
Multiobjective Distribution Matching

Xiaoyuan Zhang 1 Peijie Li 2 Yingying Yu 1 Yichi Zhang 3 Han Zhao 4 Qingfu Zhang 1

Abstract
Distribution matching is a core concept in ma-
chine learning, with applications in generative
models, domain adaptation, and algorithmic fair-
ness. A closely related but less explored challenge
is generating a distribution that aligns with multi-
ple underlying distributions, often with conflict-
ing objectives, known as a Pareto optimal distri-
bution. In this paper, we develop a general the-
ory based on information geometry to construct
the Pareto set and front for the entire exponen-
tial family under KL and inverse KL divergences.
This formulation allows explicit derivation of the
Pareto set and front for multivariate normal distri-
butions, enabling applications like multiobjective
variational autoencoders (MOVAEs) to generate
interpolated image distributions. Experimental re-
sults on real-world images demonstrate that both
algorithms can generate high-quality interpolated
images across multiple distributions.

1. Introduction
Distribution Matching (DM) is a fundamental concept in
machine learning and has rich applications across multiple
applications, including generative modeling (Goodfellow
et al., 2014; Ho and Ermon, 2016; Li et al., 2015), domain
adaptation (Baktashmotlagh et al., 2016; Ganin et al., 2016;
Gong et al., 2024; Tachet des Combes et al., 2020; Zhao
et al., 2018), causal representation learning (Johansson et al.,
2016; Shalit et al., 2017), and algorithmic fairness (Zhang
et al., 2018; Zhao et al., 2019b; 2022), just to name a few.
A typical DM problem is formulated as:

min
θ
D(pθ∥p),

where p denotes the target distribution, and pθ is the distribu-
tion which needs to be optimized. Alternatively, the problem
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can also be expressed in its inverse form: minθD(p∥pθ),
since the divergence D(·∥·) is not necessarily symmetric.
This classical distribution matching problem has been ex-
tensively studied, with various approaches proposed for
calculating the divergence such as the Wasserstein distance
W(pθ∥p) (Villani et al., 2009) and f -divergence Minimiza-
tion (Nowozin et al., 2016). A widely used but underex-
plored problem addressed in this paper is aligning a single
distribution with multiple distributions simultaneously, for-
mulated as:

min
θ

f(θ) = (f1(θ), . . . , fm(θ))

= (D(pθ∥p1), . . . , D(pθ∥pm)),
(1)

where each objective can also be presented in its inverted
form,D(pi∥pθ). MODM has broad applications in machine
learning, including the controllable generation of interme-
diate distributions (e.g., images, drugs, speeches) between
multiple underlying distributions, the development of mod-
els that balance multiple domain adaptations (Han and Pi-
mentel, 2024; Jin et al., 2020; Wu et al., 2021), multi-source
domain adaptation (Wen et al., 2020; Zhao et al., 2018), and
group fairness with multiple sub-populations (Chen et al.,
2023; Xian and Zhao, 2024; Xian et al., 2023).

This paper presents two approaches to study the MODM
problem. The first approach assumes that the distributions
pθ, p1, . . . , pm belong to a specific distribution family, such
as the Exponential family. Under this condition, we first
investigate a more general case: how to generate Pareto
solutions when the decision space is a dually flat manifold
endowed with a Riemannian metric. Building on these gen-
eral results, we characterize the Pareto set for multivariate
normal (MVN) distributions under both Kullback-Leibler
(KL) divergence and inverse KL divergence as illustrative
examples. Furthermore, we highlight a direct application
of generating Pareto-optimal MVN distributions in the con-
text of multiobjective Variational Autoencoder (MOVAE)
algorithm. This algorithm learns multiple latent MVN dis-
tributions and employs non-linear decoders to map them
into complex real-world applications. Experimental results
demonstrate the effectiveness of the proposed method in
this context. The contributions of this paper are summarized
as follows:
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1. We investigate the geometric structure of the multiob-
jective distribution matching problem with the tools of
information geometry. We derive the explicit form of
Pareto set on the dually flat manifold under the canonical
divergence. Then, we give the shape of PS for the entire
exponational family and use multivariate normal (MVN)
distributions as a specific example.

2. Besides exponational family, we derive the form of the
Pareto set under the α-divergence Dα(·∥·). Based on our
theoretical results, we design an algorithm called multiob-
jective variational auto-encoder (MOO-VAE) to generate
interpolated images between multiple distributions.

3. We evaluate the performance of the proposed multiobjec-
tive distribution matching method not only on synthetic
distributions but also on real-world image distributions.
The proposed method can generate high-quality image
distributions among multiple underlying distributions.

2. Related Work
Since this paper is both related with gradient-based multiob-
jective optimization (MOO) and distribution matching. We
briefly discuss those two related topics separately.

2.1. Gradient-based MOO

Gradient-based MOO methods gained growing popularity
with the successful application of Multiple Gradient De-
scent Algorithm (MGDA) (Sener and Koltun, 2018) in deep
multitask learning. Methods to find the Pareto set (PS) using
two strategies: identifying a diverse set of Pareto solutions
or modeling the entire PS directly. Notable works include
Pareto Multi-Task Learning (PMTL) (Lin et al., 2019), find-
ing solutions restricted in specific objective regions; Exact
Pareto Optimization (EPO) (Mahapatra and Rajan, 2020;
2021), Weighted Chebyshev (WC)-MGDA (Momma et al.,
2022), and Preference-based MGDA (PMGDA) (Zhang
et al., 2024), which align objectives with preference vec-
tors; and Gradient-based Hypervolume maximization (HV-
Grad (Deist et al., 2020; 2021; Emmerich et al., 2007)),
which optimizes the hypervolume of a set of solutions to
achieve both Pareto optimality and diversity. The most com-
mon approach, however, remains optimizing some aggre-
gation functions that convert a multiobjective optimization
problem (MOP) into a single-objective one. Besides finding
a single Pareto optimal solution or a set of Pareto solutions,
another popular gradient-based MOO paradigm is Pareto set
learning (Chen and Kwok, 2024; Dimitriadis et al., 2023;
Navon et al., 2020; Ruchte and Grabocka, 2021), which
trains a single model to predict the entire PS, typically us-
ing a hypernetwork or a neural network with a low-rank
adaptation structure.

2.2. Distribution matching

Distribution matching (DM), or distribution alignment, is a
core concept in machine learning with broad applications,
including domain adaptation (Ganin et al., 2016; Nguyen
et al., 2023; Xiao et al., 2024; Zhang et al., 2022; Zhao
et al., 2018; 2019a), algorithmic fairness (Prost et al., 2019;
Quadrianto and Sharmanska, 2017; Zhao and Gordon, 2022;
Zhao et al., 2019b), and generative models (e.g., GANs,
VAEs, diffusion models, imitation learning) (Higgins et al.,
2017; Ho and Ermon, 2016; Jin et al., 2020; Yin et al., 2023).

For generative models like GANs, the objective is to gener-
ate a distribution that closely aligns with the data distribu-
tion. Similarly, in generative adversarial imitation learning
(GAIL) (Ho and Ermon, 2016), the goal is to learn a pol-
icy such that the state-action density function matches that
of the expert. DM also help learn a representation that
aligns two distributions and has been applied to enhance
robustness and enforce constraints in domain generalization,
causal discovery, and fair representation learning (Gong
et al., 2024).

3. Preliminaries
3.1. Multiobjective optimization

For a MOP (Equation (1)), it is difficult to compare the
quality of solutions since vector objectives do not admit a
total order. To describe the optimality for a MOP, we first
introduce the concept of Pareto optimality.

Definition 1 (Pareto Optimal (PO), Pareto Set (PS), Pareto
Front (PF)). A solution θ∗ is PO if no other solution θ′ ∈ Θ
dominates it, denoted as f(θ′) ⪯strict f(θ

∗), i.e., fi(θ′) ≤
fi(θ

∗) for all i ∈ [m] with at least one strict inequality hold.
The set of all PO solutions is called the Pareto set, and its
image is the Pareto front.

In addition to PO solutions, weakly PO solutions are those
that cannot be strictly dominated by the other solutions, i.e.,
no solution θ′ exists such that ∀i ∈ [m], fi(θ′) < fi(θ

∗),
or f(θ′) ≺ f(θ∗). The simplest way to find PO solu-
tions is to use aggregation functions gλ(·) : Rm 7→ R to
convert a vector optimization problem into a scalar one.
Widely-used aggregation functions include linear scalar-
ization, gλ(f(θ)) =

∑m
i=1 λifi(θ) and Tchebycheff func-

tions, gλ(f(θ)) = maxi∈[m] λi(fi(θ) − zi), where z is a
reference point such that z ⪯ f(θ), for θ ∈ Θ. When
applying aggregation functions to solve a MOP, we have the
following lemma for the optimal solution of an aggregation
function.

Lemma 2 (Adapted from (Miettinen, 1999), Theorem 2.6.2).
If gλ(f(θ)) is decreasing w.r.t, f(θ)), i.e., f(θ(a)) ⪯strict

f(θ(b)), gλ(f(θ(a))) ≤ gλ(f(θ
(b))), the optimal solu-

tion of gλ(f(θ)) is a weakly PO solution. If gλ(f(θ))
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is strictly decreasing w.r.t, f(θ), i.e., when f(θ(a)) ⪯strict

f(θ(b)), gλ(f(θ(a))) < gλ(f(θ
(b))), the optimal solution

of gλ(f(θ)) is a PO solution.

Lemma 2 guarantees that, optimizing aggregation functions
with a specific preference vector can find a (weakly) Pareto
optimal solution. The remaining issue is whether the en-
tire PS can be recovered by using all preference vectors
that span the probability simplex. For this question we
know that (1) when each objective function fi(θ) is con-
vex, for any Pareto solution, there exists a preference vec-
tor where the optimal solution is the result of the linear
aggregation function under this preference vector (Boyd,
2004)[Section 4.7], (2) for any weakly PO solution, there
exists a preference vector such that the optimal value of
the Tchebycheff scalarization function corresponds to this
solution (Choo and Atkins, 1983). Under mild conditions
(c.f. (Zhang et al., 2023)[Prop. 2]), optimizing the Tcheby-
cheff function yields the “exact” Pareto solution, where the
optimal solution θ∗ of the Tchebycheff function satisfies:
λ1(f1(θ

∗)− z1) = . . . = λm(fm(θ∗)− zm).

Another popular MOO paradigm is called Pareto Set Learn-
ing (PSL) (Lin et al., 2020; 2022), which learns a model
tβ(λ) : ∆m 7→ PS that maps a preference vector to a PO
solution. Different from previous methods, PSL aims to
learn the entire PS with a single model rather than to find a
finite set of Pareto solutions.

3.2. Information geometry

This section introduces some basic concepts of information
geometry (Amari, 2016; Ay et al., 2017; Nielsen, 2020),
begin with the concept of Riemannian manifold.

Definition 3 (Riemannian manifold (Lee, 2012)). A Rieman-
nian manifold is a pair (S, g), where S is a smooth manifold
locally resembling the Euclidean space, and g : p 7→ ⟨·, ·⟩p
is a Riemannian metric that equips each tangent space
Tp(S) with an inner product ⟨·, ·⟩p : Tp(S)×Tp(S) 7→ R+.

A connection on a Riemannian manifold describes how to
differentiate vector fields.

Definition 4 (Connection of a smooth manifold (Lee, 2012)).
A connection ∇ on a manifold S is a bilinear map on the
space of smooth vector fields Γ(S):

∇ : Γ(S)× Γ(S) 7→ Γ(S),

satisfying the following properties:

1. ∇fXZ = f∇XZ,

2. ∇X(fY ) = f∇XY + (Xf)Y ,

for vector fields X,Y, Z ∈ Γ(S) and smooth function f ∈
C∞(S), where Xf is the derivative of f along X .

Given a (local) coordinate system ϑ = [ϑi] on S, denoted
by {∂i := ∂

∂ϑi } the coordinate vector fields, the metric g
can be characterized by the smooth functions gij = ⟨∂i, ∂j⟩
(the metric components), and the connection∇ can be char-
acterized by the smooth functions Γij,k = ⟨∇∂i∂j , ∂k⟩ (the
Christoffel symbols). A connection ∇ is said to be flat if
there exists a coordinate system ϑ such that the correspond-
ing Christoffel symbols of ∇ are all zero, and ϑ is said to
be an affine coordinate system of the flat connection∇.

Statistical models S = {pϑ}ϑ∈Θ, that is, parametrized
probability distributions (density functions), are considered
smooth manifolds in information geometry. Moreover, these
statistical manifolds are often endowed with the Fisher in-
formation metric gF given by

gFij(ϑ) := Eϑ [∂iℓϑ · ∂jℓϑ] ,

and the α-connections∇(α) given by

Γ
(α)
ij,k(ϑ) := Eϑ

[(
∂i∂jℓϑ +

1− α
2

∂iℓϑ · ∂jℓϑ
)
∂kℓϑ

]
,

where ℓϑ := log pϑ and Eϑ[f ] :=
∫
f(x) pϑ(x) dx. Next,

we introduce dualistic structures on statistical manifolds,
essential for analyzing information geometry.

Definition 5 (Dual connection∇∗). Let (S, g) be a Rieman-
nian manifold and∇,∇∗ be two connections on S. If

Z⟨X,Y ⟩ = ⟨∇ZX,Y ⟩+ ⟨X,∇∗
ZY ⟩

holds for all X,Y, Z ∈ Γ(S), then we say that ∇ and ∇∗

are duals of each other with respect to g.

Under a coordinate system, the condition for dual connec-
tion can be rewritten as

∂igjk = Γij,k + Γ∗
ik,j .

Clearly, ∇(α) and ∇(−α) are dual with respect to gF . In
particular, the pair ∇(1) and ∇(−1) are of special interest.
We call them exponential connection ∇(e) := ∇(1) and
mixture connection∇(m) := ∇(−1) respectively.

In this paper, we focus on dually flat manifolds (S, g,∇,∇∗)
where the pair of dual connections ∇ and∇∗ on (S, g) are
both flat. On a dually flat manifold, we can always find a
pair of dual coordinate systems ϑ = [ϑi],η = [ηj ], such
that ϑ and η are the affine coordinate systems of ∇ and ∇∗

respectively, and ⟨∂i, ∂j⟩ = δji for ∂i := ∂
∂ϑi , ∂

j := ∂
∂ηj

.
Moreover, we can also find a pair of potential functions
ψ,φ corresponding to ϑ,η such that ∂iψ = ηi, ∂iφ = ϑi

and ψ + φ =
∑
i ϑ

iηi. Under these settings, the canonical
divergence of (S, g,∇,∇∗), which is the key notion in our
discussion, is then defined as

D(p∥q) := ψ(p) + φ(q)−
∑
i

ϑi(p) ηi(q).
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Note that the canonical divergence is independent of the
choice of dual coordinate systems and potential func-
tions (Amari and Nagaoka, 2000). Dually flat manifolds are
closely related to the widely-used Bregman divergences in
machine learning.

Definition 6 (Bregman divergence). For a strictly convex
smooth function f defined on some open Ξ ⊆ Rn, the
corresponding Bregman divergence Df is defined as

Df (x∥y) := f(x)− f(y)−
∑
i

∂if(y)
(
xi − yi

)
,

for x,y ∈ Ξ, where ∂if is the i-th partial derivative of f .

Given a pair of dual coordinate systems ϑ,η and the corre-
sponding potential functions ψ,φ on a dually flat manifold
(S, g,∇,∇∗), the canonical divergence can be expressed as
a Bregman divergence:

D(p∥q) = Dψ(ϑ(p)∥ϑ(q)) = Dφ(η(q)∥η(p)).

Conversely, given a strictly convex smooth function f on
Ξ ⊆ Rn, the Riemannian metric characterized by

gij(x) := ∂i∂jf(x),

and the pair of affine connections characterized by

Γij,k(x) = 0, Γ∗
ij,k(x) = ∂i∂j∂kf(x),

form a dually flat structure on Ξ, with canonical divergence
given by the Bregman divergence Df . In the following, we
present some examples of dually flat statistical manifolds.

Example 7 (Exponential family). An n-dimensional model
S = {pϑ}ϑ∈Θ is called an exponential family, if it can be
expressed in terms of functions {C,F1, . . . , Fn} on the base
space and a function ψ on Θ as

pϑ(x) = exp

[
C(x) +

n∑
i=1

ϑiFi(x)− ψ(ϑ)

]

with

ψ(ϑ) = log

∫
exp

[
C(x) +

n∑
i=1

ϑiFi(x)

]
dx.

For an exponential family S, (S, gF ,∇(e),∇(m)) is indeed
a dually flat manifold. The ∇(e)-affine natural parame-
ters ϑ = [ϑi] and the ∇(m)-affine expectation parameters
η = [ηj ] defined by ηj(ϑ) := Eϑ[Fj ] give a pair of dual
coordinate systems. The corresponding potential functions
are given by the cumulant function ψ and

φ(ϑ) =

n∑
i=1

θiηi(ϑ)− ψ(ϑ) = −H(pϑ)− Eϑ [C] ,

where H is the Shannon entropy given by

H(p) := −
∫
p(x) · log p(x) dx.

The canonical divergence is then given by

D(p∥q) =
n∑
i=1

(
ϑi(q)− ϑi(p)

)
ηi(q) + ψ(p)− ψ(q)

=

∫
(log q(x)− log p(x)) q(x) dx = DKL(q∥p),

which is indeed the dual of the Kullback–Leibler diver-
gence. Many important probabilistic models belong to expo-
nential families, such as multivariate normal distributions,
chi-squared distributions, gamma distributions, Poisson dis-
tributions, multinomial distribution (with fixed trial), dis-
tributions on a finite space (probability simplex) . . . In fact,
arbitrarily given density functions p0, p1, . . . , pn, then

pϑ(x) :=
p0(x)

1−
∑

i ϑ
i

p1(x)
ϑ1 · · · pn(x)ϑ

n∫
p0(x)

1−
∑

i ϑ
i

p1(x)
ϑ1

· · · pn(x)ϑ
n

dx

gives an exponential family. Furthermore, (Banerjee et al.,
2005) showed that any dually flat manifold can be realized
as an exponential family (see also (Amari, 2016)).

Here we present the model of multivariate normal distribu-
tions (MVNs), which is widely used in machine learning:

pϑ(x) = |2πΣ|−
1
2 exp

{
−1

2
(x− µ)

⊤
Σ−1 (x− µ)

}
= exp

{
(ϑA)⊤FA(x) + Tr(ϑBFB(x))− ψ(ϑ)

}
is expressed as an exponential family in terms of

C(x) = 0, FA(x) = x, FB(x) = xx⊤,

and

ψ(ϑ) =
1

2
µ⊤Σ−1µ+

1

2
log |2πΣ|

= −1

4
(ϑA)⊤(ϑB)−1ϑA +

1

2
log
∣∣−π(ϑB)−1

∣∣ ,
with respect to the natural parameters ϑ = [ϑA,ϑB ]:

ϑA = Σ−1µ, ϑB = −1

2
Σ−1,

and the expectation parameters η = [ηA,ηB ]:

ηA = µ, ηB = Σ+ µµ⊤.

Example 8 (Mixture family). An n-dimensional model S =
{pϑ}ϑ∈Θ is called a mixture family, if it can be expressed
in terms of functions {C,F1, . . . , Fn} on the base space as

pϑ(x) = C(x) +

n∑
i=1

ϑiFi(x).
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For a mixture family S, (S, gF ,∇(m),∇(e)) is indeed a
dually flat manifold. The ∇(m)-affine parameters ϑ = [ϑi]
and the ∇(e)-affine parameters η = [ηj ] defined by

ηj(ϑ) :=

∫
Fj(x) · log pϑ(x) dx

give a pair of dual coordinate systems. The corresponding
potential functions are given by

ψ(ϑ) = −H(pϑ), φ(ϑ) = −
∫
C(x) · log pϑ(x) dx.

The canonical divergence is then given by

D(p∥q) =
n∑
i=1

ϑi(p) (ηi(p)− ηi(q)) + φ(q)− φ(p)

=

∫
p(x) (log p(x)− log q(x)) dx = DKL(p∥q),

which is exactly the Kullback–Leibler divergence.

A frequently used formulation is the mixture of distributions:
arbitrarily given density functions p0, p1, . . . , pn, then

pϑ(x) :=

(
1−

n∑
i=1

ϑi

)
p0(x) +

n∑
i=1

ϑipi(x)

= p0(x) +

n∑
i=1

ϑi (pi(x)− p0(x))

is expressed as a mixture family in terms of

C(x) = p0(x), Fi(x) = pi(x)− p0(x), i ∈ [n].

4. Multiobjective distribution matching
theories

In this section, we first introduce the underlying geometry
of multiobjective distribution matching (MODM) based on
dually flat spaces, and later derive the explicit forms of PS
and PF of MODM under some specific divergences.

4.1. Geometric structure of MODM

Theorem 9. Let (S, g,∇,∇∗) be a dually flat manifold, ϑ
and η be a pair of dual coordinate systems, and D(p∥q) be
the canonical divergence.

• The Pareto set of the MOP with the

min
p∈S

(D(p1∥p), D(p2∥p), . . . , D(pm∥p))

is given by the convex hull of p1, . . . , pm enclosed by
∇-geodesics, that is{

p ∈ S : ϑ(p) =

m∑
k=1

λkϑ(pk),λ ∈ ∆m

}
,

where ϑ(p) denote the coordinate of p under the affine
coordinate system ϑ and the same for η(p).

• The Pareto set of the MOP

min
p∈S

(D(p∥p1), D(p∥p2), . . . , D(p∥pm))

is given by the convex hull of p1, . . . , pm enclosed by
∇∗-geodesics, that is{

p ∈ S : η(p) =

m∑
k=1

λkη(pk),λ ∈ ∆m

}
.

The proof is postponed to Appendix A. The theorem builds
that for non-degrade cases (dim(S) = n and p1, . . . , pk are
linearly independent in corresponding coordinates), the PS
is indeed an isomorphism of the m-dimensional simplex.

Next, we present the direct results for MVNs:

• For the MOP:

min
p∈MVNs

(DKL(p∥p1), DKL(p∥p2), . . . , DKL(p∥pm))

where pk is the MVN of (µk,Σk), the PS contains
MVNs of (µ,Σ) such that

Σ−1µ =

m∑
k=1

λkΣ
−1
k µk

Σ−1 =

m∑
k=1

λkΣ
−1
k

, λ ∈ ∆m. (2)

• For the MOP:

min
p∈MVNs

(DKL(p1∥p), DKL(p2∥p), . . . , DKL(pm∥p))

where pk is the MVN of (µk,Σk), the PS contains
MVNs of (µ,Σ) such that,

µ =

m∑
k=1

λkµk

Σ+ µµ⊤ =

m∑
k=1

λk(Σk + µkµ
⊤
k )

, λ ∈ ∆m.

(3)

The corresponding PFs can then be obtained by computing
the KL divergence between the MVNs on the PS and the
given MVNs. Note that the KL divergence between the
MVN p1 of (µ1,Σ1) and the MVN p2 of (µ2,Σ2) is given
by

DKL(p1∥p2) =
1

2

[
Dψ(Σ

−1
1 ∥Σ

−1
2 ) +DΣ−1

2
(µ1,µ2)

]
,
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where

Dψ(Σ
−1
1 ∥Σ

−1
2 ) := Tr

(
Σ1Σ

−1
2

)
− log

∣∣Σ1Σ
−1
2

∣∣− n
is a Bregman divergence between positive-definite matrices
corresponding to ψ(Σ−1) = − log

∣∣Σ−1
∣∣, and

DΣ−1
2
(µ1,µ2) := (µ1 − µ2)

⊤
Σ−1

2 (µ1 − µ2)

is the (squared) Mahalanobis distance between µ1 and µ2

with respect to Σ−1
2 . Note also that 1

2Dψ(Σ
−1
1 ∥Σ

−1
2 ) is ex-

actly the KL divergence between the MVNs of covariant ma-
trices Σ1 and Σ2 with the same mean, and 1

2DΣ−1
2
(µ1,µ2)

is exactly the KL divergence between the MVNs of means
µ1 and µ2 with the same covariant matrix Σ2.

Figures 1 and 2a illustrate the Pareto fronts (PFs) of MVN
distributions with two and three objectives under KL diver-
gence. In Figure 1, blue dots represent gradient descent
solutions with Σ obtained via LU decomposition, while the
red curve shows the theoretical PF from Theorem 9. The
numerical results from gradient descent align well with the
theoretical predictions. For completeness, we provide the
PS for MVNs under Wassertein distance.
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Figure 1. The PF of a 2-objective, 3-dimensional multivariate nor-
mal (MVN) distribution matching under the KL divergence, where
µ1 = [0, 0, 0]⊤, µ2 = [1, 1, 1]⊤, Σ1 = diag([1, 1, 1]), and

Σ2 =

 2.5 −0.5 0
−0.5 2.5 0
0 0 4

. Discrete solutions (in blue) are opti-

mized by gradient descent (GD), and the theoretical PF (in red)
curve is predicted by Theorem 9.

Example 10 (PS under 2-Wasserstein distanceW2). The
Wasserstein distance between two MVN distributions owns
an explicit form:

W2(p, pk)
2 = ∥µ− µk∥2 +Tr

[
(Σ1/2 −Σ

1/2
k )2

]
.

The gradients w.r.t µ and Σ are:
∂W2(p, pk)

2

∂µ
= 2(µ− µk),

∂W2(p, pk)
2

∂Σ1/2
= 2(Σ1/2 −Σ

1/2
k ).
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(a) PF of a 3-objective MODM
problem.
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f 2
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0.4
0.6

0.8
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f 3

Pareto Front
Optimization curve
Preference vector

(b) The optimization trajectory
using Tchebycheff aggregation
function.

Figure 2. Results on a 3-obj problem under KL divergence using
parameters, µ1 = [0, 0]⊤, µ2 = [1, 1]⊤,µ3 = [2, 2]⊤, and

Σ1 =

[
1 0
0 1

]
, Σ2 =

[
1 1
1 3

]
, Σ3 =

[
5 2
2 4

]
.

The PS can be formulated as:
µ =

m∑
k=1

λkµk

Σ1/2 =

m∑
k=1

λkΣ
1/2
k

, λ ∈ ∆m. (4)

Equations (2) to (4) provide a principled approach for merg-
ing multiple distributions, which is also closely related to
recently proposed model merging techniques (Yang et al.,
2024; Zeng et al., 2025). Our results show that, under
certain divergences, the entire Pareto set can be recov-
ered through appropriate manipulations in the parametric
space—specifically, by manipulating mean vectors and vari-
ance matrices.

4.2. MODM on the preference simplex

In this section, we provide a result of knowing the exact
from of the PS of the MODM problem. Once we know the
of the PS, it is easy to locate a specific Pareto solution under
a preference vector. The following theorem shows that
“optimizing over the entire probability space” is equivalent
to optimizing on the preference simplex.

Theorem 11. For a decreasing aggregation function, opti-
mizing it on the PS is equivalent to optimizing it over the
entire decision space Θ.

For example, with MVN distributions under KL divergence,
optimizing a solution in Θ reduces to optimizing within a
smaller m-dim space ∆m:

min
λ∈∆m

gλ

(
f

(
m∑
i=1

λiθi

))
⇐⇒ min

θ∈Θ
gλ(f(θ)).

6
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Proof. Assuming θ∗ ∈ (Θ−PS), but there exists a solution
θ′ ∈ PS such that f(θ′) ⪯strict f(θ

∗), which contradicts a
decreasing aggregation function.

These results show that MODM with aggregation functions
reduces to a single-objective optimization with a simplex
constraint, while the original problem involves more param-
eters and requires costly semi-definite programming due to
the positive definite constraint on Σ. Additionally, gλ is
convex w.r.t λ, and the decision space, an m-dim simplex,
is convex. The gradient of gλ under KL divergence is:s

∂

∂λk
gλ

(
f

(
m∑
i=1

λiθi

))
= ∇gλ · ∇f

(
m∑
i=1

λiθi

)
· θk

which is convex with respect to λ. The proof is in Ap-
pendix B. Optimizing the modified Tchebycheff function on
the simplex using projective gradient descent (Algorithm 1)
yields the “exact” Pareto solution, allowing precise con-
trol over its position. The optimization curve is shown in
Figure 2b.

Algorithm 1 MODM on the Preference Simplex.

1: Initialization: The initial preference vector λ ∈ ∆m,
where ∆m is the preference simplex.

2: for epoch = 1 to Nepoch do
3: λ← λ− η · ∇λgλ (f (

∑m
i=1 λiθi))

4: λ← Proj∆m
(λ)

5: end for

4.3. The Pareto set under α-divergence

We first recap that, The α-divergence is defined as:

Dα(p∥q) = 4

1− α2

(
1−

∫
p(x)

1−α
2 q(x)

1+α
2 dx

)
.

It recovers the KL divergence at α → −1 and the reverse
KL divergence at α = 1, making it a special case of f -
divergence.

Theorem 12. For the MOP:

min
p

(Dα(p1∥p), Dα(p2∥p) . . . , Dα(pm∥p))

over all distributions, the PS is given by:

pλ =

[
1

ψ(λ)

(
m∑
k=1

λkp
1−α
2

k

)] 2
1−α

, λ ∈ ∆m, (5)

where

ψ(λ) =

∫ ( m∑
k=1

λkpk(x)
1−α
2

) 2
1−α

dx


1−α
2

.

Here we use pλ, p1, . . . , pm as shorthand notations for the
density functions of the distributions pλ, p1, and p2 on the
underlying space, respectively.

Proof. Fix λ ∈ ∆m, consider the convex combination:

f(p) =

m∑
k=1

λkD
α(pk∥p) (6)

Then we have the difference between f(p) and f(pλ) can
be formulated as:

f(p)− f(pλ) =
m∑
k=1

λk(D
α(pk∥p)−Dα(pk∥pλ)) (7)

=
4

1− α2

∫ ( m∑
k=1

λkp
1−α
2

k

)(
p

1+α
2

λ − p
1+α
2

)
dx (8)

If we set pλ to be the following form

p
1−α
2

λ =
1

ψ(λ)

m∑
k=1

λkp
1−α
2

k , (9)

then by replacing the term p
1−α
2

λ in Equation (8) we have,

f(p)− f(pλ)

=
4

1− α2
· ψ(λ)

∫
p

1−α
2

λ (p
1+α
2

λ − p
1+α
2 ) dx

= ψ(λ) · 4

1− α2

(
1−

∫
p

1−α
2

λ p
1+α
2 dx

)
= ψ(λ) ·Dα(pλ∥p) ≥ 0.

Thus, pλ minimizes f(p), and the minimum is given by

f(pλ) =

m∑
k=1

λkD
α(pk∥pλ)

=
4

1− α2

(
1−

∫ ( m∑
k=1

λkp
1−α
2

k

)
p

1+α
2

λ dx

)

=
4

1− α2
(1− ψ(λ))

Example 13. Especially for α = ±1, we have

• When α = −1, D−1 = DKL. Hence for the MOP:

min
p

(DKL(p1∥p), DKL(p2∥p) . . . , DKL(pm∥p))

over all distributions, the PS is given by:

pλ =

m∑
k=1

λkpk, λ ∈ ∆m.

7
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Furthermore,

m∑
k=1

λkDKL(pk∥pλ) = D
(λ)
JS (p1∥ · · · ∥pm),

which is the λ-skew Jensen-Shannon divergence.

• When α = 1, D1 = D∗
KL. Hence for the MOP:

min
p

(DKL(p∥p1), DKL(p∥p2) . . . , DKL(p∥pm))

over all distributions, the PS is given by:

pλ = exp

[
D

(λ)
B (p1∥ · · · ∥pm) +

m∑
k=1

λk ln pk

]
,

where D(λ)
B (p1∥ · · · ∥pm) := − ln

∫
pλ1
1 · · · pλm

m is the
λ-skew Bhattacharyya divergence. Furthermore,

m∑
k=1

λkDKL(pλ∥pk) = D
(λ)
B (p1∥ · · · ∥pm).

4.4. Multiobjective Varational AutoEncoders
(MOVAEs)

The MOVAE algorithm has two parts, which is shown in Al-
gorithm 2 in Appendix C. During training, a VAE model
is trained with all samples from multiple distribution with
shared encoder (ϕi) and decoder (ψi) parameters. After
passing through the encoder network, each image is con-
verted into a multivariate normal distribution.

During inference, for any preference vector, a Pareto-
optimal distribution is generated using Equation (2), Equa-
tion (3) or Equation (4). This interpolated MVN distribution
is then input to the decoder network. MOVAE’s core idea is
that directly generating PO distributions is challenging, so
encoders and decoders transform normal distributions into
real-world image distributions. Generating PO distribution
and then converting it to other distributions approximates
the generation of PO distributions. Another advantage of
MOVAE over VAEs is that it requires only a single model, as
Pareto MVN distributions in the hidden layers are computed
using explicit formulations, avoiding the need for neural
models. In contrast, mixture models with a controlling ratio
λ require training separate models for each λ. Therefore,
the proposed method is more efficient in training and storage
compared to VAEs with mixture distributions.

5. Experiments
In this section, we present the results of MOVAE. Results
for various tradeoff levels are shown in Figure 3 under the
inverse KL divergence. For other results, please refer to Ap-
pendix D. The size of the image is 28. Both the encoder and

decoder networks have around 157K parameters. Number
of training images is around 12K. The optimizer is Adam
with a learning rate of 3e-5.

The inference results of Figure 3 demonstrate that MOVAE
is able to generate smooth interpolations between the
(alarm,clock) distribution and the other circle distribution.
We use five uniform preferences from [1, 0] to [0, 1] as ex-
amples, though any preference within this range can serve
as input to the MOVAE network. By taking the preference
from [1, 0] to [0, 1], the interpolated images gradually resem-
bles the second distribution. For an intermediate preference,
MOO generate a blending distribution of images under this
preference.

C
irc

le

A
la
rm

C
irc

le

A
pp

le

Figure 3. MOVAE Results under inverse KL divergence.

6. Conclusion, further work, and limitations
Conclusion. This paper explores the less-studied MODM
by modeling a general multiobjective optimization problem
on the dually flat Riemannian manifold. This approach pro-
vides explicit formulations for the entire exponential family
with KL and inverse KL divergence. We also discuss the
explicit form of the PS under α-divergence. The theoretical
results have direct applications, including multiobjective
variational autoencoders (MOVAE). We evaluate MOVAE
on the QuickDraw dataset, demonstrating their ability to
generate blending images across different preference vec-
tors.

Future work. Beyond the geometry explored here, distri-
bution matching and information geometry share an intricate
connection. Future work will address advanced topics, such
as projecting distributions outside a manifold onto the mani-
fold.

Limitations. This paper mainly focus on the theoretical
results on multiobjective distribution matching and do not

8
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discuss much on the applications. In the future, we will
discuss the relationship between multiobjective distribution
matching LLM, trustworthy machine learning and other
topics.
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A. Proof of Theorem 9
Proof. Due to the following property of the potential functions:

∂φ

∂η
= ϑ,

∂ψ

∂ϑ
= η,

the gradients of ∂φ∂η or ∂φ∂ϑ are given by:

∂

∂η(p)
D(pk∥p) =

∂

∂η(p)

(
ψ(pk) + φ(p)− η(p)⊤ϑ(pk)

)
=
∂φ

∂η
(p)− ϑ(pk)

= ϑ(p)− ϑ(pk)

∂

∂ϑ(p)
D(p∥pk) =

∂

∂ϑ(p)

(
ψ(p) + φ(pk)− ϑ(p)⊤η(pk)

)
=
∂ψ

∂ϑ
(p)− η(pk)

= η(p)− η(pk)

Hence for any λ ∈ ∆m, we have

m∑
k=1

λk
∂

∂η(p)
D(pk∥p) = 0 ⇐⇒ ϑ(p) =

m∑
k=1

λkϑ(pk)

m∑
k=1

λk
∂

∂ϑ(p)
D(p∥pk) = 0 ⇐⇒ η(p) =

m∑
k=1

λkη(pk)

which completes the proof.

B. Proof of Theorem 11
If f(x) is a convex function, then f (

∑m
i=1 λixi) is also convex with respect to the weights λi, provided that λ belongs to

the simplex ∆ = {λ ∈ Rm | λi ≥ 0,
∑m
i=1 λi = 1}. Given that f(x) is convex, for any points x1, . . . , xm and any set of

weights λ1, . . . , λm, the following inequality holds:

f

(
m∑
i=1

λixi

)
≤

m∑
i=1

λif(xi).

To examine the convexity of f (
∑m
i=1 λixi) with respect to λ, let us consider λa and λb as two distinct points in the simplex,

and k1, k2 ≥ 0 such that k1 + k2 = 1. Then, we have:

f

(
k1

m∑
i=1

λai xi + k2

m∑
i=1

λbixi

)
≤ k1f

(
m∑
i=1

λai xi

)
+ k2f

(
m∑
i=1

λbixi

)
.

This inequality demonstrates that f (
∑m
i=1 λixi) is convex with respect to the decision variables λ. Essentially, the convexity

of f over its argument translates into the convexity of the function with respect to the weight parameters λi, as long as λ
remains within the simplex constraints.

Further since for any fi are convex, take gλ is a non-decreasing convex function, the overall function gλ(f(
∑m
i=1 λixi)) is

convex.

C. Algorithms

12
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Algorithm 2 Multiobjective VAE (MOVAE)

1: # Step 1. Offline VAE Training.
2: Input: m datasets D1, . . . ,Dm.
3: for epoch = 1 : Nepoch do
4: Sample a batch size of data, D̂1, . . . , D̂m.
5: for i = 1 : m do
6: ℓi = ℓBCE +DKL(p(z ∥ θ),N (0, I)).
7: end for
8: ℓ = 1

m

∑m
i=1 ℓi.

9: for i = 1 : m do
10: Update: ϕi ← ϕi − η ∂ℓ

∂ϕi
, ψi ← ψi − η ∂ℓ

∂ψi
, where η is the learning rate.

11: end for
12: end for
13: # Step 2. MOVAE Prediction.
14: Input: {θ(1)

i }Ki=1, . . . , {θ
(m)
i }Ki=1 to obtain m parameters (µ1,Σ1), . . . , (µm,Σm) from the encoder network.

15: Given a preference vector λ, generate the PO distribution with parameters using Equation (2),Equation (3) or Equa-
tion (4).

16: Given a preference vector λ, generate the PO distribution with parameters using Equation (2), Equation (3) or
Equation (4).

17: Output: Image distribution under the Pareto optimal distribution.

D. Extra experimental results
In this section, we present extra results under KL and Wasserstein distance in Figures 4 and 5.
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Figure 4. MOVAE Results under KL divergence.
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Figure 5. MOVAE Results under Wasserstein distances.
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