Dimension-Free Empirical Entropy Estimation

Doron Cohen Department of Computer Science Ben-Gurion University of the Negev Beer-Sheva, Israel doronv@post.bgu.ac.il

Aaron Koolyk Department of Computer Science Hebrew University Jerusalem, Israel aaron.koolyk@mail.huji.ac.il Aryeh Kontorovich Department of Computer Science Ben-Gurion University of the Negev Beer-Sheva, Israel karyeh@cs.bgu.ac.il

Geoffrey Wolfer

JSPS International Research Fellow Department of Computer and Information Sciences Tokyo University of Agriculture and Technology Tokyo, Japan * geo-wolfer@m2.tuat.ac.jp

Abstract

We seek an entropy estimator for discrete distributions with fully empirical accuracy bounds. As stated, this goal is infeasible without some prior assumptions on the distribution. We discover that a certain information moment assumption renders the problem feasible. We argue that the moment assumption is natural and, in some sense, *minimalistic* — weaker than finite support or tail decay conditions. Under the moment assumption, we provide the first finite-sample entropy estimates for infinite alphabets, nearly recovering the known minimax rates. Moreover, we demonstrate that our empirical bounds are significantly sharper than the state-of-the-art bounds, for various natural distributions and non-trivial sample regimes. Along the way, we give a dimension-free analogue of the Cover-Thomas result on entropy continuity (with respect to total variation distance) for finite alphabets, which may be of independent interest.

1 Introduction

Estimating the entropy of a discrete distribution based on a finite iid sample is a classic problem with theoretical and practical ramifications. Considerable progress has been made in the case of a finite alphabet, and the countably infinite case has also attracted a fair amount of attention in recent years. A less-addressed issue is one of *empirical* accuracy estimates: data-dependent bounds adaptive to the particular distribution being sampled.

Our point of departure is the simpler (to analyze) problem of estimating a discrete distribution μ in total variation norm $\|\cdot\|_{TV} = \frac{1}{2} \|\cdot\|_1$, where the most recent advance was made by Cohen et al. [2020]; see therein for a literature review. If μ is a distribution on \mathbb{N} and $\hat{\mu}_n$ is its empirical realization based on a sample of size *n*, then Theorem 2.1 of Cohen et al. states that with probability at least $1 - \delta$,

$$\|\boldsymbol{\mu} - \hat{\boldsymbol{\mu}}_n\|_1 \leq \frac{2}{\sqrt{n}} \sum_{j \in \mathbb{N}} \sqrt{\hat{\boldsymbol{\mu}}_n(j)} + 6\sqrt{\frac{\log(2/\delta)}{2n}}.$$
 (1)

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

^{*}A major part of this research was conducted when the author was graduate student at Ben-Gurion University of The Negev, Israel.

This bound has the advantage of being valid for all distributions on \mathbb{N} , without any prior assumptions, and being fully empirical: it yields a risk estimate that is computable based on the observed sample, not depending on any unknown quantities. (Additionally, Cohen et al. argue that (1) is near-optimal in a well-defined sense.) The question we set out to explore in this paper is: What analogues of (1) are possible for discrete entropy estimation?

When μ has support size $d < \infty$, an answer to our question is readily provided by combining (1) with Cover and Thomas [2006, Theorem 17.3.3], which asserts that, for $\|\mu - \nu\|_1 \le 1/2$, we have

$$|\mathrm{H}(\boldsymbol{\mu}) - \mathrm{H}(\boldsymbol{\nu})| \leq \|\boldsymbol{\mu} - \boldsymbol{\nu}\|_1 \log \frac{d}{\|\boldsymbol{\mu} - \boldsymbol{\nu}\|_1},$$
(2)

where $H(\cdot)$ is the entropy functional defined in (3). Indeed, taking μ as in (1) and ν to be $\hat{\mu}_n$ yields a fully empirical estimate on $|H(\mu) - H(\hat{\mu}_n)|$. For fixed $d < \infty$, no technique relying on the plug-in estimator can yield minimax rates [Wu and Yang, 2016]. The plug-in is, however, minimax optimal for fixed $d < \infty$ [Paninski, 2003] as well as strongly universally consistent even for $d = \infty$ [Antos and Kontoyiannis, 2001a], and is among the few methods for which explicitly computable finite-sample risk bounds are known.

The thrust of this paper is to replace the restrictive finite-support assumption with considerably more general moment conditions. It is well-known that when estimating the mean of some random variable *X*, the first-moment assumption $\mathbb{E}|X| \le M$ is not sufficient to yield any finite-sample information.² Strengthening the assumption to $\mathbb{E}|X|^{\alpha} \le M$, for any $\alpha > 1$, immediately yields finite-sample empirical estimates on $|\mathbb{E}X - \frac{1}{n}\sum_{i=1}^{n}X_i|$ via the von Bahr and Esseen [1965] inequality.³ In this sense, a bound on the $(1 + \varepsilon)$ th moment is a *minimal* requirement for empirical mean estimation. However, it is not immediately obvious how to apply this insight to the entropy estimation problem: the corresponding random variable is $X = -\log \mu(I)$, where $I \sim \mu$, but rather than being given iid samples of X, we are only given draws of I.

Our contribution. In Theorem 1, we provide a dimension-free analogue of (2), which, combined with (1), allows for empirical accuracy bounds on the plug-in entropy estimator under a minimalistic moment assumption. Moreover, for this rich class of distributions, the plug-in estimator turns out to be asymptotically optimal, as we show in Theorem 4. Our moment assumption is natural and essentially the weakest one that makes *any* empirical bounds feasible, as we argue in Theorem 3. As we demonstrate in Section $\mathbf{6}$, the rates provided by our empirical bound compare favorably against the state of the art.

2 **Definitions and notation**

Our logarithms will always be base e by default. For discrete distributions, there is no loss of generality in taking the domain to be the natural numbers $\mathbb{N} = \{1, 2, 3, ...\}$. For $k \in \mathbb{N}$, we write $[k] := \{i \in \mathbb{N} : i \leq k\}$. The set of all probability distributions on \mathbb{N} will be denoted by $\Delta_{\mathbb{N}}$. For $d \in \mathbb{N}$, we write $\Delta_d \subset \Delta_{\mathbb{N}}$ to denote those μ whose support is contained in [d].

We define the operator $(\cdot)^{\downarrow}$, which maps any $\mu \in \Delta_{\mathbb{N}}$ to its non-increasing rearrangement μ^{\downarrow} . The set of all non-increasing distributions will be denoted by $\Delta_{\mathbb{N}}^{\downarrow} := \{ \mu^{\downarrow} : \mu \in \Delta_{\mathbb{N}} \}.$

We write $\mathbb{R}_+ := [0, \infty)$. For any $\xi : \mathbb{N} \to \mathbb{R}_+$ and $\alpha \ge 0$, define

$$\mathbf{H}^{(\alpha)}(\xi) := \sum_{j \in \mathbb{N}: \xi(j) > 0} \xi(j) \left| \log \xi(j) \right|^{\alpha}.$$
(3)

For $\xi \in \mathbb{R}^{\mathbb{N}}$, denote by $|\xi| \in \mathbb{R}^{\mathbb{N}}_+$ the elementwise application of $|\cdot|$ to ξ . When $\xi \in \Delta_{\mathbb{N}}$ and $\alpha = 1$, (3) recovers the standard definition of entropy, which we denote by $H(\xi) := H^{(1)}(\xi)$. For general

²Even distinguishing, for $X \ge 0$, between $\mathbb{E}X = 0$ and $\mathbb{E}X = M$ based on a finite sample is impossible

Even distinguishing, for $X \ge 0$, between $\mathbb{E}X = 0$ and $\mathbb{E}X = M$ based on a finite sample is impossible with any degree of confidence. Of course, $\frac{1}{n} \sum_{i=1}^{n} X_i \to \mathbb{E}X$ almost surely, by the strong law of large numbers. ³Put $Y = X - \mathbb{E}X$; then $\mathbb{E}[Y] \le 2M$. For $1 < \alpha < 2$, a sharper version of the Bahr-Esseen inequality [Pinelis, 2015] states that $\mathbb{E}\left[\left|\sum_{i=1}^{n} Y_i\right|^{\alpha}\right] \le 2n(2M)^{\alpha}$, which implies tail bounds via Markov's inequality. Better rates are available via the median-of-means estimator, see Lugosi and Mendelson [2019].

 $\alpha > 0$, this quantity may be referred to as the α th *moment of information*. For $h \ge 0$, define

$$\Delta_{\mathbb{N}}^{(\alpha)}[h] = \left\{ \boldsymbol{\mu} \in \Delta_{\mathbb{N}} : \mathbf{H}^{(\alpha)}(\boldsymbol{\mu}) \le h \right\}$$

and also $\Delta_{\mathbb{N}}^{(\alpha)} := \bigcup_{h \ge 0} \Delta_{\mathbb{N}}^{(\alpha)}[h]$ and $\Delta_{\mathbb{N}}^{\downarrow(\alpha)}[h] := \Delta_{\mathbb{N}}^{\downarrow} \cap \Delta_{\mathbb{N}}^{(\alpha)}[h].$

For $n \in \mathbb{N}$ and $\mu \in \Delta_{\mathbb{N}}$, we write $\mathbf{X} = (X_1, \ldots, X_n) \sim \mu^n$ to mean that the components of the vector \mathbf{X} are drawn iid from μ . The empirical measure $\hat{\mu}_n \in \Delta_{\mathbb{N}}$ induced by the sample \mathbf{X} is defined by $\hat{\mu}_n(j) = \frac{1}{n} \sum_{i \in [n]} \mathbf{1}[X_i = j]$. For any $\xi \in \mathbb{R}^{\mathbb{N}}$ and $0 , the <math>\ell_p$ (pseudo)norm is defined by $\|\xi\|_p^p = \sum_{j \in \mathbb{N}} |\xi(j)|^p$ and $\|\xi\|_{\infty} = \sup_{j \in \mathbb{N}} |\xi(j)|$.

For $\alpha, h > 0$, and $n \in \mathbb{N}$, define the L_1 minimax risk for the α th moment by

$$\mathcal{R}_{n}^{(\alpha)}(h) := \inf_{\hat{H}} \sup_{\boldsymbol{\mu} \in \Delta_{\mathbb{N}}^{(\alpha)}[h]} \mathbb{E}|\hat{H}(X_{1},\dots,X_{n}) - \mathcal{H}(\boldsymbol{\mu})|, \tag{4}$$

where the infimum is over all mappings $\hat{H} \colon \mathbb{N}^n \to \mathbb{R}_+$.

3 Main results

Our first result is a dimension-free analogue of (2):

Theorem 1. For all $\alpha > 1$, $H : \Delta_{\mathbb{N}}^{(\alpha)} \to \mathbb{R}_+$ is uniformly continuous under ℓ_1 . In particular, for all $\mu, \nu \in \Delta_{\mathbb{N}}^{(\alpha)}$ satisfying $\|\mu - \nu\|_{\infty} < 1/2$, we have

$$\begin{aligned} |\mathrm{H}(\boldsymbol{\mu}) - \mathrm{H}(\boldsymbol{\nu})| &\leq \|\boldsymbol{\mu} - \boldsymbol{\nu}\|_{1}^{1-1/\alpha} \left(2\alpha^{\alpha} + \mathrm{H}^{(\alpha)}(\boldsymbol{\mu}) + \mathrm{H}^{(\alpha)}(\boldsymbol{\nu})\right)^{1/\alpha} \\ &\leq \|\boldsymbol{\mu} - \boldsymbol{\nu}\|_{1}^{1-1/\alpha} \left(2\alpha + \mathrm{H}^{(\alpha)}(\boldsymbol{\mu})^{1/\alpha} + \mathrm{H}^{(\alpha)}(\boldsymbol{\nu})^{1/\alpha}\right). \end{aligned}$$

The requirement in Theorem 1 that $\alpha > 1$ cannot be dispensed with, as the function $H : \Delta_{\mathbb{N}}^{(\alpha)}[h] \to \mathbb{R}_+$ is not continuous under ℓ_1 for $\alpha = 1$ (see Remark following Lemma 5), and, a fortiori, is not uniformly continuous. Thus, there can be no function $F : \mathbb{R}^2_+ \to \mathbb{R}_+$ satisfying

$$|\mathrm{H}(\boldsymbol{\mu}) - \mathrm{H}(\boldsymbol{\nu})| \leq F(\|\boldsymbol{\mu} - \boldsymbol{\nu}\|_{1}, h), \qquad h > 0, \boldsymbol{\mu}, \boldsymbol{\nu} \in \Delta_{\mathbb{N}}^{(1)}[h]$$

with the additional property that for any two sequences $\mu_n, \nu_n \in \Delta_{\mathbb{N}}$ satisfying $\varepsilon_n := \|\mu_n - \nu_n\|_1 \to 0$, it holds that $F(\varepsilon_n, h) \to 0$.

Perhaps surprisingly,⁴ it turns out that $H : \Delta_{\mathbb{N}}^{(\alpha)}[h] \to \mathbb{R}_+$ is uniformly continuous under ℓ_p for all $\alpha > 1, p \in [1, \infty]$:

Theorem 2. There is a function $F : \mathbb{R}^4_+ \to \mathbb{R}_+$ such that

$$|\mathrm{H}(\boldsymbol{\mu}) - \mathrm{H}(\boldsymbol{\nu})| \leq F(\|\boldsymbol{\mu} - \boldsymbol{\nu}\|_p, h, \alpha, p), \qquad h > 0, \alpha > 1, p \in [1, \infty], \boldsymbol{\mu}, \boldsymbol{\nu} \in \Delta_{\mathbb{N}}^{(\alpha)}[h]$$

with the additional property that whenever $\varepsilon_n := \|\boldsymbol{\mu}_n - \boldsymbol{\nu}_n\|_p \to 0$, we have $F(\varepsilon_n, h, \alpha, p) \to 0$.

Remark. Although Theorem 2 establishes uniform continuity, it gives no hint as to the functional dependence of the modulus of continuity F on α , p, h, and $\|\boldsymbol{\mu} - \boldsymbol{\nu}\|_p$. We leave this as a fascinating open problem — even though the practical applications are likely to be limited: it follows from Wyner and Foster [2003] and Theorem 4 that for $p = \alpha = 2$ and fixed h, $F(\|\boldsymbol{\mu} - \boldsymbol{\nu}\|_2, h, 2, 2)$ cannot decay at a faster rate than $1/\log(1/\|\boldsymbol{\mu} - \boldsymbol{\nu}\|_2)$.

Combining Theorem 1 with (1) yields an empirical (under moment assumptions) bound for the plug-in entropy estimator:

⁴Since ℓ_1 dominates all of the ℓ_p norms, continuity of a function under ℓ_p trivially implies continuity under ℓ_1 , but the reverse implication is generally not true.

Corollary 1. For all $\alpha > 1$, h > 0, $\delta \in (0, 1)$, $n \ge 2 \log \frac{4}{\delta}$, and $\mu \in \Delta_{\mathbb{N}}^{(\alpha)}[h]$, we have that

$$|\mathbf{H}(\boldsymbol{\mu}) - \mathbf{H}(\hat{\boldsymbol{\mu}}_n)| \leq \left(2\alpha^{\alpha} + h + \mathbf{H}^{(\alpha)}(\hat{\boldsymbol{\mu}}_n)\right)^{1/\alpha} \left(\frac{2\|\hat{\boldsymbol{\mu}}_n\|_{1/2}^{1/2}}{\sqrt{n}} + 6\sqrt{\frac{\log\left(4/\delta\right)}{2n}}\right)^{1-1/\alpha}$$

holds with probability at least $1 - \delta$.

In Section 6, we compare the rates implied by Corollary 1 to the state of the art on various distributions.

Next, we examine the optimality of the plug-in estimate by analyzing the minimax risk, defined in (4). It was known [Silva, 2018, Appendix A] that assuming $H(\mu) < \infty$ does not suffice to yield a minimax rate for the L_2 risk:

$$\inf_{\hat{H}:\mathbb{N}^n\to\mathbb{R}_+}\sup_{\boldsymbol{\mu}\in\Delta_{\nu}^{(1)}}\mathbb{E}\left(\hat{H}(X_1,\ldots,X_n)-\mathrm{H}(\boldsymbol{\mu})\right)^2=\infty.$$

This technique yields an analogous result for the L_1 risk as well. We strengthen these results in two ways: (i) by lower-bounding the L_1 risk (rather than L_2 , which is never smaller), and (ii) by restricting μ to $\Delta_{\mathbb{N}}^{(1)}[h]$ and obtaining a finitary, quantitative lower bound:

Theorem 3. For $\alpha = 1$, there is a universal constant C > 0 such that for all h > 1 and $n \in \mathbb{N}$, we have $\mathcal{R}_n^{(1)}(h) \ge Ch$.

Remark. The above result complements — but is not directly comparable to — Antos and Kontoyiannis [2001a, Theorem 4]. Ours gives a quantitative dependence on h but constructs an adversarial distribution for each sample size n; theirs is asymptotic only but a single adversarial distribution suffices for all n.

Remark. Our technique immediately yields a lower bound of Ch^2 on the L_2 minimax risk.

In contradistinction to the $\alpha = 1$ case, where no minimax rate exists, we show that the plug-in estimator is minimax for all $\alpha > 1$:

Theorem 4. The following bounds hold for the L_1 minimax risk:

(a) Upper bound: for all $h > 0, \alpha > 1$,

$$\mathcal{R}_n^{(\alpha)}(h) \leq \frac{1+\log n}{\sqrt{n}} + \frac{2^{\alpha-1}h}{\log^{\alpha-1}n}, \qquad n \in \mathbb{N};$$

further, this bound is achieved by the plug-in estimate $H(\hat{\mu}_n)$.

(b) Lower bound: for each $\alpha > 0$, $n \in \mathbb{N}$ there is an h > 0 such that

$$\mathcal{R}_n^{(\alpha)}(h) \ge \frac{h}{4 \cdot 3^{\alpha} \log^{\alpha-1} n}.$$

Open problem. Close the gap in the dependence on α in the upper and lower bounds.

4 Related work

Continuity, convergence, moments of information. Zhang [2007] gave a sharpened version of (2) and Ho and Yeung [2010] presented analogous bounds; Audenaert [2007] proved a non-commutative generalization. Sason [2013, Theorem 5] upper-bounds $|H(\mu) - H(\nu)|$ in terms of quantities related to $\|\mu - \nu\|_1$, where (at most) one of them is allowed to have infinite support. Even though $H(\cdot)$ is not continuous on $\Delta_{\mathbb{N}}$, the plug-in estimate $H(\hat{\mu}_n)$ converges to $H(\mu)$ almost surely and in L_2 [Antos and Kontoyiannis, 2001a]. Silva [2018] studied a variety of restrictions on distributions over infinite alphabets to derive strong consistency results and rates of convergence. Moments of information were apparently first defined in Golomb [1966].

Entropy estimation. Recent surveys of entropy estimation results may be found in Jiao et al. [2015], Verdú [2019]. The finite-alphabet case is particularly well-understood. For fixed alphabet size $d < \infty$, the plug-in estimate is asymptotically minimax optimal [Paninski, 2003]. Paninski [2004] non-constructively established the existence of a sublinear (in *d*) entropy estimator. The optimal dependence on *d* (at fixed accuracy) was settled by Valiant and Valiant [2011a, 2017] as being $\Theta(d/\log d)$.

The $\Theta(d/\log d)$ dependence on the alphabet size is also relevant in the so-called *high dimensional* asymptotic regime, where *d* grows with *n*. Here, the plug-in estimate is no longer optimal, and more sophisticated techniques are called for [Valiant and Valiant, 2011a,b, 2017]. The works of Wu and Yang [2016], Jiao et al. [2015], Han et al. [2015], Jiao et al. [2017] characterized the minimax rates for the high-dimensional regime: a small additive error of ε requires $\Theta(d/\varepsilon \log d)$ samples. Building off of these polynomial-approximation based constructions, Acharya et al. [2017] design an additional optimal estimator, this one based on a profile maximum likelihood approach that can also estimate a variety of other important statistics. Fukuchi and Sakuma [2017, 2018] generalize the optimal estimators to estimate any additive functional, recovering in particular the optimal rates for entropy. Acharya et al. [2019] modify these optimal estimators with the added goal of low space complexity.

Finally, there is the infinite-alphabet case. Although here the plug-in estimate is again universally strongly consistent, control of the convergence rate requires some assumption on the sampling distribution — and Antos and Kontoyiannis [2001a] compellingly argue that moment assumptions are natural and minimalistic. Absent any prior assumptions, the L_1 (and hence L_2) convergence rate of *any* estimator can be made arbitrarily slow (Theorem 4 ibid.). The present paper proves a variant of this result (see Theorem 3 and the Remark following it). Antos and Kontoyiannis [2001a] further show that even under moment assumptions, there is no polynomial rate of convergence for the plug-in estimate: there is no $\beta > 0$ such that its risk decays as $O(n^{-\beta})$. Wyner and Foster [2003] showed that the plug-in estimate achieves a rate of $O(\frac{1}{\log n})$ for bounded second moment, and this is minimax optimal. Brautbar and Samorodnitsky [2007] exhibited a function of the higher moments that can be used in place of alphabet size to give a multiplicative approximation to the entropy.

5 Proofs

5.1 Proof of Theorem 1

We begin with a subadditivity result for the α th moment of information (which we state for $\alpha > 0$, even though only the range $\alpha > 1$ will be needed).

Lemma 1. For $\alpha > 0$ and $\mu, \nu \in \Delta_{\mathbb{N}}^{(\alpha)}$, we have

$$\mathbf{H}^{(\alpha)}(|\boldsymbol{\mu}-\boldsymbol{\nu}|) \leq 2\alpha^{\alpha} + \mathbf{H}^{(\alpha)}(\boldsymbol{\mu}) + \mathbf{H}^{(\alpha)}(\boldsymbol{\nu}).$$

Proof. Define $h^{(\alpha)}: [0,1] \to \mathbb{R}_+$ by $z \mapsto z \ln^{\alpha}(1/z)$, where $h^{(\alpha)}(0) = 0$. The function $h^{(\alpha)}$ is increasing on $[0, e^{-\alpha}]$ and decreasing on $[e^{-\alpha}, 1]$. The maximum is therefore achieved at $z = e^{-\alpha}$, and

$$\max_{z \in [0,1]} h^{(\alpha)}(z) = h^{(\alpha)}(e^{-\alpha}) = e^{-\alpha} \alpha^{\alpha}.$$
 (5)

Now decompose $H^{(\alpha)}$:

$$\mathbf{H}^{(\alpha)}(|\boldsymbol{\mu}-\boldsymbol{\nu}|) = \sum_{i:\boldsymbol{\mu}(i)\vee\boldsymbol{\nu}(i)>\mathrm{e}^{-\alpha}} \mathbf{h}^{(\alpha)}(|\boldsymbol{\mu}(i)-\boldsymbol{\nu}(i)|) + \sum_{i:\boldsymbol{\mu}(i)\vee\boldsymbol{\nu}(i)\leq\mathrm{e}^{-\alpha}} \mathbf{h}^{(\alpha)}(|\boldsymbol{\mu}(i)-\boldsymbol{\nu}(i)|).$$

For the first term, since $\mu \in \Delta_{\mathbb{N}}$, it must be that $|\{i \in \mathbb{N} : \mu(i) > e^{-\alpha}\}| \le e^{\alpha}$, and similarly for ν . Thus,

$$\sum_{i:\boldsymbol{\mu}(i)\vee\boldsymbol{\nu}(i)>\mathrm{e}^{-\alpha}} \mathrm{h}^{(\alpha)}(|\boldsymbol{\mu}(i)-\boldsymbol{\nu}(i)|) \leq \left(\left|\left\{i:\boldsymbol{\mu}(i)>\mathrm{e}^{-\alpha}\right\}\right| + \left|\left\{i:\boldsymbol{\nu}(i)>\mathrm{e}^{-\alpha}\right\}\right|\right) \max_{z\in[0,1]} \mathrm{h}^{(\alpha)}(z) \\ < 2\mathrm{e}^{\alpha}\mathrm{e}^{-\alpha}\alpha^{\alpha} = 2\alpha^{\alpha}.$$

For the second term, notice that when $\mu(i) \vee \nu(i) \leq e^{-\alpha}$, the monotonicity of $h^{(\alpha)}$ implies

$$\mathbf{h}^{(\alpha)}(|\boldsymbol{\mu}(i) - \boldsymbol{\nu}(i)|) \le \mathbf{h}^{(\alpha)}(\boldsymbol{\mu}(i) \lor \boldsymbol{\nu}(i)),$$

and hence

$$\begin{split} \sum_{i \in \mathbb{N}: \boldsymbol{\mu}(i) \lor \boldsymbol{\nu}(i) \le e^{-\alpha}} \mathbf{h}^{(\alpha)}(|\boldsymbol{\mu}(i) - \boldsymbol{\nu}(i)|) &\leq \sum_{i: \in \boldsymbol{\mu}(i) \lor \boldsymbol{\nu}(i) \le e^{-\alpha}} \mathbf{h}^{(\alpha)}(\boldsymbol{\mu}(i) \lor \boldsymbol{\nu}(i)) \\ &\leq \sum_{i: \in \boldsymbol{\mu}(i) \lor \boldsymbol{\nu}(i) \le e^{-\alpha}} \mathbf{h}^{(\alpha)}(\boldsymbol{\mu}(i)) + \mathbf{h}^{(\alpha)}(\boldsymbol{\nu}(i)) \\ &\leq \mathbf{H}^{(\alpha)}(\boldsymbol{\mu}) + \mathbf{H}^{(\alpha)}(\boldsymbol{\nu}). \end{split}$$

Proof of Theorem 1. The concavity argument in the proof of Cover and Thomas [2006, Theorem 17.3.3], immediately implies

$$|\mathrm{H}(\boldsymbol{\mu}) - \mathrm{H}(\boldsymbol{\nu})| \leq \mathrm{H}(|\boldsymbol{\mu} - \boldsymbol{\nu}|).$$

Then, via an application of Hölder's inequality,

$$\begin{split} \mathrm{H}(|\boldsymbol{\mu} - \boldsymbol{\nu}|) &= \sum_{i \in \mathbb{N}} |\boldsymbol{\mu}(i) - \boldsymbol{\nu}(i)| \log \frac{1}{|\boldsymbol{\mu}(i) - \boldsymbol{\nu}(i)|} \\ &= \sum_{i \in \mathbb{N}} |\boldsymbol{\mu}(i) - \boldsymbol{\nu}(i)|^{1-1/\alpha} \cdot |\boldsymbol{\mu}(i) - \boldsymbol{\nu}(i)|^{1/\alpha} \log \frac{1}{|\boldsymbol{\mu}(i) - \boldsymbol{\nu}(i)|} \\ &\leq \left(\sum_{i \in \mathbb{N}} \left(|\boldsymbol{\mu}(i) - \boldsymbol{\nu}(i)|^{1-1/\alpha} \right)^{1/(1-1/\alpha)} \right)^{1-1/\alpha} \left(\sum_{i \in \mathbb{N}} \left(|\boldsymbol{\mu}(i) - \boldsymbol{\nu}(i)|^{1/\alpha} \log \frac{1}{|\boldsymbol{\mu}(i) - \boldsymbol{\nu}(i)|} \right)^{\alpha} \right)^{1/\alpha} \\ &= \||\boldsymbol{\mu} - \boldsymbol{\nu}\|_{1}^{1-1/\alpha} \operatorname{H}^{(\alpha)}(|\boldsymbol{\mu} - \boldsymbol{\nu}|)^{1/\alpha}. \end{split}$$

The claim follows by invoking Lemma 1 and the subadditivity of $t \mapsto t^{1/\alpha}$ for $t \ge 0$ and $\alpha > 1$. \Box

5.2 Proof of Corollary 1

For h > 1 and $n \in \mathbb{N}$, put $a_n = (1 - 1/(2n)) \ln(1 - 1/(2n))$ and define the support size S = S(h, n) by $S = \lfloor (1/2n) \exp(2n(h + a_n)) \rfloor$. Consider the distributions $\mu_0 = (1, 0, 0, \dots)$ and μ_n defined by $\mu_n(1) = 1 - 1/(2n)$, and

$$\mu_n(i) = \frac{1}{2nS}, \qquad 2 \le i \le 1 + S(h, n).$$

We compute the Kullback-Leibler divergence and entropy:

$$D_{\text{KL}}(\boldsymbol{\mu}_0 || \boldsymbol{\mu}_n) = \log \frac{1}{1 - 1/(2n)} \le \frac{1}{1 - 1/(2n)} - 1 \le \frac{1}{n}$$
(6)
$$H(\boldsymbol{\mu}_0) = 0 \le h.$$

For $x \ge 2$, always $\lfloor x \rfloor \ge x/2$. Additionally, from $2na_n \ge -1$, and $\frac{1}{2n} \exp(2nh-1) > 2$, we obtain that $S > (1/4n) \exp(2n(h+a_n))$, hence we also have that $h \ge \operatorname{H}(\boldsymbol{\mu}_n) > h - \frac{1}{2n} \ln 2$. Since $\frac{1}{2x} \ln 2 \le 1/2$ on $(0, \infty)$ and h > 1, it follows that $\operatorname{H}(\boldsymbol{\mu}_n) \ge \frac{h}{2}$, whence $|\operatorname{H}(\boldsymbol{\mu}_0) - \operatorname{H}(\boldsymbol{\mu}_n)| \ge h/2$. To bound the L_1 minimax risk (defined in (4)), we invoke Markov's inequality:

$$\mathbb{E}|\hat{H}(X_1,\ldots,X_n) - \mathrm{H}(\boldsymbol{\mu})| \geq \frac{h}{4} \mathbb{P}\left(|\hat{H}(X_1,\ldots,X_n) - \mathrm{H}(\boldsymbol{\mu})| > \frac{h}{4}\right).$$

It follows via Le Cam's two point method [Tsybakov, 2008, Section 2.4.2] that

$$\mathcal{R}_n^{(1)}(h) \ge \frac{h}{4} \mathrm{e}^{-nD_{\mathrm{KL}}(\boldsymbol{\mu}_0||\boldsymbol{\mu})} \ge \frac{h}{4\mathrm{e}},$$

where the second inequality stems from (6).

5.3 Proof of Theorem 4

We begin with an auxiliary lemma, of possible independent interest.

Lemma 2. For all $\mu \in \Delta_{\mathbb{N}}$ and $n \in \mathbb{N}$, we have

$$\mathrm{H}(\boldsymbol{\mu}) \geq \mathbb{E}\mathrm{H}(\hat{\boldsymbol{\mu}}_n) \geq \mathrm{H}(\boldsymbol{\mu}) - \inf_{0 < \varepsilon < 1} \left[\sum_{i \in \mathbb{N}: \boldsymbol{\mu}(i) < \varepsilon} \boldsymbol{\mu}(i) \log \frac{1}{\boldsymbol{\mu}(i)} + \log \left(1 + \frac{1}{\varepsilon n} \right) \right].$$

Proof. The first inequality follows from Jensen's, since $H(\cdot)$ is concave and $\mathbb{E}\hat{\mu}_n = \mu$. To prove the second inequality, choose $\varepsilon > 0$, put $J := \{i \in \mathbb{N} : \mu(i) < \varepsilon\}$, and compute

$$\begin{split} \mathbb{E}\mathbf{H}(\hat{\boldsymbol{\mu}}_{n}) &= \mathbb{E}\left[\sum_{i\in\mathbb{N}\backslash J}\hat{\boldsymbol{\mu}}_{n}(i)\log\frac{1}{\hat{\boldsymbol{\mu}}_{n}(i)} + \sum_{i\in J}\hat{\boldsymbol{\mu}}_{n}(i)\log\frac{1}{\hat{\boldsymbol{\mu}}_{n}(i)}\right] \\ &\geq \mathbb{E}\left[\sum_{i\in\mathbb{N}\backslash J}\hat{\boldsymbol{\mu}}_{n}(i)\log\frac{1}{\hat{\boldsymbol{\mu}}_{n}(i)} + \left(\sum_{i\in J}\hat{\boldsymbol{\mu}}_{n}(i)\right)\log\frac{1}{\sum_{i\in J}\hat{\boldsymbol{\mu}}_{n}(i)}\right] \\ &=: \mathbb{E}\mathbf{H}(\tilde{\boldsymbol{\mu}}_{n}), \end{split}$$

where $\tilde{\mu}_n$ is the "collapsed" version of $\hat{\mu}_n$, where all of the masses in J have been replaced by a single mass equal to their sum, and the inequality holds because conditioning reduces entropy [Cover and Thomas, 2006, Eq.(2.157)]. We observe that $\tilde{\mu}_n$ has support size at most $1 + 1/\varepsilon$ and invoke Paninski [2003, Proposition 1]:

$$\mathbb{E}\mathrm{H}(\tilde{\boldsymbol{\mu}}_n) \geq \mathrm{H}(\tilde{\boldsymbol{\mu}}) - \log\left(1 + \frac{1}{\varepsilon n}\right),$$
(7)

where $\tilde{\mu}$ is the "collapsed" version of μ . Now

$$\begin{split} \mathrm{H}(\tilde{\boldsymbol{\mu}}) &= \mathrm{H}(\boldsymbol{\mu}) + \left(\sum_{i \in j} \boldsymbol{\mu}(i)\right) \log \frac{1}{\sum_{i \in J} \boldsymbol{\mu}(i)} - \sum_{i \in J} \boldsymbol{\mu}(i) \log \frac{1}{\boldsymbol{\mu}(i)} \\ &\geq \mathrm{H}(\boldsymbol{\mu}) - \sum_{i \in J} \boldsymbol{\mu}(i) \log \frac{1}{\boldsymbol{\mu}(i)}, \end{split}$$

which concludes the proof.

The first part of the theorem will follow from the following proposition.

Proposition 1. For $\alpha \ge 1$, h > 0, $n \in \mathbb{N}$ and $\mu \in \Delta_{\mathbb{N}}^{(\alpha)}[h]$, we have

$$\mathbb{E}|\mathbf{H}(\boldsymbol{\mu}) - \mathbf{H}(\hat{\boldsymbol{\mu}}_n)| \leq \frac{\log n}{\sqrt{n}} + \inf_{0 < \varepsilon < 1} \left[\left(\log \frac{1}{\varepsilon} \right)^{1-\alpha} h + \log \left(1 + \frac{1}{\varepsilon n} \right) \right].$$

Proof. Since by Lemma 2, $|H(\mu) - \mathbb{E}H(\hat{\mu}_n)| = H(\mu) - \mathbb{E}H(\hat{\mu}_n)$, it follows from the triangle and Jensen inequalities that

$$\begin{aligned} \mathbb{E}|\mathrm{H}(\boldsymbol{\mu}) - \mathrm{H}(\hat{\boldsymbol{\mu}}_{n})| &\leq \mathbb{E}|\mathrm{H}(\hat{\boldsymbol{\mu}}_{n}) - \mathbb{E}\mathrm{H}(\hat{\boldsymbol{\mu}}_{n})| + \mathrm{H}(\boldsymbol{\mu}) - \mathbb{E}\mathrm{H}(\hat{\boldsymbol{\mu}}_{n}) \\ &\leq \sqrt{\mathbb{V}\mathrm{ar}\left[\mathrm{H}(\hat{\boldsymbol{\mu}}_{n})\right]} + \mathrm{H}(\boldsymbol{\mu}) - \mathbb{E}\mathrm{H}(\hat{\boldsymbol{\mu}}_{n}) \\ &\leq \frac{\log n}{\sqrt{n}} + \mathrm{H}(\boldsymbol{\mu}) - \mathbb{E}\mathrm{H}(\hat{\boldsymbol{\mu}}_{n}), \end{aligned}$$
(8)

where the variance bound is from Antos and Kontoyiannis [2001b, Proposition 1(iv)].

For any $\varepsilon > 0$, Lemma 2 implies

$$\mathbb{E} \mathrm{H}(\hat{\boldsymbol{\mu}}_{n}) \geq \mathrm{H}(\boldsymbol{\mu}) - \sum_{i \in \mathbb{N}: \boldsymbol{\mu}(i) < \varepsilon} \boldsymbol{\mu}(i) \log \frac{1}{\boldsymbol{\mu}(i)} - \log \left(1 + \frac{1}{\varepsilon n}\right) \\
\geq \mathrm{H}(\boldsymbol{\mu}) - \left(\log \frac{1}{\varepsilon}\right)^{1-\alpha} \sum_{i \in \mathbb{N}: \boldsymbol{\mu}(i) < \varepsilon} \boldsymbol{\mu}(i) \left(\log \frac{1}{\boldsymbol{\mu}(i)}\right)^{\alpha} - \log \left(1 + \frac{1}{\varepsilon n}\right) \\
\geq \mathrm{H}(\boldsymbol{\mu}) - \left(\log \frac{1}{\varepsilon}\right)^{1-\alpha} \mathrm{H}^{(\alpha)}(\boldsymbol{\mu}) - \log \left(1 + \frac{1}{\varepsilon n}\right), \tag{9}$$
the second and third inequalities follow from the obvious relations

where the second and third inequalities follow from the obvious relations

$$\sum_{i:\boldsymbol{\mu}(i)<\varepsilon} \boldsymbol{\mu}(i) \log \frac{1}{\boldsymbol{\mu}(i)} \leq \left(\log \frac{1}{\varepsilon}\right)^{1-\alpha} \sum_{i:\boldsymbol{\mu}(i)<\varepsilon} \boldsymbol{\mu}(i) \left(\log \frac{1}{\boldsymbol{\mu}(i)}\right)^{\alpha} \leq \left(\log \frac{1}{\varepsilon}\right)^{1-\alpha} \mathbf{H}^{(\alpha)}(\boldsymbol{\mu}).$$

The claim follows by combining (8) with (9).

Proof of Theorem 4(a). Use the fact that $\mathcal{R}_n^{(\alpha)}(h) \leq \mathbb{E}|\mathrm{H}(\boldsymbol{\mu}) - \mathrm{H}(\hat{\boldsymbol{\mu}}_n)|$, invoke Proposition 1 with $\varepsilon = \frac{1}{\sqrt{n}}$ and use $\log(1+x) \leq x$.

We now prove the second half of the theorem.

Proof of Theorem 4(b). Let $\alpha > 0, n \in \mathbb{N}$ and define two families of distributions: $\mathcal{U}_1 := \{ \mu_1 = \text{Uniform}([n^3]) \}, \quad \mathcal{U}_2 := \{ \mu_2 = \text{Uniform}(A) : A \subset [n^3], |A| = n^2 \}.$

Let $h := 3^{\alpha} \log^{\alpha} n$ and note that $\mathcal{U}_1 \cup \mathcal{U}_2 \subseteq \Delta_{\mathbb{N}}^{(\alpha)}[h]$. Let E be the event that $\mathbf{X} = (\mathbf{X}_1, \dots, \mathbf{X}_n)$ has no repeating elements, i.e $|\{\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_n\}| = n$. Let $\boldsymbol{\mu}_1 \in \mathcal{U}_1, \boldsymbol{\mu}_2 \in \mathcal{U}_2$ and consider the values $\mathbb{P}_{\mathbf{X} \sim \mu_1^n}(E)$ and $\mathbb{P}_{\mathbf{X} \sim \mu_2^n}(E)$. For $m \in \mathbb{N}$, define $\mathcal{X}(m)$ to be the smallest k such that when uniformly throwing m balls into k buckets, the probability of collision is at least 1/2. Since $\mathcal{X}(m)$ is known⁵ to be at least \sqrt{m} (and hence $\mathcal{X}(n^2) > n$) we have a lower bound of $\frac{1}{2}$ on bot $\mathbb{P}_{\mathbf{X} \sim \mu_1^n}(E)$ and $\mathbb{P}_{\mathbf{X} \sim \mu_2^n}(E)$. Define $\mu_1^n|E$ as the distribution on \mathbb{N}^n induced by conditioning the product μ_1^n on the event E, and define $\mu_2^n|E$ analogously. Our key observation is that conditional on E. (i) both are effectively distributions on ordered n-tuples from (J^n), and (ii) μ_1^n is uniform on ($[n^3]$), whereas $\mu_2^n = \text{Uniform}(A)$ is uniform on (A_n , where $(J)_k := \{(x_1, \dots, x_k) \in J^k : |\{x_1, \dots, x_k\}| = k\}, \quad J \subset \mathbb{N}, k \in \mathbb{N}$. Then $\mathcal{R}_n^{(\alpha)}(h) \ge \inf_{\hat{H}} \sup_{\mu \in \mathcal{U}_1 \cup \mathcal{U}_2} \mathbf{x} \sim \mu^n |E[[\hat{H}(\mathbf{X}) - \mathbf{H}(\mu)|]$ $\stackrel{\text{(a)}}{=} \inf_{\hat{H}} \sup_{\mu \in \mathcal{U}_1 \cup \mathcal{U}_2} \mathbf{x} \sim \mu^n |E[[\hat{H}(\mathbf{X}) - \mathbf{H}(\mu)|]$ $\stackrel{\text{(b)}}{=} \inf_{\hat{H}} \frac{1}{4} \left(\sum_{\mathbf{X} \sim \mu_1^n|E} [[\hat{H}(\mathbf{X}) - \mathbf{H}(\mu_1)] + \sup_{\mu_2 \in \mathcal{U}_2} \sum_{\mathbf{X} \sim \mu_1^n|E} [[\hat{H}(\mathbf{X}) - \mathbf{H}(\mu_2)]] \right)$ $\stackrel{\text{(b)}}{=} \inf_{\hat{H}} \frac{1}{4} \left(\sum_{\mathbf{X} \sim \mu_1^n|E} [[\hat{H}(\mathbf{X}) - \mathbf{H}(\mu_1)] + \sum_{\mu_2 \sim \text{Uniform}(\mathcal{U}_2)} \left[\sum_{\mathbf{X} \sim \mu_2^n|E} [[\hat{H}(\mathbf{X}) - \mathbf{H}(\mu_2)] \right] \right)$ $\stackrel{\text{(c)}}{=} \inf_{\hat{H}} \frac{1}{4} \left(\sum_{\mathbf{X} \sim \mu_1^n|E} [[\hat{H}(\mathbf{X}) - \mathbf{H}(\mu_1)] + \sum_{\mu_2 \sim \text{Uniform}(\mathcal{U}_2)} \left[\sum_{\mathbf{X} \sim \mu_2^n|E} [[\hat{H}(\mathbf{X}) - \mathbf{H}(\mu_2)] \right] \right)$ $\stackrel{\text{(d)}}{=} \inf_{\hat{H}} \frac{1}{4} \left(\sum_{\mathbf{X} \sim \mu_1^n|E} [[\hat{H}(\mathbf{X}) - \mathbf{H}(\mu_1)] + \sum_{\mu_2 \sim \text{Uniform}(\mathcal{U}_2)} \left[\sum_{\mathbf{X} \sim \mu_2^n|E} [[\hat{H}(\mathbf{X}) - \mathbf{H}(\mu_2)] \right] \right)$ $\stackrel{\text{(e)}}{=} \inf_{\hat{H}} \frac{1}{4} \left(\sum_{\mathbf{X} \sim \mu_1^n|E} [[\hat{H}(\mathbf{X}) - \mathbf{H}(\mu_1)] + \sum_{\mu_2 \sim \text{Uniform}(\mathcal{U}_2)} \left[$

⁵Better bounds exist [Brink, 2012].

where (a) is from the law of total expectation (the complement of E is discarded), (b) and (c) are bounding a supremum by an average, (e) is from the triangle inequality, and (d) is by observing that, by symmetry, the operators $\mathbb{E}_{\mu_2 \sim \text{Uniform}(\mathcal{U}_2)} [\mathbb{E}_{\mathbf{X} \sim \mu_2^n \mid E} [\cdot]]$ and $\mathbb{E}_{\mathbf{X} \sim \mu_1^n \mid E} [\cdot]$ are equivalent. (There is a minor abuse of notation in transitions after (c), since we write μ_2 without specifying a *particular* member of \mathcal{U}_2 . However, μ_2 only occurs therein as $H(\mu_2)$, and this value is identical for all $\mu_2 \in \mathcal{U}_2$.)

6 Rates

Our bounds have the crucial characteristic of being empirical (under moment assumptions). When we *observe* favorable distributions (even without a priori knowledge of the fact), we will benefit from tighter bounds. This entails some cost, and in the worst case our bounds will be sub-optimal. In this section, we illustrate these trade-offs for various natural classes of distributions.

For the class of all finite alphabet distributions, our bound is sub-optimal. The MLE (plug-in estimator) is competitive with the optimal estimator up to logarithmic factors in d, but our bounds on the MLE are loose nearly quadratically in d/n, in the worst case. The convergence of the empirical distribution on a finite alphabet in ℓ_1 occurs at rate $\Theta(\sqrt{d/n})$, whereas the MLE entropy estimator

converges at rate $O\left(\sqrt{\left(\frac{d}{n}\right)^2 + \frac{\log^2 d}{n}}\right)$, as follows from Wu and Yang [2016, Proposition 1]. So any approach that upper bounds the entropy risk via ℓ_1 (as our Theorem 1 or Section 4 of Ho and Yeung [2010]) will be worst-case suboptimal for this class of distributions.

Nevertheless, for certain classes of distributions our bounds (Theorem 1 and Corollary 1) can significantly outperform the state of the art, for small and moderate-sized samples. To calculate the expected rate of our approach, we apply Hölder's inequality, as in the proof of Theorem 1:

$$\mathbb{E}|\mathrm{H}(\hat{\boldsymbol{\mu}}_n) - \mathrm{H}(\boldsymbol{\mu})| \leq \left(\mathbb{E}\left[2\alpha^{\alpha} + \mathrm{H}^{(\alpha)}(\boldsymbol{\mu}) + \mathrm{H}^{(\alpha)}(\hat{\boldsymbol{\mu}}_n) \right] \right)^{1/\alpha} \left(\mathbb{E} \| \hat{\boldsymbol{\mu}}_n - \boldsymbol{\mu} \|_1 \right)^{1-1/\alpha}$$

Now, as in the proof of Lemma 1 (recall that $h^{(\alpha)}(z) := z \ln^{\alpha}(1/z)$),

$$\begin{split} \mathbb{E}\mathbf{H}^{(\alpha)}(\hat{\boldsymbol{\mu}}_n) &= \sum_{i \in [d]} \mathbb{E}\mathbf{h}^{(\alpha)}(\hat{\boldsymbol{\mu}}_n(i)) \\ &\leq e^{\alpha - 1} \max_{z \in [0, e^{1-\alpha}]} \mathbf{h}^{(\alpha)}(z) + \sum_{\substack{i \in [d]\\ \hat{\boldsymbol{\mu}}_n(i) < e^{1-\alpha}}} \mathbb{E}\mathbf{h}^{(\alpha)}(\hat{\boldsymbol{\mu}}_n(i)) \\ &\stackrel{(i)}{\leq} e^{\alpha - 1} \max_{z \in [0, e^{1-\alpha}]} \mathbf{h}^{(\alpha)}(z) + \mathbf{H}^{(\alpha)}(\boldsymbol{\mu}) \stackrel{(ii)}{\leq} \frac{\alpha^{\alpha}}{e} + \mathbf{H}^{(\alpha)}(\boldsymbol{\mu}) \end{split}$$

where (i) follows from Jensen's inequality and (ii) from (5).

By Berend and Kontorovich [2013, Lemma 6], we have $\mathbb{E} \| \hat{\mu}_n - \mu \|_1 \leq \Lambda_n(\mu)$, where

$$\Lambda_n(\boldsymbol{\mu}) := 2 \sum_{\boldsymbol{\mu}(j) < 1/n} \boldsymbol{\mu}(j) + \frac{1}{\sqrt{n}} \sum_{\boldsymbol{\mu}(j) \ge 1/n} \sqrt{\boldsymbol{\mu}(j)}$$

This quantity is always finite and $\Lambda_n(\mu) \xrightarrow[n \to \infty]{} 0$ for all $\mu \in \Delta_{\mathbb{N}}$ (ibid). Thus, we obtain the bound

$$\mathbb{E}|\mathrm{H}(\hat{\boldsymbol{\mu}}_n) - \mathrm{H}(\boldsymbol{\mu})| \leq \left(\frac{\alpha^{\alpha}}{e} + 2\alpha^{\alpha} + 2\mathrm{H}^{(\alpha)}(\boldsymbol{\mu})\right)^{1/\alpha} \Lambda_n(\boldsymbol{\mu})^{1-1/\alpha}.$$
 (10)

Finite support. For distributions with a large support but concentrated mass, the bound in (10) compares favorably to the state of the art, especially for smaller sample sizes. To illustrate this, consider a mixture of two distributions with support sizes d and D: μ' is uniform over [d], μ'' is uniform over d + [D], and $\mu := p\mu' + (1-p)\mu''$, for some $p \in [0,1]$.

The state-of-the-art upper bound for the plug-in estimator can be inferred from Wu and Yang [2016, Appendix D], and has the form

$$\mathbb{E}|\mathcal{H}(\hat{\boldsymbol{\mu}}_n) - \mathcal{H}(\boldsymbol{\mu})| \le WY(d, D, p, n) := \frac{d+D}{n} + \min\left(C\frac{\log(d+D)}{\sqrt{n}}, \frac{\log n}{\sqrt{n}}\right)$$

Figure 1: Left: A comparison of the three bounds for d = 10, D = 1000, p = 0.95. Our bound considerably outperforms Wu and Yang [2016] on small samples, and performs nearly as well as the finite-dimensional Cover-Thomas bound. Right: for our value of q = 2, the log-log plot shows roughly the correct slope of -1/2.

for some C > 1; notice that it is insensitive to p. For a fair comparison to (10), our estimator's only a priori knowledge of μ is that its support is of size at most d + D. By Proposition 2, we have $\max_{\mu \in \Delta_K} \operatorname{H}^{(\alpha)}(\mu) \leq \max \{\alpha, \log K\}^{\alpha} + (\alpha/e)^{\alpha}$. This allows us to optimize over α for each n:

$$OUR(d, D, p, n) := \inf_{\alpha > 1} \left(\frac{\alpha^{\alpha}}{e} + 2\alpha^{\alpha} + 2\max\left\{\alpha, \log(d+D)\right\}^{\alpha} + 2(\alpha/e)^{\alpha} \right)^{1/\alpha} \Lambda_n(\boldsymbol{\mu})^{1-1/\alpha}.$$

Since μ has finite support, the Cover-Thomas inequality (2) also applies to yield an adaptive estimate when combined with (1). As $t \log(1/t)$ is concave, the latter has the form

$$\mathbb{E}|\mathrm{H}(\hat{\boldsymbol{\mu}}_n) - \mathrm{H}(\boldsymbol{\mu})| \le \mathbb{E}\left[\|\hat{\boldsymbol{\mu}}_n - \boldsymbol{\mu}\|_1 \log \frac{d+D}{\|\hat{\boldsymbol{\mu}}_n - \boldsymbol{\mu}\|_1}\right] \le \Lambda_n(\boldsymbol{\mu}) \log \frac{d+D}{\Lambda_n(\boldsymbol{\mu})} =: \mathrm{CT}(d, D, p, n).$$

The comparisons are plotted in Figure 1 (Left).

Infinite support. In some cases our bound is nearly tight (at least for the plug-in estimate), such as for the family of zeta distributions $\mu_q(i) \sim 1/i^q$ with parameter q > 1. For this family, Antos and Kontoyiannis [2001a, Theorem 7] establish a lower bound of order $n^{\frac{1-q}{q}}$ on $\mathbb{E}|\mathrm{H}(\hat{\mu}_n) - \mathrm{H}(\mu_q)|$. It is straightforward to verify⁶ that $\mu_q \in \Delta_{\mathbb{N}}^{(\alpha)}$ for all $q, \alpha > 1$. Thus, we can optimize our bound in (10) over all $\alpha > 1$; the results are presented in Figure 1 (Right).

Acknowledgments and Disclosure of Funding

This research was partially supported by the Israel Science Foundation (grant No. 1602/19) and Amazon Research Award. We thank Ioannis Kontoyiannis, Igal Sason, and Sergio Verdú for enlightening conversations.

References

- J. Acharya, H. Das, A. Orlitsky, and A. T. Suresh. A unified maximum likelihood approach for estimating symmetric properties of discrete distributions. In D. Precup and Y. W. Teh, editors, *Proceedings of the 34th International Conference on Machine Learning*, volume 70 of *Proceedings of Machine Learning Research*, pages 11–21. PMLR, 06–11 Aug 2017. URL http://proceedings.mlr.press/v70/acharya17a.html.
- J. Acharya, S. Bhadane, P. Indyk, and Z. Sun. Estimating entropy of distributions in constant space. In *Proceedings of the 33rd International Conference on Neural Information Processing Systems*, Red Hook, NY, USA, 2019. Curran Associates Inc.

⁶One can, for example, apply Cauchy's condensation test, followed up by the ratio test.

- A. Antos and I. Kontoyiannis. Convergence properties of functional estimates for discrete distributions. *Random Structures & Algorithms*, 19(3-4):163–193, 2001a.
- A. Antos and I. Kontoyiannis. Estimating the entropy of discrete distributions. In *IEEE International Symposium on Information Theory*, pages 45–45, 2001b.
- K. M. R. Audenaert. A sharp continuity estimate for the von Neumann entropy. J. Phys. A, 40 (28):8127–8136, 2007. ISSN 1751-8113. doi: 10.1088/1751-8113/40/28/S18. URL https: //doi.org/10.1088/1751-8113/40/28/S18.
- D. Berend and A. Kontorovich. A sharp estimate of the binomial mean absolute deviation with applications. *Statistics & Probability Letters*, 83(4):1254–1259, 2013. ISSN 0167-7152. doi: https://doi.org/10.1016/j.spl.2013.01.023. URL https://www.sciencedirect.com/science/article/pii/S0167715213000242.
- D. Berend, A. Kontorovich, and G. Zagdanski. The expected missing mass under an entropy constraint. *Entropy*, 19(7):315, 2017. doi: 10.3390/e19070315. URL https://doi.org/10.3390/e19070315.
- M. Brautbar and A. Samorodnitsky. Approximating entropy from sublinear samples. In N. Bansal, K. Pruhs, and C. Stein, editors, *Proceedings of the Eighteenth Annual ACM-SIAM Symposium* on Discrete Algorithms, SODA 2007, New Orleans, Louisiana, USA, January 7-9, 2007, pages 366–375. SIAM, 2007. URL http://dl.acm.org/citation.cfm?id=1283383.1283422.
- D. Brink. A (probably) exact solution to the birthday problem. *The Ramanujan Journal*, 28, 06 2012. doi: 10.1007/s11139-011-9343-9.
- D. Cohen, A. Kontorovich, and G. Wolfer. Learning discrete distributions with infinite support. In *Neural Information Processing Systems (NIPS)*, 2020.
- T. M. Cover and J. A. Thomas. *Elements of information theory*. Wiley-Interscience [John Wiley & Sons], Hoboken, NJ, second edition, 2006. ISBN 978-0-471-24195-9; 0-471-24195-4.
- K. Fukuchi and J. Sakuma. Minimax optimal estimators for additive scalar functionals of discrete distributions. In 2017 IEEE International Symposium on Information Theory (ISIT), pages 2103– 2107, 2017. doi: 10.1109/ISIT.2017.8006900.
- K. Fukuchi and J. Sakuma. Minimax optimal additive functional estimation with discrete distribution: Slow divergence speed case. In 2018 IEEE International Symposium on Information Theory (ISIT), pages 1041–1045, 2018. doi: 10.1109/ISIT.2018.8437725.
- S. Golomb. The information generating function of a probability distribution (corresp.). *IEEE Transactions on Information Theory*, 12(1):75–77, 1966. doi: 10.1109/TIT.1966.1053843.
- Y. Han, J. Jiao, and T. Weissman. Adaptive estimation of shannon entropy. In 2015 IEEE International Symposium on Information Theory (ISIT), pages 1372–1376. IEEE, 2015.
- Y. Hao and A. Orlitsky. Data amplification: Instance-optimal property estimation. In H. D. III and A. Singh, editors, *Proceedings of the 37th International Conference on Machine Learning*, volume 119 of *Proceedings of Machine Learning Research*, pages 4049–4059. PMLR, 13–18 Jul 2020. URL http://proceedings.mlr.press/v119/hao20a.html.
- Y. Hao, A. Orlitsky, A. T. Suresh, and Y. Wu. Data amplification: A unified and competitive approach to property estimation. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, *Advances in Neural Information Processing Systems*, volume 31. Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/a753a43564c29148df3150afb4475440-Paper.pdf.
- S.-W. Ho and R. W. Yeung. The interplay between entropy and variational distance. *IEEE Transac*tions on Information Theory, 56(12):5906–5929, 2010.
- J. Jiao, K. Venkat, Y. Han, and T. Weissman. Minimax estimation of functionals of discrete distributions. *IEEE Transactions on Information Theory*, 61(5):2835–2885, 2015.

- J. Jiao, K. Venkat, Y. Han, and T. Weissman. Maximum likelihood estimation of functionals of discrete distributions. *IEEE Transactions on Information Theory*, 63(10):6774–6798, 2017. doi: 10.1109/TIT.2017.2733537.
- H. Jürgensen and D. E. Matthews. Entropy and higher moments of information. *Journal of Universal Computer Science*, 16(5):749–794, 2010.
- N. Kusolitsch. Why the theorem of Scheffé should be rather called a theorem of Riesz. *Period. Math. Hungar.*, 61(1-2):225–229, 2010. ISSN 0031-5303. doi: 10.1007/s10998-010-3225-6. URL https://doi.org/10.1007/s10998-010-3225-6.
- E. H. Lieb and M. Loss. Analysis, volume 14 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, second edition, 2001. ISBN 0-8218-2783-9. doi: 10.1090/ gsm/014. URL https://doi.org/10.1090/gsm/014.
- P.-S. Loh. Convexity. 2013. URL https://www.math.cmu.edu/~ploh/docs/math/mop2008/ convexity-soln.pdf.
- G. Lugosi and S. Mendelson. Mean estimation and regression under heavy-tailed distributions: A survey. *Found. Comput. Math.*, 19(5):1145–1190, 2019. doi: 10.1007/s10208-019-09427-x. URL https://doi.org/10.1007/s10208-019-09427-x.
- P. Massart. The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality. Ann. Probab., 18(3):1269–1283, 1990. ISSN 0091-1798. URL http://links.jstor.org/sici?sici=0091-1798(199007)18:3<1269:TTCITD>2.0.C0;2-Q&origin=MSN.
- L. Paninski. Estimation of entropy and mutual information. *Neural computation*, 15(6):1191–1253, 2003. doi: 10.1162/089976603321780272.
- L. Paninski. Estimating entropy on *m* bins given fewer than *m* samples. *IEEE Transactions on Information Theory*, 50(9):2200–2203, 2004. doi: 10.1109/TIT.2004.833360.
- I. Pinelis. Best possible bounds of the von Bahr-Esseen type. Annals of Functional Analysis, 6(4):1 29, 2015. doi: 10.15352/afa/06-4-1. URL https://doi.org/10.15352/afa/06-4-1.
- I. Sason. Entropy bounds for discrete random variables via maximal coupling. *IEEE Trans. Inf. Theory*, 59(11):7118–7131, 2013. doi: 10.1109/TIT.2013.2274515. URL https://doi.org/10.1109/TIT.2013.2274515.
- H. Scheffé. A useful convergence theorem for probability distributions. Ann. Math. Statistics, 18: 434–438, 1947. ISSN 0003-4851. doi: 10.1214/aoms/1177730390. URL https://doi.org/10.1214/aoms/1177730390.
- J. F. Silva. Shannon entropy estimation in ∞ -alphabets from convergence results: studying plug-in estimators. *Entropy*, 20(6):397, 2018.
- A. B. Tsybakov. *Introduction to nonparametric estimation*. Springer Science & Business Media, 2008.
- G. Valiant and P. Valiant. Estimating the unseen: An n/log(n)-sample estimator for entropy and support size, shown optimal via new clts. In *Proceedings of the Forty-Third Annual ACM Symposium on Theory of Computing*, STOC '11, page 685–694, New York, NY, USA, 2011a. Association for Computing Machinery. ISBN 9781450306911. doi: 10.1145/1993636.1993727. URL https://doi.org/10.1145/1993636.1993727.
- G. Valiant and P. Valiant. The power of linear estimators. In 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science, pages 403–412, 2011b. doi: 10.1109/FOCS.2011.81.
- G. Valiant and P. Valiant. Estimating the unseen: Improved estimators for entropy and other properties. J. ACM, 64(6), Oct. 2017. ISSN 0004-5411. doi: 10.1145/3125643. URL https: //doi.org/10.1145/3125643.
- S. Verdú. Empirical estimation of information measures: A literature guide. *Entropy*, 21(8):720, 2019.

- B. von Bahr and C.-G. Esseen. Inequalities for the *r*th Absolute Moment of a Sum of Random Variables, $1 \leq r \leq 2$. The Annals of Mathematical Statistics, 36(1):299 303, 1965. doi: 10.1214/aoms/1177700291. URL https://doi.org/10.1214/aoms/1177700291.
- Y. Wu and P. Yang. Minimax rates of entropy estimation on large alphabets via best polynomial approximation. *IEEE Transactions on Information Theory*, 62(6):3702–3720, 2016.
- A. J. Wyner and D. Foster. On the lower limits of entropy estimation. *IEEE Transactions on Information Theory, submitted for publication,* 2003.
- Z. Zhang. Estimating mutual information via kolmogorov distance. *IEEE Transactions on Information Theory*, 53(9):3280–3282, 2007. doi: 10.1109/TIT.2007.903122.