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ABSTRACT

In machine learning, data is often presented in the form of a graph or similarity
(or distance) values between samples. Graph construction research has devel-
oped significantly for decades, but the graph-based partition study still requires
more attention because of its poor performance. For example, spectral cluster-
ing needs a post-processing (e.g., K-Means) step to uncover the clustering in-
dicators. However, K-Means is sensitive to the initial center setting and easily
falls into a local optimum. In this paper, we investigate an integrated density
and graph clustering approach. Firstly, we introduce a matrix ordering algorithm,
namely DBGO, for cluster analysis that does not explicitly produce a clustering
of a dataset but instead creates an augmented graph representing its density-based
ordered clustering structure. Secondly, we find that the graph matrix is shown in
a block-diagonal form because of the nature of ordered clusters. We proposed a
partition-based graph-cut clustering model to learn the block-diagonal structure
of the graph matrix and identify the clustering structure simultaneously. If the
between- and within-cluster weight of an ordered graph follow Gaussian distri-
bution, then the true cluster segmentation will maximize the expectation of the
graph-cut function, and our proposed BDSL algorithm can converge to the true
cluster segmentation by maximizing the expectation of the graph-cut function,
which has been guaranteed theoretically. We test the proposed method on syn-
thetic datasets and five high-dimensional real datasets. Experimental results show
that the proposed method outperforms state-of-the-art clustering methods and im-
proves the performance of subspace clustering approaches by roughly 10%∼50%.

1 INTRODUCTION

Larger and larger amounts of data are collected and stored in databases, increasing the need for
efficient and effective analysis methods to implicitly use the information in the data. One of the
primary data analysis tasks is cluster analysis which is intended to help a user to understand the
natural grouping or structure in a dataset. Therefore, improved clustering algorithms have received
much attention in the last few years. The goal of a clustering algorithm is to group the objects of a
database into a set of meaningful subclasses. A clustering algorithm can be used either as a stand-
alone tool to get insight into the distribution of a dataset, e.g., to focus further analysis and data
processing or as a preprocessing step for other algorithms that operate on the detected clusters.

Many recent works pay attention to the effectivity of clustering, i.e., the quality or usefulness of the
clustering result. However, their characteristic of effectiveness is still unsatisfactory. There are three
interconnected reasons: 1) Almost all clustering algorithms require values for input parameters that
are hard to determine, especially for real-world datasets containing high-dimensional objects. 2) The
algorithms are susceptible to these parameter values, often producing very different segmentations of
the dataset, even for slightly different parameter settings. 3) High-dimensional real datasets usually
have a skewed distribution that can not be revealed by a clustering algorithm using only one global
parameter setting.

State-of-the-art clustering methods based on graphical representations of the relationships among
data points have been widely used for decades. For example, spectral clustering Von Luxburg
(2007), normalized cut Shi & Malik (2000), and radio cut Hagen & Kahng (1992) all transform
the data into a weighted, undirected graph based on pairwise similarities. Clustering is then accom-
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plished by spectral or graph-theoretic optimization procedures. See Ding et al. (2005; 2006) for a
discussion of the relations among these graph-based methods and also the connections to nonneg-
ative matrix factorization. All of these methods involve a two-stage process in which a data graph
is formed from the data, and then various optimization procedures are invoked on this fixed input
data graph. On the one hand, the clustering results depend on the quality of the input data graph
(i.e., they are sensitive to the particular graph construction methods). Thus, almost all researchers
focus on the graph construction task, including good neighbor pruning Yang et al. (2019); Cui et al.
(2021), multi-view affinity learning Xiao et al. (2020); Tang et al. (2018); Kang et al. (2020; 2021),
sparse representation learning Elhamifar & Vidal (2013b), low-rank representation learning Xu et al.
(2021), self-expression training based on neural network Lv et al. (2021); Cai et al. (2021); Zhang
et al. (2021a). However, the final clustering structures are not represented explicitly in the data
graph (e.g., graph-cut methods often use the K-Means algorithm to post-process the results to get
the clustering indicators). More and more researchers have discovered that it is not the graph con-
struction but the graph partition that limits improving clustering accuracy. Although a lot of graph
partition approaches have been proposed recently, e.g., MST Şaar & Topcu (2022), PrimZhu &
Chen (2021), Kruskal Battaglia & Pensa (2021), SNN Liu et al. (2022), Jarvis-Patrick Wang et al.
(2022), Extended-DBSCAN Chen et al. (2021), Chameleon Zhang et al. (2021b), and Extended-
Spectral Sharma & Seal (2021). However, their characteristics of effectiveness and robustness on
real datasets are still unsatisfactory. A clustering technique is considered to be good if it satisfies
the following requirements Fahim et al. (2008): a) Minimal requirements of the domain knowledge
to determine the values of its input parameters, which is a significant problem, especially for large
datasets. b) Discovery of arbitrarily shaped clusters. c) Good efficiency on large datasets. It is still
challenging to design a clustering method that has the above three features simultaneously.

In this paper, we introduce an effective and robust approach for the purpose of cluster analysis
which does not produce a clustering explicitly; but instead permutes a given graph representing the
density-based clustering structure of the data. This ordered graph contains information similar to
the density-based clusterings corresponding to a broad range of parameter settings. It is a versatile
basis for both automatic and interactive cluster analysis. We proposed an ordering algorithm to find
ordered density-based clusters in spatial data and detect meaningful clusters in data of varying den-
sities. The graph weight matrix is shown in block-diagonal form because of the nature of ordered
clusters. Thus, we proposed a novel partition-based normalized cut clustering model that identifies
the clustering structure from the ordered similarity matrix with a K-block-diagonal form, where
K is the number of clusters. In order to identify the clustering structure directly without requiring
any post-processing, we impose an efficient binary segmentation algorithm to learn the proposed
graph partition model. The ordered graph will be cut into a K-block-diagonal form by K − 1 par-
tition indexes. If the between- and within-cluster weight follows Gaussian distribution, then the
true cluster segmentation will maximize the expectation of the objective function, and our algorithm
can converge to the true cluster partition from an expectation view theoretically. We conduct em-
pirical studies on four simulated and five real-world benchmark datasets to validate our proposed
methods. Our integrated density and graph clustering method consistently outperforms other related
methods in general low-dimensional clustering tasks. For the high-dimensional clustering task, the
performance of conventional subspace clustering methods can be improved by roughly 10%∼50%
by replacing spectral clustering with our proposed method.

2 REVIEW OF GRAPH CONSTRUCTION AND PARTITION

The graph-based method includes three phases: graph construction, graph refinement (e.g., prune
and generate), and graph partition. Since the graph refinement method is complicated and various,
we only introduce the graph construction and the graph partition technique.

2.1 GRAPH CONSTRUCTION

The general graph is often given by the distance measurement between points. The usage of distance
depends on the property of the data. The traditional distance measurements include Euclidean, Ma-
halanobis, Cityblock, Minkowski, Chebychev, Cosine, Correlation, Hamming, Jaccard, and Spear-
man Choi et al. (2010). For example, the work Menon et al. (2020) supposes the data in each cluster
are located in a high-dimensional subspace and use the cosine angle between points to measure the
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similarity of the samples in the same or different clusters. Specifically, the point xi is normalized by
x̄i = xi

||xi||2 firstly, where || · || denotes the l2 norm. These points x̄i ∈ RD, ∀ i ∈ {1, 2, ..., N} will
lie in the high dimensional hypersphere SD−1. Let θij denote the angle between two data points
xi and xj , i.e., θij = cos−1(x̄T

i x̄j), θij ∈ [0, π]. We convert the radian θij to its degree form
θ̃ij , i.e., θ̃ij = θij180/π, θ̃ij ∈ [0, 180]. To make similar features more prominent, people usually
perform the exponential normalization on the original measurement, and the closer the distance, the
larger the value. The weight is given by wij = exp(−θ̃2

ij/σ
2), where σ2 = Var[θ̃ij ], which is a

parameter to control the attenuation degree with the increasing of the difference, and we usually set
it as the variance of the weight directly for convenience in this paper.

Another type of method of constructing the similarity graph between points is mainly used for
the data located in high-dimensional subspaces. These works use the self-expression property to
construct an optimization problem based on the sparse feature Elhamifar & Vidal (2013b), block-
diagonal constraint Lu et al. (2018), or low-rank property Vidal & Favaro (2014). Based on these
models, deep neural network Ji et al. (2017), multi-view combination Elhamifar & Vidal (2013b),
and neighbor pruning Yang et al. (2019); Cui et al. (2021) are used to improve the self-representation
performance of the similarity matrix. For example, consider a matrix of column-wise samples X =
[x1,x2, ...,xN ] ∈ RD×N . Each sample or datum can be represented by a linear combination of n
atoms in a dictionary A = [a1,a2, ...,an] ∈ RD×n: X = AZ, where Z = [z1, z2, ..., zN ] ∈ Rn×N
is a coefficient matrix. Under this representation, each column zi of the coefficient matrix Z can
be interpreted as a new representation for each data sample xi under the dictionary. Suppose the
column vectors of X are drawn from a union of K subspaces {Qk}Kk=1 of unknown dimensions
{dk}Kk=1. Without knowing the dictionary A, one can use the self-expressiveness property of data
to find the subspaces: each data point in a union of subspaces can be efficiently reconstructed by
a combination of other points in the data. For instance, the work Elhamifar & Vidal (2013a) uses
the data samples themselves as the dictionary, i.e., A = X. In this case, the coefficient matrix Z
becomes a square matrix of size N × N , i.e., X = XZ. In general, N > D, in this unrestricted
case, there are near infinite possibilities for the coefficient matrix Z. The choice of Z is the main
difference among subspace clustering techniques. The work Elhamifar & Vidal (2013a) aims to find
the sparsest representation using l1 approximation. More specifically, every point in the data is a set
of sparse linear combinations of other points from the same subspace. Mathematically the sparse
formulation is written as

minimize
E,Z

λ||E||2F + ||Z||1

subject to X = XZ + E,diag(Z) = 0 (1)
where E is the noise matrix. From these sparse representations, an affinity matrix Z is compiled.
The problem can be solved by ADMM effectively Elhamifar & Vidal (2013a). In general, the graph
is given by W = |Z|+|Z|T

2 because of the symmetric and positive properties of the graph.

2.2 GRAPH PARTITION

Graph-based clustering approaches typically optimize their objectives based on a given data graph
associated with a symmetric affinity matrix W ∈ RN×N , where N is the number of nodes (data
points) in the graph. A weighted undirected complete graph G (i.e., fully connected graph) can be
written as an ordered pair G := (V, E ,W), where V is a set of vertices or nodes, E is a set of
pairs (unordered) of distinct vertices, called edges or lines, and W is an N × N adjacency matrix
(also similarity matrix or weight matrix) of the finite undirected graph G on N vertices, where the
nondiagonal entry wij is the number of edges from vertex i to vertex j, and the diagonal entry wii
is either twice the number of loops at vertex i or just the number of loops (usages differ, depending
on the mathematical needs; this paper is not concerned with reflexive connections). Recall the
symmetric and positive properties of the graph. We assume wij = wji ≥ 0.

Given A ⊂ V , its complement, V\A will be denoted as Ā. Intuitively, the subset A is connected
if paths between any two points in A need only points in A. A is called a connected compo-
nent with respect to Ā if A is connected, and there are no edges between vertices in A and Ā.
Subsets A1,A2, ...,AK represent a partition of V , if, for all i, j ∈ [1, 2, ...,K], Ai ∩ Aj = ∅,
and ∪Kk=1Ak = V . Generally speaking, clustering means partitioning a graph so that the edges
between different groups have low similarity (low distance) and the edges within a group have
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high weight (low distance). The first requirement for the partition can be stated as the mini
cut criterion, which has to be minimized: cut(A1,A2, ...,AK) =

∑K
k=1 cut(Ak, Āk) where

cut(Ak, Āk) =
∑
i∈Ak,j∈Āk wij . Following the mini cut requirement, often only a little group

of points is isolated. For this reason, the famous cutting methods, which are widely used in spectral
clustering, are introduced: Ncut(A1,A2, ...,AK) =

∑K
k=1

cut(Ak,Āk)
vol(Ak) Shi & Malik (2000) where

vol(A) measures the size of A by the weights of its edges, i.e. vol(Ak) =
∑
i∈Ak

∑
j∈V wij .

Within-cluster similarity is maximized if cut(Ak, Āk) is small and vol(Ak) is large. Therefore, Ncut
can be interpreted as cutting through edges rarely transitions by a random walk. Denote the converse
Ncut as CNcut(A1,A2, ...,AK) =

∑K
k=1

sasso(Ak)
vol(Ak) where sasso(Ak) = vol(Ak)−cut(Ak, Āk).

Since Ncut(A1,A2, ...,AK) = K−CNcut(A1,A2, ...,AK), minimizing Ncut(A1,A2, ...,AK)
is equivalent to maximize CNcut(A1,A2, ...,AK) with fixed K.

3 CLUSTERING ALGORITHM

An essential property of many real datasets is that different local densities may be needed to re-
veal clusters in different regions of the data space. Thus, the density-based clustering method is
a commonly used clustering strategy. DBSCAN Ester et al. (1996) is a well-known density-based
clustering method. However, it can only provide flat labeling of the data objects based on a global
density threshold. Using a single density threshold can often not properly characterize common data
sets with clusters of very different densities or nested clusters. Although many methodologies have
been proposed for solving this problem, e.g., HDBSCANCampello et al. (2013), their performance
is still unsatisfactory. NcutShi & Malik (2000) is the most famous graph-based clustering method.
However, Ncut is an NP-hard problem, and the famous spectral clustering algorithm can only give
us a local clustering by applying Kmeans on the eigenvector.

We propose a two-stage clustering method. It remains the advantages of DBSCAN and Ncut, i.e.,
the usage of the density-based relationship and the graph construction, refinement, and partition
technique. In addition, it overcomes the disadvantage of DBSCAN and Ncut. Specifically, CNcut is
used to identify the clustering structure instead of using a single density threshold as DBSCAN, and
Ncut does not face the uneven density clustering problem of DBSCAN. Due to the density-based
ordering step, the Ncut becomes a non-NP-hard problem from the partition view. We proposed the
BDSL algorithm with O(NlogN) complexity to solve the partition-based CNcut problem, and the
proposed BDSL can converge to the true clustering partition from the expectation view. Note that we
can replace Ncut with RadiocutHagen & Kahng (1992) and replace DBSCAN with OPTICSAnkerst
et al. (1999). This paper only chooses DBSCAN and Ncut to describe the proposed integrated
density and graph clustering framework.

3.1 DENSITY-BASED GRAPH ORDERING

Due to the superiority of graph construction methodology, we start from a graph matrix, which can
be a distance measurement or sparse representation, as said in Section 2.1. In this subsection, we
consider combining the knowledge of density and graph to permute the graph into a block diagonal
form, which implies the clustering structure. Specifically, since the similarity between each sample
has been given by the entry of the graph matrix, the density-based greedy searching strategy has the
potential ability to iterate through each sample one cluster by one cluster. Then, the graph matrix
can be permuted according to the iteration order. Since the nature of ordered clusters, the ordering
graph should be in a block-diagonal form.

We use the same greedy ordering strategy as DBSCAN Ester et al. (1996) to iterate through each
sample based on the similarity given by the weight matrix. Specifically, given a complete undirected
graph G with a weight matrix W. The element wij measures the similarity between the ith sample
and the jth sample. The more similar the ith sample and the jth sample are, the greater the weight
wij . Denote Nδ(i) as the δ-neighborhood index set of the ith object. We sort the weight wij ,
j = 1, 2, ..., N , connected to the ith sample in descending order. Since DBSCAN cannot cluster
data sets well with large differences in densities, a ratio threshold is proposed instead of using the
constant threshold used in DBSCAN. Specifically, the index of the largest values will be put into
the set Nδ(i) one by one until the sum of the weights in Nδ(i) over the total weight is larger than δ,

4



Under review as a conference paper at ICLR 2023

i.e.,
∑
l∈Nδ(i)

wil∑
j∈[1,N] wij

> δ, δ ∈ (0, 1). The proposed ratio threshold rule is more suitable for the dataset
containing clusters with uneven within-cluster weight density than the constant threshold rule in
DBSCAN. Our method can use the ratio threshold rule because we only need to consider the order.
However, DBSCAN can only use the constant threshold rule because it still relies on this constant
threshold rule to identify the clustering structure. Based on the definition of δ-neighborhood index
set, the ith object satisfying |Nδ(i)| ≥ ε is called a ε-core sample, where |X| denotes the number
of the element in the set X .

Definition 3.1 (Density-reachable). The jth sample is directly density-reachable from the ith sam-
ple w.r.t. δ and ε in a set of samples X if 1) j ∈ Nδ(i); 2) |Nδ(i)| ≥ ε.

Algorithm 1 Density-based graph ordering (DBGO).
Input: the graph W, and the parameter δ, ε.
Initialize an empty set C, and put the index of all ε-
core samples into C. Calculate core-weight cε(i), i ∈
[1, N ]. Initialize an empty order list O, and a null
reachability-score recording vector s ∈ RN .
for each unprocessed element i in C

Mark i as processed, and O = [O; i].
[Q, s]=QueueUpdate(i, Q, s)
repeat

Pop j from Q.
Mark j as processed, and O = [O; j].
if |Nδ(j)| ≥ ε

[Q, s]=QueueUpdate(j, Q, s)
end if

until Q is empty
end for
Permute W based on O.
Output: W

Instead of ordering the graph based on
density-reachable directly, we denote the
core-weight cε(i) as the weight between ith
sample and its εth-largest-weight neighbor.
The core-weight of the ith object is simply
the largest weight between ith sample and an
object in its δ-neighborhood index set such
that ith sample would be a core sample with
respect to ε if this neighbor is contained in
Nδ(i). Then, the reachability score is de-
fined as follows.

Definition 3.2 (Reachability-score). Sup-
pose i, j ∈ [1, N ], where N is the sample
number. Let ε be a natural number. Then,
the reachability-score of jth sample with re-
spect to ith sample is defined as

sε(j, i) =

{
min (cε(i), wij), if |Nδ(i)| ≥ ε
Undefined, otherwise

Based on the above definitions, we propose
a density-based graph ordering approach, namely DBGO, which permutes a random graph into the
block-diagonal form. Alg. 1 illustrates the main loop of the algorithm DBGO, and Alg. 2 is a
subfunction used in Alg. 1.

Algorithm 2 Queue updating.
Input: the processing sample i, and
the queue Q, the recording vector s.
for each unprocessed j in Nδ(i)

ŝ = min (cε(i), wij)
if sj is unassigned

sj = ŝ
Push j into Q

else
if ŝ > sj

sj = ŝ
end if

end if
end for
Output: Q, s

Each ε-core sample is handed over to a procedure of ex-
panding cluster order if the core-sample is not yet pro-
cessed. In the beginning, one of the unprocessed core sam-
ples is marked as processed and appended to the order list
O. Then, an empty priority queue Q is initialized, and the
samples that may be in the same cluster as the picked core
sample will be put in the queue. This operation is accom-
plished by the QueueUpdate function in Alg.2, i.e., put the
index of all of the δ-neighborhood of the i sample into the
queue Q. The queue Q stores the index and sorts the index
in descending order of their existing-reachability-score.

We use sj to save the existing-reachability-score of the in-
dex j inQ. The existing-reachability-score sj of the index j
will be updated if the reachability-score of j to the process-
ing samplem is larger than the current value of sj . The pop
operation of the queueQwill provide us with the element in
Q, which has the largest existing-reachability-score. The push operation of the queue Q will append
an element to Q, and the elements in Q will be sorted according to their existing-reachability-score
automatically. We pop one of the element m from Q, and push all of the δ-neighborhood of the
element m to Q if mth sample is a core sample. These two steps will repeat until Q is empty. The
processing order of the sample will be recorded in the listO. Finally, the graph matrix W is adjusted
according to O.
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3.2 BLOCK-DIAGONAL STRUCTURE LEARNING BASED ON GRAPH PARTITION
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Figure 1: Ordered graph matrix of
three clusters.

Recall the proposed converse Ncut in Section 2.2:
CNcut({Ak}Kk=1) =

∑K
k=1

sasso(Ak)
vol(Ak) . Since the na-

ture of ordered clusters, the graph matrix is shown in a
block-diagonal form as illustrated in Fig.1. Thus, the CNut
problem can be seen as partitioning an ordered graph ma-
trix into a K-block-diagonal form. Specifically, since the
graph is ordered, the graph can be clustered by a set of
K − 1 indexes, which is denoted by a calligraphic letter:
T = {t1, t2, ..., tK−1} ⊂ {1, 2, ..., N}. The dummy indexes
t0 := 0 and tK := N are implicitly available. We have the
constraint that tk−1 < tk for any k ∈ [1,K]. Thus, a complete
graph G = (V, E ,W) can be partitioned into K disjoint
subgraph with vertex sets Vtk−1,tk = {tk−1 + 1, tk−1 + 2, ..., tk}, k = 1, 2, ...,K, by simply
removing edges connecting the K parts. We propose the following partition-based CNut clustering
model:

maximize
{tk}K−1

k=1 ,tk−1<tk

K∑
k=1

sasso(Ak)

vol(Ak)
=

K∑
k=1

f(tk−1, tk) =

K∑
k=1

∑
i,j∈[tk−1+1,tk] wij∑

i∈[tk−1+1,tk]

∑
j∈[1,N ] wij

(2)

We learn the block-diagonal structure of the graph matrix by solving (2), and the clustering structure
will be identified by theK−1 partition indexes simultaneously. Since there areNK−1 combinations
of K − 1 variables {tk}K−1

k=1 , the global optimal solution of (2) can be searched exhaustively with
a O(NK−1) complexity. In order to explore a low-complexity approach to solve (2), we give the
following theoretical analysis. Consider partitioning a K-component graph matrix (e.g., the matrix
shown in Fig.1) into a two-block-diagonal form. Problem (2) can be written as

maximize
t∈(0,N)

f(0, t) + f(t,N) =

∑
i,j∈[1,t] wij∑

i∈[1,t]

∑
j∈[1,N ] wij

+

∑
i,j∈[t+1,N ] wij∑

i∈[t+1,N ]

∑
j∈[1,N ] wij

(3)

Suppose there exists a K-component graph matrix W ∈ RN×N which is ordered correctly, and
the kth component corresponds to the kth cluster [ck−1 + 1, ck], where ck−1 < ck,∀k ∈ [1,K],
and the dummy indexes c0 := 0, cK := N . Suppose the within-cluster weight of the kth cluster,
wij , i, j ∈ [ck−1 + 1, ck], follows the Gaussian distribution N (µk + β, σ2), µk > 0, ∀k ∈ [1,K],
and the between-cluster weight, wij , i ∈ [ck−1 + 1, ck], j /∈ [ck−1 + 1, ck],∀k ∈ [1,K], follows
the Gaussian distribution N (β, σ2), where β > 0 is a large enough number to make sure all of the
weights are non-negative. Denote the expectation of the objective function of (3) as F (t). We have
the following observation:
Theorem 3.1. The function F (t) has the following property:

1) If K = 1, then F (t) = 1 for t ∈ (0, N).

2) If K ≥ 2, then F (t) increase for t ∈ (0, c1] and decrease for t ∈ [cK−1, N).

3) If K ≥ 3, then, for the interval [ck, ck+1], ∀k = 1, ...,K − 2, F (t) decreases for t ∈ [ck, t̂] and
increases for t ∈ [t̂, ck+1] if t̂ ∈ (ck, ck+1); F (t) decreases for t ∈ [ck, ck+1] if t̂ ≥ ck+1; F (t)
increases for t ∈ [ck, ck+1] if t̂ ≤ ck, where

t̂ =


(√

B1(ck+1−ck)2+1+
√
B2(ck+1−ck)2+1

)2

2(ck+1−ck)(B2−B1) + 1
2 (ck+1 + ck) B1 6= B2

1
2 (ck+1 + ck) B1 = B2

B1 = µk+1+β∑k
i=1(ci−ci−1)2(µi+β)

, and B2 = µk+1+β∑K
i=k+2(ci−ci−1)2(µi+β)

.

The proof of Theorem 3.1 is shown in Appendix A. Theorem 3.1 illustrate that F (t) will be constant
if none ck in (0, N) (K = 1), and one of {ck}K−1

k=1 will maximize F (t) if there exists partition
indexes {ck}K−1

k=1 in (0, N) (K ≥ 2). We denote the bounded binary-segmentation function as
FB(ci, t, cj) = E [f(ci, t) + f(t, cj)], where ci, cj are two of the true partition {ck}Kk=0 and ci < cj .
Obviously, FB(0, t, N) = F (t). Then, we have the following corollary.
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Corollary 3.1.1. For the interval (ci, cj) ⊆ (0, N), where ci, cj are two of the partition {ck}Kk=0,
and ci < cj , the function FB(ci, t, cj) has the same property as the function F (t):

1) If none of {ck}K−1
k=1 in (ci, cj), then FB(ci, t, cj) = 1

2) If there exists partition indexes cp, cp+1, ..., cq ∈ {ck}K−1
k=1 , 1 ≤ p ≤ q ≤ K − 1, in (ci, cj), then

one of cp, cp+1, ..., cq will maximize FB(ci, t, cj).

Denote the binary-segmentation reward function as

h(ci, t, cj) = f(ci, t) + f(t, cj)− f(ci, cj)

The function h(ci, t, cj) represents the reward when we replace one segment f(ci, cj) with two
segments f(ci, t) and f(t, cj). The expectation of h(ci, t, cj) is

E(h(ci, t, cj)) = FB(ci, t, cj)− E{f(ci, cj)}

Since E{f(ci, cj)} is constant with given ci and cj , maxt∈(ci,cj)E(h(ci, t, cj)) is equivalent to
maxt∈(ci,cj)FB(ci, t, cj). Thus, the expectation function E(h(ci, t, cj)) has the same property as
FB(ci, t, cj), i.e., Corollary 3.1.1 also holds for E(h(ci, t, cj)).

The property of function FB(·) implies the character of the objective function of the problem (2).
If we partition the graph matrix into two-block-diagonal matrix by solving (3), Theorem 3.1 points
out that one of the true partition {ck}K−1

k=1 will maximize (3) from the expectation view. Suppose
the first estimated partition is c1, and the indexes τ0 = 0, τ1 = c1, τ2 = N . If we want to obtain
the second partition by inserting a new partition among {τi}2i=1, in other words, we want to choose
one of the two intervals (τ0, τ1), and (τ1, τ2) to insert a new partition. Then, we have the following
problem.

maximize
j∈[1,2]

maximize
t∈(τj−1,τj)

2∑
k=1

f(τk−1, τk) + h(τj−1, t, τj) (4)

Since
∑2
k=1 f(τk−1, τk) is constant, Problem (4) is equivalent to

maximize
j∈[1,2]

maximize
t∈(τj−1,τj)

h(τj−1, t, τj) (5)

Algorithm 3 Block-diagonal structure learning (BDSL).
Input: an ordered graph W, and the cluster number K
Initialize: T = {}
repeat

Initialize L = |T |+ 1, t0 = 0, tL = N ,
T = {t1, ..., tL−1}, and two empty vector v, g ∈ RL.
for k = 0 : (L− 1) do

vk = argmax
t∈(tk+1,tk+1)

f(tk, t) + f(t, tk+1)

gk = f(tk, vk) + f(vk, tk+1)− f(tk, tk+1)
end for
k̂ = argmax

k
gk, and t̂ = vk̂

T = T ∪ {t̂}
until L = K − 1
Output: {T }

As said before, Corollary 3.1.1 also
holds for E(h(ci, t, cj)). Corol-
lary 3.1.1 indicates that one of
{ck}K−1

k=1 will maximize the expec-
tation of h(τj−1, t, τj). If c2 max-
imizes (5), then c2 also maximizes
(4). Suppose the indexes τ0 = 0,
τ1 = c1,τ2 = c2 τ3 = N . We
choose one of the three intervals to
insert the third partition. The prob-
lem will be shown in a similar form
as (5). We repeat the updating pro-
cess until we obtain K − 1 opti-
mal partition index {ck}K−1

k=1 for the
problem (2). The pseudo-code for
the procedure of graph partition is
depicted in Alg. 3, namely BDSL,
which is of the order of O(N logN).

Theorem 3.2. If the within-cluster weight of the kth cluster {ck−1 +1, ck−1 +2, ..., ck} follows the
Gaussian distributionN (µk + β, σ2), µk > 0, ∀k ∈ [1,K], and the between-cluster weight follows
the Gaussian distribution N (β, σ2), where β > 0 is a large enough number to make sure all of the
weight are non-negative. Then, our BDSL algorithm will converge to {ck}K−1

k=1 by maximizing the
expectation of the objective function of Problem (2).
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A B C D

Figure 2: Four synthetic datasets.
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Figure 3: The affinity matrix of four synthetic datasets, which has been ordered by the proposed
DBGO algorithm.

4 EXPERIMENTAL RESULTS AND APPLICATIONS

In this section, extensive experiments are performed on different types of datasets to demonstrate
the effectiveness of the proposed method in comparison with the state-of-the-art clustering methods.
First, a synthetic dataset is generated to show the performance of the proposed method on the dataset
with different densities, distributions, and connectivity. Then the widely used image datasets are
used to show the effectiveness of the proposed method on the subspace clustering task.

4.1 SYNTHETIC EXPERIMENTS

Table 1: Clustering accuracy of syn-
thetic datasets.

Dataset A B C D
Graph-based approach
SpectralC 87.29 82.41 92.13 82.55
CLICK 90.88 75.56 83.57 73.66
CW 86.94 88.14 88.61 72.11
Density-based approach
DBSCAN 79.41 89.72 93.15 87.81
OPTICS 84.21 89.47 95.24 77.45
HDBSCAN 89.15 92.77 93.24 88.26
ST-DBSCAN 77.87 81.24 94.36 75.92
Partition approach
K-means 74.15 57.43 60.40 58.26
STREAM 71.43 60.76 52.40 80.77
Hierarchical approach
BIRCH 60.08 81.94 64.40 77.55
Model-based approach
GMM 75.54 70.39 72.34 82.52
COBWEB 83.31 90.07 75.37 78.29
Grid-based approach
STING 70.44 72.68 70.76 83.68
Proposed 97.29 99.38 99.90 99.96

We generate four basic datasets to test the effectiveness
and robustness of the proposed methods on the general
clustering task, which is shown in Figure 2. Dataset
A contains four clusters with different densities and
shapes. Dataset B contains four clusters following dif-
ferent Gaussian distributions. Dataset C contains four
oddly shaped clusters with clear boundaries. Dataset D
contains two coupled clusters without clear boundaries.
As said in Section 2.1, different distance measurements
can be used to show the similarity between samples.
We pick Euclidean distance after exponential normaliza-
tion as the weight. We compare the proposed approach
with six types of clustering methods, including K-means
MacQueen (1967), STREAM O’callaghan et al. (2002),
BIRCH Zhang et al. (1996), DBSCAN Ester et al. (1996)
OPTICS Ankerst et al. (1999), HDBSCAN Campello
et al. (2013), ST-DBSCAN Birant & Kut (2007), STING
Wang et al. (1997), GMM Rasmussen (1999),COBWEB
Fisher (1987), spectral clustering Von Luxburg (2007),
CLICK Sharan & Shamir (2000), and Chinese Whisper (CW) Biemann (2006). We tune the pa-
rameters for these methods to achieve the best results. The experiments are repeated ten times. The
mean clustering accuracy is computed to show the performance.

The experimental results are shown in Tab.1. We provide a visual comparison of graph weight
matrices in Fig.3. It can be observed that our method DBGO provides weight matrices that are
in a block-diagonal form roughly. The red dotted boxes show the graph partition result provided
by BDSL. As anticipated, our proposed DBGO-BDSL outperforms all of the comparisons. This
experiment highlights the robustness of our methods to noises and densities.
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4.2 EXPERIMENTS ON HIGH-DIMENSIONAL DATASETS

Table 2: Clustering accuracy of high-dimensional datasets.
LSR means the original version of the conventional sub-
space clustering technique, and LSR-DB means we apply
our DBGO-BDSL on the affinity matrix generated by LSR.

Dataset AR COIL-20 USPS E-Yale B MNIST
Subjects 100 20 10 38 10
LSR 74.15 57.43 60.40 58.26 57.80
LSR-DB 82.11(+7.96) 94.74(+37.31) 90.59(+30.19) 88.39(+30.13) 96.29(+38.49)
NSN 42.18 81.94 44.40 77.55 55.50
NSN-DB 80.79(+38.61) 92.14(+10.2) 94.18(+49.78) 91.27(+13.72) 95.66(+40.16)
SMR 68.85 75.49 68.83 67.91 68.87
SMR-DB 79.38(+10.53) 92.47(+16.98) 98.52(+29.69) 77.69(+9.78) 94.74(+25.87)
SSC 24.54 50.39 42.34 32.52 40.16
SSC-DB 75.28(+50.74) 90.19(+39.80) 92.56(+50.22) 82.43(+49.91) 90.26(+50.10)
QOSC 63.41 89.72 83.15 57.81 65.30
QOSC-DB 79.55(+16.14) 94.67(+4.95) 98.84(+15.69) 84.29(+26.48) 95.57(+30.27)
ORGEN 25.88 75.56 63.57 53.66 61.50
ORGEN-DB 80.52(+54.64) 95.47(+19.91) 93.59(+30.02) 93.64(+39.98) 91.32(+29.82)
iPursuit 65.88 73.47 43.30 84.24 75.40
iPursuit-DB 82.92(+17.04) 91.01(+17.54) 93.83(+50.53) 91.27(+7.03) 95.99(+20.59)
FGNSC 68.31 90.11 75.37 78.29 52.40
FGNSC-DB 73.88(+5.57) 95.38(+5.27) 95.82(+20.45) 96.47(+18.18) 92.69(+40.29)
BDRZ 51.43 71.67 52.40 80.77 71.80
BDRZ-DB 88.77(+37.34) 90.42(+18.75) 92.58(+40.18) 90.76(+9.99) 99.36(+27.56)

For good performance in dealing with
complex local correlation and high-
dimensional structure of the image
data, representation-based methods
have become one of the hot top-
ics for high-dimensional data cluster-
ing, in which spectral-based subspace
clustering is a representative tool.
However, all of these state-of-the-
art spectral-based subspace cluster-
ing methods use the spectral cluster-
ing method to solve the Ncut problem
and identify the clustering structure
by K-Means. The spectral clustering
method shows poor performance on
the non-uniform density and distribu-
tion dataset, which is shown in Sec-
tion 4.1. Thus, we replace the spectral clustering with our proposed DBGO-BDSL in the conven-
tional spectral-based subspace clustering methods to show the effectiveness of our DBGO-BDSL.

USPS

MNIST

COIL-20

AR

E-Yale-B

Figure 4: Example samples.

We test our method on five benchmark datasets (as shown in Fig.4)
for famous tough high-dimensional clustering tasks, including face
recognition (E-Yale B Georghiades et al. (2001), AR Martinez &
Benavente (1998)), object detection (COIL-20 Nene et al. (1996)),
and handwritten digits identification (MNIST LeCun et al. (1998),
USPS Hastie et al. (2009)). Moreover, We use state-of-the-art
spectral-based subspace clustering methods to generate the affin-
ity matrix and then apply the proposed DBGO-BDSL to the affinity
matrix. We compare the traditional version of these state-of-the-
art methods with the improved version. The comparison includes
representation-based methods (SRC Xiao et al. (2020) LLC Tang
et al. (2018), CRC Wang et al. (2022), LRC Zhang et al. (2021b)),
and low-rank criterion-based methods (LSRLu et al. (2012), NSNPark et al. (2014), SMRHu et al.
(2014), SSCXu et al. (2015), QOSCLu et al. (2018), ORGENYou et al. (2016), iPursuit Rahmani &
Atia (2017), FGNSCYang et al. (2019), and BDRZLu et al. (2018)).

We tune the parameters for the comparison methods to achieve the best results. The experiments
are repeated ten times, and the mean clustering accuracy is computed to show the performance. The
experimental result is shown in Tab.2. We compare the original version of the conventional subspace
clustering technique with our improved version, Each state-of-the-art spectral-based subspace clus-
tering method’s performance can be improved by our DBGO-BDSL, and their clustering accuracy
is improved by roughly 10%∼50%. The performance of the proposed DBGO-BDSL depends on the
representation quality of the affinity matrix given by the state-of-the-art method.

5 CONCLUSIONS

In this paper, we proposed a new two-stage integrated density and graph clustering method for low-
or high-dimensional clustering tasks. The proposed clustering framework can overcome the draw-
back of the traditional density- and graph-based clustering strategies, and remains their advantages.
Comprehensive experiments were conducted on synthetic datasets and real datasets. The proposed
method not only shows the best performance on the synthetic low-dimensional dataset but also im-
proves the clustering accuracy of the conventional spectral-based subspace clustering method by
roughly 10%∼50% on the real high-dimensional dataset. The proposed clustering structure can be
improved in many aspects in the future. For instance. we can add a graph refinement step to adjust
the ordered matrix, refine the DBGO step using a more reasonable density-based search strategy,
and replace the BDSL step with a more precise partition method.
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Ehsan Elhamifar and René Vidal. Sparse subspace clustering: Algorithm, theory, and applications.
IEEE transactions on pattern analysis and machine intelligence, 35(11):2765–2781, 2013b.

Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-based algorithm for
discovering clusters in large spatial databases with noise. In kdd, volume 96, pp. 226–231, 1996.

AM Fahim, AM Salem, FA Torkey, and MA Ramadan. Density clustering based on radius of
data (dcbrd). International Journal of Computer and Information Engineering, 2(10):3464–3469,
2008.

Douglas H Fisher. Knowledge acquisition via incremental conceptual clustering. Machine learning,
2(2):139–172, 1987.

Athinodoros S. Georghiades, Peter N. Belhumeur, and David J. Kriegman. From few to many:
Illumination cone models for face recognition under variable lighting and pose. IEEE transactions
on pattern analysis and machine intelligence, 23(6):643–660, 2001.

Lars Hagen and Andrew B Kahng. New spectral methods for ratio cut partitioning and clustering.
IEEE transactions on computer-aided design of integrated circuits and systems, 11(9):1074–1085,
1992.

10



Under review as a conference paper at ICLR 2023

Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. The elements of
statistical learning: data mining, inference, and prediction, volume 2. 2009.

Han Hu, Zhouchen Lin, Jianjiang Feng, and Jie Zhou. Smooth representation clustering. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition, pp. 3834–3841,
2014.

Pan Ji, Tong Zhang, Hongdong Li, Mathieu Salzmann, and Ian Reid. Deep subspace clustering
networks. Advances in neural information processing systems, 30, 2017.

Zhao Kang, Xinjia Zhao, Chong Peng, Hongyuan Zhu, Joey Tianyi Zhou, Xi Peng, Wenyu Chen,
and Zenglin Xu. Partition level multiview subspace clustering. Neural Networks, 122:279–288,
2020.

Zhao Kang, Zhiping Lin, Xiaofeng Zhu, and Wenbo Xu. Structured graph learning for scalable
subspace clustering: From single view to multiview. IEEE Transactions on Cybernetics, 2021.
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A APPENDIX

A.1 PROOF OF THEOREM 3.1

Case 0: K = 1, we have F (t) =
t21(µ1+β)
t1N(µ1+β) + (N−t1)2(µ1+β)

(N−t1)N(µ1+β) = 1.

Case 1: K ≥ 2. Consider t ∈ (0, c1], the F (t) is given by

F (t) =
t21µ1 + t21β

t1c1µ1 + t1Nβ
+

(c1 − t1)2µ1 + (c2 − c1)2µ2 + ...+ (N − cK−1)2µK + (N − t1)2β

(c1 − t1)c1µ1 + (c2 − c1)2µ2 + ...+ (N − cK−1)2µK +N(N − t1)β
(6)

=
t1
c1

+
1 + (c1 − t1)2C1

1 + (c1 − t1)c1C1

= 1 +
t1

c1 + c21C1(c1 − t1)

= 1 +
1

(1 + c21C1)c1t
−1
1 − c21C1

where the mean weight of the ith, i ∈ {2, 3, ...,K} cluster with zero covariance is b(2,K) =
(c2−c1)2(µ2+β)+...+(N−ck−1)2(µK+β)

(N−c1)2 , andC1 = µ1+β
(N−c1)2b(2,K) . F (t) will increase with the increase

of t ∈ (0, c1].

Case 2: K ≥ 2. Consider t ∈ [cK−1, N), the F (t) is given by

F (t) =
(N − t1)2µ1 + t21β

(N − t1)(N − cK−1)µ1 + t1Nβ

+
c21µ1 + (c2 − c1)2µ2 + ...+ (cK−1 − cK−2)2µK−1 + (t1 − cK−1)2µK + (N − t1)2β

c21µ1 + (c2 − c1)2µ2 + ...+ (cK−1 − cK−2)2µK−1 + (t1 − cK−1)(N − cK−1)µK +N(N − t1)β

=
(N − t1)2µ1

(N − t1)(N − cK−1)µ1
+

c2K−1b(1,K − 1) + (t1 − cK−1)2µK

c2K−1b(1,K − 1) + (t1 − cK−1)(N − cK−1)µK

=
N − t1

N − cK−1
+

1 + (t1 − cK−1)2C2

1 + (t1 − cK−1)(N − cK−1)C2

= 1 +
N − t1

N − cK−1 + (N − cK−1)2C2(t1 − cK−1)

= 1 +
1

(N − cK−1) [1 + (N − cK−1)2C2] (N − t1)−1 − (N − cK−1)2C2

where b(1,K−1) =
c21(µ1+β)+(c2−c1)2(µ2+β)+...+(cK−1−cK−2)2(µK−1+β)

c2K−1
, andC2 = µK+β

c2K−1b(1,K−1)
.

F (t) will decrease with the increase of t ∈ [cK−1, N).

Case 3: K ≥ 3. Consider t ∈ [ck, ck+1], k = 1, 2, ...,K − 2.

F (t) =
c21µ1 + ...,+ (ck − ck−1)

2
µk + (t1 − ck)2µk+1 + t21β

c21µ1 + ...,+ (ck − ck−1)
2
µk + (ck+1 − ck)(t1 − ck)µk+1 + t1Nβ

(7)

+
(cl+2 − ck+1)

2
µl+2 + ...,+ (N − ck−1)

2
µK + (ck+1 − t1)2µk+1 + (N − t1)2β

(cl+2 − ck+1)
2
µl+2 + ...,+ (N − ck−1)

2
µK + (ck+1 − t1)(ck+1 − ck)µ2 +N(N − t1)β

=
c2kb(1, k) + (t1 − ck)2µk+1

c2kb(1, k) + (ck+1 − ck)(t1 − ck)µk+1
+

(N − ck+1)
2
b(k + 2,K) + (ck+1 − t1)2µk+1

(N − ck+1)
2
b(k + 2,K) + (ck+1 − t1)(ck+1 − ck)µk+1

where

b(1, k) =
c21(µ1 + β) + ...,+ (ck − ck−1)

2
(µk + β)

c2k
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and

b(k + 2,K) =
(ck+2 − ck+1)

2
(µk+2 + β) + ...,+ (N − ck−1)

2
(µK + β)

(N − ck+1)
2

Denote d = ck+1 − ck, and x = t1 − ck+1+ck
2 . Since t ∈ (ck+1, ck), we have x ∈ (−d2 ,

d
2 ). Denote

B1 = µk+1+β
c2kb(1,k)

, and B2 = µk+1+β
(N−ck+1)2b(k+2,K) . So, F (t) can be written as

F (x) =
x2(−d2B1B2 +B1 +B2) + 2dx(B1 −B2) + 3

4d
2(B1 +B2) + d4

4 B1B2 + 2

−x2d2B1B2 + xd(B1 −B2) + d4

4 B1B2 + 1
2d

2(B1 +B2) + 1

F (x) is convex for x ∈ (−d2 ,
d
2 ). If we set the differentiate of F (x) w.r.t. x as zero, we can obtain

x0 and we can say F (x) is minimized at x0, where

x0 =

{
(
√
B1d2+1+

√
B2d2+1)

2

2d(B2−B1) B1 6= B2

0 B1 = B2

Recall the definition of d, and x, F (t) is minimized at

t̂ =


(√

B1(ck+1−ck)2+1+
√
B2(ck+1−ck)2+1

)2

2(ck+1−ck)(B2−B1) + 1
2 (ck+1 + ck) B1 6= B2

1
2 (ck+1 + ck) B1 = B2

Thus, for the interval [ck, ck+1], k = 1, ...,K − 2, F (t) decreases for t ∈ [ck, t̂] and increases for
t ∈ [t̂, ck+1] if t̂ ∈ (ck, ck+1); F (t) decreases for t ∈ [ck, ck+1] if t̂ ≥ ck+1; F (t) increases for
t ∈ [ck, ck+1] if t̂ ≤ ck.
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