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Abstract

Notable progress has been made in numerous fields
of machine learning based on neural network-
driven mutual information (MI) bounds. However,
utilizing the conventional MI-based losses is often
challenging due to their practical and mathemati-
cal limitations. In this work, we first identify the
symptoms behind their instability: (1) the neural
network not converging even after the loss seemed
to converge, and (2) saturating neural network out-
puts causing the loss to diverge. We mitigate both
issues by adding a novel regularization term to the
existing losses. We theoretically and experimen-
tally demonstrate that added regularization stabi-
lizes training. Finally, we present a novel bench-
mark that evaluates MI-based losses on both the MI
estimation power and its capability on the down-
stream tasks, closely following the pre-existing
supervised and contrastive learning settings. We
evaluate six different MI-based losses and their
regularized counterparts on multiple benchmarks
to show that our approach is simple yet effective.

1 INTRODUCTION

Identifying a relationship between two variables of interest
is one of the key problems in mathematics, statistics, and
machine learning [Goodfellow et al., 2014, Ren et al., 2015,
He et al., 2016, Vaswani et al., 2017]. One of the fundamen-
tal approaches is information theory-based measurement,
namely the measure of mutual information (MI). Due to
its mathematical soundness and the rise of deep learning,
many have designed differentiable MI-based losses for neu-
ral networks. Some utilize the MI-based losses to bridge the
gap between latent variables and representations in genera-
tive adversarial networks [Nowozin et al., 2016, Chen et al.,
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2016, Belghazi et al., 2018, van den Oord et al., 2018, Hjelm
et al., 2019], where others introduce MI-based methodolo-
gies identifying the relationship between input, output, and
hidden variables [Tishby and Zaslavsky, 2015, Shwartz-Ziv
and Tishby, 2017, Saxe et al., 2018]. Furthermore, recent
self-supervised losses use contrastive losses, where its ori-
gin can be traced back to MI-based losses [Cheng et al.,
2020, Hénaff, 2020, Chuang et al., 2020].

Although many have shown computational tractability and
usefulness of MI-based losses, others still struggle with
their instability during optimization. Contrastive learning
literature with MI-based losses such as Chen et al. [2020],
He et al. [2020] use huge batch sizes to reduce the vari-
ance of losses. Bardes et al. [2021] adds a regularization
term to the neural network embeddings to stabilize the train-
ing. McAllester and Stratos [2020] and Song and Ermon
[2020] further provide theoretical limitations of variational
MI estimators, arguing that the limited batch size induces a
MI estimation variance too large to handle. We argue that
mitigating the variance of MI-based losses is critical for
stabilizing training, where it is well known that more stable
optimization of neural networks yields better predictive per-
formance on the downstream tasks [Rothfuss et al., 2019,
Bear and Cushman, 2020, Chavdarova et al., 2019, Richter
et al., 2020, Zeng et al., 2020, Colombo et al., 2021].

In this paper, we concentrate on identifying the cause be-
hind the instability of MI-based losses and propose a simple
yet effective regularization method that can be applied to
various MI-based losses. We start by analyzing the behav-
iors of two MI estimators; the MI Neural Estimator (MINE)
loss [Belghazi et al., 2018] and Nguyen-Wainwright-Jordan
loss (NWJ) loss [Nguyen et al., 2010]. We identify two
distinctive behaviors that induce instability during training,
drifting and exploding neural network outputs. Based on
these observations, we design two novel dual representations
of the KL-divergence called Regularized Donsker-Varadhan
representation (ReDV) and Regularized NWJ representa-
tion (ReNWJ). We show theoretically and experimentally
that adding our regularizer term suppresses two behaviors
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of drifting and exploding, avoiding instability during train-
ing. Finally, we design a novel benchmark that bridges the
gap between variational MI estimators and real-world tasks,
whereas previous works either do not directly show the MI
estimation performance or evaluate only on toy problems.
We reformulate both the supervised and the contrastive learn-
ing problem [Chen et al., 2020, He et al., 2020, Khosla et al.,
2020] as MI estimation problems and show that our regu-
larization yields better performance on both perspectives,
downstream task and MI estimation performance.

2 BACKGROUND & RELATED WORKS

Definition of MI The mutual information between two
random variables X and Y is defined as

I(X,Y ) = DKL(PXY ||PX ⊗ PY )

= EPXY
(log

dPXY

dPX⊗Y
)

(1)

where PXY and PX ⊗ PY are the joint distribution and the
product of the marginal distributions, respectively. DKL is
the Kullback-Leibler (KL) divergence. Without loss of gen-
erality, we consider PXY and PX⊗PY as being distributions
on a compact domain Ω ⊂ Rd.

MI through dual representation of DKL We first intro-
duce two dual representations of DKL, as MI is defined using
DKL. The most widely known is the Donsker-Varadhan rep-
resentation DDV [Donsker and Varadhan, 1975]. For given
two distribution P and Q on some compact domain Ω ⊂ Rd,

DDV(X,Y ) := sup
T :Ω→R

EP(T )− log(EQ(e
T )), (2)

where both the expectations EP(T ) and EQ(e
T ) are finite. If

we substitute P and Q into PXY and PX ⊗ PY , DDV yields
the definition of MI. The optimal T ∗ = log dP

dQ + C, where
C ∈ R can be any constant.

In contrast to DDV, the Nguyen-Wainwright-Jordan repre-
sentation DNWJ [Nguyen et al., 2010] is induced by the
convex conjugate known as Fenchel’s inequality [Hiriart-
Urruty and Lemaréchal, 2004]:

DNWJ(X,Y ) := sup
T :Ω→R

EP(T )− EQ(e
T−1) (3)

The optimal T ∗ = log dP
dQ + 1 is unique unlike the optimal

T ∗ of DDV due to its self-normalizing property [Belghazi
et al., 2018]. However, DDV guarantees tighter lower bounds
than DNWJ [Ruderman et al., 2012, Polyanskiy and Wu,
2014]. These two representations provide the theoretical
soundness for numerous variational MI bounds.

Variational MI estimation With the increasing success of
neural networks, several neural network-driven variational
bounds of MI are proposed. They are widely employed, such

as contrastive learning [van den Oord et al., 2018, He et al.,
2020, Chen et al., 2020] or generative adversarial training
[Belghazi et al., 2018, Nowozin et al., 2016]. Variational
bounds of MI commonly focus on estimating T ∗ via a neural
network Tθ : Ω → R, called the statistics network [Belghazi
et al., 2018], which outputs a single real value given the
input sample pairs.

IMINE [Belghazi et al., 2018] directly maximize DDV as the
objective function by feeding the samples (x, y) of PXY

and PX ⊗ PY into Tθ:

IMINE(X,Y ) :=

EP(n)
XY

(Tθ(x, y))− log(E(n)

P(n)
X ⊗PY

(eTθ(x,y))), (4)

where P(n) is the empirical distribution associated to n i.i.d.
samples for given distribution P. Belghazi et al. [2018] also
utilizes moving averages of mini-batches to reduce the MI
estimation variance caused by the limited batch size.

IInfoNCE [van den Oord et al., 2018] is also commonly used
due to its stability and decent performance:

IInfoNCE(X,Y ) =
1

N

N∑
i=1

log
eTθ(xi,yi)

1
N

∑N
j eTθ(xi,yj)

(5)

where the N samples (xi, yi)
N
i=1 are drawn from PXY ,

which becomes equivalent to using the Softmax function
with the negative log loss. IInfoNCE is also equivalent to IMINE
up to a constant, but upper bounded by logN , hence not
able to estimate large MI values [van den Oord et al., 2018].

Poole et al. [2019] introduced ITUBA, a unified lower bound,
by expanding DNWJ [Barber and Agakov, 2003, Nguyen
et al., 2010].

INWJ(X,Y ) :=

EP(n)
XY

(Tθ(x, y))− EP(n)
X ⊗P(n)

Y

(eTθ(x,y)−1), (6)

ITUBA(X,Y ) := EP(n)
XY

(Tθ(x, y))

− EP(n)
Y

(
EP(n)

X

(eTθ(x,y))/a(y) + log(a(y))− 1
)
, (7)

where a(y) is the variational parameter. However, unlike
IMINE or IInfoNCE, directly using the exponential term often
causes numerical instability. Even if Tθ outputs a moderately
sized value, eTθ can easily exceed the floating-point range.

To avoid this problem, Poole et al. [2019] introduce DNWJ-
based lower bound IJS by using a softplus-activated neural
network as Tθ,

IJS(X,Y ) := 1 + EP(n)
XY

(Tθ(x, y))

− EP(n)
Y ⊗P(n)

X

((eTθ(x,y))). (8)



Variance problem of MI estimators Despite the variety
of bounds proposed, many still suffer from the bias-variance
trade-off [Poole et al., 2019]. McAllester and Stratos [2020]
and Song and Ermon [2020] prove that the IMINE estimator
must have a batch size proportional to the exponential of
true MI to control the variance of the estimation.

Many bounds try to mitigate this problem by reducing the
variance of low-biased estimators, such as by interpolating
with a low variance bound [Poole et al., 2019] or dropping
the formal theoretical guarantees [McAllester and Stratos,
2020]. Song and Ermon [2020] proposed ISMILE to clip the
range of Tθ trained with IMINE, sacrificing the estimation
quality to reduce the variance.

ISMILE(X,Y ) := EP(n)
XY

(Tθ(x, y))

− log(EP(n)
X ⊗P̂(n)

Y

(clip(eTθ(x,y), e−τ , eτ )), (9)

where clip(v, l, u) = max(min(v, u), l) for v, u, l ∈ R.

Practical usages of MI MI-based losses are often applied
in generative modeling, such as for better mode coverage
[Belghazi et al., 2018] or learning disentangled represen-
tations without supervision [Chen et al., 2016, Ojha et al.,
2020, Li et al., 2021b, Jeon et al., 2021]. Representation
learning employs MI-based losses [Tian et al., 2020b, Hjelm
et al., 2019, Tschannen et al., 2020, Cheng et al., 2020, Wu
et al., 2020, Wen et al., 2020, Boudiaf et al., 2020, Tian
et al., 2020a, Li et al., 2021a] to yield feature extractors that
reflect its downstream tasks well. We emphasize that these
approaches can be further utilized to measure the perfor-
mance of MI estimators.

Comparing between MI estimators Toy datasets such
as correlated multivariate Gaussian distributions has been
widely accepted for the evaluation of MI estimation [Belg-
hazi et al., 2018, Poole et al., 2019, Song and Ermon, 2020,
Cheng et al., 2020, Lin et al., 2019]. However, we empha-
size that using synthetic data as a definitive benchmark will
end up in a disparity with real-world tasks. There have been
some approaches that compared different MI estimators on
generative modeling [Belghazi et al., 2018, Hjelm et al.,
2019] or representational learning [Tian et al., 2020b]. How-
ever, finding the ideal MI for each downstream task is not
trivial, making it impossible to directly assess the MI esti-
mation quality. Moreover, Tschannen et al. [2020] and Tian
et al. [2020b] showed the gap between MI estimation quality
and downstream performance on specific tasks. Hence, it is
crucial to evaluate both perspectives. The closest work to our
benchmark is the consistency test of Song and Ermon [2020]
using CIFAR-10 [Krizhevsky, 2009] and MNIST [LeCun
et al., 1998]. However, the test only offered to assess the
ratio of two separate MI estimations, making it difficult to
separately measure the quality of each estimation.
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Figure 1: Training Tθ using IMINE and INWJ with batch size
100 for 3000 iterations. We breakdown the MI loss into two
components. We split IMINE into first term EPXX

(T ) and
second term logEPX⊗PX

(eT ). Similarly, we split INWJ into
first term EPXX

(T ) and second term EPX⊗PX
(eT−1).
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Figure 2: Training Tθ using IMINE and INWJ with batch size
100 for 3000 iterations. We observe the statistics network
outputs Tθ(x1, x2), where we split the outputs into two:
(x1, x2) ∈ Supp(PXX) and (x′

1, x
′
2) ∈ Supp(PX ⊗ PX) \

Supp(PXX).

3 INSTABILITY OF MI BOUNDS

To demonstrate and analyze the instability of variational
MI bounds, we design a synthetic problem with the One-
hot dataset. We then solve the task via IMINE and INWJ,
which are the losses derived from the two most commonly
used representations of KL-divergence, DDV and DNWJ,
respectively. Both losses consist of two terms, each de-
rived from the statistics of joint distribution EPXY

and the
product of marginal distributions EPX⊗PY

. Hence, to ob-
serve the behavior of each loss during training, we plot the
two terms separately. Also, to observe how each distribu-
tion differ by the statistics network outputs Tθ(x, y), we
plot each output from (x, y) ∼ Supp(PXY ) and (x, y) ∼
Supp(PX ⊗ PY ) \ Supp(PXY ), where we denote the sup-
port of P as Supp(P). Support is the set of values that the
random variable can take [Taboga, 2021].

One-hot Dataset We design a one-hot discrete problem
with uniform distribution X ∼ U(1, N) to estimating
I(X,X) = logN for a given integer N . This task is in-
tentionally created to easily discern samples (x, x) ∼ PXX

from (x, x) ∼ PX ⊗ PX , so that we can directly observe its
network outputs Tθ(x, x).
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Figure 3: Training Tθ using IMINE and INWJ with a reduced
batch size of 32 for 3000 iterations. MI estimate diverges for
both cases. Also, INWJ incurs exploding Tθ outputs, hence
the empty plot after 23k iterations.

Seemingly Stable Case We first observe the behaviors
of the statistics network Tθ when the losses are seemingly
stable, producing a successful MI estimate. Fig. 1 shows
the MI estimates and the two terms that construct each MI
estimate per batch. We observe that the first and the second
term estimates of IMINE, unlike INWJ, drifting in parallel
even after the MI estimate converge. This is due to the
free constant term C in the optimal T ∗ of DDV, where the
self-normalizing DNWJ avoids this problem. This drifting
phenomenon implies that Tθ is not stable even after the
loss seems to be converged, as shown in Fig. 2. Also, the
plot demonstrates how Tθ is trained; it isolates the samples
(x, y) ∼ PXY from the samples (x, y) ∼ PX ⊗ PY .

Unstable Case We also demonstrate the behaviors of
Tθ when the losses get unstable in Fig. 3. We reduce the
batch size to make the optimization unstable, where this
behavior is often reported in multiple works [van den Oord
et al., 2018, He et al., 2020, Chen et al., 2020]. How-
ever, even though the losses seem unstable, Tθ success-
fully discerns the samples before the outputs explode. We
believe that this is because of how Tθ is optimized dur-
ing training. The statistics network outputs Tθ(x1, x2) of
(x1, x2) ∈ Supp(PXX) gets increased by the first term
but occasionally decreased by the second term. However,
Tθ(x

′
1, x

′
2) of (x′

1, x
′
2) ∈ Supp(PX ⊗ PX) \ Supp(PXX)

gets decreased whatsoever, as (x′
1, x

′
2) is used only for the

second term. This makes the second term more unstable and
motivates us to regularize it for better numerical stability
during optimization.

To summarize, we suspect the instability of variational
bounds comes from two reasons. Firstly, the statistics net-
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Figure 4: Training Tθ with batch size 100 for 1500 iterations
using IReMINE with different C∗ (orange dotted line).

work did not converge even after the loss seemingly con-
verged. We argue that this is due to the unnormalized con-
stant term in the optimal T ∗ of DDV, where DNWJ success-
fully avoids via self-normalization. Secondly, the loss gets
unstable as Tθ(x

′
1, x

′
2) endlessly decrease due to the second

term. This observation is also consistent with the theoretical
findings of Song and Ermon [2020], McAllester and Stratos
[2020], where they show that large variance of the second
term leads to failed MI estimation. We claim that the outputs
have to be regularized in some form to avoid the instability.

4 STABILIZING THE MI BOUNDS

In this section, we introduce two novel regularized represen-
tations and its corresponding losses to tackle the instability
during optimization. We show both theoretically and experi-
mentally that adding regularization mitigates the unstable
behavior of the statistics network Tθ. We also describe a
simple windowing method that can sidestep the batch size
limitation problem of the MI estimation problem. We defer
all the proofs to the Appendix.

Regularized representations We stabilize the two ex-
isting representations DDV and DNWJ by regularizing the
second term. We introduce two novel representations: Regu-
larized DV (DReDV) and Regularized NWJ (DReNWJ),

DReDV(X,Y ) := sup
T :Ω→R

EP(T )− log(EQ(e
T ))

− d(log(EQ(e
T )), C∗),

(10)

DReNWJ(X,Y ) := sup
T :Ω→R

EP(T )− EQ(e
T−1))

− d(EQ(e
T−1)), 1),

(11)

where C∗ ∈ R is any constant and d(∗, ∗) is a distance
function on R.

Theorem 1. DReDV and DReNWJ is a dual representation for
DKL such that

DKL(P||Q) = DReDV(X,Y ), (12)
DKL(P||Q) = DReNWJ(X,Y ). (13)



We emphasize that both representations are not MI-specific
but dual representations of DKL, which can be easily ex-
tended to numerous variational MI bounds based on DDV
and DNWJ. Especially, the newly added regularizer grants
DReDV the normalizing property, effectively solving the drift-
ing problem of DDV.

Regularizing IMINE and INWJ Based on DReDV and
DReNWJ, we propose a novel neural network-driven vari-
ational MI bound IReMINE and IReNWJ by choosing the Eu-
clidean distance d(x, y) = (x− y)2 and the log-Euclidean
distance d(x, y) = (log x− log y)2, respectively.

IReMINE(X,Y ) := EP(n)
XY

(Tθ(x, y))

− log(EP(n)
X ⊗P(n)

Y

(eTθ(x,y)))

− λ(log(EP(n)
X ⊗P(n)

Y

(eTθ(x,y)))− C∗)2,

(14)

IReNWJ(X,Y ) := EP(n)
XY

(Tθ(x, y))

− EP(n)
X ⊗P(n)

Y

(eTθ(x,y)−1)

− λ(log(EP(n)
X ⊗P(n)

Y

(eTθ(x,y)−1)))2,

(15)

where C∗ ∈ R is any constant and λ is a hyperparameter
that controls the degree of regularization. We can also easily
regularize other losses such as IInfoNCE, ISMILE, ITUBA, and
IJS in a plug-and-play manner. See Table 1 for more details
on its regularized counterparts.

Solving the drifting problem Due to the self-regularizing
nature of DNWJ, we must fix C∗ = 1 for IReNWJ. We also set
C∗ = 0 for IReMINE on future experiments, but to demon-
strate the ability of the regularizer term to stop the drifting,
we experiment with various C∗ in Fig. 4. Comparing to
IMINE in Fig. 1, we can observe that IReMINE successfully
solves the drifting problem by regularizing the second term
to have a single value.

Solving the explosion problem We previously observed
the instability of IMINE and INWJ when using a small batch
in Fig. 3. We apply the same setting to IReMINE and IReNWJ to
observe if the regularizer mitigates the instability problem.
Both regularized losses successfully avoid the explosion
problem and limit the statistics network outputs Tθ(x1, x2)
within a certain boundary. As discussed in Section 3, the
second term was the culprit of the variance in MI estima-
tion. The newly added term directly regularizes it to sta-
bilize training, giving the statistics network Tθ additional
hints for the second term to converge to a specific value C∗

successfully. Furthermore, we empirically found that our
regularization works well with ISMILE’s strategy of clipping
Tθ. Gradient zeros out for the original ISMILE if Tθ(x, y)
exceeds a certain threshold. This behavior makes Tθ act as
if it were frozen, failing to further optimize during training.
However, with the regularizer term, we can clip Tθ(x, y)
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Figure 5: Training Tθ using the regularized counterparts,
IReMINE and IReNWJ, with the same small batch settings from
Fig. 3. Regularization effectively mitigates both instability
symptoms, shifting and exploding.

only on first and second term, i.e., on the original loss. Now,
clipping filters out the noisy gradients while the gradients
calculated from the regularizer avoid freezing Tθ entirely.

Mathematical properties of IReMINE and IReNWJ Fol-
lowing Belghazi et al. [2018], we show the soundness of
IReMINE and IReNWJ in two perspectives, strong consistency
and sample complexity. These properties relate to whether
the trained Tθ can be sufficiently similar to the optimal T ∗.

Theorem 2. IReMINE and IReNWJ are strongly consistent.

For the two losses, we also provide the mathematical bound
on the number of samples required for the empirical MI
estimation at a given accuracy and with high confidence.
Similar to Belghazi et al. [2018], let Tθ satisfy L-Lipschitz
with respect to the parameter θ such that |θ| < K and d is
dimension of the parameter space of Tθ.

Theorem 3. Assume that Tθ is bounded above by M . Let
k be the number of sample means. Given any ϵ, δ of the
desired accuracy and confidence parameters, we have

P(|IReMINE(X;Y )− I(X,Y )| ≤ ϵ) ≥ 1− δ, (16)

whenever the number n of samples satisfies

n ≥ d log(24KL
√
d/ϵ) + 2dM + log(2/δ)

ϵ2k/(2M2)
. (17)

Theorem 4. Assume that 1 ≤ |Tθ| < M and d(x, 1) ≤
|x − 1|. Let k be the number of sample means. Given any
ϵ, δ of the desired accuracy and confidence parameters, we
have

P(|IReNWJ(X;Y )− I(X,Y )| ≤ ϵ) ≥ 1− δ, (18)



whenever the number n of samples satisfies

n ≥ d log(24KL
√
d/ϵ) + 2dM + log(2/δ)

ϵ2k/(2M2)
. (19)

Drifting may lead to noisy MI estimate We prove that
the variance of the second term on the empirical distribu-
tions is affected by the constant term C∗.

Theorem 5. Let Q(n) be the empirical distributions of n
i.i.d. samples from Q. For the optimal T1 = log dp

dq + C1

and T2 = log dp
dq + C2 where C1 ≥ C2,

VarQ(EQ(n)(eT1)) ≥ VarQ(EQ(n)(eT2)) (20)

This implies that unregulated C∗ may lead to worse MI
estimation quality, as the source of the estimate variance are
mainly due to the second term.

Increasing the effective sample size for MI estimation
The drifting problem caused by the unnormalized constant
term C∗ raises more issues when estimating MI. Poole et al.
[2019] use a simple macro-averaging technique, i.e., averag-
ing the estimated MI from each batch. We can also consider
a slight modification to the technique, where we call it the
micro-averaging technique, by saving all the statistics net-
work outputs Tθ(x, y) for each batch and producing a single
estimate based on all the outputs. However, we proved that
both averaging techniques yield wrong final estimates for
biased estimators like IMINE [Belghazi et al., 2018], ISMILE
[Song and Ermon, 2020], ICLUB [Cheng et al., 2020], and
IInfoNCE [van den Oord et al., 2018].

Theorem 6. (Estimation bias caused by drifting) Both
macro- and micro-averaging strategies produce a biased MI
estimate when the drifting problem occurs.

To the contrary, self-normalizing or regularized MI estima-
tors have the upper hand in this perspective. By utilizing
all the samples from multiple batches, they can effectively
sidestep the batch size limitation problem [McAllester and
Stratos, 2020, Song and Ermon, 2020].

5 EXPERIMENTS

5.1 MI ESTIMATION VS. DOWNSTREAM TASK
PERFORMANCE

Benchmark Design To measure the performance of the
MI estimators, one must design the target task to have the
ground truth MI. This constraint led previous works to eval-
uate the estimators only on artificial toy problems [Belghazi
et al., 2018, Poole et al., 2019], where its connection to
actual problems is fairly limited. We design the two types of
MI estimation tasks with de facto image datasets to improve
the existing benchmarks to reflect on the real-world tasks.
We defer all the proofs to the Appendix.

Theorem 7. (Supervised learning) Given a dataset D =
(X,Y ) where X is an sample, Y is the label for X , and
H(Y ) is the entropy of the label set, I(X,Y ) = H(Y ).

Similarly, the true MI between images from the same class
is also tractable based on the same assumption.

Theorem 8. (Contrastive learning) Consider the dataset
D = (X,Y ). Let X1 be a sample drawn from the dataset
and X2 be another sample drawn from the subset with
the same label Y to X1. Then, I(X1, X2) = I(X1, Y ) =
I(X2, Y ) = H(Y ).

Note that we assume statistical dependence between the
image X and label Y from the point of view of information
bottleneck [Tishby and Zaslavsky, 2015]. We derive the the-
orems above based on the assumption, where Y implicitly
determines X .

Based on the above theorems, we use the two MI estimation
problems as benchmarks that evaluate the performance of
estimators. We intentionally design Theorem 7 and Theo-
rem 8 to mimic the existing tasks closely, namely, super-
vised and contrastive learning. For Theorem 7, we can set
the statistics network Tθ(X,Y ) = fθ(X) · o(Y ) where
fθ(X) is the logits obtained from feeding the image X to
the classification neural networks and o(Y ) is the one-hot
representation of the label Y . If we use the InfoNCE es-
timator, this formulation becomes identical to solving the
classification problem using negative log loss with the Soft-
max function, hence the name being the supervised learning
benchmark (SLB). Similarly, for Theorem 8, we can set
Tθ(X1, X2) = fθ(X1) · fθ(X2) and use the InfoNCE esti-
mator to yield a commonly used contrastive loss [van den
Oord et al., 2018, Chen et al., 2020].

Due to the strict assumption of statistical dependence, the
theorems above cannot be used on standard datasets like
ImageNet dataset [Deng et al., 2009], as its samples often
violate the single-label assumption. However, we can still
empirically compare the MI estimators by the relative size
of their final MI estimation. We conduct a demo experiment
on ImageNet in the Appendix.

Evaluation To verify the performance of MI estimators,
we perform our benchmark tasks on the CIFAR10 and CI-
FAR100 dataset [Krizhevsky, 2009]. As both CIFAR10
and CIFAR100 have a uniform label distribution, ideal MI
is log 10 and log 100, respectively. In addition, to check
whether this MI estimate task is actually helpful for down-
stream tasks, we evaluate each estimator on both dimen-
sions: MI estimation and test set accuracy. Similar to the
existing settings in the contrastive learning literature [Chen
et al., 2020, He et al., 2020], we design the test accuracy of
CLB by defining the label estimate ŷ of each test set sample
xTest to be the label of x = argmaxx∈XTrain

f(x) · f(xTest)
of the train dataset XTrain. Similarly for SLB, we chose



Loss Loss settings Regularizer settings
IMINE No gradient moving average Euclidean distance
ISMILE Clipping (τ = 10) Euclidean distance
IInfoNCE - Euclidean distance
INWJ - Log-Euclidean distance, Clipping (τ = 10)
ITUBA a(y) = 1 Log-Euclidean distance, Clipping (τ = 10)
IJS Estimate with INWJ Euclidean distance

Table 1: List of MI estimators with its hyperparameters

ŷ = argmaxyf(xTest)·o(y) where o(y) is the one-hot encod-
ing of y. We ran the same experiment 5 times with different
seeds to yield a 95% confidence interval.

5.2 COMPARISON WITH OUR BENCHMARK

To demonstrate the effectiveness of our novel regularization
term, we regularize the two representations, DDV and DNWJ.
We test three realizations for each representation, IMINE
[Belghazi et al., 2018], ISMILE [Song and Ermon, 2020], and
IInfoNCE [van den Oord et al., 2018] for DDV, INWJ [Nguyen
et al., 2010], ITUBA [Poole et al., 2019], and IJS [Hjelm et al.,
2019] for DNWJ. We compare the original losses with its
regularized counterparts, a total of 6× 2 = 12. We do not
apply averaging scheme on any of the losses, and choose
the regularization weight λ ∈ {0.1, 0.01, 0.001} that shows
the best MI estimation results. See Table 1 for more details.

We observe in Table 2 that additional regularization gener-
ally induces better performance on both the MI estimation
task and the downstream task (test accuracy). Hence, adding
the regularizer to a pre-existing supervised or contrastive
learning loss seems to be a viable option to increase the per-
formance further. Even when the performance of the regu-
larized loss slightly degrades, its negative impact is minimal.
This implies that even for the case where the regularizer is
not greatly helpful, it does not greatly hinder optimization.
Especially, it is intriguing that many losses, IMINE, IReMINE,
and IReTUBA, are better than IInfoNCE in SLB, which is used
as the de facto standard in classification. Also, ISMILE, INWJ,
and ITUBA fail to converge in CLB, where simply adding a
regularization term solves the issue altogether, yielding a
competitive or even better performance than all the other
losses. Given the fact that numerous contrastive learning
literature suffers from instability [Caron et al., 2021, Bardes
et al., 2021, Chen et al., 2020, He et al., 2020, Bardes et al.,
2021], we emphasize that adding our regularization term
can be a simple yet effective method to stabilize training.

Additionally, to observe the impact of regularization
strength λ, we plot the benchmark performance for each λ
in Fig. 6. We compare the losses on CLB as experimental
results suggest that CLB is a more difficult task than SLB,
showing significant performance differences between var-
ious losses. On CIFAR-10, λ acts as a trade-off parameter

0.82 0.84
Test Accuracy

1.4

1.6

1.8

2.0

2.2

M
I E

st
im

at
io

n

CIFAR-10

0.5 0.6
2.0

2.5

3.0

3.5

4.0

4.5

CIFAR-100
Optimal MI
ReMINE
ReSMILE
ReInfoNCE
ReNWJ
ReTUBA
ReJS

= 0.1
= 0.01
= 0.001

Figure 6: Ablation study on different λs with CLB CIFAR-
10 and CIFAR-100.

between test accuracy and MI estimation quality. Perfor-
mance trade-off has also been reported in other literature,
where better MI estimation does not necessarily deliver
better downstream performance [Tschannen et al., 2020,
Tian et al., 2020b]. However, compared to CIFAR-100, test
accuracy differences are minimal, where MI differences
are apparent. IReMINE and IReSMILE show excellent MI esti-
mation quality in CIFAR-10 compared to other losses. In
contrast, test accuracy and MI estimation quality align well
in the CIFAR-100 case. IReSMILE shows good overall perfor-
mance, albeit its sensitivity towards regularization strength.
IReInfoNCE, on the other hand, shows stable performance in
the downstream task, sacrificing the MI estimation qual-
ity. This result is further supported by the prominence of
IInfoNCE in the contrastive learning domain. It is yet unclear
where the difference between CIFAR-10 and CIFAR-100
comes from, whether it is due to the difference in the level
of difficulty of the dataset or the batch size used throughout
the training. We leave further analysis as future work.

5.3 COMPARISON WITH THE STANDARD TOY
PROBLEM

We provide the quality of MI-based losses on the 20D Cor-
related Gaussian task [Belghazi et al., 2018, Poole et al.,
2019] where the true MI is increased 5 times during op-
timization in Fig. 7. This experiment demonstrates how
stable the MI-based losses estimate MI in a dynamically
changing environment. We apply the same settings from



Task Loss MI Estimation Test Accuracy
Original Regularized Original Regularized
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MINE 2.300 ± 0.003 2.298 ± 0.005 0.850 ± 0.009 0.856 ± 0.004
SMILE 2.297 ± 0.009 2.300 ± 0.003 0.854 ± 0.008 0.853 ± 0.009

InfoNCE 2.301 ± 0.002 2.302 ± 0.001 0.845 ± 0.006 0.845 ± 0.005
NWJ 2.297 ± 0.009 2.294 ± 0.013 0.859 ± 0.003 0.862 ± 0.004

TUBA 2.297 ± 0.008 2.300 ± 0.003 0.862 ± 0.008 0.859 ± 0.003
JS 1.944 ± 0.039 2.000 ± 0.049 0.838 ± 0.012 0.842 ± 0.004

C
IF

A
R

-1
00

MINE 4.597 ± 0.011 4.603 ± 0.001 0.610 ± 0.007 0.610 ± 0.006
SMILE 4.595 ± 0.015 4.602 ± 0.002 0.601 ± 0.015 0.606 ± 0.007

InfoNCE 4.594 ± 0.017 4.599 ± 0.005 0.589 ± 0.010 0.593 ± 0.005
NWJ 4.572 ± 0.055 4.586 ± 0.034 0.558 ± 0.042 0.599 ± 0.009

TUBA 4.495 ± 0.207 4.603 ± 0.002 0.543 ± 0.055 0.611 ± 0.007
JS 4.088 ± 0.430 4.240 ± 0.116 0.591 ± 0.026 0.598 ± 0.010

C
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0

MINE 2.233 ± 0.674 2.240 ± 0.657 0.812 ± 0.026 0.823 ± 0.012
SMILE 0.000 ± 0.000 2.065 ± 0.842 0.100 ± 0.001 0.830 ± 0.008

InfoNCE 1.705 ± 0.462 1.739 ± 0.431 0.830 ± 0.008 0.826 ± 0.006
NWJ 0.000 ± 0.000 1.910 ± 0.662 0.100 ± 0.000 0.831 ± 0.005

TUBA 0.000 ± 0.000 1.358 ± 0.590 0.100 ± 0.000 0.830 ± 0.009
JS 1.552 ± 0.485 1.556 ± 0.546 0.837 ± 0.003 0.832 ± 0.009

C
IF

A
R

-1
00

MINE 4.634 ± 0.186 4.563 ± 0.162 0.522 ± 0.026 0.540 ± 0.020
SMILE 0.000 ± 0.000 4.677 ± 0.162 0.012 ± 0.003 0.585 ± 0.007

InfoNCE 4.112 ± 0.147 4.115 ± 0.145 0.576 ± 0.019 0.585 ± 0.014
NWJ 0.000 ± 0.000 4.065 ± 0.255 0.010 ± 0.000 0.521 ± 0.025

TUBA 0.000 ± 0.000 2.731 ± 0.786 0.010 ± 0.000 0.490 ± 0.023
JS 3.253 ± 0.368 3.393 ± 0.124 0.451 ± 0.020 0.463 ± 0.031

Table 2: Our supervised and contrastive learning benchmark results. We provide the 95% confidence interval of 5 runs for
both MI estimation and test accuracy, where we clip the negative MI estimations to 0. We compare the performance of
original and regularized loss. Bold text and blue text indicates the better performance with overlapping and non-overlapping
confidence interval, respectively.

Table 1, where we fix the regularization strength λ = 1.0
for all the losses. With the exception of IInfoNCE, regularized
losses show clear superiority over the original losses. Regu-
larization facilitates IMINE and ISMILE to avoid the instability
which is mentioned in Section 3. Also, regularization greatly
enhances the MI estimation quality of IJS and lessens the
variance of both INWJ and ITUBA.

6 CONCLUSION

In this paper, we identify the two symptoms behind the insta-
bility: The statistics network was not converging even after
the loss seemed to converge, and its outputs from the product
of marginal distribution explode during training. We propose
a novel regularization term to mitigate the instability during
training by adding to various existing MI-based losses. We
theoretically and experimentally demonstrate that the added
regularizer directly alleviates the two instability symptoms.
Finally, we present a benchmark that evaluates both the
MI estimation power and its capability on the downstream
tasks by imitating the supervised or contrastive learning set-
tings. We compare six different losses and their regularized

counterparts on various benchmarks to show the method’s
effectiveness and broad applicability.
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Figure 7: Estimation performance on 20-D Gaussian. The
estimated MI (light) and the smoothed estimation with expo-
nential moving average (dark) are plotted for each methods
with its regularized counterparts. Black line represents the
true MI. Dotted line shows the bound of IInfoNCE due to the
limited batch size of 64.



LIMITATIONS AND FUTURE WORKS

We suspect that the instability of MI estimators can also be
related to the collapse problem [Bardes et al., 2021, Caron
et al., 2021]. Further loss-based approaches to combat this
problem by regularizing the network outputs may be helpful.
We expect that extending our methods to various contrastive
learning losses may yield fruitful results for self-supervised
learning, notably for other domains such as text or audio.
Also, our mathematical analysis is mainly focused on the
drifting problem of IMINE, not the explosion problem of
INWJ. For INWJ, we suspect that the absence of the log func-
tion wrapping the exponential values makes the second term
much more susceptible to output explosion due to its numer-
ical instability. The added regularizer gives additional hints
for the second term to converge to a specific value. However,
we did not expand the discussion further in this paper.
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