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Abstract

Emergency reporting in remote regions is often
delayed by infrastructural challenges and lan-
guage barriers. While multimodal AT offers a
solution, its deployment is hindered by scarce
localized data and computational constraints.
This paper addresses extreme data scarcity by
proposing and evaluating a lightweight, Vision-
to-Telugu emergency classification pipeline.
We use a novel, imbalanced 70-image dataset
(6 categories, e.g., fire, snake bite) to simu-
late this data constraint. We benchmark 15
vision encoders, pairing the classifier with a
zero-overhead dictionary for 100% accurate
Telugu translation. To validate our small-set
results, we conduct a Bootstrap-Wilcoxon sta-
tistical analysis. Our findings show DINOv2-
Base (82.45% mean accuracy) statistically sig-
nificantly outperforms a CLIP-ViT-B32 base-
line (53.91%) with a large effect size (p <
0.001, § = +0.820). This work provides a
blueprint and robust validation methodology
for effective multi-modal systems in severe
data-constrained, social-impact settings.

1 Introduction

In many remote and underserved communities, ac-
cess to rapid emergency services is severely limited.
This "digital divide" is compounded by infrastruc-
tural gaps, low network connectivity, and signif-
icant language barriers, which can prevent criti-
cal alerts from reaching authorities (Chakravarthi
et al., 2022). While Al-driven systems, includ-
ing multimodal approaches for categorizing crisis
events (Abavisani et al., 2020), present a promising
solution, they face two practical hurdles: (1) the
computational constraints of deploying models on
low-power, "edge" devices, and (2) the extreme
scarcity of localized, labeled training data.

This second challenge defines a "few-shot learn-
ing" problem, where a model must generalize from
a tiny number of examples. For a practical solution,
a model must also be highly efficient, adhering to

design principles established by lightweight archi-
tectures (Sandler et al., 2019).

Given these constraints, the choice of a pre-
trained vision "backbone" is the most critical fac-
tor for success. Modern-day models are domi-
nated by new paradigms, such as vision-language
supervision (Radford et al., 2021), powerful self-
supervised methods (Oquab et al., 2024), and ad-
vanced transformer architectures (Liu et al., 2021).
However, it is unclear which of these SOTA pre-
training strategies performs best in an extremely
low-resource, social-impact context.

This paper tackles this question directly. We
present a feasibility study and robust benchmark
for a lightweight, multimodal (Vision-to-Telugu)
emergency alert system. We introduce a novel, im-
balanced 70-image dataset to simulate a realistic,
data-scarce environment. Our primary contribution
is a rigorous, statistical comparison of modern vi-
sion backbones. We find that the self-supervised
features from DINOv2(Oquab et al., 2024) are dra-
matically more effective for this few-shot task than
the features learned by the vision-language model
CLIP (Radford et al., 2021), providing a clear di-
rection for building practical, low-resource inter-
vention tools.

2 Related Work

Our work is positioned at the intersection of few-
shot learning, efficient model deployment, and low-
resource multi-modal contexts.

Few-Shot & Low-Resource Learning: Standard
deep learning assumes large, balanced datasets. In
contrast, our 70-image dataset represents an "ex-
treme" or "few-shot" learning problem, requiring
models to learn effectively from minimal data. In
such scenarios, the quality of a model’s pre-trained
features is paramount. Our work does not propose
a new few-shot algorithm, but rather evaluates the
practical utility of existing SOTA models in this



critical, low-resource setting.

Efficient Vision Models: A practical solution
for remote areas cannot rely on cloud connectivity.
This necessitates models designed for on-device
efficiency. The principles of lightweight architec-
tures, such as those pioneered by MobileNetV2
(Sandler et al., 2019), set the standard for low-
power mobile vision. We build on this by eval-
uating modern architectures for their suitability in
a high-accuracy, low-resource, low-compute bench-
mark.

Modern Pre-training Strategies: Our core contri-
bution is the comparison of dominant pre-training
paradigms. We compare:

* Vision-Language Supervision: Models like
CLIP (Radford et al., 2021) that learn features
by mapping images to text from web-scale
datasets.

¢ Hierarchical Vision Transformers: Archi-
tectures like the Swin Transformer (Liu et al.,
2021), which have become a powerful, SOTA
backbone for many vision tasks.

* Self-Supervised Learning: Models like DI-
NOvV2 (Oquab et al., 2024) that learn rich, ro-
bust features from images alone, without any
human-provided labels or text.

Our work directly compares the efficacy of these
strategies in a practical, data-scarce social impact
problem.

Low-Resource Language Contexts: For the mul-
timodal translation component, we target Telugu,
a language underrepresented in many large-scale
NLP datasets (Chakravarthi et al., 2022). This work
acknowledges that a full, power-hungry translation
model is often brittle and impractical in this context.
We therefore opt for a zero-overhead, deterministic
dictionary, which is 100% accurate for our defined
classes and represents the most robust, lightweight
solution for this application.

3 Methodology
3.1 Proposed System Workflow

The system is specifically designed for practical
deployment in extremely low-infrastructure envi-
ronments, such as remote and tribal regions, where
users typically rely on basic, low-resource smart-
phones and experience intermittent network con-
nectivity. As illustrated in Figure 1, the workflow
begins when a tribal or remote user captures an

image of a perceived emergency. This image is im-
mediately processed by a lightweight, on-device vi-
sion model, which efficiently classifies the situation
into one of six pre-defined categories. Crucially,
this processing happens locally on the device, min-
imizing the need for immediate network access.

The resulting classification (e.g., ’fire’) is paired
with the device’s location coordinates and instantly
translated into the local language (Telugu) using a
zero-overhead, deterministic dictionary (e.g., “agni
pramadam’ in telugu scrpt). Finally, this minimal,
text-based alert (consisting of the Telugu label and
GPS coordinates — only a few bytes of data) is
transmitted to local authorities. The critical advan-
tage of this "classify-then-translate” design is its
extreme resilience to poor connectivity: by sending
only a minimal text string instead of a large image
file, the system can reliably deliver urgent informa-
tion even over very low-bandwidth or intermittent
mobile signals, ensuring timely intervention in ar-
eas previously disconnected from rapid response
services.
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Figure 1: System Workflow

3.2 Emergency-Vision Dataset

To simulate a realistic, "found data" scenario for
a low-resource deployment, we manually curated
and labeled a novel dataset. This dataset consists of
70 total images sourced from public web domains.

Each image was manually labeled into one of
six categories: fire, flood, building collapse, road
accident, snake bite, or no condition.

Crucially, the dataset is intentionally small and
highly imbalanced, reflecting the practical diffi-
culty of acquiring labeled data for rare or sensitive
events. The class distribution is highly skewed,



with no condition (24 images, 34.3%) being the
largest class and snake bite (4 images, 5.7%) being
the smallest.

Furthermore, to ensure the benchmark reflects
real-world challenges, the dataset includes images
captured under diverse lighting conditions, con-
taining 38 "day" images and 28 "night" images.
This challenging, low-data, and imbalanced dataset
forms the basis of our few-shot learning evaluation.

4 Experimental Setup

Our experiment is designed to identify the most ro-
bust and lightweight vision model for our proposed
workflow, given the extreme data constraints.

Training Pipeline: We split our 70-image dataset
into a 70% training (49 images), 15% validation
(10 images), and 15% test set (11 images). We em-
ployed a standard transfer learning approach: for
each model, the pre-trained backbone was frozen,
and only a simple classifier head—consisting of a
50% dropout layer and a final linear layer—was
trained (to account for the low data).

All models were trained for a maximum of 30
epochs using the AdamW optimizer (learning rate
le —4,0.01 L2 weight decay) and a CrossEntropy-
Loss function. We used a ReduceLROnPlateau
scheduler and EarlyStopping with a patience of 10
epochs. To compensate for the small dataset, we
applied heavy data augmentation during training,
including random cropping, horizontal flipping, ro-
tation, color jitter, and random erasing.

Model Benchmarking: We conducted a compre-
hensive benchmark of 15 models, including stan-
dard CNNss (e.g., MobileNetV2, EfficientNet-BO0),
Vision Transformers (ViT, BEiT), and state-of-the-
art self-supervised (DINO, DINOv2) and vision-
language (CLIP) models. Due to the 4-page limit,
we present results for the top 3 performing models
and the CLIP-ViT-B32 model, which serves as our
robust baseline.

Translation Module: The translation step is im-
plemented as a zero-overhead, O(1) deterministic
dictionary lookup. This component maps the 6
English class labels from the classifier to their vali-
dated Telugu translations (e.g., *fire’ — “agni pra-
maadam’ in telugu script). This approach was cho-
sen over an ML translation model as it is 100% ac-
curate for our domain, instantaneous, and adds zero
computational or memory load to the on-device
application, making it ideal for the low-resource
context.

4.1 Statistical Validation

Given our extremely small test set (11 images), a
single test accuracy score is highly sensitive to the
specific data split and is not a reliable measure of
performance. A model achieving 90% vs. 80%
accuracy could be a difference of one single image.

To rigorously validate our findings, we employed
a non-parametric statistical comparison. We used
Bootstrap Resampling to simulate 1,000 different
test sets. For each of the N = 1,000 iterations, we
created a new test set by sampling with replacement
from our original 11-image test set.

On each bootstrapped sample, we calculated
the accuracy for our baseline (CLIP-ViT-B32) and
for each of the top-performing models. This pro-
cess generated 1,000 paired accuracy scores for
each comparison. We then used the Wilcoxon
signed-rank test—a robust test for non-normally
distributed data—to determine if the observed per-
formance difference between a model and the base-
line was statistically significant (p < 0.05). We
also computed Cliff’s Delta (d) to measure the ef-
fect size (i.e., the magnitude of the performance
gain).

5 Results and Discussion

The results of our statistical validation are pre-
sented in Table 1.

Table 1: Statistical comparison of top models
against the CLIP-ViT-B32 baseline, based on N =
100 bootstrap samples. All comparisons show a
statistically significant difference (p < 0.001).

Our key finding is that DINOv2-Base is the
clear winner, achieving a mean accuracy of 82.45%
across the bootstrap samples—a massive +28.55%
absolute gain over the CLIP-ViT-B32 baseline
(83.91%). This improvement is statistically sig-
nificant (p < 0.001) with a "large" effect size
(0 = 0.82). The other models, DINOv2-Large
(0 = 0.64) and Swin-Tiny (§ = 0.29), also
significantly outperformed the baseline.The supe-
rior performance of DINOv2-Base over DINOv2-
Large (74.91%) suggests the larger model overfit
our small 49-image training set, while the "Base"
model offered better generalization. This strongly
supports using DINOv2’s self-supervised features
for few-shot tasks over CLIP’s language-supervised
ones.

We then analyzed per-class F1 scores of the mod-
els and confusion matrix (DINOv2-Base) from the
original 11-image test set.



Model Mean Acc. Baseline Acc. Diff. p-value Cliff’s §
DINOv2-Base 82.45% 5391% +28.55% < 0.001 0.82
DINOv2-Large 74.91% 5391% +21.00% < 0.001 0.64
Swin-Tiny 63.55% 5391%  +9.64% < 0.001 0.29

Table 1: Statistical comparison against the ‘CLIP-ViT-B32° baseline, based on N = 100 bootstrap samples. All
comparisons show a statistically significant difference (p < 0.001).

Figure 2 compares the per-class F1 scores of our
top two models against the baseline. This chart
reinforces DINOv2-Base’s dominance.

Per-Class F1 Scores: DINOv2-Base vs DINOv2-Large vs CLIP-ViT-B32
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Figure 2: Per-class F1 scores on the test set.

The confusion matrix for DINOv2-Base (Fig-
ure 3) provides a clear diagnosis of the 81.82%
accuracy (9/11 correct). We see two misclassifi-
cations: one ’No Condition’ image was mistaken
for a "Road Accident’, and, critically, the single
’Snake Bite’ test image was misclassified as "Fire’.

This ’Snake Bite’ error is the reason for the 0%
F1 score for that class in Figure 2. Notably, this
was a universal failure across all benchmarked mod-
els, as seen in Figure 2. This is an expected and
direct consequence of the extreme class imbalance
in our 70-image dataset, which contained only four
’snake bite” images (5.7% of the data). With such a
minimal training signal, no model was able to learn
distinguishing features for this rare class. This
highlights a clear limitation and an important area
for future work, which would involve targeted data
augmentation or sourcing for this critical, under-
represented category.

6 Conclusion

We demonstrated the feasibility of a lightweight,
multi-modal (Vision-to-Telugu) emergency alert
system for extremely low-resource settings. Using
a 70-image few-shot dataset, our statistical analysis
proved that DINOv2-Base provides a +28.55% ab-
solute accuracy gain over the CLIP-ViT-B32 base-
line, validating the use of self-supervised models
for data-scarce social good tasks. The primary

Confusion Matrix: DINOv2-Base (Test Acc: 81.82%)

Figure 3: Confusion matrix for DINOv2-Base on the
11-image test set (81.82% accuracy). The ’Snake Bite’
class was misclassified as "Fire’.

limitation was the failure of all models to classify
’snake bite’ due to insufficient training data.

7 Limitations and Ongoing Work

The primary limitation of our study is the 70-image
dataset, which is insufficient for production-level
deployment. This extreme data scarcity, partic-
ularly for the ’snake bite’ class (only 4 training
images), led to a universal classification failure for
that category.

Our ongoing work focuses on three areas. First,
we are actively collecting a larger and more di-
verse dataset across all categories to improve model
robustness and address these data-scarce limita-
tions. Second, we are packaging the DINOv2-Base
pipeline into a lightweight PWA (Progressive Web
App) for field testing. Finally, to scale beyond our
initial 6 classes, we plan to replace the static dic-
tionary with a lightweight, on-device translation
model that can handle more nuanced alert mes-
sages.
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