combined influence and diversity score at each step until the desired subset size
is reached. Next, we compute the activation differences between few-shot and zero-shot prompts
for these selected samples. We then apply Fourier-based filtering to decompose these difference
activations into information-enhanced features (i.e., low-frequency components) and task-specific
features (i.e., high-frequency components). During inference on low-resource queries, we inject
the low-frequency components along with task-similarity weighted high-frequency components
into the forward pass, which guides LLMs toward effective cross-task transfer. This approach is
both efficient and scalable, as it relies solely on pre-computed activations from high-resource tasks
without requiring parameter updates or expanded input length. To validate the effectiveness of our
proposed method, we conduct extensive experiments in both cross-domain and cross-lingual scenarios.
Experimental results demonstrate that FAST consistently outperforms competitive baselines while
maintaining lower computational cost. Our main contributions can be summarized as follows:

• To the best of our knowledge, we are the first to systematically analyze the activation patterns of
both zero-shot and few-shot prompts. We find that: (1) the activation differences between few-shot
and zero-shot prompts exhibit a consistent and nearly parallel structure in low-dimensional space; (2)
these difference vectors are strongly correlated with task similarity in high-dimensional space; (3)
through Fourier-based analysis, these difference activations can be decomposed into task-agnostic,
information-enhanced features (low-frequency) and task-specific features (high-frequency).

• We propose FAST, a novel cross-task transfer framework that leverages Fourier-based activation
steering to transfer knowledge from high-resource to low-resource tasks. We first select a representa-
tive and diverse subset from high-resource tasks and apply Fourier-based activation steering to enable
effective cross-task transfer without requiring parameter updates or input expansion.

• We conduct extensive experiments in both cross-domain and cross-lingual transfer scenarios. The
experimental results demonstrate that our approach consistently outperforms competitive baselines
while maintaining high scalability and computational efficiency.

2 EMPIRICAL STUDY

The Hopfieldian view of cognition (Hopfield, 1982) posits that neural computation arises from
dynamic transformations in population-level neural activity in response to external stimuli. This
perspective has inspired mechanistic interpretations of artificial neural networks, where activation
steering (Zou et al., 2023) has emerged as a powerful method for analyzing internal model states. By
treating intermediate activations as fundamental computation units, activation steering helps reveal
high-level concepts and functions encoded within models. In this section, we analyze zero-shot and
few-shot prompts across various source and target tasks from the perspective of activations.

2.1 EXPERIMENTAL SETUP

Following Liu et al. (2024a), we extract activations from the last token position for both zero-shot
and few-shot prompts using Llama3.1-8B (Dubey et al., 2024), as this position aggregates the full
semantics of the input sentence. We use AGnews (Zhang et al., 2015), ARC-Easy (Clark et al., 2018),
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and SST2 (Socher et al., 2013) as source tasks, and ARC-Challenge (Clark et al., 2018) and Financial
Phrasebank (Malo et al., 2014) as target tasks. For each task, we randomly select 500 samples and
construct zero-shot and few-shot prompts, with the latter including three randomly chosen examples.

2.2 INFORMATION-ENHANCED FEATURES INDUCED BY IN-CONTEXT EXAMPLES EXHIBIT
CONSISTENT PATTERNS ACROSS TASKS

AG-news_Fs
AG-news_Zs
ARC-C_Fs
ARC-C_Zs

ARC-E_Fs
ARC-E_Zs
ARC-C_Fs
ARC-C_Zs

SST2_Fs
SST2_Zs
ARC-C_Fs
ARC-C_Zs

Figure 1: T-SNE visualization of model activations under
zero-shot and few-shot prompts. Red and Blue points denote
source and target tasks, respectively.

Given that few-shot prompts pro-
vide richer contextual information and
elicit more diverse features, we inves-
tigate whether information induced
by in-context examples from high-
resource tasks can facilitate cross-task
transfer via latent space manipulation.
To this end, we analyze the activa-
tion distributions from both zero-shot
and few-shot prompts across various
source and target tasks by project-
ing these high-dimensional activations
into 2D space using t-SNE (van der Maaten & Hinton, 2008). The results are presented in Figure 1
(More visualization is provided in Figure 12). As we can see, activations from two prompt types form
clearly separated clusters within each task. This indicates that the model develops fundamentally
distinct internal representations under each prompting strategy. Moreover, the vectors connecting
the cluster centers of few-shot and zero-shot activations are nearly parallel across different tasks in
the low-dimensional space. This suggests that information-enhanced features follow a consistent
direction across tasks, supporting the feasibility of cross-task transfer through latent space steering.

2.3 DIFFERENCE ACTIVATION DIRECTIONS BETWEEN FEW-SHOT AND ZERO-SHOT PROMPTS
ARE HIGHLY CORRELATED WITH TASK SIMILARITY
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Figure 2: Similarity of difference activation direc-
tions across various task pairs.

Given the consistent directions of information-
enhanced features, we examine whether such
activations can facilitate cross-task transfer in
high-dimensional space. We compute the sim-
ilarity of the difference activation directions be-
tween source and target tasks. For a given layer
l, we define the difference vector dvs(l) and
dvt(l) for a source task s and a target task t as:

dvs(l) = {fs(i, l)− zs(i, l)}ni=1 (1)

dvt(l) = {f t(i, l)− zt(i, l)}ni=1 (2)

where f(i, l) and z(i, l) denote few-shot and
zero-shot activations at layer l for each sample i,
respectively. We then quantify the task similarity Ts(s, t) between source task s and target task t by
averaging the pairwise cosine similarities of last-token representations across all layers and samples:

Ts(s, t) =
1

Ln2

L∑
l=1

n∑
i=1

n∑
j=1

zsl (i) · ztl (j)
|zsl (i)||ztl (j)|

. (3)

As shown in Figure 2, we find a strong positive correlation between task similarity and directions of
difference activations, indicating that these vectors retain substantial task-specific information. This
makes direct transfer between dissimilar tasks challenging due to the divergence in the activation
spaces. Additionally, we find that directional similarity varies most prominently in middle layers,
possibly because LLMs encode more abstract features (Skean et al., 2025) in these layers.
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(b) Financial Phrasebank

Figure 3: Similarity of low-pass and high-pass
filtered difference vectors across task pairs.
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Figure 4: Accuracy results of injecting difference,
low-pass and high-pass filtered activations.

2.4 LOW-FREQUENCY COMPONENTS ENCODE INFORMATION-ENHANCED FEATURES AND
HIGH-FREQUENCY COMPONENTS RETAIN TASK-SPECIFIC INFORMATION

Considering the challenges of directly injecting the difference vectors, we investigate their spectral
characteristics across all layers. Inspired by Fourier analysis, where low-pass filters preserve broad
trends and high-pass filters capture localized details, we decompose each difference vector dv into
low-frequency dvlow and high-frequency components dvhigh:

dvlow = Re [IFFT (Mk ⊙ FFT(dv))] , dvhigh = Re [IFFT ((1−Mk)⊙ FFT(dv))] . (4)

Here, FFT(·) and IFFT(·) denote the Fast Fourier Transform and its inverse, ⊙ is the Hadamard
product, Re[·] extracts the real part to eliminate residual imaginary components. The low-pass mask
Mk ∈ {0, 1}d, with d being the dimensionality of dv, preserves the first k frequency components:

Mk[i] =

{
1, if i ≤ k

2 or i > d− k
2 ,

0, otherwise.
(5)

As illustrated in Figure 3, low-pass filtered vectors show high similarity across task pairs, suggest-
ing that low-frequency components capture task-agnostic features. In contrast, high-pass filtered
activations are similar only between highly similar tasks, indicating that they encode task-specific
information.

We further evaluate the effect of injecting the full difference vector, low-pass filtered components, and
high-pass filtered components into LLMs across all layers. The average results across all layers are
shown in Figure 4. Our findings reveal that directly injecting the full difference vector strongly corre-
lates with task similarity: it improves performance when tasks are similar, but yields limited or even
negative gains when tasks are dissimilar. Moreover, we observe that adding low-frequency activations
(i.e., information-enhanced features) consistently improves accuracy across tasks, while injecting
high-frequency activations (i.e., task-specific information) only helps when tasks are similar and
harms performance when they are dissimilar. This indicates that low-frequency components encode
information-enhanced features and high-frequency components retain task-specific information.

3 METHOD

In this section, we introduce FAST, a novel framework for cross-task transfer via Fourier-based
activation steering in LLMs. We first formalize the problem of cross-task transfer learning, then
select influential and diverse samples from high-resource tasks, and finally leverage Fourier-based
activations of these samples to adapt LLMs to low-resource tasks through activation steering. The
overall framework is illustrated in Figure 5.

3.1 PROBLEM FORMULATION

Cross-task transfer learning aims to enhance the performance of LLMs on low-resource target tasks
by leveraging knowledge acquired from high-resource source tasks (Vu et al., 2022; Chatterjee
et al., 2024). Let (xsi , ysi)

n
i=1 ∈ Ds denote the source task with abundant labeled data, and

(xti , yti)
n
i=1 ∈ Dt represent the target task with limited labeled samples. The process typically

4
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(b) Fourier-based Activation Steering(a) Influential and Diverse Subset Selection
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Figure 5: Overview of FAST. (a) Influential and diverse subset selection strategy: (1) construct a
similarity-based graph from high-resource tasks; (2) quantify each sample’s influence and diversity;
(3) iteratively select the highest-scoring sample via greedy search to form the final subset. (b)
Fourier-based activation steering: decompose the difference vectors between few-shot and zero-shot
prompts via Fourier-based filtering into low-frequency (information-enhanced) and high-frequency
(task-specific) components, and selectively inject them to steer LLM outputs for low-resource tasks.

involves extracting transferable information Is from the source task and effectively integrating it into
the target task question xt, which can be formalized as:

Is = g(xs1 , ys1 , · · · , xsn , ysn), ŷt = LLM(Is, xt). (6)

Here, g denotes the feature extraction function that captures knowledge from the source tasks, and ŷt
is the prediction of LLMs on the target input.

3.2 INFLUENTIAL AND DIVERSE SUBSET SELECTION

Although the source task contains abundant labeled data, utilizing all samples for cross-task transfer
is computationally inefficient and unnecessary. To address this, we propose an influential and
diverse subset selection strategy to identify representative and diverse samples from the source task.
Specifically, we first build a sample graph based on pairwise similarities to model relationships
among examples, then measure the influence and diversity score of each sample, and finally employ
an iterative greedy search algorithm to select the highest-scoring samples for the final subset.

3.2.1 SIMILARITY-BASED GRAPH CONSTRUCTION

Our subset selection strategy begins by modeling sample relationships using a directed graph. We first
encode each sample into a vector using the BGE model (Chen et al., 2024a). These embeddings are
used to construct a task-specific directed graph G = (V,E,P), where each vertex vi ∈ V denotes a
sample, a directed edge e(i, j) ∈ E connects node vi to vj , and edge weight p(i, j) ∈ P is the cosine
similarity between the embeddings of the corresponding samples. To reduce structural redundancy,
we follow Su et al. (2023) and connect each node to its 150 most similar neighbors.

3.2.2 INFLUENCE AND DIVERSITY-DRIVEN SAMPLE QUANTIFICATION

After constructing the sample graph, we evaluate each sample from two perspectives: (1) its influence
in activating other samples within the task, and (2) its contribution to the overall diversity of the
previously selected samples. The pseudo-code is provided in Algorithm 1.

The influence score measures how a sample can propagate information across the graph, which is
computed by simulating an information diffusion process. Specifically, we initialize the process by
adding the candidate node v into an active set Sactive. At each step, we randomly select an active node
u ∈ Sactive and attempt to activate each of its 1-hop neighbors w ∈ N1(u) with success probability
p(u,w). Newly activated nodes are added to Sactive. This iterative process continues until no further
propagations occur. The influence score I(v) of node v is defined as the total number of nodes
activated during the entire diffusion process. In this way, samples that trigger extensive activation
receive higher scores. To ensure the robustness of our method, we follow Zhang et al. (2024) and
repeat the simulation 10 times, reporting the average influence score.
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The diversity penalty measures the redundancy a candidate node introduces relative to the already
selected subset. We perform a hop-based search to examine the i-hop neighbor Ni(v) of node v and
compute its overlap with Sselected. The diversity penalty D(v) of node v is formulated as:

D(v) = −
k∑

i=1

βi · |Ni(v) ∩ Sselected|. (7)

Here, β is a hop-based decay factor that reduces the penalty for overlaps at larger graph distances.
Consequently, nodes with minimal overlap have smaller penalties. Finally, we balance the influence
score I(v) and diversity penalty D(v) through a hyperparameter γ to obtain the overall score FG(v).

FG(v) = I(v) + γ ·D(v). (8)

3.2.3 ITERATIVE GREEDY GRAPH SEARCH

To construct a subset that balances both task representativeness and sample diversity, we use an
iterative greedy graph search strategy. The pseudo-code is provided in Algorithm 2. Our approach
operates over the sample graph G and iteratively selects the candidate sample with the highest
influence-diversity score. In more detail, the process starts with an empty set. At each iteration, we
evaluate all unselected samples using the function FG , and the highest-scoring sample is added to the
subset. This procedure is repeated until the subset reaches the desired size.

3.3 FOURIER-BASED ACTIVATION STEERING

Inspired by the observation from our empirical study, we propose a Fourier-based activation steering
method that transfers high-resource information to low-resource tasks. Our method primarily consists
of two components: activation extraction and activation control.

Activation Extraction. The component aims to identify high-level concepts or functional behaviors
encoded in LLMs. Specifically, for each sample i ∈ Ds from the high-resource task, we construct
two types of prompts: a zero-shot prompt zi that contains only the sample, and a few-shot prompt fi
that includes three randomly selected in-context examples. To eliminate instance-specific noise and
capture general task-level features, we compute the mean difference activation across all samples.

dvs(l) =
1

n

n∑
i=1

(fs(i, l)− zs(i, l)), (9)

where dvs(l) represents the difference vector from the last token’s hidden state at layer l, and n is the
number of samples.

Activation Control. This component aims to steer model behaviors by leveraging extracted ac-
tivations. Motivated by our earlier finding that low-frequency components encode transferable,
information-enhanced features and high-frequency components capture task-specific details, we apply
Fourier-based filtering to decompose dvs into dvslow and dvshigh using Equation 4. We then inject the
low-frequency component along with the task-similarity weighted high-frequency component into the
hidden state at the final token position of a specific layer, which effectively steers model predictions
without perturbing previously encoded context. The modified hidden state is computed as:

ĥl = hl + λ
(
dvslow + I[Ts(s, t) > ϵ] · Ts(s, t) · dvshigh

)
, (10)

where I is the indicator function, λ is the injection strength, hl is the hidden state at layer l, Ts(s, t)
represents the task similarity between source s and target task t, and ϵ is the similarity threshold.
This approach enhances cross-task transfer by emphasizing task-agnostic and information-enhanced
features and adaptively incorporating task-specific activations for sufficiently similar task pairs.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. In this paper, we evaluate our method in both cross-domain and cross-lingual transfer
settings. For cross-domain experiments, we follow Chatterjee et al. (2024) and use seven source

6
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Table 1: Performance comparisons in the cross-domain transfer scenarios.

Model Method ARC-C FPB MedMCQA SciQ Social-i-QA Average

Llama
3.1-8B

Prompting

Zero-shot 71.80 37.80 49.40 84.40 55.40 59.76
Few-shot Random 69.31±2.66 48.51±3.65 48.69±2.23 84.63±2.85 59.14±1.71 62.06±2.62

Few-shot TopK 69.54±2.42 48.63±6.07 48.69±1.77 84.86±2.28 59.37±2.35 62.22±2.98

Few-shot DPP 69.74±2.85 48.89±5.96 49.74±2.12 85.26±2.26 59.60±1.36 62.65±2.91

PEFT QLoRA 69.31±3.60 52.33±6.04 50.06±3.24 83.97±4.53 57.77±4.16 62.69±4.31

AdaLoRA 69.74±3.55 52.69±6.76 50.23±3.26 84.21±4.19 57.89±4.64 62.95±4.48

Activation Steering
ICV 72.63±0.95 54.51±4.40 52.77±1.11 87.46±2.45 61.54±1.62 65.78±2.11

SEA 73.49±0.55 55.29±4.49 53.29±1.04 88.00±2.14 62.11±1.28 66.44±1.90

FAST 76.14±0.52 59.26±3.90 56.09±0.67 90.43±1.03 64.57±1.18 69.30±1.46

Qwen
2.5-7B

Prompting

Zero-shot 82.80 85.20 52.00 89.60 76.00 77.12
Few-shot Random 85.80±1.32 86.89±1.66 54.37±1.20 89.63±1.55 77.00±1.26 78.74±1.40

Few-shot TopK 86.31±0.80 87.69±1.99 54.54±0.71 90.03±1.35 76.97±0.88 79.11±1.15

Few-shot DPP 86.31±0.67 87.74±1.46 54.60±0.76 89.94±1.66 76.83±1.16 79.08±1.14

PEFT QLoRA 86.34±3.34 87.06±4.03 55.51±3.72 88.71±4.54 77.31±3.80 78.99±3.89

AdaLoRA 86.31±3.67 87.71±4.01 55.86±3.89 89.49±4.23 77.60±3.75 79.39±3.91

Activation Steering
ICV 88.49±1.04 90.43±1.81 57.34±1.40 91.91±1.48 80.11±1.15 81.66±1.38

SEA 89.14±0.99 90.74±1.77 58.11±1.50 92.66±1.20 80.46±1.38 82.22±1.37

FAST 92.20±1.01 93.80±0.68 60.86±1.51 95.23±0.66 83.46±0.86 85.11±0.94

Table 2: Performance comparisons in the cross-lingual transfer scenarios.

Method de en es fr ja zh Average

Prompting

Zero-shot 84.40 66.00 81.60 86.60 38.60 30.80 64.67
Few-shot Random 85.64±5.30 59.36±15.58 83.48±9.58 81.40±9.65 39.28±7.11 37.36±6.07 64.42±8.88

Few-shot TopK 86.12±5.31 61.56±15.65 83.68±9.73 81.75±9.99 39.40±7.86 38.36±5.58 65.14±9.02

Few-shot DPP 86.36±5.07 64.48±15.13 85.40±8.42 83.90±8.80 39.84±8.59 38.72±6.81 66.45±8.80

PEFT QLoRA 85.16±6.25 63.48±20.01 82.16±13.17 79.35±13.32 37.72±13.05 35.92±8.76 63.97±12.43

AdaLoRA 85.64±6.07 65.08±19.85 83.00±14.07 80.20±14.43 38.80±11.92 36.80±8.94 64.92±12.55

Activation Steering
ICV 90.16±2.57 82.80±3.92 91.96±2.06 91.70±2.23 44.32±4.11 41.16±5.55 73.68±3.41

SEA 90.44±2.63 84.16±2.97 92.20±1.62 91.85±1.63 45.08±3.70 42.24±5.55 74.33±3.02

FAST 92.48±2.08 89.04±2.11 95.20±0.40 95.25±0.43 48.12±2.61 44.88±4.17 77.50±1.97

domains and five target domains. The source domains include: ARC-Easy (Clark et al., 2018),
AG-news (Zhang et al., 2015), BoolQ (Clark et al., 2019), Commonsense-QA (Talmor et al., 2019),
MNLI (Williams et al., 2018), QQP (Sharma et al., 2019), and SST2 (Socher et al., 2013). Following
previous work (Chatterjee et al., 2024), we select ARC-Challenge (Clark et al., 2018), Financial-
Phrasebank (Malo et al., 2014), MedMCQA (Pal et al., 2022), SciQ (Auer et al., 2023), and Social-i-
QA (Sap et al., 2019) as target domains. For cross-lingual settings, we conduct experiments on the
MARC (Keung et al., 2020) dataset, which covers six languages. Due to computational constraints,
we follow previous work (Chatterjee et al., 2024) and randomly sample 500 examples from each
target domain as the test set. Detailed descriptions of the datasets are provided in Appendix E.

Baselines. We select several representative approaches for comparison, including prompting methods
(i.e., Zero-shot, Few-shot Random, Few-shot TopK (Liu et al., 2022b), Few-shot DPP (Ye et al., 2023)),
parameter-efficient fine-tuning methods (i.e., QLoRA (Dettmers et al., 2023) and AdaLoRA (Zhang
et al., 2023)), and activation steering methods (i.e., ICV (Liu et al., 2024a) and SEA (Qiu et al.,
2024)). Detailed descriptions of these baselines are presented in Appendix F.

Implementation Details. Our experiments are conducted using Llama3.1-8B (Dubey et al., 2024)
and Qwen2.5-7B (Yang et al., 2025). In our subset selection strategy, we set the subset size n to 20,
the hop-based decay factor α to 0.2, and the balanced parameter γ between influence and diversity to
0.5. For activation steering, we inject the activations into the final token’s hidden state. The injection
layer is determined based on performance on the validation set, the injection strength λ is set to 0.2,
the similarity threshold ϵ is set to 0.6, and the preserved frequency component k is set to d/2. We use
accuracy as the evaluation metric. All experiments are computed on 8 A800 GPUs.

4.2 EXPERIMENTAL RESULTS

Cross-domain transfer scenarios. Table 1 shows the results for the cross-domain transfer setting.
Detailed results are provided in Table 8 and Table 9. We observe that the performance of the
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cross-task few-shot prompting is highly dependent on the similarity between source and target
domains. When domains are closely related (e.g., ARC-Easy → ARC-Challenge), incorporating
source-domain examples improves performance. In contrast, for dissimilar domain pairs (e.g.,
ARC-Easy → MedMCQA), such examples introduce noise and lead to performance degradation.
For parameter-efficient fine-tuning (PEFT) methods, performance varies more substantially across
different task pairs. Fine-tuning with source task examples generalizes effectively to similar target
tasks, but impairs performance on dissimilar ones. All activation steering methods facilitate effective
cross-domain transfer due to the consistent directions of information-enhanced features in the latent
space across different domains. Among these, FAST consistently outperforms all baselines across all
domain pairs. This is because our approach applies the Fourier transformation method to disentangle
information-enhanced and domain-specific activations within the difference vectors. By injecting
both task-agnostic enhanced features and similarity-weighted domain-specific information, FAST
enhances general model capability while avoiding the injection of irrelevant domain noise.

Cross-lingual transfer scenarios. Table 2 presents the results for the cross-lingual transfer setting.
Detailed statistics are provided in Table 10. We find that the performance of cross-lingual few-shot
prompting is strongly influenced by the linguistic similarity between source and target languages.
For closely related language pairs (e.g., French → German), incorporating cross-lingual examples
generally improves performance. In contrast, for distant language pairs (e.g., English → Chinese),
such demonstrations often introduce noise and lead to negative transfer. Similar to the cross-domain
scenario, PEFT methods amplify this phenomenon, exhibiting higher variance across language pairs.
Furthermore, activation steering methods effectively facilitate cross-lingual transfer by operating in
the latent space, achieving robust performance across diverse language pairs. Among these, FAST
achieves the best performance by leveraging the Fourier transformation to decouple information-
enhanced features via low-pass filtering. Furthermore, it selectively injects high-frequency domain-
specific features when source and target tasks exhibit high similarity, which enables more effective
and stable latent space steering for cross-lingual transfer.

4.3 ABLATION STUDY

Table 3: Ablation study.

Dataset ARC-C FPB MedMCQA
FAST 76.14 59.26 56.09

Subset Selection

w/o Influence Score 75.62 56.91 54.83
w/o Diversity Penalty 74.91 57.38 55.29
w/o Both 73.72 54.29 53.18
Vote-k 75.46 57.89 55.35
IDEAL 75.69 58.04 55.04

Activation Steering

w/o Information-enhanced Activation 72.25 48.32 51.89
w/o Task-specific Activation 75.48 56.59 57.71
w/o Both 71.80 37.80 49.40

Our approach introduces two key components:
(1) Influential and diverse subset selection, and
(2) Fourier-based activation steering. To verify
the effectiveness of each component, we con-
duct ablation studies on three target tasks: ARC-
Challenge, Financial Phrasebank, and MedM-
CQA. We also compare our subset selection
method with two established approaches (i.e.,
Vote-k (Su et al., 2023) and IDEAL (Zhang et al.,
2024)). The results are presented in Table 3. We
observe that removing any component leads to
performance degradation across all tasks, con-
firming that both elements are essential to our method. Notably, the removal of information-enhanced
activation causes the most significant performance drop, indicating that these activations provide the
most important signals for cross-task transfer. Furthermore, our selection strategy outperforms both
Vote-k and IDEAL, demonstrating the effectiveness of the proposed approach.

4.4 THE EFFICIENCY OF FAST
Table 4: Efficiency comparison of different meth-
ods. “T.C.” denotes time complexity, where n and
d represent the length of the question and demon-
strations, respectively.

Method Inference
T.C.

Preprocess
Time (s)

Training
Time (s)

Inference
Time (s)

Total
Time (s)

Zero-shot O(n2) 0 0 212 212
Few-shot Random O((d+ n)2) 0 0 451 451
Few-shot DPP O((d+ n)2) 138 0 454 592
AdaLoRA O(n2) 0 332 215 547
FAST O(n2) 172 0 221 393

In this part, we analyze the computational ef-
ficiency of our method in comparison to base-
line methods. As shown in Table 4, our ap-
proach demonstrates significant advantages in
both time complexity and runtime. FAST main-
tains the same time complexity, O(n2), as zero-
shot prompting, which is substantially more
efficient than few-shot methods that exhibit
O((d+ n)2) complexity due to their longer in-
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Table 5: Experiments on generation tasks.

Method XSum GSM8K LiveCodebench GPQA Average

Prompting

Zero-shot 28.32 76.65 16.67 35.29 39.73
Few-shot Random 27.46±3.48 79.91±4.95 11.74±2.94 31.14±5.02 37.56±4.10

Few-shot TopK 28.04±2.76 80.89±3.47 13.31±2.34 31.68±4.89 38.48±3.37

Few-shot DPP 29.05±3.18 81.20±2.95 13.89±2.49 32.97±4.07 39.28±3.17

PEFT QLoRA 23.42±6.97 69.26±5.08 12.79±3.29 29.97±6.38 33.86±5.43

AdaLoRA 24.01±6.14 70.91±5.26 11.92±4.05 30.48±7.29 34.33±5.68

Activation Steering
ICV 31.82±2.48 83.93±2.18 18.20±2.11 37.25±3.48 42.80±2.56

SEA 32.49±1.97 84.91±2.11 18.78±1.94 38.82±3.05 43.75±2.27

FAST 34.41±1.53 86.13±1.74 20.55±2.35 40.48±3.75 45.39±2.34

put sequences. This is because our method injects activations into the model’s latent space during
the forward pass without adding additional tokens to the input. In terms of actual runtime, FAST
requires only 393 seconds in total, which includes 172 seconds for preprocessing (subset selection
and activation extraction) and 221 seconds for inference. This represents a notable improvement
over few-shot methods and PEFT approaches, demonstrating that FAST achieves effective cross-task
transfer while maintaining computational efficiency.

4.5 DETAILED ANALYSIS

In this section, we present a detailed analysis of the proposed method. Unless otherwise stated, we
conduct experiments using ARC-Challenge as the target task.

FAST performs well on different-scale LLMs. We conduct experiments on Qwen-series LLMs
ranging from 0.5B to 32B in Figure 6, with additional results in Figure 9. Notably, activation
steering methods consistently outperform few-shot prompting across all model sizes. Among these,
FAST achieves the best performance by explicitly disentangling information-enhanced features from
task-specific activations, enabling more effective and robust cross-task transfer.

FAST demonstrates strong scalability. To evaluate the scalability of our proposed method, we
conduct experiments using different numbers of examples from the source task, as shown in Figure 7
(additional results in Figure 10). We find that the performance of cross-task few-shot learning initially
improves with more examples, but eventually plateaus or even drops when too many examples
are used. This can be attributed to the limited long-context capability of LLMs, which hinders the
effective use of large-scale high-resource data. In contrast, activation steering methods show a positive
correlation between the number of examples and model performance. With more demonstrations,
these methods better isolate instance-level variations and extract more general task-level features,
leading to more effective cross-task transfer. In particular, FAST demonstrates the strongest scalability
among all activation steering methods due to its decoupled activation injection method.

Optimal performance of FAST at middle layers with moderate injection strength. As shown
in Figure 8 (additional results in Figure 11), both the injection layer and the injection strength
significantly affect the performance of FAST. We find that injecting activations at middle layers
yields the best results, indicating that these layers encode richer features that are beneficial for
cross-task transfer. Furthermore, FAST achieves optimal results when the injection strength is set to
0.2. Higher values tend to disrupt the model’s inherent representations, while lower values produce
insufficient signals to effectively guide the model’s behavior toward the target task.

Our method performs well on generation tasks. To evaluate the generalizability of our proposed
method beyond classification tasks, we conduct experiments on a variety of generation tasks on
Qwen2.5-7B. We consider four generation benchmarks: XSum (Narayan et al., 2018) for summariza-
tion, GSM8K (Cobbe et al., 2021) for mathematical reasoning, GPQA (Rein et al., 2024) for scientific
question answering, and LiveCodeBench (Jain et al., 2025) for code generation. The results are
presented in Table 5. We inject activations into the hidden state of the first token, as it steers the sub-
sequent generation process while minimizing disruption to the model’s inherent generation behavior.
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Figure 6: Model sizes
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Figure 7: Scalability
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Figure 8: Injection layers and strengths

We observe that incorporating cross-task examples via cross-domain in-context learning often leads
to performance degradation in these generation tasks. This suggests that, unlike in classification tasks,
in-context examples from dissimilar tasks may introduce noise that disrupts the generation process.
Besides, parameter-efficient fine-tuning methods also struggle to generalize effectively, likely due to
their limited capacity to adapt to the generation tasks from dissimilarity tasks. Notably, activation
steering methods consistently outperform both prompting-based and parameter-efficient fine-tuning
baselines. Among these, our method achieves the best performance across all tasks. The consistent
improvements highlight FAST can effectively inject transferable information-enhanced activations.

5 RELATED WORK

Transfer Learning. Transfer learning offers a promising solution to alleviate the scarcity of labeled
data in low-resource tasks by leveraging knowledge from high-resource tasks. Existing transfer
learning approaches for LLMs can be broadly categorized into two types: continuous and discrete
cross-task transfer. Continuous methods (Vu et al., 2022; Li et al., 2022; Lv et al., 2024) learn
shared continuous soft prompts from source tasks and apply them to the target tasks. While effective,
these approaches require fine-tuning and often generalize poorly. On the other hand, discrete
methods (Tanwar et al., 2023; Cahyawijaya et al., 2024; Li et al., 2023b; Chatterjee et al., 2024)
incorporate high-resource examples into LLM inputs to solve low-resource tasks without parameter
updates. However, such an approach suffers from limitations in robustness, scalability, and efficiency.
To address these issues, we propose a novel approach to extract activations from high-resource tasks
and inject them into low-resource tasks, which eliminates the need for fine-tuning or input expansion.

Activation Steering. Activation steering is an established technique that treats internal representations
as fundamental units for analysis and manipulation within neural networks. It has been applied
across various scenarios, including model alignment (Liu et al., 2024b), personality modeling (Cao
et al., 2024), instruction following (Stolfo et al., 2025), hallucination mitigation (Li et al., 2023a;
Arditi et al., 2024), safety enhancement (Liu et al., 2024a), and reasoning improvement (Højer et al.,
2025; Tang et al., 2025). In this work, we adopt activation steering to transfer knowledge from
data-sufficient to data-scarce tasks, providing a new pathway for effective cross-task generalization.

6 CONCLUSION

In this work, we explored the potential of achieving cross-task transfer in LLMs via latent space
steering. Through empirical analysis, we found consistent activation patterns between few-shot
and zero-shot prompts across tasks. Besides, we observed that the difference activations can be
decomposed via Fourier transformation into information-enhanced (low-frequency) and task-specific
(high-frequency) components. Based on these insights, we proposed FAST, a Fourier-based activation
steering framework that transfers knowledge from high-resource to low-resource tasks without fine-
tuning or context expansion. Extensive experiments in cross-domain and cross-lingual settings
demonstrated that our method consistently outperformed existing approaches.
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Algorithm 1 Influence and Diversity-driven Sample Quantification(G, Sselected, Ni(·), v, k, β, γ)
Inputs:

Sample directed graph G = (V,E,P), i-hop neighibor function Ni(·), Current selected sample subset
Sselected, Sample node v, Neighborhood depth k, Hop-based decay factor β, balance hyper-parameter
between diversity and influence γ.

Initialize:
D(v) = 0, I(v) = 0, Sactive ← v, Svisited ← ∅

while Sactive ̸= ∅ do ▷ Influencial Calculation
Choose a sample node u ∈ Sactive
for each neighbor w ∈ N1(u) do

Select edge (u,w) with probability p(u,w)
if edge (u,w) is selected and w /∈ Svisited then

Sactive ← Sactive ∪ w, Svisited ← Svisited ∪ w
end if

end for
Sactive ← Sactive \ u

end while
I(v) = |Svisited|
for i = 1 to k do ▷ Diversity Calculation

Search i-hop neighbors of sample node v: Ni(v);
Compute overlap between i-hop neighbors and Sselected: oi ← |Ni(v) ∩ Sselected|
D(v)← D(v)− βi · oi

end for
return Sample node v evaluation function: FG(v)← I(v) + γ ·D(v)

Algorithm 2 Iterative Greedy Graph Search(G, S, n)
Inputs:

Sample directed graph G = (V,E,P), Initial sample subset S0, Selected sample subset size n.
Initialize:
S0 → ∅, i = 0, Sample node evaluation function fG : V 7→ R based on Algorithm 1

while i < n do
v∗ ← argmax

v∈V\Si

FG(v)

Si+1 ← Si ∪ v∗

i← i+ 1
end while
return Sn.

A USAGE OF LLMS

In this paper, Large Language Models are used solely for polishing the writing.

B REPRODUCIBILITY STATEMENT

Our code is provided in the anonymous link to facilitate reproducibility.

C ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. No ethical issues arise from this research.

D ADDITIONAL EXPERIMENTS

D.1 HYPERPARAMETER ANALYSIS

FAST includes a few hyperparameters to tune. In this section, we present a detailed analysis of their
impact on model performance. For the influential and diverse subset selection strategy, we examine
the hop-based decay factor α and the trade-off parameter γ that balances diversity and influence. The
results are illustrated in Figure 13a and Figure 13b. As we can see, setting α too small or too large
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Figure 9: Different model sizes
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Figure 10: Scalability
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Figure 11: Different injection layers and strengths

leads to a performance drop. If α is too small, the method may overlook meaningful connections
between nodes that are indirectly linked. In contrast, an excessively large α would decrease the
positional relationships between nodes within graphs. As for balanced hyperparameter γ, we find
that choosing an appropriate value helps achieve a good balance, resulting in a subset that is both
representative and diverse.

For the activation steering component, we investigate the effect of frequency cutoff k, similarity
threshold ϵ and injection position, with results presented in Figure 13c, Figure 13d, and Table 6.
We find that the frequency cutoff k = d/2 yields the best performance, as it effectively separates
low- and high-frequency components. Besides, the optimal similarity threshold is 0.6. Performance
remains relatively stable across values from 0.4 to 0.7, with our method consistently outperforming
all baselines in this range. In addition, our finding reveals that injecting activations at the last token
position consistently yields the best performance across models and target tasks. This is because the
final token position aggregates sufficient contextual information, and modifications at this position
can directly affect the output generation without disrupting the encoding of earlier tokens.

D.2 EXPERIMENTS ON MULTI-MODAL TASKS.

To further evaluate our proposed method, we conduct multimodal tasks using MathVista (Lu et al.,
2024), MMStar (Chen et al., 2024b) and MMMU (Yue et al., 2024) datasets using Qwen2.5-VL-7B-
Instruct (Bai et al., 2025). The results are presented in Table 7. The results show that our method
consistently achieves the best performance on these multimodal reasoning tasks, demonstrating its
broad applicability.

E DATASET DETAILS

In this part, we provide detailed descriptions of the datasets used in our experiments, covering both
cross-domain and cross-lingual scenarios.
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Figure 12: T-SNE projection of zero-shot and few-shot prompts across different source and target
tasks.
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Figure 13: Hyperparameter Analysis

E.1 CROSS-DOMAIN SCENARIOS

• ARC-Easy: ARC-Easy (Clark et al., 2018) is a multiple-choice question-answering dataset, which
consists of simple science exam questions from grade 3 to grade 9. These questions are designed to
be straightforward and require basic knowledge.

• AG-news: AG-news (Zhang et al., 2015) is a news topic classification dataset, which is constructed
by collecting article titles and descriptions from the four main categories: World, Sports, Business,
and Sci/Tech.

• BoolQ: BoolQ (Clark et al., 2019) is a reading comprehension dataset with yes/no questions. The
task requires answering these binary questions based on the given passages.

• Commonsense-QA: Commonsense-QA (Talmor et al., 2019) is a multiple-choice question answer-
ing dataset that requires different types of commonsense knowledge to find the correct answers.

• MNLI:The Multi-Genre Natural Language Inference (MNLI) (Williams et al., 2018) is a crowd-
sourced collection of 433k sentence pairs annotated with textual entailment information. The task is
to classify the relationship between two sentences as entailment, contradiction, or neutral.
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Table 6: Performance comparison across different injection positions.

Position Random All First Last

Target Task: ARC-C

Llama3.1-8B 73.12 74.69 76.02 76.14
Qwen2.5-7B 89.60 89.17 91.63 92.20

Target Task: FBR

Llama3.1-8B 55.28 55.73 58.48 59.26
Qwen2.5-7B 89.75 87.68 91.86 93.80

Table 7: Experiments on multi-modal tasks.

Method MathVista MMStar MMMU Average

Prompting

Zero-shot 68.52 64.12 58.08 63.57
Few-shot Random 64.43±2.14 62.12±3.28 59.71±2.54 62.09±2.65

Few-shot TopK 64.48±2.39 62.28±2.56 59.23±2.47 62.00±2.47

Few-shot DPP 64.91±2.94 62.54±3.19 60.18±2.39 62.54±2.84

PEFT QLoRA 60.53±5.12 65.23±7.19 58.24±4.17 61.33±5.49

AdaLoRA 62.91±6.72 65.26±6.24 58.46±4.28 62.21±5.75

Activation Steering
ICV 71.17±1.48 65.19±2.23 61.24±1.82 65.87±1.84

SEA 71.24±1.24 66.50±2.45 61.85±1.95 66.53±1.88

FAST 73.34±1.31 68.83±1.57 64.12±1.72 68.76±1.53

• QQP: Quora Question Pairs (QQP) (Sharma et al., 2019) is a natural language understanding
dataset comprising over 400k question pairs. Each question pair is annotated with a binary label
indicating whether the two questions are duplicates of each other.

• SST2: The Stanford Sentiment Treebank (SST2) (Socher et al., 2013) is a binary sentiment
classification dataset, which contains the movie reviews labeled as either positive or negative.

• ARC-Challenge: ARC-Challenge (Clark et al., 2018) is a more difficult version of ARC-Easy. It
also includes science exam questions for grades 3 to 9, but requires deeper reasoning and advanced
problem-solving strategies.

• Financial Phrasebank: Financial Phrasebank (Malo et al., 2014) is a sentiment analysis dataset
focused on financial news, which consists of financial news articles annotated with sentiment labels
such as positive, negative, or neutral.

• MedMCQA: MedMCQA (Pal et al., 2022) is a large-scale, multiple-choice question answering
dataset, designed to address real-world medical entrance exam questions.

• SciQ: SciQ (Auer et al., 2023) is a multiple-choice question answering dataset comprising science
exam questions in the fields of physics, chemistry, and biology.

• Social-i-QA: Social-i-QA (Sap et al., 2019) is a question-answering benchmark designed to
evaluate social commonsense intelligence, which focuses on understanding people’s actions and their
social implications.

E.2 CROSS-LINGUAL SCENARIOS

• MARC:The Multilingual Amazon Reviews Corpus (MARC) (Keung et al., 2020) is a large-scale
collection of Amazon reviews for multilingual text classification, which contains reviews in six
languages: English, Japanese, German, French, Spanish, and Chinese.
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F DETAILED DESCRIPTION OF BASELINES

In this part, we provide detailed descriptions of all the baselines used in our experiments. Our baselines
include prompting methods (i.e., Zero-shot, Few-shot Random, Few-shot TopK (Liu et al., 2022b),
Few-shot DPP (Ye et al., 2023)), parameter-efficient fine-tuning methods (i.e., QLoRA (Dettmers
et al., 2023) and AdaLoRA (Zhang et al., 2023)), and activation steering methods (i.e., ICV (Liu
et al., 2024a) and SEA (Qiu et al., 2024)).

• Zero-shot: The model generates predictions using only the input query from the target task, without
any demonstrations or examples from source tasks.

• Few-shot Random: This method randomly selects a set of examples from the source task.

• Few-shot TopK (Liu et al., 2022b): This approach selects examples from the source task based on
their similarity to the target input.

• Few-shot DPP (Ye et al., 2023): This method uses Determinantal Point Processes (DPP) to select
a diverse and representative set of examples from the source task.

• QLoRA (Dettmers et al., 2023): Quantized Low-Rank Adaptation (QLoRA) is a parameter-efficient
fine-tuning method that uses quantized weights and low-rank adapters to achieve cross-task transfer.

• AdaLoRA (Zhang et al., 2023): Adaptive Low-Rank Adaptation (AdaLoRA) dynamically allocates
parameter budget based on the importance of different weight matrices. It supports cross-task transfer
by fine-tuning on samples from the source task.

• ICV (Liu et al., 2024a): In-context Vectors (ICV) steers model behavior by computing and injecting
pre-computed PCA-projected activation vectors to the model’s hidden states during inference.

• SEA (Qiu et al., 2024): Spectral Editing of Activations (SEA) uses SVD to project activations into
directions derived from positive and negative demonstrations. It then incorporates the difference
representations to steer model behavior toward desired outputs.
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G CASE STUDY

Case Study 1

Zero-shot:
Definition: Given a question answering task from the 3rd to 9th-grade science exam. The
question contains four options "A.", "B.", "C." and "D." Select the most appropriate choice
that answers the question.
Question: A student mixed 25 grams of salt into 1,000 grams of water. What is the mass of
the saltwater mixture?
A. 975 grams
B. 1,000 grams
C. 1,025 grams
D. 2,500 grams
Answer: B

Few-shot:
Definition: Given a context and a question do binary true and false type text classification.
You are given a passage as context and a question related to the passage that can be
answered as "True" or "False". Based on the context, question and your reasoning ability
answer in a "True" and "False".
Context: Usually, the relationship between mass and weight on Earth is highly proportional;
objects that are a hundred times more massive than a one-liter bottle of soda almost always
weigh a hundred times more–approximately 1,000 newtons, which is the weight one would
expect on Earth from an object with a mass slightly greater than 100 kilograms. Yet,
this is not always the case and there are familiar objects that violate this mass / weight
proportionality.
Question: Is mass the same as weight on earth?
Label:False
...

Definition: Given a question answering task from the 3rd to 9th-grade science exam. The
question contains four options "A.", "B.", "C." and "D." Select the most appropriate choice
that answers the question.
Question: A student mixed 25 grams of salt into 1,000 grams of water. What is the mass of
the saltwater mixture?
A. 975 grams
B. 1,000 grams
C. 1,025 grams
D. 2,500 grams
Answer: A

Ours:
Definition: Given a question answering task from the 3rd to 9th-grade science exam. The
question contains four options "A.", "B.", "C." and "D." Select the most appropriate choice
that answers the question.
Question: A student mixed 25 grams of salt into 1,000 grams of water. What is the mass of
the saltwater mixture?
A. 975 grams
B. 1,000 grams
C. 1,025 grams
D. 2,500 grams
Answer: C
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Case Study 2

Zero-shot:
Definition: Given a sentence mined from a financial news article, you are to determine the
sentiment polarity of the sentence. The task deals with financial sentiment analysis. Based
on the sentiment conveyed by the sentence, label the sentence as "negative", "positive" or
"neutral".
Sentence: Equipment will be manufactured in Vaahto ’s workshop in Hollola , Finland and
is scheduled for shipments during the first quarter of 2009 .
Label: positive

Few-shot:
Definition: Given a context and a question do binary true and false type text classification.
You are given a passage as context and a question related to the passage that can be
answered as "True" or "False". Based on the context, question and your reasoning ability
answer in a "True" and "False".
Context: Harley-Davidson India is a wholly owned subsidiary of Harley-Davidson, based
in Gurgaon, Haryana, India. Harley-Davidson India commenced operations in August 2009
and appointed its first dealership in July 2010. Question: does harley davidson have a plant
in india Label:True
...

Definition: Given a sentence mined from a financial news article, you are to determine the
sentiment polarity of the sentence. The task deals with financial sentiment analysis. Based
on the sentiment conveyed by the sentence, label the sentence as "negative", "positive" or
"neutral".
Sentence: Equipment will be manufactured in Vaahto ’s workshop in Hollola , Finland and
is scheduled for shipments during the first quarter of 2009 .
Label: positive

Ours:
Definition: Given a sentence mined from a financial news article, you are to determine the
sentiment polarity of the sentence. The task deals with financial sentiment analysis. Based
on the sentiment conveyed by the sentence, label the sentence as "negative", "positive" or
"neutral".
Sentence: Equipment will be manufactured in Vaahto ’s workshop in Hollola , Finland and
is scheduled for shipments during the first quarter of 2009 .
Label: neutral
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Case Study 3

Zero-shot:
Definition: Given a multiple choice question containing four options "A.", "B.", "C." and
"D." from a medical entrance exam. The question is related to a sub-field of medical
science like Microbiology, Radiology, Ophthalmology, Surgery, Human anatomy, etc.
Based on the question, the option and your knowledge of the medical field select the most
appropriate answer from the provided choices "A.", "B.", "C." and "D.".
Question: Which of the following is not a component of quick SOFA (qSOFA) scoring?
A. Bilateral undilated pupils
B. Altered Mentation
C. Glasgow Coma Score
D. SBP <= 100 mm Hg
Answer: C

Few-shot:
Definition: Given a context and a question do binary true and false type text classification.
You are given a passage as context and a question related to the passage that can be
answered as "True" or "False". Based on the context, question and your reasoning ability
answer in a "True" and "False".
Context: The series debuted on January 26, 2017 to positive reviews. A 22-episode second
season premiered on October 11, 2017, and concluded on May 16, 2018. On April 2, 2018,
The CW renewed the series for a third season, which is set to premiere October 10, 2018.
Question: is there going to be any more episodes of riverdale
Label:True
...

Definition: Given a multiple choice question containing four options "A.", "B.", "C." and
"D." from a medical entrance exam. The question is related to a sub-field of medical
science like Microbiology, Radiology, Ophthalmology, Surgery, Human anatomy, etc.
Based on the question, the option and your knowledge of the medical field select the most
appropriate answer from the provided choices "A.", "B.", "C." and "D.".
Question: Which of the following is not a component of quick SOFA (qSOFA) scoring?
A. Bilateral undilated pupils
B. Altered Mentation
C. Glasgow Coma Score
D. SBP <= 100 mm Hg
Answer: C

Ours:
Definition: Given a multiple choice question containing four options "A.", "B.", "C." and
"D." from a medical entrance exam. The question is related to a sub-field of medical science
like Microbiology, Radiology, Ophthalmology, Surgery, Human anatomy, etc. Based on the
question, the option and your knowledge of the medical field select the most appropriate
answer from the provided choices "A.", "B.", "C." and "D.".
Question: Which of the following is not a component of quick SOFA (qSOFA) scoring?
A. Bilateral undilated pupils
B. Altered Mentation
C. Glasgow Coma Score
D. SBP <= 100 mm Hg
Answer: A

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Case Study

Zero-shot:
Definition: Given a question from a scientific exam about Physics, Chemistry, and Biology,
among others. The question is in multiple choice format with four answer options "A.",
"B.", "C." and "D.". Using your knowledge about the scientific fields answer the question
and provide the label "A", "B", "C" and "D" as answer.
Question: What happens to energy when work is done by a system?
A. removed
B. stored
C. multiplied
D. added
Answer: B

Few-shot:
Definition: Given a context and a question do binary true and false type text classification.
You are given a passage as context and a question related to the passage that can be
answered as "True" or "False". Based on the context, question and your reasoning ability
answer in a "True" and "False".
Context: The sixth season of the American ABC fantasy-drama Once Upon a Time was
ordered on March 3, 2016. It debuted on September 25, 2016, and concluded on May 14,
2017. In January 2017, it was stated that the sixth season would end the main storyline, and
for a seventh season, the series would be softly rebooted with a new storyline.
Question: is there a season six of once upon a time
Label:True
...

Definition: Given a question from a scientific exam about Physics, Chemistry, and Biology,
among others. The question is in multiple choice format with four answer options "A.",
"B.", "C." and "D.". Using your knowledge about the scientific fields answer the question
and provide the label "A", "B", "C" and "D" as answer.
Question: What happens to energy when work is done by a system?
A. removed
B. stored
C. multiplied
D. added
Answer: B

Ours:
Definition: Given a question from a scientific exam about Physics, Chemistry, and Biology,
among others. The question is in multiple choice format with four answer options "A.",
"B.", "C." and "D.". Using your knowledge about the scientific fields answer the question
and provide the label "A", "B", "C" and "D" as answer.
Question: What happens to energy when work is done by a system?
A. removed
B. stored
C. multiplied
D. added
Answer: A
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Table 8: Experiments on cross-domain scenarios using Llama3.1-8B.

Model Target Task Method
Source Task

ARC-Easy AG-news BoolQ Com-QA MNLI QQP SST2 Average

L
la

m
a3

.1
-8

B

ARC-Challenge
(Zs: 71.80)

Few-shot Random 72.40 68.00 72.40 70.60 64.60 67.20 70.00 69.31±2.66

Few-shot TopK 74.20 69.20 69.80 71.20 66.20 67.40 68.80 69.54±2.42

Few-shot DPP 75.20 66.40 71.00 71.40 67.80 67.00 69.40 69.74±2.85

QLoRA 74.80 64.40 72.40 72.00 65.20 68.40 68.00 69.31±3.60

AdaLoRA 75.00 63.80 72.80 71.80 66.40 69.20 69.20 69.74±3.55

ICV 74.40 72.20 73.20 72.40 72.00 71.20 73.00 72.63±0.95

SEA 74.20 72.60 73.60 74.00 73.40 72.80 73.80 73.49±0.55

FAST 75.80 76.40 75.60 77.20 76.20 75.60 76.20 76.14±0.52

Financial Phrasebank
(Zs: 37.80)

Few-shot Random 44.80 48.20 46.40 48.80 56.80 48.60 46.00 48.51±3.65

Few-shot TopK 42.00 47.20 46.00 47.00 61.60 52.40 44.20 48.63±6.07

Few-shot DPP 40.80 47.60 46.80 49.60 61.80 49.80 45.80 48.89±5.96

QLoRA 44.40 54.50 52.80 49.00 63.00 56.80 45.80 52.33±6.04

AdaLoRA 43.80 55.80 53.60 49.40 63.20 58.80 44.20 52.69±6.76

ICV 48.80 56.60 55.00 51.20 61.80 58.20 50.00 54.51±4.40

SEA 49.60 57.80 56.20 51.40 62.40 59.00 50.60 55.29±4.49

FAST 54.60 60.40 59.40 53.40 64.00 64.40 58.60 59.26±3.90

MedMCQA
(Zs: 49.40)

Few-shot Random 47.00 50.00 46.80 47.60 53.20 46.60 49.60 48.69±2.23

Few-shot TopK 47.80 49.00 47.80 47.40 52.80 47.40 48.60 48.69±1.77

Few-shot DPP 49.00 49.80 50.20 47.40 54.00 47.20 50.60 49.74±2.12

QLoRA 49.20 52.00 49.20 48.40 55.20 44.20 52.20 50.06±3.24

AdaLoRA 49.40 52.40 49.80 48.80 55.60 44.20 51.40 50.23±3.26

ICV 52.60 53.60 51.00 51.80 54.20 52.20 54.00 52.77±1.11

SEA 53.80 54.20 51.60 52.40 54.20 52.40 54.40 53.29±1.04

FAST 57.20 56.80 55.40 55.80 56.00 55.20 56.20 56.09±0.67

SciQ
(Zs: 84.40)

Few-shot Random 88.20 84.20 86.60 87.80 80.00 81.80 83.80 84.63±2.85

Few-shot TopK 87.60 82.20 85.80 87.00 83.20 81.60 86.60 84.86±2.28

Few-shot DPP 87.40 86.40 87.00 87.80 82.60 82.00 83.60 85.26±2.26

QLoRA 88.60 83.00 88.80 88.00 77.00 78.20 84.20 83.97±4.53

AdaLoRA 88.40 82.80 88.60 87.80 78.20 78.40 85.30 84.21±4.19

ICV 89.80 89.20 90.20 88.20 84.00 83.80 87.00 87.46±2.45

SEA 90.20 89.40 90.60 88.40 85.20 84.80 87.40 88.00±2.14

FAST 91.60 92.00 91.00 90.00 89.00 89.80 89.60 90.43±1.03

Social-i-QA
(Zs: 55.40)

Few-shot Random 60.40 58.00 59.60 62.40 59.00 57.20 57.40 59.14±1.71

Few-shot TopK 61.80 60.80 58.80 62.80 58.60 56.80 56.00 59.37±2.35

Few-shot DPP 60.20 61.00 60.00 60.00 60.00 59.60 56.40 59.60±1.36

QLoRA 61.40 56.00 61.00 64.40 55.20 54.20 52.20 57.77±4.16

AdaLoRA 62.00 56.40 60.60 65.40 56.00 53.80 51.00 57.89±4.64

ICV 63.00 61.40 61.00 64.80 60.20 60.20 60.20 61.54±1.62

SEA 62.80 61.80 61.80 64.80 61.40 61.80 60.40 62.11±1.28

FAST 65.60 63.20 64.20 66.40 63.40 65.60 63.60 64.57±1.18
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Table 9: Experiments on cross-domain scenarios using Qwen2.5-7B.

Model Target Task Method
Source Task

ARC-Easy AG-news BoolQ Com-QA MNLI QQP SST2 Average

Q
w

en
2.

5-
7B

ARC-Challenge
(Zs: 82.80)

Few-shot Random 86.80 86.60 83.20 86.60 84.40 86.20 86.80 85.80±1.32

Few-shot TopK 87.40 86.40 86.00 86.60 84.60 86.60 86.60 86.31±0.80

Few-shot DPP 87.20 86.60 86.00 86.80 85.00 86.00 86.60 86.31±0.67

QLoRA 91.20 82.20 84.00 87.80 82.20 87.20 89.80 86.34±3.34

AdaLoRA 91.40 83.40 82.60 87.60 81.20 87.60 90.40 86.31±3.67

ICV 90.80 88.00 88.20 88.00 87.40 89.00 88.00 88.49±1.04

SEA 91.20 89.40 89.00 88.40 87.80 89.40 88.80 89.14±0.99

FAST 93.40 92.20 92.40 92.80 90.00 91.80 92.80 92.20±1.01

Financial Phrasebank
(Zs: 85.20)

Few-shot Random 87.60 86.80 89.80 87.00 85.60 84.00 87.40 86.89±1.66

Few-shot TopK 89.20 88.00 89.60 86.40 84.00 86.60 90.00 87.69±1.99

Few-shot DPP 87.60 87.80 90.40 86.20 86.20 86.80 89.20 87.74±1.46

QLoRA 89.20 84.20 92.40 82.20 84.80 83.80 92.80 87.06±4.03

AdaLoRA 89.40 83.80 93.60 83.60 85.20 85.20 93.20 87.71±4.01

ICV 90.20 89.80 92.80 89.60 88.00 89.20 93.40 90.43±1.81

SEA 90.80 90.40 93.60 89.80 88.60 89.00 93.00 90.74±1.77

FAST 94.60 93.20 94.60 93.80 92.60 93.60 94.20 93.80±0.68

MedMCQA
(Zs: 52.00)

Few-shot Random 54.80 53.60 55.80 55.40 52.00 55.00 54.00 54.37±1.20

Few-shot TopK 54.80 54.20 55.40 55.00 53.00 54.80 54.60 54.54±0.71

Few-shot DPP 55.60 53.40 54.20 55.00 53.80 55.40 54.80 54.60±0.76

QLoRA 56.20 51.20 54.20 60.40 50.20 60.40 56.00 55.51±3.72

AdaLoRA 56.40 50.80 54.80 60.80 50.80 61.20 56.20 55.86±3.89

ICV 59.20 55.00 57.40 58.60 55.80 58.20 57.20 57.34±1.40

SEA 59.60 56.20 57.80 60.20 56.40 59.40 57.20 58.11±1.50

FAST 62.00 59.00 60.60 63.00 60.00 62.40 59.00 60.86±1.51

SciQ
(Zs: 89.60)

Few-shot Random 91.20 89.60 91.60 91.00 88.40 88.20 87.40 89.63±1.55

Few-shot TopK 91.20 89.20 92.20 91.20 88.80 88.80 88.80 90.03±1.35

Few-shot DPP 91.40 89.00 92.00 91.60 88.60 89.80 87.20 89.94±1.66

QLoRA 93.20 86.20 94.60 93.80 85.20 84.60 83.40 88.71±4.54

AdaLoRA 93.80 87.40 94.60 94.40 86.40 85.20 84.60 89.49±4.23

ICV 93.80 90.00 93.00 93.60 90.00 91.20 91.80 91.91±1.48

SEA 94.40 91.60 93.40 94.00 91.00 91.80 92.40 92.66±1.20

FAST 96.40 94.20 95.80 95.40 94.80 95.00 95.00 95.23±0.66

Social-i-QA
(Zs: 76.00)

Few-shot Random 78.60 75.60 78.40 77.00 78.00 76.00 75.40 77.00±1.26

Few-shot TopK 78.00 76.20 77.60 77.20 78.00 76.00 75.80 76.97±0.88

Few-shot DPP 78.00 75.40 78.80 76.60 77.20 75.60 76.20 76.83±1.16

QLoRA 81.20 73.20 79.20 80.40 81.40 72.40 73.40 77.31±3.80

AdaLoRA 81.80 73.00 79.80 80.20 81.40 73.20 73.80 77.60±3.75

ICV 81.60 80.20 79.80 81.20 80.80 78.00 79.20 80.11±1.15

SEA 82.00 80.80 80.20 81.60 81.60 78.00 79.00 80.46±1.38

FAST 84.20 83.80 83.60 84.40 83.80 81.80 82.60 83.46±0.86
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Table 10: Performance comparison in the cross-lingual scenarios.

Target
Language Method

Source Language

de en es fr ja zh Average

de
(Zs: 84.40)

Few-shot Random - 76.80 84.00 93.00 87.60 86.80 85.64±5.30

Few-shot TopK - 77.20 85.40 93.80 86.80 87.40 86.12±5.31

Few-shot DPP - 77.20 86.20 92.60 87.20 88.60 86.36±5.07

QLoRA - 75.20 88.40 94.20 83.20 84.80 85.16±6.25

AdaLoRA - 75.80 88.00 94.60 84.40 85.40 85.64±6.07

ICV - 86.60 88.20 94.00 91.40 90.60 90.16±2.57

SEA - 87.00 88.60 94.80 91.00 90.80 90.44±2.63

FAST - 89.80 90.80 95.80 93.20 92.80 92.48±2.08

en
(Zs: 66.00)

Few-shot Random 77.40 - 42.80 58.00 76.80 41.80 59.36±15.58

Few-shot TopK 76.80 - 51.00 62.40 79.60 38.00 61.56±15.65

Few-shot DPP 76.80 - 58.80 68.80 80.00 38.00 64.48±15.13

QLoRA 71.40 - 60.60 72.80 85.80 26.80 63.48±20.01

AdaLoRA 73.60 - 62.40 74.60 86.40 28.40 65.08±19.85

ICV 85.40 - 80.40 85.80 86.20 76.20 82.80±3.92

SEA 86.80 - 81.60 87.40 85.20 79.80 84.16±2.97

FAST 90.60 - 86.00 91.20 90.40 87.00 89.04±2.11

es
(Zs: 81.60)

Few-shot Random 83.80 83.80 - 83.60 81.60 82.20 83.48±9.58

Few-shot TopK 84.00 83.00 - 84.20 83.00 83.20 83.68±9.73

Few-shot DPP 84.00 84.20 - 83.60 83.40 83.40 85.40±8.42

QLoRA 87.80 85.20 - 84.60 81.40 74.80 82.16±13.17

AdaLoRA 88.60 84.40 - 84.20 80.20 76.80 83.00±14.07

ICV 92.20 91.60 - 92.40 91.20 89.40 91.96±2.06

SEA 91.40 92.40 - 93.20 92.00 89.60 92.20±1.62

FAST 95.20 95.60 - 95.20 94.60 93.80 95.20±0.40

fr
(Zs: 86.60)

Few-shot Random 91.80 65.60 84.00 - 91.80 84.20 81.40±9.65

Few-shot TopK 91.40 65.40 86.80 - 92.00 82.80 81.75±9.99

Few-shot DPP 91.40 69.40 89.40 - 92.20 84.60 83.90±8.80

QLoRA 93.40 58.20 88.00 - 93.00 78.20 79.35±13.32

AdaLoRA 94.20 56.80 90.20 - 93.80 80.00 80.20±14.43

ICV 93.00 91.40 92.40 - 94.60 88.40 91.70±2.23

SEA 93.60 92.00 91.60 - 94.20 89.60 91.85±1.63

FAST 95.00 95.20 95.80 - 95.40 94.60 95.25±0.43

ja
(Zs: 38.60)

Few-shot Random 49.00 27.80 40.60 43.00 - 36.00 39.28±7.11

Few-shot TopK 49.40 26.00 41.40 43.60 - 36.60 39.40±7.86

Few-shot DPP 50.40 25.20 43.40 44.00 - 36.20 39.84±8.59

QLoRA 50.40 15.60 45.60 46.80 - 30.20 37.72±13.05

AdaLoRA 50.80 18.40 46.00 46.40 - 32.40 38.80±11.92

ICV 51.20 40.40 44.80 45.40 - 39.80 44.32±4.11

SEA 51.80 42.00 45.40 44.80 - 41.40 45.08±3.70

FAST 53.20 47.00 47.60 47.00 - 45.80 48.12±2.61

zh
(Zs: 30.80)

Few-shot Random 49.00 35.00 33.60 32.00 37.20 - 37.36±6.07

Few-shot TopK 49.20 36.60 35.80 33.20 37.00 - 38.36±5.58

Few-shot DPP 51.60 35.80 37.00 31.40 37.80 - 38.72±6.81

QLoRA 51.20 28.60 34.00 26.80 39.00 - 35.92±8.76

AdaLoRA 52.40 28.20 35.20 28.40 39.80 - 36.80±8.94

ICV 52.00 38.00 39.00 36.60 40.20 - 41.16±5.55

SEA 53.20 39.20 38.80 38.80 41.20 - 42.24±5.55

FAST 53.20 42.80 42.20 43.20 43.00 - 44.88±4.17
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