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Abstract

Down-sampling training data has long been shown to im-
prove the generalization performance of a wide range of ma-
chine learning systems. Recently, down-sampling has proved
effective in genetic programming (GP) runs that utilize the
lexicase parent selection technique. Although this down-
sampling procedure has been shown to significantly improve
performance across a variety of problems, it does not seem to
do so due to encouraging adaptability through environmental
change. We investigate modifications to down-sampled lex-
icase selection in hopes of promoting incremental environ-
mental change to scaffold evolution by reducing the amount
of jarring discontinuities between the environments of suc-
cessive generations. In our empirical studies, we find that
promoting environmental change by rolling the down-sample
across the entire training set is not significantly better for
evolving solutions to program synthesis problems than simple
random down-sampling. We also find that going in the other
direction by using only disjoint down-samples also does not
significantly differ from the performance of regular random
down-sampling. These results highlight some new insights
into the role of environmental change for down-sampled lex-
icase selection, and present a viable new direction for future
research.

Introduction
Genetic Programming (GP) is a supervised learning tech-
nique that takes inspiration from evolution to create com-
puter programs that solve a variety of problems. In GP, the
specifications for a program are defined in terms of input-
output cases. Mimicking an evolutionary process, a set of
initial programs are created at random. Then, the programs
are evaluated on the input cases and compared to the ground
truth output value to generate error values for each individ-
ual. A set of these programs that GP deems appropriate are
selected, mutated, and sent to the next generation. This is
repeated until a solution is found that passes all the training
cases, or a limit is reached. There is a very important inter-
action at play during this process over the course of evolu-
tion. Namely, the interaction between the individuals in the
population and the training cases that they might eventually
be evaluated on. This interaction could roughly be thought

of as the interaction between a creature and its environment
during evolution.

The selection step, one of the most important aspects of
this evolutionary system, has been the subject of extensive
study in GP and beyond. This is the step where individ-
uals are picked from the current population to be parents
for the offspring in the next generation. The selection step
also dictates how many children each parent gets to have. In
the past, methods performing this selection rely on aggre-
gated fitness metrics i.e. they evaluate every individual on
every test case, and sum the fitness across these test cases
to generate a single fitness value. The individuals are then
selected based on this single value using a selection method
like fitness proportionate selection or tournament selection.
Lexicase selection (Helmuth et al., 2014) is a parent selec-
tion method that does not rely on aggregate fitness or perfor-
mance metrics. Instead, individuals that are elite on a ran-
domly shuffled ordering of the training cases are selected.
This tends to result in the selection of specialist individuals
that trade mediocre performance across all test cases for elite
performance on a few (Helmuth et al., 2020). It has empir-
ically been shown to improve the performance of evolution
across a wide range of problem domains.

Using the analogy of a creature and its environment, lex-
icase selection can be thought of as using the random series
of challenges that happen to occur during a creature’s life
to dictate whether its genes survive to the next generation
or not. Note that this seems very similar to what truly hap-
pens in evolution in nature: creatures must be able to survive
the subset of life-threatening situations that happen to occur
during their lifetime. If a deadly situation that they are poor
at avoiding never occurs, this negative performance never
affects their selectability. Although lexicase selection seems
to build a good analogy with biological evolution, it seems
to be missing one key element: environmental change. This
is because although each selected individual was ultimately
elite on a possibly different set of cases, every single training
case could be used every single generation. This is because
of lexicase selection’s random shuffling of the entire train-
ing set. Since all cases could theoretically appear close to



the beginning of a shuffle, and the cases at the beginning of
the shuffle end up being much more important (as they are
responsible for filtering out the vast majority of individuals
in the selection pool) it is not inconceivable that all cases are
used in the selection of the parents of the next generation.

Hernandez et al. (2019) recently proposed down-sampled
lexicase selection as a method to down-sample the training
cases to reduce the number of individual evaluations per-
formed during every generation. Beyond simply reducing
computational effort, this method also seems to cause en-
vironmental change between generations as the set of cases
that the individuals are exposed to changes over time. This
results in cases that are not currently in the down-sample
exerting no selection pressure on the population. In terms
of the environment analogy, this can be thought of as the
set of all possible challenges that an individual can face be-
ing constrained by where they are located. It is unlikely
that the same creature would need to solve the problems
that occur when climbing a tree and swimming in the deep
ocean. When using full lexicase selection, however, indi-
viduals could (and usually do) get tested on their ability to
perform many combinations of tasks that are not constrained
in any way over evolutionary time. Empirically, runs using
down-sampled lexicase selection have been shown to signif-
icantly improve the performance of GP when compared to
standard lexicase selection. However, Helmuth and Spector
(2021) found evidence for the benefit of down-sampled lex-
icase selection not arising from the environmental change
it causes. Instead, the benefit might be due to an increased
number of individuals being evaluated across evolution.

Although not found to be the driver behind down-sampled
lexicase selection’s success, evolutionary change has been
found to be an important contributer to the evolvability of
an evolutionary system (Levins, 1968). Kashtan et al. (2007)
found that a varying environment facilitates faster evolution-
ary adaptation in biological simulations. This was later ex-
plored in using dynamic environments to improve the speed
when performing Grammatical Evolution, a variant of GP,
runs (O’Neill et al., 2011). Changing environments has also
been found to affect the speed and effecitveness of evolution
in populations of Saccharomyces cerevisiae yeast as well
as digital organisms (Canino-Koning et al., 2019). How-
ever, the authors are not aware of any work attempting to
cause gradual environmental change when performing GP
runs with lexicase selection.

In this paper, we attempt to promote gradual environmen-
tal change in hopes of improving the performance of evo-
lutionary runs. Promoting incremental change might have
the effect of reducing the jarring discontinuities between the
set of cases in down-samples for generations in close suc-
cession. This would make it easier for individuals in the
population to adapt to their changing environment more ef-
fectively, and ultimately result in more evolutionary success.
First, we propose a variant of down-sampled lexicase selec-

tion, rolling down-sampled lexicase selection that iteratively
removes and adds cases to the sample over evolutionary time
as an analogy to incremental environmental change in nature
(e.g.a river slowly cutting through a forest over many gener-
ations). We find that rolling with a step size of 1, or remov-
ing and adding one case at a time is not significantly better
or worse than down-sampled lexicase selection at the 0.05
and 0.1 down-sample rate (5% and 10% of training cases
in down-sample, respectively). Upon performing an experi-
ment where we change the step size, we find more evidence
that suggests that rolling is not better than simple random
down-sampling. These results hint that either the random
down-samples are indeed not jarringly different from each
other when considering the behaviors they are selecting for,
or that randomly rolling is not the way to promote environ-
mental change.

In order to determine the extent to which the case differ-
ences between our down-samples are indeed jarring when
randomly down-sampling, we attempt to move in the op-
posite direction of rolling. We hope that by doing this, we
will be able determine whether large differences between the
cases in successive down-samples affects the efficacy of our
evolutionary runs. To test this, we experiment with using
disjoint samples when down-sampling the training cases for
lexicase selection. These disjoint samples would result in
there being no identical cases in generations that come in
close succession. By doing this, we aim to exacerbate the
hypothesised jarring-ness that exists when using purely ran-
dom samples to determine whether it is destructive to per-
formance. GP runs using disjoint samples are found to not
have a significant difference in performance when compared
to simple random down-sampling.

Our experiments highlight the fact that the jarring differ-
ences between samples when randomly down-sampling do
not have a significant detrimental effect on the success rate
of GP runs. This is probably due to the large presence of
synonymous cases in the training data. These synonymous
cases mean that random down-samples are not actually jar-
ringly different from each other in practice as although the
case labels are entirely different, these cases can measure
the same behavior and result in the same individual being
selected. Although the alterations to down-sampled lexicase
selection proposed in this paper do not improve on the so-
lution rates of runs using this selection method, we find that
the lack of a detrimental effect due to jarring discontinu-
ities between the down-samples in practice to be a meaning-
ful discovery that opens a promising new research direction:
how does one best down-sample training cases for lexicase
selection to maximise the success rate of GP runs?

Background and Related Work
Lexicase Selection
Lexicase selection (Spector, 2012; Helmuth et al., 2014) is
a parent selection technique that does not consider aggre-



gate performance metrics to select parents for the next gen-
eration. Instead, lexicase selection selects individuals based
on their performance on a random ordering of the training
cases. First proposed to solve modal problems in GP, Lexi-
case selection has been applied in a vast range of domains,
including rule based learning systems (Aenugu and Spector,
2019), symbolic regression (La Cava et al., 2016), machine
learning (La Cava and Moore, 2020a,b; Ding and Spector,
2022) and evolutionary robotics (Moore and Stanton, 2017,
2021; Huizinga and Clune, 2018). Lexicase selection has
been demonstrated to improve solution and generalization
rates when compared to tournament selection and implicit
fitness sharing (Helmuth et al., 2014).

The lexicase selection algorithm, adapted from Helmuth
et al. (2020), is outlined below:

1. candidates is set to initially contain the entire population.

2. cases is set to initially contain the entire training set shuf-
fled in a random order.

3. Collect individuals that have identical error vectors, and
maintain only one from each of these identical groups (for
performance reasons).

4. Until a parent is selected:

(a) Remove all individuals from candidates that are not
exactly the best on the first case in cases.

(b) If only one individual remains in candidates, this be-
comes the selected parent.

(c) If there is only one case left in cases, pick an individual
from candidates at random to become the parent.

(d) Else, remove the first case from cases.

Down-sampling Training Data
Down-sampling has often been presented in the GP litera-
ture and beyond as a method to reduce computation and im-
prove the generalization of evolutionary runs. Gathercole
and Ross (1994) propse Dynamic Subset Selection, where
subsets of training data are picked to reduce the overall com-
putational effort. Schmidt and Lipson (2005) co-evolve test
cases and individuals, where the set of test cases every gen-
eration is smaller than the entire training set. Other meth-
ods of down-sampling are also prevalent in the field (Hmida
et al., 2019; Giacobini et al., 2002; Martinez et al., 2014).
Down-sampling is often used in Machine Learning in gen-
eral to help improve generalization rates and reduce compu-
tational overhead of using large-scale datasets (Zogaj et al.,
2021; Katharopoulos and Fleuret, 2018).

Down-sampled Lexicase Selection
Down-sampled lexicase Selection, first proposed for expen-
sive evolutionary robotics runs (Moore and Stanton, 2017)
and later formalized for GP (Hernandez et al., 2019; Fergu-
son et al., 2019), is a method of decreasing the number of

training cases that need to be evaluated every generation for
lexicase selection. This results in parent selection requiring
fewer total evaluations per generation. Instead of all individ-
uals in the population being evaluated on all training cases
to select parents, they are instead only evaluated on a sub-
set of the training set. This subset can be chosen to be any
size, but the common values are 5%, 10% or 25% of the size
of the entire training set. Compared to some more recent
methods to reduce the number of evaluations needed to se-
lect an individual with lexicase selection (Ding et al., 2022;
de Melo et al., 2019), down-sampling provides a sure-fire
way to reduce the number of program executions needed as
the size of the down-sample is chosen at will. These saved
individual evaluations can be used to decrease runtimes, or
can be used to evaluate more individuals and/or generations
with the same fixed computational budget (Hernandez et al.,
2019; Helmuth and Spector, 2021). In this work, we will in-
crease the number of generations such that the same number
of individuals are evaluated as they would be when utilizing
regular lexicase selection. For example, at a down-sampling
rate of 0.1, (10% of full training set), we increase the maxi-
mum generational limit by a factor of 10 as this leads to the
same number of individual evaluations per run as without
performing down-sampling.

Hernandez et al. (2019), Ferguson et al. (2019) and more
recently, Helmuth and Spector (2021) all find that down-
sampled lexicase selection significantly improves the solu-
tion rate of GP runs across a variety of program synthe-
sis benchmark problems. Helmuth and Spector (2021) find
evidence for down-sampled lexicase selection’s benefit be-
ing derived from a larger amount of program space being
searched. Although it was a working hypothesis before
that work, environmental change was ruled out as the likely
cause of the benefits that down-sampled lexicase presents.
To reach this conclusion, Helmuth and Spector (2021) com-
pare down-sampled lexicase selection with truncated lexi-
case selection, a variant of lexicase selection that allows for
all cases to be used all generations, but simply cuts lexicase
selection off after 10% of the cases are used (Spector et al.,
2018). These experiments show that down-sampled lexicase
does not improve on truncated lexicase selection, provid-
ing evidence for the fact that environmental change is not
a driver of the success of down-sampled lexicase selection.
We hypothesise that when using down-sampled lexicase se-
lection, the lack of continuity of cases between generations
might result in jarring discontinuities between the environ-
ments used in successive generations. These jarring discon-
tinuities might result in members of the population strug-
gling to adapt to difficult cases as they are taken out of the
case pool before the population can gain a foothold on them.
If true, this would be limiting the potential of down-sampled
lexicase selection. In this work, we hope to study and po-
tentially remedy this by causing incremental environmental
change, where there is some similarity between the down-



Parameter Value
runs per problem 50
population size 1000
training set size 200
maximum generations 300
variation operator UMAD

Table 1: PushGP system parameters for the Fuel Cost and
Snow Day problems. Note that in our experiments our maxi-
mum generation limit is set to different values depending on
down-sampling rate.

samples so that individuals have more than one generation
to adapt to the cases in current sample. In doing this, we
explore whether or not down-sampled lexicase selection in-
deed does create jarring discontinuities between successive
generations and what effects this has in practice.

Methods
The experiments in this paper were performed with the
PushGP (Spector et al., 2005; Spector and Robinson, 2002)
framework. PushGP is a GP system that evolves computer
programs written in the push programming language. The
push programming language is a stack-based language that
was designed specifically for genetic programming runs. It
has the advantage of facilitating the evolution of programs
that use multiple types and complex programming concepts
such as conditional execution, recursion and iteration. For
this paper, we use Propeller 1, a Clojure implementation of
PushGP. The PushGP system parameters that we used can
be found in Table 1.

The problems used in this paper come from the second
program synthesis benchmark suite (Helmuth and Kelly,
2021). This benchmark suite contains introductory program-
ming problems that require programs to use a variety of data
types and complex control flow structures. Specifically, the
two problems we have chosen are Fuel Cost and Snow Day
as these are problems where down-sampled lexicase selec-
tion has shown promise, but there is still more room to im-
prove. Programs that successfully solve Fuel Cost must take
a vector of positive integers, divide each by 3, round the re-
sult down to the nearest integer, and subtract 2. Then, the
program must return the sum of all the new integers in the
vector. The second problem, Snow Day, requires solution
programs to take an integer representing a number of hours
and 3 floats representing how much snow is on the ground,
the rate of snow fall, and the proportion of snow melting per
hour. These solution programs must return the amount of
snow on the ground after the amount of hours given.

We propose two different methods of down-sampling the
training data for lexicase selection, where one is a direct re-
sponse to experimental results from the other in hopes of

1https://github.com/lspector/propeller

understanding why the former was not successful. The first
of these methods, rolling lexicase selection, was an attempt
to promote incremental environmental change to lexicase se-
lection in hopes of scaffolding the evolution of PushGP pro-
grams by reducing the magnitude of discontinuities between
down-samples in successive generations. The methods here
describe experiments first comparing rolling lexicase selec-
tion with a step size of 1 to random down-sampling and
full lexicase selection as a preliminary experiment. Then,
an analysis on the effect of step size on solution rate was
conducted on two problems in hopes of understanding the
results of the first experiment. Finally, a new method, dis-
joint down-sampled lexicase selection is proposed as an at-
tempt verify the effect that jarring discontinuities have on an
evolving population of GP programs in practice.

Rolling Lexicase Rolling lexicase selection is a modifi-
cation of down-sampled lexicase selection that iteratively
changes the down-sample every generation, as opposed to
all at once. This would have the effect of creating a multi-
generational filter that does not have abrupt environmental
changes like that for random down-sampling. We believe
that the inclusion of incremental environmental change to
this system where the environment is shifting would allow
the members of the population to adapt more efficiently,
driving larger success rates. To do this, we maintain a set of
cases across generations in the active down-sample of cases.
A new hyperparameter, the step size (s) is defined to be the
number of cases we drop out of the current down-sample and
replace with new cases from the entire training set. When
this step size is equal to the down-sample size, this is ex-
actly the same as performing down-sampled lexicase selec-
tion. Thus, this method can be thought of as a relaxation of
down-sampled lexicase selection where we can choose the
rate at which the environment changes. We also introduce
two different versions of rolling lexicase, bag and queue, in
hopes of understanding the differences a case being in the
down-sample for a consistent amount of time would have.
Using the bag method, the down-sample of cases are un-
ordered and are dropped and added from the down-sample
at random. i.e. if we need to drop out s cases from the down-
sample, these s cases are chosen at random when using the
bag method. This can be thought of as using a First In Ran-
dom Out (FIRO) rolling strategy. On the other hand, the
queue method of rolling lexicase selection offers a First In
First Out (FIFO) rolling strategy. This means that the cases
are removed from the down-sample in the order that they
are added. Each case will therefore spend the exact same
amount of time in the down-sample before being rolled out
of it. On average, however, both of these methods of rolling
would result in cases staying in the sample for roughly the
same amount of time.

The rolling lexicase selection algorithm is outlined below.
Note that this algorithm describes how the sample changes



Down-sampling Rate 0.05 0.1 1

Method Rolling Random Rolling Random Lexicase

Downsample Size 10 10 10 20 20 20 200

Step Size 1 1 10 1 1 20 200

Type Bag Queue N/A Bag Queue N/A N/A

Max Gens 6000 6000 6000 3000 3000 3000 300

Successes 41 40 39 35 36 40 17

Table 2: Successes out of 50 runs for the Fuel Cost problem comparing rolling lexicase selection to simple random down-
sampling and the baseline of full lexicase selection. Both rolling and random down-sampling significantly outperform the
baseline. There do not seem to be any significant differences between rolling and randomly down-sampled lexicase selection.

over evolutionary time as opposed to how a parent is se-
lected. We use the lexicase selection algorithm as it is pre-
sented above to select our parents using the down-samples
we have selected. We define s to be the step size, d the
down-sampling rate, N the training set size, n = N × d the
down-sample size, and g = G

d the generational limit (where
G is the set generational limit for regular lexicase selection).

1. candidates is set to initially contain the entire population.

2. cases is set to contain the entire training set.

3. case-sample is set to initially contain a random sample of
size n from cases.

4. Until solution found or the generational limit g is reached:

(a) Evaluate all individuals on the cases in case-sample,
generating individual error vectors of length n.

(b) If any individuals pass all the cases in case-sample, re-
evaluate the best individual on the cases in cases. If
these are all passed as well, a candidate solution has
been found. Re-evaluate the best individual on the test
set. If this individual passes all of these cases, this
counts as a success.

(c) Else, using these error vectors, use lexicase selection to
select a set of parents.

(d) Apply variational operators on these parents to produce
the next population.

(e) if using the bag variety of rolling, remove s random
cases from case-sample, and add s new ones from
cases (that are not already used). If using the queue
variety of rolling, dequeue s random cases from case-
sample, and enqueue s new ones from cases.

Disjoint Lexicase Disjoint down-sampled lexicase selec-
tion is proposed as a method that does close to the opposite
of rolling lexicase selection. As opposed to maintaining a
small set of cases across generations, disjoint down-sampled

lexicase selection ensures that not only are cases not main-
tained across generations, they are not even allowed to re-
enter the down-sample until every other case has been used
up once. This can be thought of (and indeed how it is imple-
mented) as first selecting n random partitions of the train-
ing set of size N , where each partition is of size N

n , and
picking one of these partitions every generation until they
run out. When this happens, re-partition the training data,
and repeat. With this treatment, cases will not be repeated
for a number of generations. We predict that this method
will take the jarring discontinuities between down-samples
to a more extreme level than that with simple random down-
sampling. By doing this, we hope to see whether label-wise
discontinuities (the differences between the value of the in-
put and output cases) in practice result in real discontinuities
in which behaviors are selected for across generations. We
compare this variant of down-sampling to rolling and ran-
domly down-sampled lexicase selection to explore the ef-
fects a more jarring environmental change might have on
the evolution of solutions to GP problems.

Results and Discussion
Preliminary Experiment First, we ran a comparison of
rolling lexicase with step size of 1, randomly down-sampled
lexicase, and lexicase on the Fuel Cost problem. This exper-
iment was meant to be a preliminary exploration into incre-
mentally varying the environment for GP runs. The results
from these runs can be found in Table 2.

The results from this experiment lead us to believe that
there was no significant improvement when incrementally
shifting the environment for down-sampled lexicase selec-
tion. Although not statistically significant, the relative suc-
cess rates between rolling and down-sampled lexicase at the
down-sampling levels of 0.05 and 0.1 suggested that the pro-
portion of cases in the down-sample that are rolled might be
important to consider. At the 0.05 down-sampling rate, cases
are entirely refreshed (approximately for the bag method)
every 10 generations. When using a 0.1 down-sampling
rate, this number doubles to 20. The trend here seems to



suggest that the longer it takes to refresh the training set,
the lower success rates become. In order to explore the ef-
fect the rate of environmental change has on the evolution of
GP solutions, we conduct experiments varying the step sizes
for rolling lexicase selection across two different program
synthesis problems. This experiment is outlined in the next
section.

It is also interesting that we did not observe any differ-
ences between the bag and queue methods of maintaining
a sample for rolling lexicase selection. This might be due
to the fact that the individuals might require multiple gener-
ations to adapt to certain hard cases, while other cases are
passed by a lot of individuals and are no longer informative.
Since we are randomly selecting the next case to be added
in, which could be at any level of importance for the popula-
tion, any regularity in rolling with the queue method would
not result in any meaningful differences to simply randomly
rolling. Dropping out the case that was added first might
simply have the same effect as dropping out a random case,
as the only time this dropping procedure significantly affects
the population is if it drops out an important case, which are
placed randomly throughout the down-sample. In short, the
difference between using a bag and a queue seems to be neg-
ligible when rolling due to different cases measuring similar
things and the fact that cases will be around for the same
amount of time on average.

Step Size Variations In order to test our reasoning for
the preliminary experiment’s negative results, we attempt to
vary the evolutionary time it takes for a down-sample to be
entirely refreshed. To do this, we repeated the preliminary
experiments, with step sizes other than 1 for the Fuel Cost
and Snow Day problems. To keep the comparisons con-
sistent, we used a down-sampling rate of 0.1, and the bag
method for rolling (as the queue method did not perform
differently to the bag method). The Fuel Cost results can
be found in Table 3, and the Snow Day results can be found
in Table 4. These results further reinforce the claim that
rolling lexicase selection is not significantly better than sim-
ple random downsampling. No individual run has a statisti-
cally significant difference in performance to random down-
sampling, but there might be a low magnitude signal here
when considering multiple runs using rolling lexicase at dif-
ferent steps sizes across two different problems. All 9 of
the rolling lexicase runs performed worse than the randomly
down-sampled run did. In fact, most of the runs have a hand-
ful fewer successes. This leads us to believe that, despite
our intuition and biological inspiration, random incremental
environmental change seems to not only not be an improve-
ment on simple random down-sampling, but it might even
be a worse method of down-sampling than randomly select-
ing a sample every generation. While we believed that al-
lowing for incremental environmental change would create
a multi-generational filter that does not have jarring disconti-

Method Rolling Random

Step Size 1 3 5 10 19 20

Successes 35 32 32 36 36 40

Table 3: Rolling at different rates. Effect of step size on
success rate for the Fuel Cost problem, using the bag variety
of rolling down-sampled lexicase selection.

Method Rolling Random

Step Size 2 5 10 19 20

Successes 23 20 22 18 26

Table 4: Rolling at different rates. Effect of step size on the
success rate for the Snow Day problem, using the bag va-
riety of rolling down-sampled lexicase selection. Although
not important for this experiment, regular lexicase selection
achieves 7 successes out of 50 runs.

nuities would provide for evolutionary advantages, it seems
like achieving this ends through randomly rolling the cases
is not an effective strategy.

The main result from this experiment is the lack of a sig-
nificant difference between the success rates when rolling
with different step sizes. We find that across two different
problems, the rate of rolling cases does not have any signifi-
cant effect on the success rate of GP runs.

A possible reason for the lack of success when using
rolling lexicase selection is that cases that represent certain
niches might be left out for a long time (as it takes so long
to go over the entire training set with a small step size). Say,
for example, that we were evolving a program to perform
division. The test case representing a division by zero is ob-
viously a very important case to consider for the selection
of a candidate solution. When using full lexicase selection,
this case always has a chance to be placed near the begin-
ning of a shuffle, and therefore will always have a chance
to exert selection pressure. When down-sampling, this case
might be left out for a few generations, but will continually
cycle in every once in a while. When rolling, however, this
case might be out of the current case pool for many gener-
ations, which might be long enough for the individuals to
catastrophically forget how to divide by zero. This would
result in certain niches getting closed out of the population,
resulting in slight evolutionary performance losses.

We also believe that the prevalence of synonymous cases
plays an extremely important role in the above comparisons.
Synonymous cases are cases in the training set that do not
contain exactly the same labels, but measure the very sim-
ilar behavior. These can be thought of as a set of cases
that would be passed by a very similar set of individuals in
the population every generation. This means that two sets



Down-sampling Rate 0.01 0.05 0.1 1

Down-sampling Type Random Disjoint Random Disjoint Random Disjoint Lexicase

Down-sample Size 2 2 10 10 20 20 200

Max-Gens 30000 30000 6000 6000 3000 3000 300

Successes 33 33 39 42 40 33 17

Table 5: A comparison of disjoint down-sampled lexicase selection, simple random down-sampled lexicase selection, and
regular (full) lexicase selection on the Fuel Cost problem across a range of down-sampling rates. Using disjoint samples as
opposed to random down-sampling results in no statistically significant difference in success rates on this problem. All runs
using random or disjoint lexicase selection result in a significant improvement on full lexicase selection.

Down-sampling Type Random Disjoint Lexicase

Down-sample Size 20 20 200

Max-Gens 3000 3000 300

Successes 26 19 7

Table 6: A comparison of disjoint lexicase selection to ran-
dom down-sampling at the 0.1 down-sampling rate on the
Snow Day problem. As a control, the regular lexicase selec-
tion success rate is shown on the right. There are no statisti-
cally significant differences between the success rates when
using random down-sampling and disjoint down-sampling.
Both random and rolling down-sampled lexicase selection
significantly improve on (full) lexicase selection.

of cases that are entirely different from each other when it
comes to input and output labels could result in the selection
of a very similar set of parents. It could be that the exis-
tence of these cases would further dilute the effect rolling
would have on down-sampled lexicase selection as a ran-
domly picked set of cases might result in the exact same
individual being selected to that if we maintained a few
cases from the last generation. In practice, we expect that
the cases used in our program synthesis problems are some-
what or even highly synonymous, with many cases testing
the same behavior of programs in very similar ways. This
would explain the lack of significant differences in success
rate between our down-sampled lexicase selection runs, and
our rolling lexicase selection runs at a variety of step sizes.

Disjoint Samples Due to the lack of success of rolling the
down-samples between generations, we test whether going
in the opposite direction through disjoint samples will have a
significant effect on the success rate of our GP runs. If ran-
domly down-sampling the training data does indeed result
in jarring discontinuities between generations, this method
of down-sampling would only exacerbate the effect of do-
ing so. To test this, we performed experiments comparing
lexicase selection with random down-sampling and disjoint
down-sampling on the Fuel Cost and Snow Day Problems.

Those results can be found in Table 5 and 6.
This set of results shows that using disjoint down-samples

is likely not significantly different to regular random down-
sampling. While going against our prior intuition, it seems
that these disjoint samples would not significantly change
the way selection works. A likely reason for these results
could also be due to the high degree of synonymous cases
in our training set, which would mean that two samples that
are entirely disjoint might end up being very similar when it
comes to which parent is selected using them. Although dis-
joint down-sampling does not allow the exact same case to
be in temporally close generations, these synonymous cases
can and ultimately do end up in successive generations. This
would result in no real difference between disjoint down-
sampling and random down-sampling, as supported by our
empirical results.

Conclusion and Future work
In this paper, we presented two new methods of down-
sampling training data for lexicase selection: rolling (down-
sampled) lexicase selection and disjoint (down-sampled)
lexicase selection. Rolling lexicase selection is an attempt
to encourage incremental environmental change in order to
better allow the population to adapt to their changing envi-
ronment by reducing the amount of jarring discontinuities
between consecutive generations. Through an experiment
where we only vary the down-samples by one case every
generation, we find that incrementally changing environ-
ments randomly seems to not improve on regular random
down-sampled lexicase selection. To test whether we were
rolling too slowly, we repeated the experiment, varying the
step size. We find that no intermediate step size significantly
outperforms down-sampled lexicase selection either.

In order to investigate the reasons that rolling lexicase
selection was not as efficacious as we expected, we per-
formed a third set of experiments using disjoint samples.
This method of down-sampling the training set was designed
to take the discontinuities that we predicted exist when ran-
domly down-sampling to the extreme. To do this, we pro-
pose disjoint lexicase selection, whereby the set of train-
ing cases are split into disjoint sets, and each set is used



for one generation. Once all cases are used once, we re-
partition the cases, allowing for the cases to be used for a
second time. Through these experiments, we find that dis-
joint down-sampling does not significantly affect the solu-
tion rates when compared to random down-sampling for lex-
icase selection. While using purely disjoint samples would
result in forced jarring discontinuities when considering the
input and output labels of the cases, we hypothesize that this
does not indeed result in jarring discontinuities in the be-
haviors being measured due to the large presence of syn-
onymous cases.

Despite the fact that these results do not present a way to
improve success rates through environmental change in lexi-
case selection, we believe that this work highlights a promis-
ing direction for future exploration. As opposed to randomly
down-sampling the training cases for lexicase selection, per-
haps a more intelligent approach would result in evolution-
ary runs that benefit from lower computational costs, with-
out the loss of information from the omission of some vi-
tal cases in the training set. In particular, we believe sam-
pling methods that take into account case synonymy, unlike
rolling and disjoint samples, may lead to better results. This
could perhaps be achieved by the dynamic collection of pop-
ulation statistics regarding the interaction between the indi-
viduals and the training cases. These statistics would then be
used to select down-samples that are likely to maintain be-
havioral niches of individuals, while moderating the effort
put into synonymous cases.
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