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Abstract. Constructing comprehensive labeled datasets for medical im-
age segmentation tasks is time-consuming, requiring intensive masks an-
notated carefully by experienced radiologists. Existing benchmark datasets
provide the necessary masks to train the supervised-based segmenta-
tion models, including single-organ datasets and multiple-organ datasets.
However, it is still challenging when deploying large-scale models with a
union of multiple datasets due to annotation conflicts. For example, some
organ or tumor annotations are missing in most cases (weak label) in the
FLARE23 challenge dataset. To overcome the limitation of segmentation
models in this situation, we propose a two-stage training method to train
an efficient segmentation model with weak label. In the first stage, only
strong labels (complete organ labels) are used to train models by the
nnU-Net, while the weak labels (incomplete organ labels) are filled by
generating pseudo labels using nnU-Net. Then the lightweight coarse-to-
fine network is trained using the supplemented data in the second stage.
Experiments on the FLARE23 challenge (MICCAI FLARE23) demon-
strate that coarse-to-fine networks can reduce computational complexity
and resource consumption during the inference stage while maintaining
high performance, in the case of pseudo labeled supplementary data.
With a speed of 12.6 seconds per case, our proposed method achieves an
average DSC of 0.8920 and an average NSD of 0.9482 on the FLARE23
validation set.

Keywords: Weak label · Pseudo label · Two-stage training.

1 Introduction

Abdominal organ segmentation is a crucial step in the clinical diagnosis of ab-
dominal diseases. Deep learning-based segmentation methods have demonstrated
the ability to efficiently and accurately identify organ boundaries, sizes, and loca-
tions, aiding doctors in rapidly identifying potential lesions and disease areas[1].
1 *Corresponding author: Bingding Huang(huangbingding@sztu.edu.cn).
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The family of U-Net [2] architectures is the most mainstream in deep supervised
learning methods for medical image segmentation tasks. Subsequently, various
CNN-based segmentation networks based on the U-Net architecture emerged,
such as ResU-Net [3] and U-Net++ [4]. Meanwhile, the transformer-based mod-
els are also naturally compatible with U-Net architecture, and excellent networks
such as Trans U-Net [5], Swin U-Net [6], and so on have emerged for medical
image segmentation. Additionally, some works focus on improving segmentation
performance by using multi-view, multi-task, and multi-scale techniques, trying
complex data augmentation methods, or other tricks like multi-level feature fu-
sion and deep supervision. The most representative framework is nnU-Net [7],
which is a milestone work that achieves SOTA performance using U-Net archi-
tecture with a series of heuristic rules that can deploy and train segmentation
models on any dataset automatically, demonstrating the high adaptability and
robustness of its framework.

However, even such a comprehensive framework, nnU-Net, cannot be used
directly for annotations with different labels in multiple datasets, which is caused
by the problem of annotation conflicts. Fig. 1 gives a specific example to illus-
trate this problem. Specifically, weak label case (2) contains only tumor, case
(3) contains tumor and some organs, and (4) includes all organs without tumor.
Therefore, some organs are incorrectly annotated as background, and overlap-
ping annotation conflicts over cases. Although partly labeled data has additional
annotation information and also inherits semantic information like unlabeled
data, due to annotation conflicts, the performance of models trained by multiple
datasets will probably not improve or even degrade compared with models using
a single dataset.

To address this issue, many attempts have been made to explore multiple
weak label datasets in a more efficient manner. Fang et al. proposed a new
network named Pyramid Input Pyramid Output Feature Abstraction Network
(PIPO-FAN) using multi-scale features to exploit weak label proportion infor-
mation [8]. Enlightened by multi-branch networks and dynamic filter learning,
Zhang et al. considered multiple datasets as independent tasks and designed a
single shared model, a dynamic on-demand network (DoDNet), receiving task-
specific signals to avoid label conflicts [9]. A similar approach is conditional
nnU-Net proposed by Zhang et al. [10], which also used special signals to control
segmentation models dynamically. Different from the design of segmentation ar-
chitectures, some works tried to reconsider the point of loss functions to solve
label conflicts. For instance, Shi et al. proposed marginal loss and exclusion loss
for weak label supervised multi-organ segmentation [11]. Furthermore, Liu et al.
merged weak labeled datasets using incremental learning methods, introducing
a light memory module mechanism based on marginal loss and exclusion loss to
further improve and stabilize the model performance with continuously incre-
mental datasets [12]. These methods fully used weak label datasets, enabling the
deployment of a comprehensive segmentation model trained by multiple datasets
simultaneously.
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In the FLARE23 challenge, the dataset consists of labeled, weakly labeled,
and unlabeled CT image data. As shown in Fig. 2, only 222 images have complete
annotations for all organs, and the remaining 1978 cases only have annotations
for specific organs. To achieve higher segmentation performance than baseline
supervised learning methods, fully utilizing unlabeled data and resolving anno-
tation conflicts caused by weak label data is a key breakthrough in this com-
petition. To this end, we attempt to merge weak labeled data with completely
labeled data and propose an efficient strategy that breaks down the barriers be-
tween weak label datasets, even existing conflicts overlapping and further allevi-
ates the problem of developing vanilla segmentation methods combining several
different benchmark datasets. We also follow the trend of the FLARE competi-
tion series, and pay attention to optimizing the resource consumption and speed
in the inference phase. Based on the experience of the Flare22 challenge [13]
(2022-MICCAI-FLARE), using either the nnU-Net [7] adaptive framework or
the EfficientSeg [14] coarse-to-fine framework combined with a semi-supervised
algorithm can effectively handle unlabeled data. We will use the two networks
mentioned above to design a training framework that can use weak labels to
address the abovementioned challenges.

Fig. 1. Image(1) shows a CT without any annotation. Images (2), (3), and (4) show
the weak label, where (2) has only tumor labeling, (3) contains tumor labeling and
labeling of some organs, and (4) includes labeling all organs without tumors.

2 Method

To address the challenges posed by weak labels and imbalanced data in abdom-
inal organ segmentation, we propose a novel training framework that utilizes
statistical analysis to divide the data into different categories.

The main objective of our approach is to select relatively well-annotated
strong labels from weak labels for the first round of training. We then use the
model obtained from the first round of training to supplement the weak label
data according to specific rules, enabling iterative training to obtain the final
model.

https://flare22.grand-challenge.org
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In Section 2.2, we provide further details on our proposed approach, includ-
ing the specific rules used to supplement the weak label data and the iterative
training process. Our approach leverages the strengths of both the nnU-Net
adaptive framework and the two-stage EfficientSeg framework, combined with
semi-supervised learning algorithms, to improve the accuracy and efficiency of
abdominal organ segmentation.

2.1 Preprocessing

Our proposed approach leverages the strengths of two networks, nnU-Net and
EfficientSeg, each with its own preprocessing techniques.

nnU-Net provides a self-configuration pre-training pipeline depending on
statistics information in specific datasets. To ensure the high performance of
nnU-Net, we utilized this automatic preprocessing method for the FLARE23
dataset, including adjusting the target spacing and then resampling, voxel in-
tensity normalization, and data augmentation techniques.

As for EfficientSeg, the network is a two-stage segmentation network that
accepts an interpolated overall image as input, eliminating the need to adjust
the image spacing. During the coarse segmentation stage, the image is interpo-
lated and scaled to a size of [160, 160, 160]. During the fine segmentation stage,
images are cropped so that only foreground regions remain and then padded to
a size of [192, 192, 192] before being interpolated and scaled. The foreground
information in the training process is provided by ground truths, while the one
in the inference process is from masks generated from the coarse segmentation
stage. The image intensity is clipped to a range of [-325, 325]. Additionally, a
series of data augmentations are used in the fine segmentation stage, shown in
Table 1.

Table 1. Data augmentation details in the fine segmentation stage.

RandFlipd-x prob=0.5
RandFlipd-y prob=0.5
RandFlipd-z prob=0.5
RandZoomd min-zoom=0.9, max-zoom=1.2, prob=0.15
RandGaussianNoised std=0.01, prob=0.15
RandGaussianSmoothd sigma=(0.5, 1.15), prob=0.15
RandScaleIntensityd factors=0.3, prob=0.15
RandAdjustContrastd prob=0.15

2.2 Proposed method

As shown in Fig. 2, statistical analysis is conducted on 2200 annotated data
samples in this dataset, revealing a ubiquitous lack or omission of organ or tumor
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segmentation. To address the challenges of weak labels and imbalanced data, we
further analyze the distribution of annotations and propose a framework that can
effectively train segmentation models with weak labels. It is worth mentioning
that all unlabeled images are not used in our proposed method.

After checking category information in annotations, we found that annota-
tions with a single category (excluding background) were mainly for the pan-
cancer region segmentation. In contrast, annotations with thirteen categories
mainly include regions of abdomen organs. Therefore, we split the dataset into
two categories: cases with complete organ annotations (strong label) and cases
with partial organ annotations (weak label).

Based on the condition of the FLARE23 dataset, our motivation is to dis-
till knowledge from cases with strong labels, then use it to guide models to
segment organs annotated wrongly as background in the weak label, and finally
re-train the segmentation model with the whole annotated data. Specifically, our
proposed framework consists of three stages: strong label training, weak label
supplement, and retraining, as shown in Fig. 3. Each stage’s network architecture
is configured separately based on specific objectives and requirements. First, the
strong label training stage automatically applies the self-configured framework
nnU-Net to learn from the well-annotated strong label data. Second, the weak
label supplement stage utilizes the EfficientSeg coarse-to-fine framework com-
bined with semi-supervised learning algorithms to supplement the weak label
data. Third, the retraining stage combines the two networks to iteratively refine
the segmentation model using the supplement weak label data.

Strong label training In this stage, all annotated training data is split into
two parts: weak label data and strong label data. Weak label data are not used
due to annotation conflicts caused by missing organ annotations, resulting in
degeneration and even not convergence during the training stage. To solve this
problem, the strong label is selected to train nnU-Net as a teacher model that
can generate credible pseudo labels for complementing annotations on missing
organs. In detail, we consider 222 cases of strong label data as an independent
training set and train a segmentation model through default nnU-Net 3D con-
figuration.

Weak label supplement In the weak label supplement stage, we aim to utilize
the nnU-Net model trained on strong label data to complement the missing
annotations for organ regions. First, all cases with weak labels are inferred by
nnU-Net to generate pseudo labels. We take a redundancy inference mode to
obtain accurate pseudo labels, including the Test-Time Augmentation (TTA)
method and connected component analysis. It is worth noting that the tumor
category is not involved in the above step of pseudo-label generation. Due to
poor performance and significant uncertainty in the tumor region, only 13 organ
categories are predicted to complement weak labels.

Second, we replace the foreground region wrongly annotated as background in
each weak label following a criterion: retaining original foreground annotations
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Fig. 2. Distribution of label counts: one important finding from our statistical analysis
of the 2200 annotated data samples was that 888 of them contained only one label,
which was mainly for pan-cancer region segmentation. On the other hand, the 222
samples that contained thirteen labels were primarily used for abdominal multi-organ
segmentation.

in weak labels. This motivation is based on a belief that original foreground
annotations have higher accuracy than predicted pseudo labels. In detail, we
process each foreground category separately. The specific rules are as follows:
For each foreground category in the pseudo label, if this category appears in
the weak label, then the pseudo label for this category will be discarded; if the
category never appears, the corresponding background region in the weak label
will be replaced with this category.

Retraining At this stage, the two-stage EfficientSeg will be used for retraining.
All annotations used in this stage are from 2200 supplement label data combined
with strong label data and supplemented weak label data.

The coarse segmentation stage roughly locates the foreground region in the
original image, which guides the foreground cropping for the fine segmenta-
tion stage. During the coarse segmentation training, 2200 supplement label data
were used in training. Then, the fine segmentation stage further refined seg-
mentation masks cropped from the coarse stage. During the fine segmentation
training stage, we utilized supplement labels to locate the foreground as input.
By utilizing the supplement labels for fine segmentation training, we achieved
significantly improved segmentation accuracy and robustness in EfficientSeg.
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Fig. 3. This framework consists of three parts. Strong label training: Strong labels are
selected from weak labels to be trained individually using nnU-Net. Weak label sup-
plement: The remaining weak label is complemented using nnU-Net-generated labels.
Retraining: The coarse-to-fine EfficientSegNet is trained using all the supplement la-
bels to obtain the inference model.

Inference speed and resources consumption trade-offs We use a coarse-
to-fine segmentation network in the inference stage to optimize the inference
speed and resource usage and to avoid using a time-consuming sliding window
technique. Any size image can be segmented through two inference stages by
using the coarse-to-fine network. Therefore, the inference speed is improved sig-
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nificantly compared with one-stage segmentation models with the sliding window
technique. Following the EfficientSeg implementation, anisotropic convolution,
anisotropic pooling, and FP16 are also used to reduce GPU memory usage, which
is discussed in detail in [14].

2.3 Post-processing

We employed TTA to improve the final segmentation results during the strong
label training stage. Additionally, final segmentation will adaptively keep the
largest connected region to reduce false positives. Meanwhile, the coarse and
fine segmentation results are also refined by the connected region analysis.

3 Experiments

3.1 Dataset and evaluation measures

The FLARE 2023 challenge is an extension of the FLARE 2021-2022 [15] [16],
aiming to promote the development of foundation models in abdominal disease
analysis. The segmentation targets cover 13 organs and various abdominal le-
sions. The training dataset is curated from more than 30 medical centers under
the license permission, including TCIA [17], LiTS [18], MSD [19], KiTS [20,21],
and AbdomenCT-1K [22]. The training set includes 4000 abdomen CT scans
where 2200 CT scans with weak label and 1800 CT scans without label. The val-
idation and testing sets include 100 and 400 CT scans, respectively, which cover
various abdominal cancer types, such as liver cancer, kidney cancer, pancreas
cancer, colon cancer, gastric cancer, and so on. The organ annotation process
used ITK-SNAP [23], nnU-Net [24], and MedSAM [25].

The evaluation metrics encompass two accuracy measures—Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD)—alongside two efficiency
measures—running time and area under the GPU memory-time curve. These
metrics collectively contribute to the ranking computation. Furthermore, the
running time and GPU memory consumption are considered within tolerances
of 15 seconds and 4 GB, respectively.

3.2 Implementation details

Environment settings The development environments and requirements are
presented in Table 2.

Dataset split There is no multiple cross-validation for the training of nn-Unet
and EfficientSegNet. For the nnU-net, 20% of 222 cases was randomly selected as
the validation set. For the EfficientSegNet, 100 cases in 2200 cases were randomly
selected as the validation set.
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Table 2. Development environments and requirements.

System Ubuntu 20.04.1 LTS
CPU AMD EPYC 7742 64-Core Processor
RAM 1.8TB
GPU 8 NVIDIA A100 (40G)
CUDA version 11.7
Programming language Python 3.10
Deep learning framework torch 1.10, monai 1.0
Code https://github.com/XIANYUNYEHE-DEL/two-stage-retraining-seg

Training protocols In both the strong label training stage and retraining pro-
cess of our proposed framework, we utilized three different models with different
configurations to improve segmentation accuracy. The protocols of these models
are shown in Table 3. In the training stage of nnU-Net, relevant hyperparam-
eters are automatically generated according to its adaptive rules. Patch size is
fixed as 32 * 128 * 192 (D * W * H) and network training using SGD with a
learning rate of 0.01 for 1000 epochs. As for EfficientSegNet, training will be
divided into coarse model training and fine model training. In the coarse model
training stage, batch size is set to 2 and patch size is fixed as 160 * 160 * 160 (W
* H * D). Optimizer in the training is used AdamW with 0.01 learning rate and
0.00001 weight decay. First 50 epochs used as warm-up and using 500 epochs for
the training with Cosine Annealing strategy. Loss function is selected to Dice
and Cross-Entropy. In the fine model training stage, Most of the settings have
not been modified. Patch size is fixed as 192 * 192 * 192 (W * H * D) and
training epochs reduced to 300 for saving training time.

Table 3. Training and Inference protocols.

Stage Pseudo labeling Coarse model Fine model
Mode nnU-Net 3D 3D U-Net EfficientSegNet
Network initialization “he" normal initialization “he" normal initialization “he" normal initialization
Batch size 2 2 2
Patch size 48×192×192 160×160×160 192×192×192
Total epochs 1000 500 300
Optimizer SGD AdamW AdamW
Weight decay 3e-5 1e-5 1e-5
Initial learning rate (lr) 0.01 0.01 0.01
Lr scheduler ReduceLROnPlateau Warmup and Cosine Annealing Warmup and Cosine Annealing
Training time 72 hours 24 hours 36 hours
Loss function Dice and Cross-Entropy Dice and Cross-Entropy Dice and Cross-Entropy

4 Results and discussion

4.1 Quantitative results on validation set

We used EfficientSegNet, which was trained directly using 2200 cases of labeled
data as the baseline. nnU-Net, which was trained using 222 cases (strong label)
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containing all organ segmentations, and EfficientSegNet, which was trained us-
ing our weak label training framework, were compared with baseline on public
validation, respectively. The quantitative results are shown in Table 4.

Table 4. Quantitative evaluation results for ablation study on online validation.

Target baseline nnU-net(222) EfficientSegNet
DSC(%) NSD(%) DSC(%) NSD(%) DSC(%) NSD(%)

Liver 94.72 93.03 96.58 98.34 97.45 98.63
Right Kidney 87.81 85.23 93.12 94.29 93.36 94.11
Spleen 91.55 91.51 96.04 97.35 96.71 98.29
Pancreas 02.08 02.37 84.69 96.29 84.67 95.19
Aorta 85.36 84.95 96.28 98.62 95.85 98.68
Inferior vena cava 71.92 63.29 94.47 96.24 93.78 96.17
Right adrenal gland 02.00 02.00 83.08 95.39 81.18 94.64
Left adrenal gland 01.00 01.00 80.59 93.18 78.55 92.03
Gallbladder 10.00 10.00 82.93 82.01 85.38 85.87
Esophagus 00.00 00.00 83.17 93.47 82.79 93.53
Stomach 04.73 03.55 92.71 96.65 92.67 96.66
Duodenum 31.19 55.92 84.84 95.97 83.76 95.27
Left kidney 87.84 91.34 84.95 92.29 93.13 93.55
Tumor 05.48 01.68 00.00 00.00 29.98 20.49
Average 43.83 44.47 89.22 94.62 89.20 94.82

We observed that using weak labels for direct training often resulted in poor
labeling quality, which can negatively impact the training process and lead to
eventual failure. We decomposed the task into three stages to address this issue:
strong label training, weak label supplement, and retraining.

For strong label training, we utilized nnU-Net, a well-established segmenta-
tion model trained on a dataset of 222 cases containing all organ segmentations
with strong labels. Our experiments showed that nnU-Net achieved a Dice sim-
ilarity coefficient (DSC) of 0.892, indicating that it is effective in organ segmen-
tation. We then used the organ segmentation results obtained from nnU-Net as
a generative network for organ pseudo-label.

We used EfficientSegNet to train on the 2200 cases with pseudo-label for
retraining. Our experiments showed that EfficientSegNet achieved an average
DSC of 0.892 for all organs and a tumor DSC of 0.299.

4.2 Qualitative results on validation set

Figure 4 shows the segmentation results for the baseline and our method. Among
the results in case#0047 and case#0070, our method can accurately segment
organs and identify tumor regions and make precise judgments even for seg-
mentation at the boundaries of some small organs. However, in case#0029 and
case#0035, our method shows some false-negative determinations of the tumor
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Table 5. Quantitative evaluation results.

Target Public Validation Online Validation Testing
DSC(%) NSD(%) DSC(%) NSD(%) DSC(%) NSD (%)

Liver 97.46 ± 1.03 94.61 ± 5.13 97.45 98.63 96.38 96.99
Right Kidney 90.46 ± 19.95 87.09 ± 20.45 93.36 94.11 93.89 93.49
Spleen 95.83 ± 8.02 96.87 ± 7.34 96.71 98.29 96.02 97.41
Pancreas 86.09 ± 7.24 83.09 ± 11.89 84.67 95.19 88.87 96.62
Aorta 95.03 ± 2.98 95.42 ± 5.30 95.85 98.68 96.16 99.15
Inferior vena cava 92.70 ± 3.84 89.18 ± 6.59 93.78 96.17 94.32 97.06
Right adrenal gland 77.31 ± 20.09 89.80 ± 19.19 81.18 94.64 80.57 94.22
Left adrenal gland 77.35 ± 16.86 88.95 ± 19.38 78.55 92.03 79.63 93.15
Gallbladder 79.84 ± 28.03 79.85 ± 29.78 85.38 85.87 81.92 84.31
Esophagus 81.58 ± 16.65 83.45 ± 17.22 82.79 93.53 88.26 97.75
Stomach 93.21 ± 3.89 90.62 ± 10.57 92.67 96.66 92.18 96.26
Duodenum 83.49 ± 6.38 79.70 ± 9.00 83.76 95.27 86.20 96.24
Left kidney 91.43 ± 14.96 87.72 ± 17.00 93.13 93.55 92.96 93.34
Tumor 35.39 ± 34.80 24.97 ± 28.54 29.98 20.49 39.64 26.51
Organ average 84.08 ± 22.19 83.67 ± 23.83 89.20 94.82 89.69 95.02

region. The locations marked in the red box in the diagram show some false-
negative situations. The blue area in the box is the pan-cancer area label. It can
be observed that our method always wrongly classified tumor regions as nor-
mal organs. The reason may be that there is tumor regions in the supplemented
organ label area, but our method has no suitable strategy to correct it.

4.3 Segmentation efficiency results on validation set

The efficiency test results are shown in Table 6. Using less than 4GB of GPU
Memory, our method can also infer larger images in less than 20 seconds.

Table 6. Quantitative evaluation of segmentation efficiency in terms of the running
them and GPU memory consumption. Total GPU denotes the area under the GPU
Memory-Time curve. Evaluation GPU platform: NVIDIA QUADRO RTX5000 (16G).

heightCase ID Image Size Running Time (s) Max GPU (MB) Total GPU (MB)
0001 (512, 512, 55) 12.6 3032 10455
0051 (512, 512, 100) 9.04 2956 9044
0017 (512, 512, 150) 9.64 2970 10245
0019 (512, 512, 215) 11.39 2994 13420
0099 (512, 512, 334) 11.33 3172 13395
0063 (512, 512, 448) 14.58 3400 20043
0048 (512, 512, 499) 14.6 3254 19642
0029 (512, 512, 554) 16.87 3938 24931
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Fig. 4. Qualitative results of on good (#0047 and #0070) and bad (#0029 and #0035)
cases. The first column is the image, the second is the ground truth, the third is the
Baseline results, and the fourth is the predicted results by our method.

4.4 Results on final testing set

The test results are shown in Table 5. In the test dataset, we achieved an aver-
age DSC of 0.8969 and NSD of 0.9502 for all organs. This is reliable for organ
segmentation. At the same time, the average inference time of our method is
less than 10s with few resources. However, there are great limitations on the
segmentation effect of tumors.

4.5 Limitation and future work

The two-stage coarse-to-fine model used in our proposed framework maintains
high inference speed while achieving a high level of segmentation performance.
However, we found that the performance of tumor segmentation was worse than
that of abdominal organs. After an elaborate analysis of bad cases, we found that
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tumors are annotated as irregular regions with non-smooth edges. In contrast,
the predicted ones are probably smoothed into sphere-like regions after the resiz-
ing operation, resulting in an unnegligible error in the edge. In future work, we
will further investigate segmentation models with high performance on tumors.
One solution is to replace the traditional resizing operation with learning-based
methods like correlation interpolation.

5 Conclusion

This paper proposed a two-stage training approach to overcome the problem
that weak label data cannot be used for training general segmentation models
directly. A pseudo-label generating network is trained using those cases with
strong labels in the first training. After supplementing all weak label data using
pseudo labels, the coarse-to-fine network is retrained for the inference stage.
Under the limitation of computing resources, experimental results show that
our method fully uses weak label data and performs well in segmentation and
inference speed.
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