
FedTherapist: Mental Health Monitoring with User-Generated
Linguistic Expressions on Smartphones via Federated Learning

Jaemin Shin1, Hyungjun Yoon1, Seungjoo Lee1, Sungjoon Park2,
Yunxin Liu3, Jinho D. Choi4, Sung-Ju Lee1

1KAIST 2SoftlyAI 3Tsinghua University 4Emory University
{jaemin.shin, hyungjun.yoon, seungjoo.lee, profsj}@kaist.ac.kr,

sungjoon.park@softly.ai, liuyunxin@air.tsinghua.edu.cn, jinho.choi@emory.edu

Abstract

Psychiatrists diagnose mental disorders via the
linguistic use of patients. Still, due to data
privacy, existing passive mental health mon-
itoring systems use alternative features such
as activity, app usage, and location via mo-
bile devices. We propose FedTherapist, a mo-
bile mental health monitoring system that uti-
lizes continuous speech and keyboard input in
a privacy-preserving way via federated learn-
ing. We explore multiple model designs by
comparing their performance and overhead for
FedTherapist to overcome the complex nature
of on-device language model training on smart-
phones. We further propose a Context-Aware
Language Learning (CALL) methodology to ef-
fectively utilize smartphones’ large and noisy
text for mental health signal sensing. Our IRB-
approved evaluation of the prediction of self-
reported depression, stress, anxiety, and mood
from 46 participants shows higher accuracy of
FedTherapist compared with the performance
with non-language features, achieving 0.15 AU-
ROC improvement and 8.21% MAE reduction.

1 Introduction

Nearly a billion people worldwide are living with
mental disorders, which seriously affect one’s cog-
nition, emotion regulation, and behavior. Early
diagnosis and proper treatment are the keys to alle-
viating the negative impact of the mental disor-
der (Sharp and Lipsky, 2002). However, most
patients have been unaware of their disorder for
years (Epstein et al., 2010), which delays treatment
while the symptoms worsen.

Given their ubiquity in users’ lives, researchers
have leveraged smartphones to resolve this un-
awareness problem, using features such as phone
usage patterns, location, and activity for seam-
less mental health monitoring (LiKamWa et al.,
2013; Wang et al., 2014, 2018; Li and Sano, 2020;
Tlachac et al., 2022a). However, these features fail
to reflect how licensed psychiatrists diagnose men-

tal disorders by conversing with patients (Murphy
et al., 2000). While analyzing linguistic use is ideal
for monitoring smartphone users’ mental health,
substantial privacy concerns it raises present chal-
lenges in amassing sufficient data to train advanced
NLP neural networks (Devlin et al., 2019).

We propose FedTherapist, a privacy-preserving
mental health monitoring system that leverages
user-generated text (speech and keyboard) on
smartphones via Federated Learning (FL). FL de-
centralizes model training on client devices (e.g.,
smartphones) using locally stored data (McMahan
et al., 2016), ensuring privacy on FedTherapist by
only collecting securely aggregated model updates.
For a detailed introduction to FL, see Appendix A.

Despite recent advances in FL + NLP (Lin et al.,
2022; Xu et al., 2023; Zhang et al., 2023a), on-
device training (i.e., training on smartphones) of
language models for mental status monitoring re-
mains unexplored. We explore the best model de-
sign for FedTherapist across multiple candidates,
including Large Language Models (LLMs), by
comparing their mental health monitoring perfor-
mance and smartphone overhead.

In realizing FedTherapist, the challenge remains
to effectively capture mental health-related signals
from a large corpus of spoken and typed user lan-
guage on smartphones, which differs from prior
NLP mental health studies based on social me-
dia (Yates et al., 2017; Park et al., 2020) – see
Appendix G. To address such a challenge, we pro-
pose Context-Aware Language Learning (CALL)
methodology, which integrates various temporal
contexts of users (e.g., time, location) captured on
smartphones to enhance the model’s ability to sense
mental health signals from the text data. Our eval-
uation of 46 participants shows that FedTherapist
with CALL achieves more accurate mental health
prediction than the model trained with non-text
data (Wang et al., 2018), achieving 0.15 AUROC
improvement and 8.21% reduction in MAE.



2 Data Collection

We conducted an IRB (Institutional Review Board)-
approved data collection study to evaluate FedTher-
apist on real-world user data. Although FL works
without user data collection, we collected the data
to fully explore the potential of smartphone text
data on mental health monitoring. We recruited
52 participants over the Amazon Mechanical Turk
(MTurk) who identified English as the first and
only language they use daily. Participants collected
data for 10 days on our Android application, where
we provided no instructions or restrictions to the
participants’ behavior during the study so that we
collect data from their normal daily routine. The
study details are in Appendix B, including how
we assured the integrity of our data, removing six
abnormal participants from the evaluation.

We collected two types of text input: (1) speech:
user-spoken words on the microphone-equipped
smartphones, and (2) keyboard: typed characters
on smartphone keyboards. On average, we col-
lected 13,492±14,222 speech and 4,521±5,994
keyboard words per participant. We describe how
we implemented a system to collect these inputs on
smartphones in Appendix C. To compare FedTher-
apist with the non-text data, we collected the data
used in a mobile depression detection study (Wang
et al., 2018) detailed in Section 4.1.1, along with
the text data. We collected ground truth on four
mental health statuses: depression, stress, anxiety,
and mood, as detailed in Section 4.1.2.

To ensure participant privacy, we carefully con-
trolled data collection, storage, and access as in the
Ethics Statement. Given the highly sensitive nature
of the data, it will not be released publicly and will
be deleted post-study following IRB guidelines.

3 FedTherapist

3.1 Mental Health Prediction Model

FedTherapist aims to deliver accurate mental health
monitoring using user-generated text data from
smartphones, employing FL. Given that FL neces-
sitates training a model on resource-constrained
user smartphones, it is essential that our model re-
mains accurate and lightweight. We explore three
candidate model designs: (1) Fixed-BERT + MLP:
The model consists of a text embedding model
followed by a multilayer perceptron (MLP). We
selected BERT (Devlin et al., 2019) as our text
embedding method for its effectiveness in docu-

Methods
Performance Smartphone Overhead∗

Depression† CPU‡ Memory

Fixed-BERT + MLP 0.716 35% 219MB
End-to-End BERT + MLP 0.524 68% 864MB

LLM 0.406 N/A§ N/A§

Table 1: Comparison of candidate mental health pre-
diction methods. ∗: averaged measurement on Google
Pixel (2016) and Samsung Galaxy S21 (2021). †: mea-
sured in AUROC; ‡: measured in average per-core uti-
lization; §: failed loading on test smartphones.

ment classification tasks (Adhikari et al., 2019).
We adopt pre-trained BERT and only train MLP
via FL. (2) End-to-End BERT + MLP: We use the
same model architecture as the former but perform
end-to-end training, including BERT and MLP.
(3) LLM: Given recent breakthroughs and state-
of-the-art performance of Large Language Models
(LLMs) (OpenAI, 2023), we train and use LLM to
prompt user text and output mental health status.

We compared the model designs by measur-
ing the depression detection performance (Sec-
tion 4.1.2) and their feasibility of operation on
two smartphones as noted in Table 1. We adopted
widely used base BERT models such as Distil-
BERT (Sanh et al., 2019) and RoBERTa (Liu et al.,
2019) and reported the best performance. We used
LLaMa-7B (Touvron et al., 2023) as LLM, one of
the smallest publicly available LLM, for its feasi-
bility on smartphones. We applied LoRA (Hu et al.,
2022) for End-to-End BERT + MLP and LLM ex-
periments, for lightweight fine-tuning at resource-
constrained mobile scenarios. We conducted exper-
iments using Leave-One-User-Out (LOUO) cross-
validation, segmenting the users into 1 test user, 5
for validation, and 40 for training; the experiments
were repeated 46 times by setting each user as a test
user, with the subsequent five users serving as the
validation set. Appendix D and E.4 present more
details on experimental methods.

Table 1 shows the comparison results. We found
that inference and training of Fixed-BERT + MLP
and End-to-End BERT + MLP are both available
on our test smartphones, while LLM failed due
to its memory constraints, requiring > 8GB free
memory to load 8-bit quantized LLaMa-7B. Fixed-
BERT + MLP results in 0.192 and 0.310 higher
AUROC than End-to-End BERT + MLP and LLM,
respectively, in depression detection, while it in-
curs less smartphone overhead by training only
MLP. We hypothesize that the subpar performance
of BERT and LLM results from overfitting on our
40-user training sample, as shown in Figure 6. Past
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Figure 1: Design of Context-Aware Language Learning (CALL) methodology for FedTherapist. CALL maps the
user’s text to multiple temporal contexts (time, location, motion, and app). Each piece of text trains the relevant
models on each context; for example, the text generated at daytime and home is used to train both the ‘daytime’ and
‘home’ models. CALL ensembles the context model outputs to determine the mental health status of a user.

research (Dai and Le, 2015; Sun et al., 2019) cor-
roborates that pre-trained models can overfit on
small-scale datasets, compromising their generaliz-
ability. This could be mitigated by using a larger
training dataset from broader population.

Fixed-BERT + MLP is also superior in privacy,
as partially training the model addresses concerns
that gradient sharing during FL could result in data
leakage or even sentence reconstruction (Huang
et al., 2021; Gupta et al., 2022). While we acknowl-
edge the risk of attackers possibly reconstructing
original text after recovering the embedded text
representations (Coavoux et al., 2018; Song and
Raghunathan, 2020), we could further integrate
protection methodologies to such an attack (Lee
et al., 2022). Thus, we use Fixed-BERT + MLP
as our model design for FedTherapist, with Distil-
BERT that showed the best performance (Table 3).

3.2 Context-Aware Language Learning

As an average person speaks more than 16,000
words and sends 71 text messages per day (Mehl
et al., 2007; Harrison and Gilmore, 2012), process-
ing such a large corpus of noisy text input on smart-
phones for accurate mental health sensing is yet
unexplored. To address such a challenge, we pro-
pose Context-Aware Language Learning (CALL)
methodology for FedTherapist.

We designed CALL to integrate various tempo-
ral contexts of a user (e.g., time, location, etc.)
captured on a smartphone to enhance the model’s
ability to sense mental health signals from the text
data. The intuition behind our design is to let the
neural network focus on the user-generated text in
a context in which users are highly likely to ex-
pose their mental health status. For example, users
would be more likely to express their emotions via

text at night at home than daytime at the workplace.
We integrate four types of contexts that are avail-

able on smartphones, each based on previous psy-
chological studies as follows:
• Time (T ): Time, indicative of when text gen-

eration happens, was chosen as context due to
humans’ daily emotional cycles (English and
Carstensen, 2014; Trampe et al., 2015). These
studies imply significant emotional differences
between morning and evening, hence we di-
vide 24 hours into two contexts: daytime (TD:
9AM∼6PM) and nighttime (TN : 6PM∼9AM).

• Location (L): Smartphone GPS infers user lo-
cation during text generation. Motivated by a
study (Lively and Powell, 2006) showing emo-
tional expression is influenced by the domain
(home or workplace), we divided GPS data into
two contexts: home (LH ) and other locations
(LO). We identified the most frequented location
from clustered GPS data as home.

• Motion (M ): Smartphone accelerometers indi-
cate user movement during text generation. In-
spired by a study (Gross et al., 2012) reveal-
ing emotion expression varies with physical ac-
tivity, we used Google Activity Recognition
API (Google, 2022a) to distinguish two contexts:
stationary (MS) and in motion (MM ).

• Application (A): We categorized applications
used for typing into two contexts: communi-
cation (AC) and others (AO), based on stud-
ies predicting mental status from text mes-
sages (Tlachac et al., 2021, 2022c). Applications
in the ‘Communication’ category of Google Play
Store, such as WhatsApp, are classified as com-
munication; otherwise classified as others.
Figure 1 depicts the mental health prediction

model of CALL, which aggregates the user text on



Methods CL+NonText FL+Text FedTherapist (FL+Text+CALL)

Data Type Non Text Data Speech (S) Keyboard (K) S+K Speech (S) Keyboard (K) S+K

Depression (AUROC ↑) 0.625±0.010 0.627±0.004 0.710±0.007 0.775±0.010 0.571±0.003 0.746±0.000 0.721±0.008

Stress (MAE ↓) 20.83±0.03 23.44±0.02 24.21±0.05 24.78±0.03 21.34±0.01 20.07±0.01 19.12±0.01
Anxiety (MAE ↓) 20.95±0.06 25.80±0.03 26.85±0.08 27.30±0.03 22.56±0.05 21.39±0.01 20.56±0.02
Mood (MAE ↓) 18.76±0.09 22.85±0.03 23.21±0.02 23.67±0.02 19.11±0.02 19.18±0.00 18.57±0.02

Table 2: Mental health monitoring performance on different methods.

each temporal context and trains separate models.
CALL performs ensemble learning on N context
models and takes a weighted sum on the models’
outputs to determine the user’s mental health status.
We use N = 8 for keyboard input with two con-
texts each from T , L, M , A contexts and N = 6
for speech input without A contexts. When we
use both speech and keyboard input, we use all the
contexts and use N = 14. We implemented two
types of ensemble weights in our experiments: (1)
EA: averaging the model outputs (w1, w2, . . ., wN

= 1
N ); and (2) EE : weighted sum of model outputs

using the trained ensemble weights W over FL.
In terms of privacy, an attacker could reveal the

private information of a user based on which con-
text models’ gradients are non-zero. For example,
if a user’s LH model gradient is non-zero while
the LO gradient is zero, an attacker could infer that
a user stayed home most of the time. To address
this problem, we could adopt Secure Aggregation
protocol (Bonawitz et al., 2017) that securely ag-
gregates the FL clients’ model gradients to prevent
attackers from acquiring individual model updates.

4 Evaluation

We answer the following key questions: (1) How
beneficial is using the text data on mental health
monitoring tasks? (2) How much performance im-
provement does FedTherapist achieve with CALL?
(3) How do each context model and ensemble meth-
ods of CALL perform?

4.1 Experimental Setup

4.1.1 Methods and Data Types.
We compare three methods: (1) CL+NonText: we
use Centralized Learning (CL) to train an MLP
model on the non-text data utilized by a previous
study (Wang et al., 2018), which uses the follow-
ing features: stationary time, conversation count,
sleep end time, location duration, unlock duration,
unlock counts, and number of places visited. We
extracted the features by preprocessing the device
logs and raw sensor values such as GPS, accelerom-
eter, or ambient light sensor from participant’s mo-

bile devices. (2) FL+Text: we use Federated Learn-
ing (FL) to train a Fixed-BERT + MLP model with
the speech and keyboard input text data captured
on smartphones collected from our data collection.
While FL is often outperformed by CL (Nilsson
et al., 2018), CL on text data is avoided due to
privacy concerns. (3) FedTherapist: we applied
CALL to FL+Text. We tested three sets of text data;
speech input only (S), keyboard input only (K), and
both (S + K). We employed the Leave-One-User-
Out (LOUO) cross-validation technique in our ex-
periments. Out of 46 users, one was configured as
the test user and the remaining 45 were used for
training. This setup was iteratively conducted 46
times, setting each user as the test user. We report
the test performance after running 1,000 epochs
for CL or rounds for FL. Detailed experimental
methodologies are presented in Appendix D.

4.1.2 Tasks and Metrics.
We evaluated on following tasks and metrics: (1)
Depression (Classification): post the 10-day study,
depression was surveyed on participants through
the PHQ-9 test questionnaire (Wang et al., 2018).
We label a participant as mildly depressed if PHQ-
9 score ≥ 5 (Kroenke and Spitzer, 2002), and use
the 10-day study data for prediction. We test the
Area Under the ROC curve (AUROC) as a metric.
(2) Stress, Anxiety, and Mood (Regression): we
use the data from each day to predict the level of
stress, anxiety, and mood, which were self-rated
by participants on a 0∼100 scale as in previous
literature (Li and Sano, 2020); 0 and 100 each
indicate the negative and positive feelings. We test
the Mean Absolute Error (MAE) as a metric to
evaluate regression.

4.2 Comparison of Data Types and Methods

Table 2 displays the performance of three methods
for mental health monitoring. In the depression
task, which utilizes 10-day data input, FL+Text
outperforms CL+NonText by 0.15 AUROC. Con-
versely, CL+NonText excels over FL+Text in re-
maining tasks that use one-day data input, with
2.61∼6.35 lower MAE. These results suggest that
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Figure 2: Performance of ensemble methods (EA: ensemble by averaging, EE : ensemble by weighted sum) of
CALL and context models (TD: daytime, TN : nighttime, LH : home, LO: other locations, MS : stationary, MM : in
motion, AC : communication applications, and AO: other applications) on four mental health monitoring tasks. All
subgraphs share the same legend with Figure 2a and 2b.

longer-duration text input more effectively captures
mental health signals, likely due to the complexity
of detecting these signals within the noisy text, thus
leading models to struggle with shorter-term data.

Unlike FL+Text, we find that FedTherapist
consistently achieves improved performance over
CL+NonText on all tasks, achieving 0.121 higher
AUROC on depression and 0.19∼1.71 lower MAE
on remaining tasks. FedTherapist also achieves en-
hanced performance on stress, anxiety, and mood
tasks than FL+Text with 4.32∼6.74 lower MAE,
with comparable AUROC (0.746 vs 0.775) on de-
pression. These results demonstrate that FedTher-
apist with CALL generally improves our model in
detecting mental health signals from the raw text,
regardless of the data collection period.

Our findings recommend the combined use of
speech and keyboard input (S+K) with FedThera-
pist, owing to its superior results in stress, anxiety,
and mood tasks (achieving a lower MAE between
0.54 and 2.22) and a similar performance in depres-
sion tasks (0.721 vs. 0.746) over single text type ap-
proaches (S or K). S and K each excels at different
tasks; S outperforms in mood with FedTherapist,
while K shows superior performance in other tasks.

4.3 Comparison of Context Models and
Ensemble Methods of CALL

Figure 2 illustrates the performance of each con-
text model and ensemble methods of CALL (Sec-
tion 3.2) across four mental health monitoring tasks
(Section 4.1.2). Among ensemble methods, the av-
eraging method EA excels on the depression task
with 0.702 AUROC but underperforms elsewhere.
The weighted ensemble, EE , records the lowest

MAE for remaining stress (19.12), anxiety (20.56),
and mood (18.57) tasks, albeit with an AUROC
of 0.579 for depression. This implies that some
context models are not always helpful for stress,
anxiety, and mood tasks, that weighted sum outper-
forms the averaging, unlike the depression task.

Among the time contexts, TN performs better
on the depression task on the keyboard, while TD

excels in speech, indicating more emotional ex-
pression at daytime speech and nighttime keyboard
use. For the location, LH outperforms LO in both
speech and keyboard, suggesting greater mental
state disclosure at home. With the motion contexts,
texts during movement (MS) provide superior men-
tal state indicators over MM . For the application
contexts, AO significantly improves AUROC over
AC , underscoring the value of considering non-
communication app inputs, unlike prior studies that
focus only on the messenger app inputs (Tlachac
and Rundensteiner, 2020; Tlachac et al., 2022c).

5 Conclusion
We presented FedTherapist, a mobile mental health
monitoring system leveraging continuous speech
and keyboard input while preserving user privacy
via Federated Learning (FL). Our Context-Aware
Language Learning (CALL) empowers FedThera-
pist to effectively sense the mental health signal
from a large and noisy text data on smartphones.
Our evaluation with 46 participants on depression,
stress, anxiety, and mood prediction shows that
FedTherapist outperforms the model trained on
non-language features. We believe FedTherapist
demonstrated the feasiblity of on-device NLP on
smartphones that enable usage of user-generated
linguistic data without privacy concerns.



Limitations

Unlike previous approaches (Wang et al., 2014,
2018; Li and Sano, 2020) on mobile mental health
monitoring that collected data over 10 weeks, our
data collection was held for only 10 days. More-
over, our study pool of 46 English-speaking partic-
ipants do not represent regional & cultural differ-
ences of language among users. Thus, the reported
evaluations should be considered as exploratory.
Note that our study gathered participants from US
and Canada, spanning ages from 20s to 60s, while
previous studies were conducted mostly on univer-
sity students. Studying FedTherapist on different
languages for a longer term would be the next step
for generalizing our findings.

The accuracy of our speech collection in un-
constrained environments was not investigated.
To avoid collecting the voice of non-target users
and only record the speech in high quality, our
speech text collection module (Section C.1) inte-
grated Voice Activity Detector (Google, 2022b),
VoiceFilter (Wang et al., 2019, 2020), a language
classifier (Team, 2021), and a speech recognition
model (Cephei, 2022). Such machine learning-
driven components, especially VoiceFilter, may
yield errors at noisy or untrained environments (Es-
kimez et al., 2022). However, the speech data in
our experiment shows comparable or better results
on stress, anxiety, and mood tasks with accurately
collected keyboard data; the speech data also im-
proves performance when it is jointly used with the
keyboard data with FedTherapist. This result hints
that the speech data collected from our speech text
collection module could be effectively utilized in
mental health monitoring tasks.

When comparing the model designs for FedTher-
apist in Section 3.1, we were limited to train on
larger batch sizes (e.g., 128) for BERT and LLM as
indicated in Appendix D.2, due to our GPU mem-
ory restrictions (24GB on NVIDIA RTX 3090).
Thus, our findings on comparison between model
designs could be altered when tested on more pow-
erful hardware or different data, but we still believe
Fixed-BERT + MLP is a promising option for mo-
bile scenarios, given its low system overhead and
high mental health monitoring performance.

Ethics Statement

The collection of text data on user smartphones has
been previously discouraged as it contains highly
private information (Tlachac et al., 2022a). As

the privacy threat on participants should always be
carefully considered (Šuster et al., 2017; Benton
et al., 2017), we performed the following based
on a previous work (Chen et al., 2019) to mini-
mize the risk that originates from our study. (1)
We provided detailed instructions on all data types
we are collecting during the study to the partici-
pants. (2) We only accepted participants who pro-
vided their own signatures to confirm that they are
aware of the types of collected data. (3) We used
VoiceFilter (Wang et al., 2019), the state-of-the-
art voice separation technology to avoid collecting
the speech of others who are not part of our study.
(4) The collected data on smartphones were saved
only in our Android application’s sandbox storage
where access from other applications is restricted.
(5) The data was securely transmitted through en-
crypted communication with our SSL-certified and
HIPAA-compliant database server. (6) The data
was available only to the authors from the same in-
stitution as the corresponding author. (7) We do not
plan to share the collected data externally and will
delete the data when our IRB approval expires.
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A Federated Learning

Federated Learning (FL) (McMahan et al., 2016;
Li et al., 2020; Shin et al., 2022; Liu et al., 2022)
is a recent machine learning paradigm that enables
model training without data collection. FL globally
trains a model from the distributed user data on mul-
tiple mobile devices. We apply FL with FedTher-
apist to utilize the privacy-sensitive text data on
smartphones for effective mental health monitor-
ing. The most commonly adopted FL methodol-
ogy is FedAvg (McMahan et al., 2016), which
operates synchronously across clients over mul-
tiple rounds as follows: at the beginning of each
round, the FL server randomly samples K clients
out of total N clients (K ≪ N ). The sampled
clients download the up-to-date model weights
wR at round R then train on the local client data
for E epochs. The client’s updated model (wi

R+1

for client i) gets uploaded to the server, which is
further aggregated into a new updated model as
wR+1 ←

∑K
i=1

ni
n wi

R+1, where ni indicates client
i’s data size and n indicates the data size sum on
K sampled clients.

Various recent healthcare applications, such as
brain cancer imaging (Sheller et al., 2020; Lee et al.,
2021), clinical support for COVID-19 (Dayan et al.,
2021; Vaid et al., 2021), MRI data analysis (Silva
et al., 2019), blood pressure monitoring (Brophy
et al., 2021), Parkinson’s diseases diagnosis (Chen
et al., 2020), and stress level prediction (Can and
Ersoy, 2021) have employed FL. Additionaly, FL
has been recently approached on NLP tasks, such
as next word prediction (Xu et al., 2023), semantic
parsing (Zhang et al., 2023a), and legal text data
processing (Zhang et al., 2023b). None of the previ-
ous approaches, however, capitalize a user’s speech
and keyboard input on smartphones with FL. We
propose FedTherapist, a mental health monitoring
system to leverage user-generated linguistic expres-
sions on smartphones with FL.

B Data Collection Study Details

The data collection study was conducted for three
weeks. Online Amazon Mechanical Turk (MTurk)
participants freely joined our study during that pe-
riod by downloading our Android application, com-
pleting a survey, and executing three tasks as illus-
trated in Figure 3. The survey asked the participants
to confirm if they were fully aware of the data that
were being collected during the study. The data col-
lection study for each user lasted for ten days, with

Figure 3: Screenshots of our data collection applica-
tion. Participants completed three tasks to join the study.
First, participants were asked to upload their voice sam-
ple (Task 1) to use VoiceFilter (Wang et al., 2019) (Sec-
tion C.1). Participants then downloaded the model files
used in our local data collection module (Task 2), and
started the study (Task 3). We asked the participants for
a daily mental health status report during the study.

$72 compensation. Figure 4 shows the word count
of collected data on each participant, where an av-
erage of 13,492±14,222 and 4,521±5,994 words
are collected on speech and keyboard input, respec-
tively. Figure 5 shows the count of the participant
responses on each mental health status.

As we conducted our study via MTurk, we could
not directly monitor whether users fully followed
our instructions while collecting data. For example,
we could not confirm if users installed our data
collection application on their main smartphone.
After collecting data, we removed six out of 52
participants from the evaluation for showing abnor-
mal data statistics. Three were excluded for not
having keyboard input throughout the data collec-
tion duration. The other three were dropped for
being completely stationary for ten days, which
could imply that the users might have installed the
application on their secondary phones.

C Data Collection App Implementation

C.1 Speech Text Collection Module

Capturing user speech from the continuous audio
input on a smartphone presents several challenges:
(1) As the user could speak at any time of the day,
continuous microphone recording is desired, lead-
ing to a significant smartphone battery drain. (2)
The voice of non-target users could be included
in the audio. This must be excluded not only to
achieve effective mental health prediction of the
target user but also to protect the privacy of non-
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Figure 5: Count of participant responses on different
mental health status scores.

target users. (3) The user voice could be recorded
in low quality with noise, as the recording occurs in
unconstrained, real-world environments. The dis-
tance between the user’s mouth and the smartphone
microphone could be far, and the background noise
in the audio makes it difficult to acquire a clear
voice from a user.

We implemented our speech text collection mod-
ule to collect the user speech data while mitigating
the aforementioned challenges as follows: To avoid
continuous recording (Challenge 1), we adopted
a duty cycling system with a Voice Activity De-
tector (VAD) model (Wang et al., 2014): it starts
recording and infers on a VAD model for a minute
in every four minutes to check whether there is
an ongoing conversation. The module continues
recording if a conversation is detected, where the
recorded audio is inferred on VoiceFilter (Wang
et al., 2019, 2020), a model that removes the non-
target users’ voice based on the target user’s sample
voice (Challenge 2). Next, the VAD model is ap-
plied to the VoiceFilter output to remove audio
without the target user’s voice. To ensure that the
processed audio contains the target user’s voice
(Challenge 3), we designed the module to leverage
a language classifier that outputs the language of a

given audio file. If the classifier outputs a language
that the user speaks, we regard the audio as high-
quality recording of the user’s voice and apply a
speech recognition model to retrieve the text data.

We implemented the speech text collection mod-
ule on our Android app to demonstrate its on-device
capability and conduct FedTherapist evaluation on
real-world user devices. We adopted three publicly
available models: a lightweight VAD model from
Google WebRTC (Google, 2022b), a language
classifier from Silero (Team, 2021) that searches
among 95 languages, and an offline speech recog-
nition model, Vosk (Cephei, 2022) (en-us model).
To enable inference on smartphones, we reduced
the number of convolution layers from eight to
four and changed the bidirectional LSTM to uni-
directional LSTM on the VoiceFilter model. For
models that do not provide an Android implementa-
tion (e.g., VoiceFilter), we used MNN (Jiang et al.,
2020) to convert the PyTorch version of the models
into an Android executable. To minimize the smart-
phone battery drain and preserve the user experi-
ence, we implemented to fully execute the module
only when the device is idle and being charged.
The recorded audio files from the duty cycling sys-
tem are temporarily saved on the device until the
device gets connected to a charger.

C.2 Keyboard Text Collection Module

The keyboard text collection module captures all
the input text the user enters with their smartphone
keyboard. Our implementation on our app tracked
the text input events on Android smartphones us-
ing the Android Accessibility Service (Android,
2021). We preprocessed the collected text as fol-
lows (Uysal and Gunal, 2014; Vijayarani et al.,
2015): (1) Emails, hashtags, links, mentions, punc-
tuations, and numerical values were removed; (2)
emojis were replaced with CLDR (Common Locale
Data Repository) Short Names (Unicode, 2022),
and abbreviations were replaced with what they
stand for; (3) the letters that were excessively re-
peated were reduced; and (4) typos were corrected
using the auto-correction API (Norvig, 2016).

D Detailed Experimental Methodologies

D.1 Handling Long Input Sequences

Our model input for four mental health prediction
tasks (Section 4.1.2) often exceeds the max input
size of the models, such as BERT (512 words on
BERT-base (Devlin et al., 2019)) or LLM (2048
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Figure 6: Loss and AUROC results on train, validation, and test samples over epochs from fine-tuning experiments
in Section 3.1. Figure 6a and 6b indicate fine-tuning experiment of End-to-End BERT + MLP using a pre-trained
RoBERTa-base (Liu et al., 2019) model with a learning rate of 0.0001. Figure 6c and 6d depict fine-tuning
experiment of LLM on a pre-trained LLaMa-7B model with a learning rate of 0.0002. More details on experimental
methods are found in Section 3.1 and Appendix D. All subgraphs share the same legend with Figure 6a.

words on LLaMa-7B (Touvron et al., 2023)). In
such cases, we divided the input text into 512-word
chunks and tested the following methodologies,
inspired by Sun et al. (2019): (1) full+pool: we
forward the chunks through the embedding model
and then a maxpool layer. One embedding vector
is generated, which we further use for prediction
with multilayer perceptron (MLP). We include as
many chunks as our GPU memory permits. (2)
single: we forward chunks individually through
the embedding model and MLP. We test the model
performance by predicting based on the averaged
logits from multiple chunks. We experimented with
both options and reported better performance.

D.2 Training and Cross Validation

For Section 3.1 experiments with training BERT
and LLM, to target resource-constrained mobile
scenarios, we applied LoRA (Hu et al., 2022), a
lightweight fine-tuning technique. Moreover, we
trained the 8-bit quantized LLaMa-7B model as
LLM for resource-efficient training. For the BERT
experiment, we applied DistilBERT-base (Sanh
et al., 2019), RoBERTa-base (Liu et al., 2019), and
BERT-base (Devlin et al., 2019) and reported the
best performance. For each experiment, we ap-
plied sequence classification models and LoRA
from PEFT (Parameter-Efficient Fine-Tuning) li-
brary (Mangrulkar et al., 2022), both from Hug-
gingFace (Wolf et al., 2020). Based on Hu et al.
(2022), we adopted the learning rate from a set of
[0.0005, 0.0004, 0.0003, 0.0002, 0.00003] with a
linear learning rate decay scheduler. We fine-tuned
BERT and LLM until 30 and 5 epochs, respectively,
and reported the test AUROC from an epoch with
minimum validation loss. Given our GPU memory

restrictions, we selected a batch size of 16 for sin-
gle experiments and 2 for full+pool experiments.

For Section 4 experiments with FL (FL+Text
and FedTherapist), we applied FedAvg (McMahan
et al., 2016) (Appendix A), a widely-used FL al-
gorithm; exploring other FL approaches is not the
focus on this work. We report better performance
among the context models and ensemble methods
for CALL experiments. We trained a Logistic Re-
gression (LR) model as an MLP and applied Lasso
regularization for the regression. A learning rate of
0.01 and a batch size of 10 were adopted.

For cross-validation, we employed the Leave-
One-User-Out (LOUO), splitting participants into
a single test user and training users. We trained the
model on the training users for 1000 epochs for CL
and 1000 rounds for FL. We then test on the single
test user, with each participant rotated as the test
user. We used three random seeds to repeat and
average the performance.

E Evaluation Results

E.1 Comparison with Existing Methods

We conducted a comprehensive comparative anal-
ysis of FedTherapist against closely related ap-
proaches:

• CNN + MLP: Modeled after Yates et al. (2017)
and Kim (2014), this CNN-based text classifica-
tion employs a convolutional layer and a MLP.
We used Yates et al. (2017)’s hyperparameters
for depression identification.

• Bag-of-words + MLP: This model employs an
MLP with a bag-of-words input with TF-IDF,
based on Pirina and Çöltekin (2018)’s depression
detection. We experimented with a n-gram range



of [1, 3] and representation sizes from [1000,
5000, 10000, 20000].

• Empath + MLP: Taking cues from Tlachac et al.
(2021), which utilizes smartphone SMS mes-
sages, the model utilizes output representations
from Empath (Fast et al., 2016), which analyzes
text over 200 lexical categories.

To ensure a fair comparison, we trained all base-
line models using learning rates from [0.0001,
0.001, 0.01, 0.1] and evaluated their performance at
each of the 1000 epochs. We measured the best per-
formance achieved by these models over the 1,000
epochs. For FedTherapist, we reported the test AU-
ROC after its 1,000 epochs without selecting its
peak performance. Despite this, FedTherapist still
demonstrated superior results of 0.721 AUROC,
while CNN + MLP, Bag-of-words + MLP, and Em-
path + MLP each resulted in 0.418, 0.564, 0.635
AUROC respectively.

The result shows that FedTherapist outperforms
other methods in depression detection on our
dataset. Limited training samples from only 46
users in our dataset might have hindered the ef-
fectiveness of CNNs trained from scratch — in
contrast, Yates et al. (2017) trained with Reddit
posts from more than 100,000 users. Other results
suggest that using frozen BERT in FedTherapist
shows better mental health monitoring performance
than using bag-of-words or Empath.

E.2 Comparison of Text Embedding Models

Table 3 reports the performance of the following
text embedding methods: widely used BERT mod-
els (BERT-base, BERT-large (Devlin et al., 2019),
RoBERTa (Liu et al., 2019)), lightweight BERT
models tailored for mobile devices (ALBERT (Lan
et al., 2020), MobileBERT (Sun et al., 2020), Dis-
tilBERT (Sanh et al., 2019)), BART base (Lewis
et al., 2020), and a text embedding model for longer
sequences, BigBird (Zaheer et al., 2020). For each
model, we used pretrained uncased models from
HuggingFace (Wolf et al., 2020), and used the
full+pool method (Appendix D.1) for user texts
exceeding a model’s maximum input length.

DistilBERT outperforms other methods in de-
pression, while MobileBERT outperforms other
methods in stress, anxiety, and mood. As Mobile-
BERT shows the lowest performance on depres-
sion, we selected DistilBERT for our FedTherapist
evaluation in Section 4, which performs compara-
bly to other methods in other tasks. BERT with

a larger parameter size (BERT-base, BERT-large)
or a model for longer input sequences (BigBird)
underperforms the lighter models on all tasks. We
suspect that these disparities between models arise
from variations in their pretraining data and meth-
ods, particularly in how well they correlate with
our user-generated speech and keyboard data.

E.3 Fine-tuning BERT for FedTherapist
In our Fixed-BERT + MLP model for FedThera-
pist, we utilize pretrained BERT models trained
on traditional text corpuses such as Wikipedia or
BookCorpus (Devlin et al., 2019). As FedThera-
pist primarily deals with conversation-based, user-
generated text data from smartphones, we evaluated
unsupervised fine-tuning of BERT on SODA (Kim
et al., 2022), a large-scale dialogue dataset.

Three pretrained models, BERT-base, RoBERTa-
base, and DistilBERT-base, were used. BERT-base
was fine-tuned using Masked LM (MLM) and Next
Sentence Prediction (NSP) objectives. We utilized
only the MLM objective for RoBERTa-base, mir-
roring RoBERTa-base’s strategy (Liu et al., 2019).
For DistilBERT-base, we distilled the knowledge
from our SODA-pretrained BERT-base model. We
conducted fine-tuning in two ways: (1) SODA: we
consider each dialogue in the SODA dataset as a
single input and (2) SODA-single: the dialogue
was divided per speaker and trained as separate in-
puts, reflecting FedTherapist’s input data that only
contains texts from a single mobile user.

Table 4 reveals that fine-tuning with BERT-base
significantly improved performance (0.197 AU-
ROC) on the depression task, while RoBERTa-base
and DistilBERT-base showed comparable perfor-
mance (∼ 0.7 AUROC). SODA and SODA-single
resulted in similar performances, potentially due
to a lack of modeling objectives to understand con-
versation structure. We leave the inclusion of such
objectives as future work.

E.4 System Overhead of FedTherapist
We tested the system overhead of FedTherapist on
two scenarios: (1) data collection and (2) on-device
training. For the data collection scenario, we tested
when the device is performing (i) duty cycling and
(ii) full execution of the speech text collection mod-
ule (Appendix C.1), which runs only when the
device is idle and being charged. Note that we
measured only the speech data collection and not
keyboard data collection as the latter is lightweight
without running any deep learning models.



Methods ALBERT-base MobileBERT DistilBERT-base RoBERTa-base BERT-base BERT-large BART-base BigBird
Parameter Size 11M 25M 66M 110M 110M 340M 140M 128M

Depression (AUROC ↑) 0.526±0.007 0.319±0.003 0.775±0.010 0.729±0.002 0.560±0.011 0.622±0.004 0.636±0.005 0.626±0.009

Stress (MAE ↓) 24.75±0.02 23.98±0.01 24.78±0.03 24.59±0.05 24.80±0.06 24.76±0.04 24.29±0.05 24.95±0.05

Anxiety (MAE ↓) 26.95±0.02 25.99±0.01 27.30±0.03 27.05±0.06 27.07±0.04 27.05±0.03 26.74±0.04 27.25±0.04

Mood (MAE ↓) 23.57±0.02 22.82±0.01 23.67±0.02 23.79±0.02 23.54±0.02 23.01±0.03 23.09±0.02 23.58±0.04

Table 3: Mental health monitoring performance on different text embedding methods at epoch 200.

Methods BERT-base RoBERTa-base DistilBERT-base

Pretrained 0.560 0.729 0.775
+ SODA 0.757 0.696 0.701

+ SODA-single 0.744 0.665 0.714

Table 4: Effect of fine-tuning on text embedding meth-
ods on mental health monitoring performance, measured
in AUROC on depression task.

Testing each model design candidate from Sec-
tion 3.1 for on-device training, we used Termux,
a Linux Terminal emulator on Android, for un-
modified PyTorch model training following previ-
ous work (Singapuram et al., 2022). We utilized
RoBERTa-base (Liu et al., 2019) and a linear clas-
sifier as BERT and MLP, respectively, and LLaMa-
7B (Touvron et al., 2023) model as LLM. To mimic
FedTherapist’s user device training, we trained on
a randomly generated text dataset that reflects the
average word count from our study participants.

For CPU and memory measurement, we reported
average per-core utilization on smartphone CPU
and the max memory usage from the 5-min execu-
tion of each sub-scenarios. For latency of speech
text collection module, we measured the time to
process a 15-seconds audio file that our module pro-
cesses. We measured the time to train one epoch as
latency for on-device training. We used two com-
modity Android smartphones for the experiment:
Pixel (2016) and Galaxy S21 (2021).

Table 5 presents system overhead results. There
is a significant gap in CPU and memory usage
between the data collection sub-scenarios. Duty cy-
cling exhibits minimal CPU (< 1.5%) and memory
usage (< 200MB), while the speech text collection
module significantly increases CPU (> 15%) and
memory (> 1GB) usage due to loading and operat-
ing multiple models like VoiceFilter (Wang et al.,
2019). These results support our design to run the
module only when the device is idle and charging.
Moreover, the latency results confirm that our mod-
ule processes audio in real-time with a processing
time shorter than the audio length.

For FL, End-to-End BERT+MLP shows in-

creased CPU (> 45%), memory usage (> 800MB),
and latency (> 10 seconds per epoch) over Fixed-
BERT + MLP. While Fixed-BERT + MLP still con-
sumes > 25% in CPU, its per-epoch latency is ex-
tremely short (< 0.1 seconds), and the overhead
in training is negligible. LLM measurement was
not possible as the model was not loaded, requir-
ing > 8GB memory, which exceeds the test smart-
phones’ memory. We chose Fixed-BERT + MLP
for FedTherapist, given that it achieves the highest
mental health detection performance (Table 1) and
the lowest smartphone overhead.

F Discussion

F.1 Context Features

We designed our context-aware language learning
(CALL) based on eight context models, where the
context models train on the text data collected at
each context (Section 3.2). However, a combina-
tion of different contexts (e.g., texts that are col-
lected at nighttime and at home, i.e., TN + LH )
could be a viable option to improve the perfor-
mance of FedTherapist with CALL. Moreover, con-
texts other than those we considered (time, location,
motion, and application) could be used to further
improve CALL. For the speech input, audio features
such as a tone or pitch of a voice could be utilized.
For the keyboard input, features such as typing
speed (e.g., word per minute) could be leveraged.
We leave such an investigation as future work.

F.2 Applicability of FedTherapist on Users
with Little Speech and Keyboard Input

As FedTherapist takes users’ speech and keyboard
input from smartphones, one might wonder about
the performance of FedTherapist on users who pro-
duce less input; i.e., users who do not type much
on smartphones or speak less than others. Figure 7
shows the test loss on users’ input word count from
speech and keyboard on the depression task. For
either input type, a correlation between the word
count and the test loss is not observed. The par-
ticipants with less word count (< 10,000) mostly



Scenario Sub-Scenario Device CPU (%) Memory (MB) Latency (sec)

Data Collection
(Section C)

Duty Cycling
Pixel 1.16 119 N/A†

Galaxy S21 0.29 191 N/A†

Speech Text Collection Module
Pixel 49.21 1245 11.20

Galaxy S21 15.84 1104 9.76

On-Device Training

Fixed-BERT + MLP
Pixel 27.05 215 0.08

Galaxy S21 42.80 222 0.03

End-to-End BERT + MLP
Pixel 85.59 842 13.63

Galaxy S21 49.68 886 38.89

LLM‡ Pixel N/A N/A N/A
Galaxy S21 N/A N/A N/A

Table 5: Smartphone overhead on scenarios of FedTherapist: CPU denotes average per-core utilization post 5-min
task execution. †: restricted to measure individual Voice Activity Detector model execution from its API during
duty cycling; ‡: N/A measurements, as the model is not loaded on tested smartphones due to memory constraints.
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Figure 7: Test loss on users’ input word count from
speech and keyboard experiments. The results show that
FedTherapist is applicable on users with little speech
and keyboard input (< 1,000 words on each input).

resulted in low test loss (< 1). A user with only
128 words of keyboard input even resulted in a test
loss of 0.154. This result shows that FedTherapist
could also be effective on users with little speech
and keyboard input.

G Related Work

Mental Health Monitoring on Mobile Devices
The early detection and treatment of mental ill-
nesses are the keys to reducing the negative impact
of the diseases (Sharp and Lipsky, 2002; Costello,
2016). Many patients are unaware of their mental
health problems and this results in a delay of treat-
ment (Lysaker et al., 2009; Epstein et al., 2010). To
combat this issue, many researchers explored the
possibility of passively monitoring users’ mental
health on mobile devices.

Most previous approaches focused on develop-
ing mental health monitoring systems with non-text
data, leveraging mobile sensors and device usage
statistics of a user. Wang et al. (2016, 2017, 2018)
explored the association between the symptoms of
schizophrenia and depression with the automati-

cally tracked smartphone-based features on sleep,
mobility, conversations, and phone usage. Wang
et al. (2014) also conducted the StudentLife study,
which identified the correlation between smart-
phone sensing and the mental wellbeing measures
(e.g., stress, loneliness, depression, etc.) on univer-
sity students. Mehrotra et al. (2017) conducted a
study that finds a correlation between users’ emo-
tional states and mobile phone interaction, that in-
cludes application usage log, notification log, and
communication log (e.g., count and length of calls
and SMSes). Canzian and Musolesi (2015) intro-
duced a depression detection system based on loca-
tion trajectories and daily questionnaire responses
of users. DepreST-CAT (Tlachac et al., 2022a) is
a depression and anxiety screening method that
leverages the time-series call and text logs with-
out the language content on smartphones. Li and
Sano (2020) proposed a framework that automati-
cally extracts efficient temporal features from skin
conductance, skin temperature, and acceleration
signals for mental health assessment. cStress (Hov-
sepian et al., 2015) is a stress monitoring system on
wearable sensors that captures users’ ECG (electro-
cardiograph) and respiration data. LiKamWa et al.
(2013) and Morshed et al. (2019) developed models
that predict individuals’ moods based on mobile
sensors or smartphone usage data.

In summary, much research has contributed to
mobile mental health monitoring systems with
non-text data. However, we believe that utiliz-
ing user-generated linguistic expressions could be
a viable option to achieve more accurate mental
health monitoring on mobile devices. Thus, we
propose FedTherapist, a mobile system that effec-
tively leverages text data from users to achieve



accurate mental health monitoring while preserv-
ing user privacy. While there have been few ap-
proaches that utilized the text data to perform mo-
bile health screening on mobile devices (Liu et al.,
2020; Tlachac and Rundensteiner, 2020; Tlachac
et al., 2022b, 2021, 2022c), they were limited to
partial text data (e.g., text data from messenger ap-
plications), or required a user’s active text input.
Moreover, these approaches do not discuss how
such large and noisy text data could be effectively
utilized for mental health prediction, nor explore
different model designs for language-based mental
health monitoring on smartphones. Unlike such
previous approaches, FedTherapist fully utilizes
a user’s speech and keyboard input on every ap-
plication on a smartphone. We explore multiple
model structures, including BERT and LLMs, and
propose a user context-aware methodology to ef-
fectively leverage raw text data with FedTherapist
to achieve accurate mental health monitoring.

Mental Health Monitoring on Social Media
Leveraging a user’s linguistic expressions for men-
tal health screening has been widely studied for
social media, where users freely express their opin-
ions and share their status in their own words.
User posts on various platforms such as Red-
dit (De Choudhury et al., 2016; Yates et al., 2017;
Aragón et al., 2019; Ambalavanan et al., 2019),
Twitter (Park et al., 2012; Coppersmith et al., 2014;
Husseini Orabi et al., 2018; Chen et al., 2018),
Facebook (De Choudhury et al., 2021; Saha et al.,
2021), and Instagram (Reece and Danforth, 2017)
have been utilized to predict the mental health
status of users. Previous studies identified a spe-
cific pattern of linguistic expressions related to the
mental status change or disorders; De Choudhury
et al. (2016) identified distinctive markers from
Reddit users related to linguistic structure and post-
readability that characterize suicidal ideation. Phys-
ical behavior sensing was exploited to complement
social media data in mental status prediction (Saha
et al., 2021), and temporal emotion measures were
leveraged to detect the physiological constructs on
Twitter (Chen et al., 2018).

However, social media-based approaches have
limited applicability as they can only be used by
active social media users. Moreover, mental health
prediction based on social media could be biased as
users tend to idealize themselves on social media
rather than expressing their real emotions (Vogel
and Rose, 2016; Herring and Kapidzic, 2015). We

focus on developing a mental health monitoring
system on smartphones owned by more than six
billion people (Statista, 2022). We fully leverage
smartphone speech and keyboard input for effective
mental health monitoring.


