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ABSTRACT

We propose a new method for spatio-temporal forecasting on arbitrarily distributed
points. Assuming that the observed system follows an unknown partial differential
equation, we derive a continuous-time model for the dynamics of the data via
the finite element method. The resulting graph neural network estimates the
instantaneous effects of the unknown dynamics on each cell in a meshing of the
spatial domain. Our model can incorporate prior knowledge via assumptions on
the form of the unknown PDE, which induce a structural bias towards learning
specific processes. Through this mechanism, we derive a transport variant of
our model from the convection equation and show that it improves the transfer
performance to higher-resolution meshes on sea surface temperature and gas flow
forecasting against baseline models representing a selection of spatio-temporal
forecasting methods. A qualitative analysis shows that our model disentangles the
data dynamics into their constituent parts, which makes it uniquely interpretable.

1 INTRODUCTION

Figure 1: Finite Element Networks predict
the instantaneous change of each node by esti-
mating the effect of the unknown generating
dynamics on the domain volume that the node
shares with its neighbors.

The laws driving the physical world are often best
described by partial differential equations (PDEs)
that relate how a magnitude of interest changes in
time with its change in space. They describe how the
atmosphere and oceans circulate and interact, how
structures deform under load and how electromag-
netic waves propagate (Courant & Hilbert, 2008).
Knowledge of these equations lets us predict the
weather (Coiffier, 2011), build sturdier structures,
and communicate wirelessly. Yet, in many cases we
only know the PDEs governing a system partially
(Isakov, 2006) or not at all, or solving them is too
computationally costly to be practical (Ames, 2014).

Machine learning researchers try to fill in these gaps
with models trained on collected data. For exam-
ple, neural networks have been trained for weather
forecasts (Shi et al., 2015) and fluid flow simulations
(Belbute-Peres et al., 2020), both of which are traditionally outcomes of PDE solvers. Even the
dynamics of discrete dynamical systems such as traffic (Li et al., 2018) and crowds (Zhang et al.,
2017) have been learned from data. A challenge facing these models is the high cost of acquiring
training data, so the data is usually only available sparsely distributed in space. Since graphs are a
natural way to structure sparse data, models incorporating graph neural networks (GNNs) have been
particularly successful for spatio-temporal forecasting (Yu et al., 2018; Wu et al., 2019).

Our implementation is available at https://www.daml.in.tum.de/finite-element-networks/

1

https://www.daml.in.tum.de/finite-element-networks/


Published as a conference paper at ICLR 2022

In the domain of physical processes we can reasonably assume that the observed system follows a
PDE. There are mainly two ways to incorporate this assumption as a-priori knowledge into a model.
First, we can encode a known PDE into a loss function that encourages the model to fulfill the
equation (Raissi et al., 2019). Another way to go about this is to derive the model structure itself
from known laws such as the convection-diffusion equation (de Bézenac et al., 2018). We will follow
the second approach.

Consider a dynamical system on a bounded domain Ω ⊂ Rd that is governed by the PDE
∂tu = F

(
t,x, u, ∂xu, ∂

2
xu, ...

)
(1)

on functions u : [0, T ]× Ω → Rm. If we have a dense measurement u0 : Ω → Rm of the current
state of the system and a solution u that satisfies Eq. (1) for all t ∈ [0, T ] and also fulfills the initial
condition u(0,x) = u0(x) at all points x ∈ Ω, we can use u as a forecast for the state of the system
until time T . From a spatio-temporal forecasting perspective, this means that we can forecast the
evolution of the system if we have a continuous measurement of the state, know the dynamics F , and
can find solutions of Eq. (1) efficiently. Unfortunately, in practice we only have a finite number of
measurements at arbitrary points and only know the dynamics partially or not at all.

Contributions. An established numerical method for forecasts in systems with fully specified
dynamics is the finite element method (FEM) (Brenner et al., 2008). In this paper, we introduce the
first graph-based model for spatio-temporal forecasting that is derived from FEM in a principled way.
Our derivation establishes a direct connection between the form of the unknown dynamics and the
structure of the model. Through this connection our model can incorporate prior knowledge on the
governing physical processes via assumptions on the form of the underlying dynamics. We employ
this mechanism to derive a specialized model for transport problems from the convection equation.
The way that the model structure arises from the underlying equation makes our models uniquely
interpretable. We show that our transport model disentangles convection and the remainder of the
learned dynamics such as source/sink behavior, and that the activations of the model correspond to a
learned flow field, which can be visualized and analyzed. In experiments on multi-step forecasting of
sea surface temperature and gas flow, our models are competitive against baselines from recurrent,
temporal-convolutional, and continuous-time model classes and the transport variant improves upon
them in the transfer to higher-resolution meshes.

2 BACKGROUND

2.1 FINITE ELEMENT METHOD

In the following, we will outline how to approximate a solution u to the dynamics in Eq. (1) from
an initial value u0 by discretizing u in space using finite elements. Let X be a set of points with a
triangulation T of d-dimensional, non-overlapping simplices

X = {x(i) ∈ Rd}
N

i=1 T = {∆(j) | ∆(j) ⊂ X , |∆(j)| = d+ 1}
NT

j=1 (2)

such that ∪∆∈T CH(∆) equals the domain Ω where CH(∆) is the convex hull of simplex ∆. So we
define a simplex ∆(j) ∈ T representing the j-th mesh cell as the set of vertices of the cell and denote
the domain volume covered by the cell by the convex hull CH(∆(j)) of the vertices. We will assume
u to be a scalar field, i.e. u : [0, T ]×Ω→ R. If u is a vector field, we treat it as a system of m scalar
fields instead. For a detailed introduction to FEM, we refer the reader to Igel (2017).

Basis Functions. A priori, we assume that the unknown solution u to our problem lies in an infinite-
dimensional function space U . The first step in FEM to make the problem numerically feasible is to
approximate U with a finite-dimensional linear subspace Ũ . This subspace can then be written in
terms of linear combinations of basis functions Ũ = span

{
φ(1), ..., φ(N)

}
. There are many possible

bases and the choice determines various qualities of the resulting procedure such as continuity of the
approximation and the sparsity pattern of the mass matrix in Eq. (7).

In our case, we choose the so-called P1 basis of piecewise linear functions (hat functions), see
Fig. 2a (Igel, 2017). There are as many basis functions as there are points and each is uniquely
defined by being linear when restricted to a single cell ∆ ∈ T and the constraint

φ(j)(x(i)) =

{
1 if x(i) = x(j)

0 otherwise
∀x(i) ∈ X . (3)
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Figure 2: Solving a PDE with the Galerkin method and method of lines consists of three steps.

So the basis function φ(j) is 1 at x(j), falls linearly to 0 on mesh cells adjacent to x(j) and is 0
everywhere else. The resulting finite-dimensional function space Ũ is the space of linear interpolators
between values at the vertices, see Fig. 2b. An important property is that if we expand u ∈ Ũ in this
basis, the value of u at the i-th node is just its i-th coefficient.

u(x(i)) =
∑N

j=1
cjφ

(j)(x(i)) = ci (4)

Galerkin Method. A piecewise linear approximation u ∈ Ũ is not differentiable everywhere and
therefore cannot fulfill Eq. (1) exactly. So instead of requiring an exact solution, we ask that the
residual R(u) = ∂tu − F (t,x, u, ...) be orthogonal to the approximation space Ũ with respect to
the inner product ⟨u, v⟩Ω =

∫
Ω
u(x) · v(x) dx at any fixed time t. In effect we are looking for the

best possible solution in Ũ . Because Ũ is generated by a finite basis, the orthogonality requirement
decomposes into N equations, one for each basis function.

⟨R(u), v⟩Ω = 0 ∀v ∈ Ũ ⇐⇒ ⟨R(u), φ(i)⟩Ω = 0 ∀i = 1, ..., N (5)

Plugging the residual back in and using the linearity of the inner product, we can reconstruct a system
of equations that resemble the PDE that we started with.

⟨∂tu, φ(i)⟩ = ⟨F (t,x, u, ...) , φ(i)⟩Ω ∀i = 1, ..., N (6)

At this point we can stack the system of N equations into a vector equation. If we plug in the basis
expansion

∑N
j=1 cjφ

(j) for u into the left hand side, we get a linear system

A∂tc = m (7)

where Aij = ⟨φ(i), φ(j)⟩Ω is the so called mass matrix, c is the vector of basis coefficients of u, and
mi = ⟨F (t,x, u, ...) , φ(i)⟩Ω captures the effect of the dynamics F . The left hand side evaluates to
A∂tc, because the basis functions are constant with respect to time. The right hand side cannot be
further simplified without additional assumptions on F .

Method of Lines. If we can evaluate the right hand side m, we can solve the linear system in Eq. (7)
for the temporal derivatives of the coefficients of u at each point in time. In fact we have converted
the PDE into a system of ordinary differential equations (ODEs) which we can solve with an arbitrary
ODE solver given an initial value c(0) as in Fig. 2c. This is known as the method of lines because we
solve for u along parallel lines in time.

To find a vector field u : [0, T ] × Ω → Rm instead of a scalar field, we treat the m dimensions
of u as a system of m scalar fields. This results in m copies of Eq. (7), which we need to solve
simultaneously. Because the mass matrix A is constant with respect to u, we can combine the system
into a matrix equation

A∂tC = M (8)
where C,M ∈ RN×m are the stacked c and m vectors, respectively. In summary, the spatial
discretization with finite elements allows us to turn the PDE (1) into the matrix ODE (8).

2.2 MESSAGE PASSING NEURAL NETWORKS

Message-Passing Neural Networks (MPNNs) are a general framework for learning on graphs that
encompass many variants of graph neural networks (Gilmer et al., 2017). It prescribes that nodes in
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a graph iteratively exchange messages and update their state based on the received messages for P
steps. For a graph G = (V, E) with nodes V and edges E , and initial node states h(0)

v ∀v ∈ V , the
p-th propagation step is

h(p)
v = fupd

(
h(p−1)
v ,

∑
{u,v}∈E

fmsg

(
h(p−1)
u ,h(p−1)

v

))
, (9)

where fmsg maps node states and edge attributes to messages and fupd updates a node’s state with
the aggregated incoming messages. The final node states h(P )

v can then be interpreted as per-node
predictions directly or passed as node embeddings to downstream systems.

In this work, we employ a slight generalization of the above to undirected hypergraphs, i.e. graphs
where the edges are sets of an arbitrary number of nodes instead of having a cardinality of exactly 2.
For such a hypergraph G = (V, E) with nodes V and hyperedges ε = {u, v, w, ...} ∈ E , and initial
node states h(0)

v ∀v ∈ V , the p-th propagation step is

h(p)
v = fupd

(
h(p−1)
v ,

∑
ε∈E

s.t.v∈ε

fmsg

({
h(p−1)
u | u ∈ ε

})
v

)
. (10)

Note that fmsg jointly computes a separate message for each node v participating in a hyperedge ε.

3 FINITE ELEMENT NETWORKS

Consider a set of nodes X = {x(i) ∈ Rd}Ni=1 representing N points in d-dimensional space. At each
node we measure m features y(t0,i) ∈ Rm. Our goal is to predict y(tj) at future timesteps tj by
solving PDE (1). For it to be well-defined, we need a continuous domain encompassing the nodes X .

By default, we construct such a domain by Delaunay triangulation. The Delaunay algorithm
triangulates the convex hull of the nodes into a set of mesh cells – d-dimensional simplices –
T = {∆(i) ⊂ X | |∆(i)| = d+ 1}NT

i=1 which we represent as sets of nodes denoting the cell’s ver-
tices. The PDE will then be defined on the domain Ω = ∪∆∈T CH(∆). One shortcoming of this
algorithm is that it can produce highly acute, sliver-like cells on the boundaries of the domain if
interior nodes are very close to the boundary of the convex hull. We remove these slivers in a
post-processing step, because they have small area and thus contribute negligible amounts to the
domain volume, but can connect nodes which are far apart. See Appendix H for our algorithm.
As an alternative to Delaunay triangulation, a mesh can be explicitly specified to convey complex
geometries such as disconnected domains, holes in the domain and non-convex shapes in general.

As a first step towards solving the PDE, we need to represent y(t0) as a function on Ω. We define the
function u0(x)k =

∑N
i=1 y

(t0)
k φ(i)(x), such that its coefficients as a vector in the P1 basis encode

the data and evaluating it at the nodes u0(x
(i)) = y(t0,i) agrees with the data by construction.

In Section 2.1, we have seen that solving PDE (1) approximately under an initial condition u(t0,x) =
u0(x) can be cast as an initial value ODE problem over the trajectory of the coefficients of a solution
in time. Above, we encoded the features y(t0) in the coefficients of u0, meaning that Eq. (8) exactly
describes the trajectory of the features through time. The dynamics of the features are thus given by

A∂tY
(t) = M (11)

where Y
(t)
ik = y

(t,i)
k is the feature matrix and Aij = ⟨φ(i), φ(j)⟩Ω is the mass matrix. We call the

matrix M on the right hand side the message matrix and it is given by

Mik = ⟨F (t,x, u, ...)k , φ
(i)⟩Ω (12)

where u encodes the predicted features Y at time t in its coefficients.

Our goal is to solve the feature dynamics (11) with an ODE solver forward in time to compute the
trajectory of Y and thereby predict y(tj). To apply an ODE solver, we have to compute ∂tY at each
time t which in turn consists of, first, evaluating the right hand side and, second, solving the resulting
sparse linear system.
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Solving Eq. (11) for ∂tY with the exact sparse mass matrix A carries a performance penalty on
GPUs, because sparse matrix solving is difficult to parallelize. To avoid this operation, we lump the
mass matrix. Lumping of the mass matrix is a standard approximation in FEM for time-dependent
PDEs to reduce computational effort (Lapidus & Pinder, 1999), which leads to good performance in
practice.

Ãii =
∑N

j=1
⟨φ(i), φ(j)⟩Ω (13)

We employ the direct variant that diagonalizes the mass matrix by row-wise summation, making the
inversion of A trivial.

The remaining step in solving Eq. (11) is evaluating the right hand side. Let Ti ={
∆ ∈ T | x(i) ∈ ∆

}
be the set of all mesh cells that are adjacent to node x(i). Then we can

break the elements of M up into the contributions from individual cells adjacent to each node.

Mik = ⟨F (t,x, u, ...)k , φ
(i)⟩Ω =

∑
∆∈Ti

⟨F (t,x, u, ...)k , φ
(i)⟩CH(∆). (14)

The sum terms capture the effect that the dynamics have on the state of the system such as convection
and chemical reaction processes given the geometry of the mesh cell, the values at the nodes, and the
basis function to integrate against. However, the dynamics F are of course unknown and need to be
learned from data.

Yet, if we were to introduce a deep model fθ ≈ F in Eq. (14), we would run into two problems. First,
each evaluation would require the numerical integration of a neural network over each mesh cell
against multiple basis functions and adaptive-step ODE solvers can require hundreds of evaluations.
Second, conditioning fθ on just t, x and u(x) would not provide the model with any spatial
information. Such a model would not be able to estimate spatial derivatives ∂xu internally and could
therefore only represent PDEs that are actually just ODEs.

We deal with both problems at once by factoring the inner products in Eq. (14) into

⟨F (t,x, u, ...)k , φ
(i)⟩CH(∆) = F

(i)
∆,k · ⟨1, φ

(i)⟩CH(∆). (15)

Such a scalar coefficient F (i)
∆,k always exists, because ⟨1, φ(i)⟩CH(∆) is constant with respect to t and

u and never 0. On the basis of Eq. (15), we can now introduce a deep model fθ ≈ F
(i)
∆ . With this, we

sidestep the numerical integration of a neural network, because F (i)
∆ is constant per mesh cell and the

coefficients ⟨1, φ(i)⟩CH(∆) can be precomputed once per domain. At the same time, F (i)
∆ depends

jointly on all x in a mesh cell as well as their solution values u(x). Therefore our deep model fθ
naturally also needs to be conditioned on these spatially distributed values, giving it access to spatial
information and making it possible to learn actual PDE dynamics.

3.1 MODEL

With these theoretical foundations in place, we can formally define Finite Element Networks (FENs).
Let G = (X , T ) be the undirected hypergraph with nodes X and hyperedges T corresponding to the
meshing of the domain, so each mesh cell ∆ ∈ T forms a hyperedge between its vertices. Let fθ be
a neural network that estimates the cell-wise dynamics F∆ from time, cell location, cell shape and
the values at the vertices

f
(t,i)
θ,∆ := fθ

(
t,µ∆,x∆,y

(t)
∆

)(i)
≈ F

(i)
∆ (16)

where µ∆ is the center of cell ∆, x∆ = {x(i) − µ∆ | x(i) ∈ ∆} are the local coordinates of the
cell vertices and y

(t)
∆ = {y(t,i) | x(i) ∈ ∆} are the features at the vertices at time t. We call fθ the

free-form term, because it does not make any assumptions on the form of F and can in principle
model anything such as reactions between features or sources and sinks. fθ conditions on the cell
centers µ∆ and the local vertex coordinates x∆ separately to help the model distinguish between cell
position and shape, and improve spatial generalization.

Define the following message and update functions in the MPNN framework

fmsg (∆)x(i) = f
(t,i)
θ,∆ · ⟨1, φ

(i)⟩CH(∆) fupd

(
x(i),m(i)

)
= Ã−1

ii m(i) (17)
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where m(i) =
∑

∆∈T fmsg(∆)x(i) are the aggregated messages for node x(i). Performing one
message passing step (P = 1) in this model is exactly equivalent to solving for the feature derivatives
∂tY

(t) in Eq. (11) with the lumped mass matrix from Eq. (13) and the message matrix in Eq. (14)
with the factorization from Eq. (15) and fθ as a model for F∆. So making a forecast with FEN for T
points in time t = (t0, t1, ..., tT ) based on a sparse measurement y(t0) means solving an ODE where
at each evaluation step te we run one message passing step in the MPNN described above to compute
the current time derivatives of the features ∂ty|t=te .

ŷ(t0,t1,...,tT ) = ODESolve(y(t0), ∂ty, t) (18)

Because FENs model the continuous-time dynamics of the data, they can also be trained on and make
predictions at irregular timesteps.

By controlling the information available to fθ, we can equip the model with inductive biases. If we
omit the current time t, the learned dynamics become necessarily autonomous. Similarly, if we do
not pass the cell position µ∆, the model will learn stationary dynamics.

An orthogonal and at least as powerful mechanism to induce inductive biases into the model is
through assumptions on the form of the unknown dynamics F . Let us assume that the dynamics are
not completely unknown, but that a domain expert told us that the generating dynamics of the data
include a convective component. So the dynamics for feature k are of the form

F (t,x, u, ...)k = −∇ ·
(
v(k)(t,x, u, ...)uk

)
+ F ′ (u, ∂xu, ...)k (19)

where v(k)(t,x, u, ...) ∈ Rd is the divergence-free velocity field of that feature and F ′ represents
the still unknown remainder of the dynamics. We assume the velocity field to be divergence-free,
because we want the velocity field to model only convection and absorb sources and sinks in the
free-form term.

By following similar steps with the convection term −∇ ·
(
v(k)(t,x, u, ...)uk

)
as for the unknown

dynamics, we arrive at a specialized term for modeling convection. Let gθ be a neural network that
estimates one velocity vector per cell and attribute.

g
(t,i)
θ,∆ := gθ

(
t,µ∆,x∆,y

(t)
∆

)
≈ v(t,x, u, ...) ∈ Rm×d. (20)

Ensuring that the learned velocity field is globally divergence-free would be a costly operation, but by
sharing the same predicted velocity vector between all vertices of each cell, we can cheaply guarantee
that the velocity field is at least locally divergence-free within each cell. The corresponding message
function, which we derive in Appendix B, is

fv
msg(∆)x(i) =

∑
x(j)∈∆

y(t,j) ⊙
(
g
(t,i)
θ,∆ · ⟨∇φ

(j), φ(i)⟩CH(∆)

)
. (21)

With this we can extend FEN with specialized transport-modeling capabilities by adding the two
message functions and define Transport-FEN (T-FEN) as a FEN with the message function

fTFEN
msg (∆)x(i) = fv

msg (∆)
x(i) + fmsg (∆)x(i) . (22)

Consequently, T-FEN learns both a velocity field to capture convection and a free-form term that fits
the unknown remainder of the dynamics.

Network Architecture. We instantiate both fθ and gθ as multilayer perceptrons (MLPs) with tanh
non-linearities. The input arguments are concatenated after sorting the cell vertices by the angle of
x(i) − µ∆ in polar coordinates. This improves generalization because fθ and gθ do not have to learn
order invariance of the nodes. Both MLPs have an input dimension of 1 + d + (d + 1) · (m + d)
in the non-autonomous, non-stationary configuration since |∆| = d + 1. The free-form term fθ
computes one coefficient per vertex and attribute and therefore has an output dimension of (d+1) ·m
whereas the transport term estimates a velocity vector for each cell and attribute resulting in an output
dimension of m · d. The number of hidden layers and other configuration details for each experiment
are listed in Appendix D. We use scikit-fem (Gustafsson & McBain, 2020) to compute the inner
products between basis functions over the mesh cells and the dopri5 solver in torchdiffeq (Chen
et al., 2018) to solve the resulting ODE. See Appendix E for details on model training.
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4 EXPERIMENTS

Baselines. We evaluate FEN and T-FEN against a selection of models representing a variety of
temporal prediction mechanisms: Graph WaveNet (GWN) combines temporal and graph convolutions
(Wu et al., 2019); Physics-aware Difference Graph Network (PA-DGN) estimates spatial derivatives
as additional features for a recurrent graph network (Seo et al., 2020); the continuous-time MPNN-
based model by (Iakovl et al., 2021) which we will call CT-MPNN, uses a general MPNN to learn
the continuous-time dynamics of the data.1 See Appendix D for the configuration details.

GWN and PA-DGN use 12 and 5 timesteps respectively as input while the ODE-based models make
their predictions based on a single timestep. To ensure a fair comparison, we do not evaluate any of
the models on the first 12 timesteps of the test sets.

Datasets. For our experiments we have chosen two real-world datasets and a synthetic one. The
Black Sea dataset provides data on daily mean sea surface temperature and water flow velocities on
the Black Sea over several years. ScalarFlow is a collection of 104 reconstructions of smoke plumes
from 2 seconds long, multi-view camera recordings (Eckert et al., 2019). In each recording a fog
machine releases fog over a heating element in the center of the domain which then rises up with
the hot air through convection and buoyancy. CylinderFlow contains simulated fluid flows around a
cylinder along a channel simulated with the inviscid Navier-Stokes equations (Pfaff et al., 2021).

All our experiments are run on hold-out datasets, i.e. the year 2019 of the Black Sea data and the last
20 recordings of ScalarFlow. See Appendix C for a detailed description of the datasets, our sparse
subsampling procedure, choice of normalization, and train-validation-test splits.

Table 1: Mean absolute error and number of function evaluations for multi-step forecasting on the
test set. We forecast 10 steps ahead and averaged the metrics over 10 runs. Results marked with *
include models that could not be trained to completion because of excessive memory requirements.

ScalarFlow Black Sea CylinderFlow

MAE ×10−2 NFE MAE ×10−1 NFE MAE ×10−2 NFE

PA-DGN 13.86 ± 0.14 - 9.20 ± 0.05 - 5.46 ± 0.02 -
GWN 9.79 ± 0.05 - 8.94 ± 0.05 - 3.04 ± 0.28 -
CT-MPNN 8.97 ± 0.06 157.2 ± 24.4 8.54 ± 0.05 181.6 ± 32.9 5.18 ± 0.43* 42.2 ± 42.5
FEN 9.14 ± 0.05 225.0 ± 43.0 8.78 ± 0.11 102.3 ± 27.6 2.87 ± 0.17 123.6 ± 33.1
T-FEN 9.04 ± 0.06 315.5 ± 165.0 8.72 ± 0.05 65.4 ± 4.5 4.09 ± 0.62* 67.1 ± 22.4

Multi-step Forecasting. The main objective of our models as well as the baselines are accurate
forecasts and we train them to minimize the mean absolute error over 10 prediction steps. We chose
this time horizon because it is long enough that a model needs to learn non-trivial dynamics to
perform well and more accurate dynamics lead to better performance. At the same time it is short
enough that not too much uncertainty accumulates. For example, if we train any of the models
on Black Sea on much longer training sequences, they learn only diffusive smoothing because the
correlation between the temperature distribution today and in 30 days is basically nil, so that the
only winning move is not too play – similar to how forecasting the weather for more than 10 days is
basically impossible (Mailier, 2010).

For Table 1 we have evaluated the models on all possible subsequences of length 10 of the respective
test set of the ScalarFlow and Black Sea datasets and on all consecutive subsequences of length 10 in
the CylinderFlow test set because of the size of the dataset. The results show that FEN is competitive
with the strongest baselines on all datasets. On real-world data, the transport component in T-FEN
provides a further improvement over the base FEN model. The number of function evaluations for all
ODE-based models depend strongly on the type of data. While CT-MPNN is the cheapest model on
ScalarFlow in terms of function evaluations by the ODE solver, FEN and T-FEN are more efficient
on Black Sea. On the synthetic CylinderFlow dataset, neither CT-MPNN nor T-FEN can by trained
fully because the learned dynamics quickly become too costly to evaluate. These results show that
including prior knowledge on the form of the dynamics F in the model can improve the prediction
error when the additional assumptions hold.

1GWN and PA-DGN condition their predictions on multiple timesteps, giving them a possible advantage over
ODE-based models since they can use the additional input for denoising or to infer latent temporal information.
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Super-Resolution. Graph-based spatio-temporal forecasting models make predictions on all nodes
jointly. Training these models on many points or fine meshes therefore requires a prohibitive amount
of memory to store the data points and large backwards graphs for backpropagation. One way around
this problem is to train on coarse meshes and later evaluate the models on the full data. In Fig. 3 we
compare FEN and T-FEN against the strongest baseline on the Black Sea dataset. While all three
models increase in prediction error as the mesh resolution increases, FEN models deteriorate at a
markedly slower rate than CT-MPNN. We ascribe this to the fact that in FEN and T-FEN estimation
of the dynamics and its effect on the nodes are to a certain extent separated. The terms fθ and gθ
estimate the dynamics on each cell, but the effect on the node values is then controlled by the inner
products of basis functions which incorporate the shape of the mesh cells in a theoretically sound
way. In CT-MPNN on the other hand, the model learns these aspects jointly which makes it more
difficult to generalize to different mesh structures. See Appendix F for the complete results on both
datasets and a visual comparison of low and high resolution data.

Extrapolation. While we train the models on 10-step forecasting, it is instructive to compare their
predictions on longer time horizons. Fig. 4 shows the predictions of the three strongest models on a
smoke plume after 60 steps. Because these models are all ODE-based, they were conditioned on a
single timestep and have been running for hundreds of solver steps at this point. First, we notice that
all three models have the fog rise at about the same, correct speed. However, with CT-MPNN the fog
disappears at the bottom because the model does not learn to represent the fog inlet as a fixed, local
source as opposed to our models. Comparing FEN and T-FEN, we see that the former’s dynamics
also increase the density further up in the fog column where no physical sources exist, while the latter
with its separate transport term modeling convection keeps the density stable also over longer periods
of time. See Appendix G for a comparison with all baselines at multiple time steps.

Interpretability. In FEN the free-form term fθ models the dynamics F as a black box and as such
its activations are equally opaque as the dynamics we derived it from. However, as we have seen
in Section 3.1, by making assumptions on the structure of F we impose structure onto the model
and this structure in turn assigns meaning to the model’s components. For a T-FEN we see that the
transport term corresponds to a velocity field for each attribute, while the free-form term absorbs the
remainder of the dynamics. Fig. 5 shows that this disentanglement of dynamics works in practice. In
the ScalarFlow data, we have a fog inlet at the bottom, i.e. a source of new energy, and from there the
fog rises up by convection. Plotting the contributions of fθ and gθ to ∂ty separately shows that the
free-form term represents the inlet while the transport term is most active in the fog above. Instead of
inspecting the contributions to ∂ty, we can also investigate the learned parameter estimates directly.
Fig. 6 shows that the transport term learns a smooth velocity field for the sea surface temperature on
the Black Sea.

5 RELATED WORK

Spatio-Temporal Forecasting. Various DNNs, and in particular GNNs, have been designed to model
complex spatial and temporal correlations in data, with applications ranging from forecasting traffic
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Free-Form Transport

Figure 5: Contribution to ∂ty from the
free-form and transport term in a T-
FEN on a snapshot of ScalarFlow.

Figure 6: Learned temperature flow field in a T-FEN after
10 steps on Black Sea data. The model recognized the
physical relationship between the features.

flow (see (Jiang & Luo, 2021) and (Yin et al., 2021) for a comprehensive survey), to forecasting
COVID-19 (Kapoor et al., 2020) and sea-surface temperature (de Bézenac et al., 2018). For a
detailed review of both classical and deep learning approaches, which can be roughly categorized as
based on point-cloud trajectories, regular grids, or irregular grids, see Shi & Yeung (2018). As one
representative of GNN-based methods, which tend to be SOTA, we compare FENs with GWN (Wu
et al., 2019). GWN uses a combination of graph convolution and 1D dilated temporal convolutions to
learn spatio-temporal properties of traffic networks.

Neural Networks and Differential Equations. In 1998 Lagaris et al. (1998) introduced the first
neural network approach to solve ODEs and PDEs. They formulate the optimization goal as fulfilling
the properties of the differential equation. Raissi et al. (2019) extend this idea and propose a
framework to respect any given general nonlinear PDE for continuous- and discrete-time models.
Another neural approach to learn PDEs from data is PDE-Net (Long et al., 2018). Its two main
components are: learning the differential operators of PDEs through convolutional kernels and
applying a neural network to approximate the nonlinear response functions. Building on that work,
PDE-Net 2.0 (Long et al., 2019) uses a symbolic network to approximate the nonlinear response
function. de Bézenac et al. (2018) derive a model from the convection-diffusion equation and estimate
the flow field on a regular grid with a CNN. Chen et al. (2018) leverage ODE solvers in their neural
architecture to create a model family of continuous depth called neural ODEs. Ayed et al. (2019)
build upon neural ODEs to make spatio-temporal forecasts by learning the dynamics of all data
points jointly with the structure of the domain encoded via the node positions as additional features.
GNODE (Poli et al., 2019) brings the framework of neural ODEs of Chen et al. (2018) into the graph
domain and provides continuous depth GNNs to make traffic predictions. In dynamical systems the
variable depth component coincides with the time dimension which allows the network to work with
observations at varying timesteps. Iakovl et al. (2021) extend GNODE with distance vectors between
nodes as edge features and use it for PDE prediction. Mitusch et al. (2021) derive a model from FEM
similar to our work but integrate the learned dynamics against the basis functions numerically and
disregard the mesh to avoid designing the discretization into the model.

6 CONCLUSION

We have introduced Finite Element Networks as a new spatio-temporal forecasting model based
on the established FEM for the solution of PDEs. In particular, we have shown how FENs can
incorporate prior knowledge about the dynamics of the data into their structure through assumptions
on the form of the underlying PDE and derived the specialized model T-FEN for data with convection
dynamics. Our experiments have shown that FEN models are competitive with the strongest baseline
model from three spatio-temporal forecasting model classes on short-term forecasting of sea surface
temperature and gas flow and generalize better to higher resolution meshes at test time. The transport
component of T-FEN boosts the performance and additionally allows meaningful introspection of the
model. Its structure is directly derived from the assumed form of the underlying PDE and as such
the transport and free-form terms disentangle the dynamics into a convection component and the
remainder such as inlets and sinks.
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We propose a general model for spatio-temporal forecasting which can be applied in a variety of
settings. Among these are traffic and crowd flow predictions which have the potential for abuse.
However, due to the close connection to PDEs, we see it primarily as a model for physical systems in
earth sciences and engineering, with impacts in the study of climate change and understanding of
complex systems. Finally, we can also imagine its application in modeling the spread of infectious
diseases which also employs PDEs today (Viguerie et al., 2021).

REPRODUCIBILITY

To maximize the reproducibility of our experimental results, we have fixed seeds for every domain
subsampling, training run and evaluation and recorded these in configuration files, so that everything
can be re-run. We obtained all seed values from numpy.random.SeedSequence to guarantee
that the streams of random numbers from the random number generators (RNGs) are independent
and have high sample quality. While we fixed all seeds, model training is still non-deterministic
because the message passing step in graph-based models relies on a scatter operation. Scattering
is implemented via atomic operations on GPUs, which can re-order floating point operations such
as additions between runs with the same seed inducing non-determinism (Fey & Lenssen, 2019).
Nonetheless, we have observed that multiple runs from the same seed only diverge slowly as training
progresses and the variability in performance between runs from different seeds is small for all
models anyway as can be seen in the standard deviation of the mean absolute error in Table 1.

We have used an NVIDIA GeForce GTX 1080 Ti for all experiments and evaluations.
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A DISCUSSION

We have presented a way to derive a spatio-temporal forecasting model directly from FEM. In addition
to establishing a connection between this well-known theory behind many scientific simulations and
neural ODE models, our derivation opens a way to include knowledge in the form of PDEs directly
into the structure of a machine learning model, as we have shown by the example of the convection
equation and T-FEN Extensions of the model with other first or second order, linear PDEs such as the
heat equation or the wave equation should follow with a similar derivation. However, our approach
cannot be applied directly when derivatives of higher order are involved.

The problem fundamentally stems from our choice of basis functions. The P1 basis is piecewise
linear and thus has vanishing second and higher order derivatives. This means that, at the end of the
model derivation, any basis function involved in fixed weights such as ⟨φ(j), φ(i)⟩ can appear with at
most a first derivative, otherwise the expression will evaluate to 0. A solution would lie in extending
our approach to higher order basis functions, though this is a non-trivial endeavor. In such a setting,
the values at the nodes of a triangular mesh would no longer suffice to determine all coefficients in
the new basis. In future research, we will work on constraining these new coefficients and make
learning with higher-order basis functions a well-posed learning problem.

B DERIVATION OF THE TRANSPORT TERM

Let F be just a convection term.

F (t,x, u, ...)k = −∇ ·
(
v(k)(t,x, u, ...)uk

)
(23)

Because of the linearity of the inner product ⟨·, ·⟩Ω, we can ignore other additive components of F in
this derivation. In the rest of this section, we will write vk for v(k)(t,x, u, ...). We begin by plugging
F into the message matrix from Eq. (14).

Mik = −⟨∇ ·
(
vkuk

)
, φ(i)⟩Ω (24)

Next, we split the domain into the mesh cells.

= −
∑

∆∈Ti

⟨∇ ·
(
vkuk

)
, φ(i)⟩CH(∆) (25)

Now we apply the product rule.

= −
∑

∆∈Ti

⟨vk · ∇uk +
(
∇ · vk

)
uk, φ

(i)⟩CH(∆) (26)

We assume that the velocity field is divergence-free, i.e.∇ · vk = 0.

= −
∑

∆∈Ti

⟨vk · ∇uk, φ
(i)⟩CH(∆) (27)

Now we expand u in the P1 basis (remember that we have encoded the data y in the coefficients of u)

= −
∑

∆∈Ti

⟨vk · ∇
∑N

j=1
y
(j)
k φ(j), φ(i)⟩CH(∆) (28)

and make use of the linearity of the inner product and gradient once more.

= −
∑

∆∈Ti

∑N

j=1
y
(j)
k ⟨vk · ∇φ

(j), φ(i)⟩CH(∆) (29)

Because the inner product is restricted to ∆, we can restrict the inner sum to vertices of ∆.

= −
∑

∆∈Ti

∑
x(j)∈∆

y
(j)
k ⟨vk · ∇φ

(j), φ(i)⟩CH(∆) (30)

Finally, we factorize the inner products in the same way as we did it for the free-form term

= −
∑

∆∈Ti

∑
x(j)∈∆

y
(j)
k vk · ⟨∇φ(j), φ(i)⟩CH(∆) (31)

and plug in the neural network gθ approximating the velocity field.

= −
∑

∆∈Ti

∑
x(j)∈∆

y
(j)
k g

(t,i)
θ,∆,k · ⟨∇φ

(j), φ(i)⟩CH(∆) (32)

If we stack this expression over all features k and translate the result into the MPNN framework, we
arrive at the transport term that we present as part of T-FEN in Section 3.1.
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C DATASETS

In this section, we give a brief overview over each of the datasets we used in Section 4 and how we
pre-processed them.

Subsampling. Both real-world datasets that we use provide large amounts of dense data on a 2D or
3D grid, which we subsample to simulate sparse measurements of a physical system and make the
amount of data per timestep manageable. A non-trivial problem is the selection of sampling points
and we decided to use the k-Medoids algorithm. This way we ensure that we use actual data points
as sampling points and reach a roughly uniform but still random cover of the domain. A uniform
covering is especially important for the Black Sea dataset because of the non-convex shape of the
domain and small bays on the border that we still want to cover.

C.1 CYLINDERFLOW

(a) The magnitude of the velocity field

(b) The pressure field with the simulation mesh overlaid

Figure 7: A sample from the CylinderFlow dataset. The upper and lower boundaries are impenetrable
walls. The left-hand boundary is an inflow with a constant velocity profile over time. The mesh
resolution increases towards the boundaries at the top and bottom as well as in the immediate vicinity
of the cylinder.

The CylinderFlow dataset is a collection of simulated flows characterized by velocity and pressure
fields released by Pfaff et al. (2021). The domain is a two-dimensional channel with impenetrable
boundaries at the top and bottom and a circular obstacle of varying size and position that blocks the
flow. On the left-hand boundary, the velocity field is fixed to an inflow profile that is constant over
time but varies between samples. Depending on the obstacle, inflow profile, and flow parameters the
resulting velocity and pressure fields exhibit distinct behaviors, varying between stable flows and
oscillations. Pfaff et al. used the COMSOL solver to generate the data by solving the incompressible
Navier-Stokes equations. See Fig. 7 for a visualization of the velocity and pressure fields as well as
the simulation mesh.

The training set contains 1000 simulations, while validation and test set have 100 each. Every
sequence consists of 600 steps of the flow sampled at a time resolution of ∆t = 0.01s. Spatially, the
data is discretized on meshes with about 1800 nodes. A special property of this dataset is that each
sequence has a different mesh, because each mesh has a notch representing the cylinder obstacle
which varies in size and position.

To enforce the boundary conditions, we fix the velocity fields for all methods on the boundaries
except for the outflow, similar to Pfaff et al.. On the boundaries of the channel as well as the cylinder
boundary, we fix the velocities to zero. The velocity inflow profile stays constant over time and we
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hold it fixed during training and inference. The pressure, however, is unconstrained throughout the
domain and can also vary on the boundaries.

Due to the size of the dataset, we select only the first 100 sequences for training and train only on
subsequences starting at a multiple of 10 steps, in effect eliminating overlapping training sequences
and reducing the size of the training dataset by another factor of 10. For the evaluation, we also
choose the subsequences to test on in the same way, so every subsequence of length 10 starting at
time step 0, 10 and so on.

We normalize each feature by its mean and standard deviation across all training sequences.

C.2 BLACK SEA

The Black Sea data is a reanalysis dataset of daily and monthly mean fields in the Black Sea of
variables such as temperature, flow velocity, and salinity and 31 depth levels from 01/01/1992. The
whole dataset is available as the BLKSEA_MULTIYEAR_PHY_007_0042 product from the EU
Copernicus Marine Service under a custom license3 granting permission to freely use the data in
research under the condition of crediting the Copernicus Marine Environment Monitoring Service.

The spatial resolution of the raw data is 1/27° × 1/36° on a regular mesh of size 395×215 covering
the Black Sea. Of the resulting 84,925 grid points, about 40,000 contain actual sea data and we
subsample these valid points to create our sparse datasets. We mesh the chosen sample points with
the Delaunay algorithm and filter acute mesh cells on the boundary as described in Appendix H.
Additionally, we remove mesh cells that cover more land than water to avoid connecting nodes that
are close by air distance but far apart through the sea.

We use daily data from 01/01/2012 to 31/12/2017 for training, 01/01/2018 to 31/12/2018 for validation
and 01/01/2019 to 31/12/2019 for testing. As features we choose the zonal velocities and the water
temperature. Both features are taken at a depth of 12.54m because the dynamics at the surface are
strongly influenced by wind, sun, and cloud cover, which are not part of the data and thus make the
dynamics non-deterministic from the perspective of the model.

On this dataset, we normalize the node positions as well as the features. The node positions are just
normalized by their mean and average standard deviation in latitudinal and longitudinal direction over
the training set as are the zonal velocity features. For the temperature, we chose mean and standard
deviation grouped by calendar day over the training date range for the normalization, e.g. all January
1sts over the years 2012 to 2017 are grouped together, because the temperature exhibits a clear yearly
cyclicity.

C.3 SCALARFLOW

ScalarFlow is a dataset of 104 smoke plumes published by Eckert et al. (2019) under the Creative
Commons license CC-BY-NC-SA 4.0 (Eckert et al., 2019). Eckert et al. created a controlled
environment in which fog from a fog machine rises in an air column over a heating element. They
captured the resulting flow on video with a calibrated multi-camera setup and reconstructed the
velocity and density fields of each recording on a dense 100×178×100 grid for 150 timesteps with
their proposed method. At each grid point, the dataset provides 3-dimensional velocity vectors and
the current fog density. The resulting dataset represents high-resolution measurements of a dynamical
physical system that is mostly driven by buoyancy and transport processes but also evokes turbulence.
All plots of this dataset show the fog density.

Of the 104 recordings we use the first 64 for training, the next 20 for validation and the final 20 as a
test set. Before subsampling the grid points, we reduce the data to 2D by averaging over the depth
(Kohl et al., 2020) and restrict the data to the central 60 points in x-direction and bottom 140 points
in y-direction, because the fog does not reach points outside of that central box in almost any of the
recordings. We normalize the coordinates of the sample points by their mean and standard deviation
as well as the features.

2https://resources.marine.copernicus.eu/product-detail/BLKSEA_MULTIYEAR_PHY_007_004
3https://marine.copernicus.eu/user-corner/service-commitments-and-licence
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D MODEL CONFIGURATIONS

We trained all models on all datasets for at most 50 epochs or 24 hours. Most trainings have been
stopped early after no improvement in the validation score has been observed for 5 epochs or the
ODE-based models ran out of memory due to excessive memory requirements, when the learned
dynamics required too many function evaluations to solve.

The three datasets present us with different circumstances regarding the basic properties of optimal
dynamics that would model them well. Both Black Sea and ScalarFlow are best served by a non-
stationary model, because it is reasonable to assume that the dynamics of the sea depend on the
position and ScalarFlow has an inlet at the bottom with fixed position. On top of that, we further
expect that the BlackSea dataset has a time dependence exceeding the global, yearly fluctuations
that we subtract with our normalization scheme. Therefore, we make all models non-stationary and
non-autonomous on Black Sea and just non-stationary on ScalarFlow. On CylinderFlow, the models
are autonomous and stationary.

The mechanism to make FEN and T-FEN non-stationary and non-autonomous is described in
Section 3.1. For the baselines, we concatenate the time stamps and the node positions respectively to
the node features.

ODE-based models such as FEN and CT-MPNN require many function evaluations when their
dynamics change abruptly. One possible trigger for that can be a jump in their inputs. This would,
for example, occur if we would represent the time of the year on Black Sea as a number between
0 and 1 to capture the yearly cyclicity of the dynamics. Then we would get a discontinuity in the
input at the turn of the year. To avoid this jump, we instead embed the time feature on Black Sea
two-dimensionally as (sin(t̃), cos(t̃)) where t̃ is a map from the current time within a year to [−1, 1].
For GWN, we use a batch size 6 on all datasets and a batch size of 3 with PA-DGN. Due to an
implementation detail of torchdiffeq as of the submission of this paper, batched solving of
ODEs with adaptive-step solvers can introduce interference between independent ODEs, because
internal error estimates in the solver are computed across ODEs and the dynamics are stepped jointly.
Therefore, we train and evaluate the ODE-based models with a batch size of 1.

D.1 FEN & T-FEN

Both fθ and gθ are MLPs with 4 hidden layers and tanh non-linearities. In FEN the layers of fθ
have a width of 128. For T-FEN we chose to reduce the width of the hidden layers of both fθ and
gθ to 96, so that both FEN and T-FEN have a comparable number of parameters and we can trace
back any difference in performance to difference in model structure and not capacity. See Table 2
for the parameter counts. We solve the feature dynamics with a dopri5 solver with an absolute
tolerance and relative tolerance of 10−6 on CylinderFlow and Black Sea, and 10−7 on ScalarFlow.
On initialization, we set the last weights and bias of the last layers of both MLPs to 0 to start with
the constant dynamics as a reasonable initialization for training. For parameter learning, we use the
Adam optimizer with a learning rate of 10−3 (Kingma & Ba, 2015).

D.2 BASELINES

Table 2: Parameter counts for all models.

Black Sea ScalarFlow

PA-DGN 269140 269140
GWN 459750 466160
CT-MPNN 134403 134532
FEN 53129 53772
T-FEN 60975 61844

CT-MPNN. Following Iakovl et al. (2021), our CT-
MPNN implementation models both the message func-
tion and the update function as MLPs with tanh non-
linearities. Contrary to the default configuration used
by Iakovl et al. (2021), we increased the widths of the
MLPs from 60 to 128 and the message dimension from
40 to 128 to make the model capacity comparable to the
other baselines. Instead of an implicit Adams-Bashforth
solver we used the same dopri5 solver as for FEN and
T-FEN with an absolute tolerance of 10−6 and a relative
tolerance of 10−7. This both increased the models performance and avoided frequent convergence
issues in the step function of the Adams-Bashforth solver. Finally, we exchanged the RPROP opti-
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mizer with a standard Adam optimizer and we compute the gradients the same in FEN and T-FEN by
backpropagation through the ODE solver.

We apply the same zero-initialization and increasing training sequence lengths, that we use for our
models, to this baseline.

PA-DGN. For PA-DGN we choose two graph network layers of two layers each with a hidden size of
64. We condition the model on 5 timesteps. To represent the structure of the domain, we pass the
4-nearest neighbor graph of the nodes to the model following authors of the method (Seo et al., 2020).

GWN. For GWN we use the improved configuration described by Shleifer et al. (2019) with 40
convolution channels, extra skip connections and four of GWN’s WaveNet inspired blocks with two
layers each. The model is conditioned on 12 time steps of data and predicts 10 steps ahead. For
the long-term extrapolation in Appendix G, we apply the model auto-regressively to get predictions
for more than 10 steps. We do not learn an adaptive adjacency matrix because that comes with a
quadratic memory cost in the number of nodes and Wu et al. have shown that GWN only performs
1.2 % worse on METR-LA without the adaptive adjacency matrix. For the computation of the forward
and backward transition matrices, we pass in the adjacency matrix derived from the mesh of the
domain where the edges are weighted by the Gaussian kernel

e(x(i),x(j)) = exp

(
−
∥∥x(i) − x(j)

∥∥2
2

σ2

)
(33)

where σ is the standard deviation of
∥∥x(i) − x(j)

∥∥
2
.

E TRAINING

We train our models with the Adam optimizer (Kingma & Ba, 2015) by minimizing the multi-step
prediction error in terms of the mean L1 distance between predicted and actual node features

L(ŷ,y) = 1

NT

N∑
i=1

T∑
j=1

∥ŷ(tj ,i) − y(tj ,i)∥1 (34)

where ŷ(tj ,·) is the prediction at time tj . To accumulate gradients, we backpropagate through the
operations of the ODE solver, also known as discretize-then-optimize, as it improves training time
significantly compared to backpropagation with the adjoint equation (Onken & Ruthotto, 2020).

We observed that training our models to predict complete sequences from the beginning can get them
stuck in local minima that take many epochs to escape. To stabilize training, we begin by training on
subsequences of length s = 3 and iteratively increase s by 1 per epoch until it reaches the maximum
training sequence length.

F SUPER-RESOLUTION

For our super-resolution experiment, we have subsampled both datasets 3 times for each fixed number
of nodes and evaluated each of the 10 trained models per model class against each of them. Therefore,
the means (denoted by the markers) and standard deviations (denoted by the error bars) in Fig. 3 and
Fig. 8 have been computed over 30 evaluations.

Inspecting the full results in Fig. 8 reveals two things. While T-FEN performs best in super-resolution
on both datasets, GWN and PA-DGN also only deteriorate slightly on finer meshes. However, this
is offset by the fact that these models did not achieve such a good fit to begin with and are still
out-performed by T-FEN on every resolution. CT-MPNN achieved a lower prediction error than
T-FEN on the original mesh granularity but generalizes markedly worse than both FEN and T-FEN to
finer meshes. We suppose that this is due to the fact that CT-MPNN uses a general MPNN internally,
while FEN and T-FEN have an inductive bias towards producing physically sensible predictions
because of their structural connection to FEM and PDEs.
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Figure 8: All models were trained on 1000 node subsamples of the data for 10-step prediction and
then evaluated on the same task but on increasingly fine meshings of the domain.
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Figure 9: A visual comparison of the data when subsampled at 1000 nodes and at 5000 nodes.

G LONG TERM EXTRAPOLATION

In Fig. 10 we show 60-step extrapolations of the all models trained on 10-step forecasting. The first
thing to note is that PA-DGN struggles with the directionality inherent in the ScalarFlow dataset.
While its prediction evolves over time, it exhibits a mostly diffusive dynamic.

From a visual standpoint, GWN produces the most realistic looking forecasts with small-scale
details even after many timesteps, especially compared to the ODE-based models that beat GWN
in short-term forecasting. We see two reasons for that. First, ODE-based models that learn the data
dynamics directly, i.e. all three of FEN, T-FEN, and CT-MPNN, have to work with a tight information
bottleneck. Because these models carry information through time only in the features themselves and
have no latent state, they can condition their prediction only on a single time step and this bottleneck
makes it difficult to conserve fine details over time. GWN on the other hand predicts 10 timesteps at
a time and conditions each forecast on the past 12 timesteps. In this way, GWN can extract more
information from the input data and also carry that information forward 10 steps at a time whereas
ODE-based models have to conserve the information through roughly 100 solver steps to reach t10,
see the number of function evaluations in Table 1.

Second, FEN, T-FEN, and CT-MPNN are ODE models and as such are biased towards smooth
predictions over time and over long time frames this leads to a smoothing in space. Yet, on short
time frames, before smoothing sets in, these models are able to model these physical processes more

18



Published as a conference paper at ICLR 2022

accurately, because ODEs are natural models for these data. For a discussion of the differences
between the FEN, T-FEN, and CT-MPNN predictions, see Section 4.
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Figure 10: Predictions of all models for a rising smoke plume after 1, 20, 40 and 60 time steps.

H FILTERING HIGHLY ACUTE CELLS ON THE BOUNDARY

Delaunay triangulation of a set of points can produce very long cells on the boundary as in Fig. 11
when several points close to the boundary are almost co-linear. This can just occur in the data but it
can also happen during generation of synthetic data. If some boundary nodes in synthetic data are
exactly co-linear such as in grid domains, they might lose the exact co-linearity due to the inexactness
of floating point numbers and operations if we, for example, rotate the domain. To ensure that these
artifacts do not impact our models, we pre-process the triangulation with Algorithm 1 and an angle
threshold of ε = 10π

180 .
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Algorithm 1 Filtering cells with small interior boundary-adjacent angles from a triangulation given a
threshold angle and a set of d− 1 dimensional boundary faces

1: function FILTERCELLS(triangulation T , threshold ε > 0, boundary faces B)
2: for all ∆ ∈ T do ▷ Count number of faces on the boundary for each cell
3: c∆ ← |{∆̃ | ∆̃ ⊂ ∆, |∆̃| = d, ∆̃ ∈ B}|
4: F ← {∆ | ∆ ∈ T , c∆ = 1}
5: while |F| > 0 do
6: ∆← pop(F)
7: if c∆ ̸= 1 then ▷ Check that ∆ is not at an edge or corner of the domain
8: continue
9: (∆̃, ξ)← split(∆) ▷ Split boundary face and interior node

10: if MINBOUNDARYANGLE(∆̃, ξ) < ε then
11: T ← T \ {∆} ▷ Remove cell
12: for all ∆̂ ⊂ ∆̃ | |∆̂| = d− 1 do ▷ Add newly become boundary faces to B
13: B ← B ∪ {∆̂ ∪ {ξ}}
14: for all ∆′ ∈ T | ∆̂ ⊂ ∆′, ξ ∈ ∆′ do
15: c∆′ ← c∆′ + 1
16: F ← F ∪ {∆′} ▷ Add cells that are now boundary cells to F
17: return T

18: function MINBOUNDARYANGLE(∆̃, ξ)
19: B ← project(ξ, ∆̃) ▷ Project ξ onto the hyperplane given by ∆̃
20: γ ← π
21: for all A ∈ ∆̃ do
22: γ ← min(γ, angle(AB,Aξ) ▷ Find the angle between the line segments AB and Aξ

23: return γ
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(a) The inside angles of the shaded boundary cell are below the threshold and it is
removed.

(b) The removal has made this (previously) interior cell into a boundary cell that
itself falls below the angle threshold and gets removed as well.

Figure 11: Delaunay triangulation can produce elongated, splinter-like cells when interior nodes
are close to the boundary of the convex hull as in this example. We post-process the Delaunay
triangulations with Algorithm 1 to filter these cells out.
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