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Abstract001

Emergency reporting in remote regions is often002
delayed by infrastructural challenges and lan-003
guage barriers. While multimodal AI offers a004
solution, its deployment is hindered by scarce005
localized data and computational constraints.006
This paper addresses extreme data scarcity by007
proposing and evaluating a lightweight, Vision-008
to-Telugu emergency classification pipeline.009
We use a novel, imbalanced 70-image dataset010
(6 categories, e.g., fire, snake bite) to simu-011
late this data constraint. We benchmark 15012
vision encoders, pairing the classifier with a013
zero-overhead dictionary for 100% accurate014
Telugu translation. To validate our small-set015
results, we conduct a Bootstrap-Wilcoxon sta-016
tistical analysis. Our findings show DINOv2-017
Base (82.45% mean accuracy) statistically sig-018
nificantly outperforms a CLIP-ViT-B32 base-019
line (53.91%) with a large effect size (p <020
0.001, δ = +0.820). This work provides a021
blueprint and robust validation methodology022
for effective multi-modal systems in severe023
data-constrained, social-impact settings.024

1 Introduction025

In many remote and underserved communities, ac-026

cess to rapid emergency services is severely limited.027

This "digital divide" is compounded by infrastruc-028

tural gaps, low network connectivity, and signif-029

icant language barriers, which can prevent criti-030

cal alerts from reaching authorities (Chakravarthi031

et al., 2022). While AI-driven systems, includ-032

ing multimodal approaches for categorizing crisis033

events (Abavisani et al., 2020), present a promising034

solution, they face two practical hurdles: (1) the035

computational constraints of deploying models on036

low-power, "edge" devices, and (2) the extreme037

scarcity of localized, labeled training data.038

This second challenge defines a "few-shot learn-039

ing" problem, where a model must generalize from040

a tiny number of examples. For a practical solution,041

a model must also be highly efficient, adhering to042

design principles established by lightweight archi- 043

tectures (Sandler et al., 2019). 044

Given these constraints, the choice of a pre- 045

trained vision "backbone" is the most critical fac- 046

tor for success. Modern-day models are domi- 047

nated by new paradigms, such as vision-language 048

supervision (Radford et al., 2021), powerful self- 049

supervised methods (Oquab et al., 2024), and ad- 050

vanced transformer architectures (Liu et al., 2021). 051

However, it is unclear which of these SOTA pre- 052

training strategies performs best in an extremely 053

low-resource, social-impact context. 054

This paper tackles this question directly. We 055

present a feasibility study and robust benchmark 056

for a lightweight, multimodal (Vision-to-Telugu) 057

emergency alert system. We introduce a novel, im- 058

balanced 70-image dataset to simulate a realistic, 059

data-scarce environment. Our primary contribution 060

is a rigorous, statistical comparison of modern vi- 061

sion backbones. We find that the self-supervised 062

features from DINOv2(Oquab et al., 2024) are dra- 063

matically more effective for this few-shot task than 064

the features learned by the vision-language model 065

CLIP (Radford et al., 2021), providing a clear di- 066

rection for building practical, low-resource inter- 067

vention tools. 068

2 Related Work 069

Our work is positioned at the intersection of few- 070

shot learning, efficient model deployment, and low- 071

resource multi-modal contexts. 072

Few-Shot & Low-Resource Learning: Standard 073

deep learning assumes large, balanced datasets. In 074

contrast, our 70-image dataset represents an "ex- 075

treme" or "few-shot" learning problem, requiring 076

models to learn effectively from minimal data. In 077

such scenarios, the quality of a model’s pre-trained 078

features is paramount. Our work does not propose 079

a new few-shot algorithm, but rather evaluates the 080

practical utility of existing SOTA models in this 081
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critical, low-resource setting.082

Efficient Vision Models: A practical solution083

for remote areas cannot rely on cloud connectivity.084

This necessitates models designed for on-device085

efficiency. The principles of lightweight architec-086

tures, such as those pioneered by MobileNetV2087

(Sandler et al., 2019), set the standard for low-088

power mobile vision. We build on this by eval-089

uating modern architectures for their suitability in090

a high-accuracy, low-resource, low-compute bench-091

mark.092

Modern Pre-training Strategies: Our core contri-093

bution is the comparison of dominant pre-training094

paradigms. We compare:095

• Vision-Language Supervision: Models like096

CLIP (Radford et al., 2021) that learn features097

by mapping images to text from web-scale098

datasets.099

• Hierarchical Vision Transformers: Archi-100

tectures like the Swin Transformer (Liu et al.,101

2021), which have become a powerful, SOTA102

backbone for many vision tasks.103

• Self-Supervised Learning: Models like DI-104

NOv2 (Oquab et al., 2024) that learn rich, ro-105

bust features from images alone, without any106

human-provided labels or text.107

Our work directly compares the efficacy of these108

strategies in a practical, data-scarce social impact109

problem.110

Low-Resource Language Contexts: For the mul-111

timodal translation component, we target Telugu,112

a language underrepresented in many large-scale113

NLP datasets (Chakravarthi et al., 2022). This work114

acknowledges that a full, power-hungry translation115

model is often brittle and impractical in this context.116

We therefore opt for a zero-overhead, deterministic117

dictionary, which is 100% accurate for our defined118

classes and represents the most robust, lightweight119

solution for this application.120

3 Methodology121

3.1 Proposed System Workflow122

The system is specifically designed for practical123

deployment in extremely low-infrastructure envi-124

ronments, such as remote and tribal regions, where125

users typically rely on basic, low-resource smart-126

phones and experience intermittent network con-127

nectivity. As illustrated in Figure 1, the workflow128

begins when a tribal or remote user captures an129

image of a perceived emergency. This image is im- 130

mediately processed by a lightweight, on-device vi- 131

sion model, which efficiently classifies the situation 132

into one of six pre-defined categories. Crucially, 133

this processing happens locally on the device, min- 134

imizing the need for immediate network access. 135

The resulting classification (e.g., ’fire’) is paired 136

with the device’s location coordinates and instantly 137

translated into the local language (Telugu) using a 138

zero-overhead, deterministic dictionary (e.g., ’agni 139

pramadam’ in telugu scrpt). Finally, this minimal, 140

text-based alert (consisting of the Telugu label and 141

GPS coordinates – only a few bytes of data) is 142

transmitted to local authorities. The critical advan- 143

tage of this "classify-then-translate" design is its 144

extreme resilience to poor connectivity: by sending 145

only a minimal text string instead of a large image 146

file, the system can reliably deliver urgent informa- 147

tion even over very low-bandwidth or intermittent 148

mobile signals, ensuring timely intervention in ar- 149

eas previously disconnected from rapid response 150

services. 151

Figure 1: System Workflow

3.2 Emergency-Vision Dataset 152

To simulate a realistic, "found data" scenario for 153

a low-resource deployment, we manually curated 154

and labeled a novel dataset. This dataset consists of 155

70 total images sourced from public web domains. 156

Each image was manually labeled into one of 157

six categories: fire, flood, building collapse, road 158

accident, snake bite, or no condition. 159

Crucially, the dataset is intentionally small and 160

highly imbalanced, reflecting the practical diffi- 161

culty of acquiring labeled data for rare or sensitive 162

events. The class distribution is highly skewed, 163
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with no condition (24 images, 34.3%) being the164

largest class and snake bite (4 images, 5.7%) being165

the smallest.166

Furthermore, to ensure the benchmark reflects167

real-world challenges, the dataset includes images168

captured under diverse lighting conditions, con-169

taining 38 "day" images and 28 "night" images.170

This challenging, low-data, and imbalanced dataset171

forms the basis of our few-shot learning evaluation.172

4 Experimental Setup173

Our experiment is designed to identify the most ro-174

bust and lightweight vision model for our proposed175

workflow, given the extreme data constraints.176

Training Pipeline: We split our 70-image dataset177

into a 70% training (49 images), 15% validation178

(10 images), and 15% test set (11 images). We em-179

ployed a standard transfer learning approach: for180

each model, the pre-trained backbone was frozen,181

and only a simple classifier head—consisting of a182

50% dropout layer and a final linear layer—was183

trained (to account for the low data).184

All models were trained for a maximum of 30185

epochs using the AdamW optimizer (learning rate186

1e− 4, 0.01 L2 weight decay) and a CrossEntropy-187

Loss function. We used a ReduceLROnPlateau188

scheduler and EarlyStopping with a patience of 10189

epochs. To compensate for the small dataset, we190

applied heavy data augmentation during training,191

including random cropping, horizontal flipping, ro-192

tation, color jitter, and random erasing.193

Model Benchmarking: We conducted a compre-194

hensive benchmark of 15 models, including stan-195

dard CNNs (e.g., MobileNetV2, EfficientNet-B0),196

Vision Transformers (ViT, BEiT), and state-of-the-197

art self-supervised (DINO, DINOv2) and vision-198

language (CLIP) models. Due to the 4-page limit,199

we present results for the top 3 performing models200

and the CLIP-ViT-B32 model, which serves as our201

robust baseline.202

Translation Module: The translation step is im-203

plemented as a zero-overhead, O(1) deterministic204

dictionary lookup. This component maps the 6205

English class labels from the classifier to their vali-206

dated Telugu translations (e.g., ’fire’ → ’agni pra-207

maadam’ in telugu script). This approach was cho-208

sen over an ML translation model as it is 100% ac-209

curate for our domain, instantaneous, and adds zero210

computational or memory load to the on-device211

application, making it ideal for the low-resource212

context.213

4.1 Statistical Validation 214

Given our extremely small test set (11 images), a 215

single test accuracy score is highly sensitive to the 216

specific data split and is not a reliable measure of 217

performance. A model achieving 90% vs. 80% 218

accuracy could be a difference of one single image. 219

To rigorously validate our findings, we employed 220

a non-parametric statistical comparison. We used 221

Bootstrap Resampling to simulate 1,000 different 222

test sets. For each of the N = 1, 000 iterations, we 223

created a new test set by sampling with replacement 224

from our original 11-image test set. 225

On each bootstrapped sample, we calculated 226

the accuracy for our baseline (CLIP-ViT-B32) and 227

for each of the top-performing models. This pro- 228

cess generated 1,000 paired accuracy scores for 229

each comparison. We then used the Wilcoxon 230

signed-rank test—a robust test for non-normally 231

distributed data—to determine if the observed per- 232

formance difference between a model and the base- 233

line was statistically significant (p < 0.05). We 234

also computed Cliff’s Delta (δ) to measure the ef- 235

fect size (i.e., the magnitude of the performance 236

gain). 237

5 Results and Discussion 238

The results of our statistical validation are pre- 239

sented in Table 1. 240

Table 1: Statistical comparison of top models 241

against the CLIP-ViT-B32 baseline, based on N = 242

100 bootstrap samples. All comparisons show a 243

statistically significant difference (p < 0.001). 244

Our key finding is that DINOv2-Base is the 245

clear winner, achieving a mean accuracy of 82.45% 246

across the bootstrap samples—a massive +28.55% 247

absolute gain over the CLIP-ViT-B32 baseline 248

(53.91%). This improvement is statistically sig- 249

nificant (p < 0.001) with a "large" effect size 250

(δ = 0.82). The other models, DINOv2-Large 251

(δ = 0.64) and Swin-Tiny (δ = 0.29), also 252

significantly outperformed the baseline.The supe- 253

rior performance of DINOv2-Base over DINOv2- 254

Large (74.91%) suggests the larger model overfit 255

our small 49-image training set, while the "Base" 256

model offered better generalization. This strongly 257

supports using DINOv2’s self-supervised features 258

for few-shot tasks over CLIP’s language-supervised 259

ones. 260

We then analyzed per-class F1 scores of the mod- 261

els and confusion matrix (DINOv2-Base) from the 262

original 11-image test set. 263
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Model Mean Acc. Baseline Acc. Diff. p-value Cliff’s δ

DINOv2-Base 82.45% 53.91% +28.55% < 0.001 0.82
DINOv2-Large 74.91% 53.91% +21.00% < 0.001 0.64
Swin-Tiny 63.55% 53.91% +9.64% < 0.001 0.29

Table 1: Statistical comparison against the ‘CLIP-ViT-B32‘ baseline, based on N = 100 bootstrap samples. All
comparisons show a statistically significant difference (p < 0.001).

Figure 2 compares the per-class F1 scores of our264

top two models against the baseline. This chart265

reinforces DINOv2-Base’s dominance.266

Figure 2: Per-class F1 scores on the test set.

The confusion matrix for DINOv2-Base (Fig-267

ure 3) provides a clear diagnosis of the 81.82%268

accuracy (9/11 correct). We see two misclassifi-269

cations: one ’No Condition’ image was mistaken270

for a ’Road Accident’, and, critically, the single271

’Snake Bite’ test image was misclassified as ’Fire’.272

This ’Snake Bite’ error is the reason for the 0%273

F1 score for that class in Figure 2. Notably, this274

was a universal failure across all benchmarked mod-275

els, as seen in Figure 2. This is an expected and276

direct consequence of the extreme class imbalance277

in our 70-image dataset, which contained only four278

’snake bite’ images (5.7% of the data). With such a279

minimal training signal, no model was able to learn280

distinguishing features for this rare class. This281

highlights a clear limitation and an important area282

for future work, which would involve targeted data283

augmentation or sourcing for this critical, under-284

represented category.285

6 Conclusion286

We demonstrated the feasibility of a lightweight,287

multi-modal (Vision-to-Telugu) emergency alert288

system for extremely low-resource settings. Using289

a 70-image few-shot dataset, our statistical analysis290

proved that DINOv2-Base provides a +28.55% ab-291

solute accuracy gain over the CLIP-ViT-B32 base-292

line, validating the use of self-supervised models293

for data-scarce social good tasks. The primary294

Figure 3: Confusion matrix for DINOv2-Base on the
11-image test set (81.82% accuracy). The ’Snake Bite’
class was misclassified as ’Fire’.

limitation was the failure of all models to classify 295

’snake bite’ due to insufficient training data. 296

7 Limitations and Ongoing Work 297

The primary limitation of our study is the 70-image 298

dataset, which is insufficient for production-level 299

deployment. This extreme data scarcity, partic- 300

ularly for the ’snake bite’ class (only 4 training 301

images), led to a universal classification failure for 302

that category. 303

Our ongoing work focuses on three areas. First, 304

we are actively collecting a larger and more di- 305

verse dataset across all categories to improve model 306

robustness and address these data-scarce limita- 307

tions. Second, we are packaging the DINOv2-Base 308

pipeline into a lightweight PWA (Progressive Web 309

App) for field testing. Finally, to scale beyond our 310

initial 6 classes, we plan to replace the static dic- 311

tionary with a lightweight, on-device translation 312

model that can handle more nuanced alert mes- 313

sages. 314
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