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Abstract

In this work, we introduce a new approach to model group actions in autoencoders.
Diverging from prior research in this domain, we propose to learn the group actions
on the latent space rather than strictly on the data space. This adaptation enhances
the versatility of our model, enabling it to learn a broader range of scenarios
prevalent in the real world, where groups can act on latent factors. Our method
allows a wide flexibility in the encoder and decoder architectures and does not
require group-specific layers. In addition, we show that our model theoretically
serves as a superset of methods that learn group actions on the data space. We
test our approach on five image datasets with diverse groups acting on them and
demonstrate superior performance to recently proposed methods for modeling
group actions.

1 Introduction

Group actions are a natural mathematical representation of symmetries and geometric transformations
of data. Recent work has demonstrated that explicitly modeling and learning such group actions in
neural networks can be beneficial for many tasks, such as learning latent representations [15, 22, 33],
generative models [8, 12, 34], and classifiers [1, 4]. While many existing works model group actions
on the data space, to the best of our knowledge, nearly all prior works have overlooked group actions
on latent factors.

However, there are certain scenarios where we desire to model group actions on factors that are not
directly observed. Figure 1 provides an illustrative example. The top row shows a rotating image
of a ‘7’, i.e., an orbit under the group action of SO(2) on the image space. (Technically, because of
image interpolation, this is only approximately a group action.) This can be effectively modeled using
existing approaches designed to learn group actions on the data space. However, if we introduce a
slight modification, adding a fixed block, then the digit will be partially occluded for some rotations.
The occluded part of the digit is absent from these images but reappears when the digit continues to
rotate. This new scenario can no longer be modeled as a group action on the data space. Instead, the
group is now acting on the underlying factors. By encoding the representation of these latent factors,
specifically the digit in this example, and learning the group action on it, we will be able to correctly
model this scenario. While this is a synthesized example, it does exemplify a common phenomenon
in real-world images, namely occlusion. Other scenarios in real-world data involve group actions on
latent factors. For example, consider taking photographs of a rotating 3D object. The rotation group
will be acting on the 3D object geometry but not on the resulting 2D images.
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Figure 1: Top row: a group action on the image; bottom row: a group action on the digit but not on
the image

We propose to learn group actions in the latent space, without the necessity to conform to group actions
on the data space. Employing an autoencoder framework, we learn the latent data representations on
which the group acts. Our method is not confined to any specific group or a certain set of groups. It
also does not depend on any group-specific layers for encoding and decoding the data, i.e., it allows
wide flexibility in the architecture of the autoencoder, as long as it is expressive enough. We present
several examples of groups to explain how our model can be applied. Furthermore, we theoretically
demonstrate that our model is capable of learning group actions on the data space as well, positioning
it as an extension of general data space group action modeling methods.

In summary, there are four key elements to our contributions:

• We propose a method to learn group actions in the latent space, which allows our model to
perform group actions on the latent factors.

• Our approach is flexible and can be applied to different groups without group-specific
architectures to obtain latent representations. This enables the model to benefit from any
advanced deep learning frameworks.

• We focus on rendering new data given the applied group action rather than merely learning
the representation.

• The proposed strategy can be seen as an extension of prior works on modeling group actions
in the data space. It can still be used to model group actions on the data space, which we
show is a special case of the more general setup.

2 Related works

There has been considerable research on incorporating group actions into data representation learning
and to benefit downstream tasks. For instance, Dey et al. [8] introduces a GAN-type model with a
discriminator that is equivariant to the p4 or p4m group, resulting in enhanced generative performance
even with limited training samples. Moreover, instead of learning the group actions in the data space,
Park et al. [21] learn representations equivariant to the latent group actions with a contrastive loss.
Wang et al. [30] propose to exploit extrinsic equivariance to model latent representation symmetries
and demonstrate benefits in a downstream reinforcement learning task.

Furthermore, part of these works are interested in rendering new data by applying group actions. A
significant portion of the studies concentrates on a specific group that acts on the data space. To
give an example, Hoogeboom et al. [12] put forth a diffusion model that maintains equivariance
to 3D Euclidean transforms at each denoising time step, specifically tailored for 3D molecule
generation. In contrast, Yim et al. [34] propose a generative model of protein backbones, modeled as
a product of rigid body motions, using a manifold diffusion model [2]. These approaches rely on
architectures tailored to be equivariant to a specific group or a set of groups. Cohen and Welling [4]
first introduced a group-equivariant convolutional neural network (CNN) featuring group-equivariant
convolutional layers. This architecture is designed for groups that represent discrete transformations,
including translations, rotations, and reflections. This was followed by multiple works extending
group equivariance to broader classes of groups and architectures [5, 23, 31]. In another vein, Satorras
et al. [26] present an E(n) equivariant graph neural network, where each graph convolutional layer is
inherently designed to be E(n)-equivariant.

In alignment with our proposed method, several other works strive to construct models with more
flexibility on the types of groups involved. For example, Quessard et al. [22] parameterize a group
representation as a product of rotation matrices. The model assumes a finite number of group elements
and learns a representation for each. Training involves sequential data collected from a series of
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group elements acting on the underlying generative factor in a known order. It is noteworthy that
this model uses the product of groups itself as the latent representation. However, a key distinction
is that it cannot effectively model group actions on sets containing more than one orbit, due to its
direct mapping from the group to the data space. On the other hand, Winter et al. [32] propose
learning latent representations consisting of group-invariant components and group elements for
acting on the data space. While their framework is not specific to any particular group, the model
requires group-specific architectures capable of generating group-invariant representations, e.g.,
steerable CNNs [5]. In another approach, Hwang et al. [13] suggest predicting the group element that
transforms one data point to another. Utilizing a VAE [17] type architecture, they use a Euclidean
vector space as the group and define the group action on the data space to correspond to addition in
the latent space. This results in a group action on the data space by enforcing the encoder and decoder
to both be diffeomorphic mappings. However, this design choice significantly limits the flexibility as
it can only model groups that are isomorphic to a real vector space.

Another line of work that is related to our work is novel view synthesis, where the goal is to take an
input image of a scene and generate a new image of that scene from a novel camera pose. Although
our method is not specifically a novel view synthesis model, i.e., it is a method for more general
latent group actions, we do demonstrate its effectiveness in novel view synthesis tasks as an example
of 3D rotation group actions. Therefore, we compare to existing geometry-free novel view synthesis
methods [9, 28]. Unlike geometry-aware methods [18, 27, 35], geometry-free approaches do not
necessitate test-time optimization, which is also the case for our method. For example, Sajjadi et al.
[25] utilizes a transformer architecture which also support multiple view inputs. On the other hand,
Dupont et al. [9] introduces equivariance into the latent representations. However, unlike our method,
they directly apply group actions to the 3D latent volumes as if they are 3D images. This results in
higher time complexity despite their relatively small model sizes. Also note that novel view synthesis
is by definition intended to learn the view transformation of the whole scene. While our approach
is more flexible and for example can be applied to the scenario where only a foreground object is
rotating, while the background stays fixed.

3 Group actions on latent representations

We will consider an autoencoder that takes a data point x ∈ X and encodes it into a latent representa-
tion z ∈ Z through the encoder mapping E : X → Z . The decoder mapping D : Z → X maps a
latent representation back into the data space. Typically, the data space, X , and latent space, Z , are
real vector spaces, but the mathematical development below does not require this. We will denote the
image of D as X ′ = im(D) ⊆ X , which is the space of all possible reconstructions of the decoder.
Furthermore, we consider a group G that acts on the latent space Z via

α : G×Z → Z.

When the context is clear, we will denote the group action as g . z = α(g, z). We will also use the
notation αg : Z → Z to mean αg(z) = α(g, z). As a reminder, a group action is required to follow
two rules for all g1, g2 ∈ G and all z ∈ Z:

e . z = z,

g2 .(g1 . z) = (g2g1) . z,

where e ∈ G denotes the identity element.

3.1 Varying and invariant latent representations

In general scenarios, we need to model both factors that are varying with the group action and those
that are invariant to the group action. Coming back to the example of taking photos of rotating 3D
objects, the background is invariant to the rotations. Therefore, we propose to split the latent space Z
into a direct product of varying and invariant parts: Z = Zv ×Zi. We will write a point z ∈ Z as

z = [zv; zi],

where zv ∈ Zv and zi ∈ Zi represent factors that are varying with and invariant to the group action,
respectively. Given a group action g . on Zv , we define the group action on Z to be:

g . z = [g . zv; zi].
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Figure 2: Illustration of our latent space group action model.

It is clear that the identity element e ∈ G will leave z fixed. Next, we check the associativity:

g2 .(g1 . z) = [g2 . g1 . zv; zi]

= [(g2 · g1) . zv; zi]
= (g2 · g1) . z,

and therefore, this is a valid group action on Z .

3.2 Latent space group action model

The goal of training is to jointly learn to autoencode a latent representation of our data along with a
group action on those latent factors. For the target group action α, we directly compute α(g, z). The
output of this group action is then sent as input to a decoder, D. During training, we look at a pair of
data, x1, x2 ∈ X , at a time, whose corresponding latent representations, z1, z2 ∈ Z , lie in the same
orbit, and we are given g ∈ G such that z2 = g . z1.

The loss is simply the reconstruction loss with group actions, where the objective is to minimize:

LX (x2, D(g . z1)).

LX can be any standard reconstruction loss appropriate for data in X , e.g., binary cross entropy
(BCE) loss or mean square error (MSE), etc. Similarly, we symmetrically add the reconstruction loss
of x1, which gives the final form:

L(x1, x2) = LX (x2, D(g . z1)) + LX (x1, D(g−1 . z2)).

We also find adding LPIPS [36] loss is also helpful for image rendering. It is especially beneficial
when the given image only contains very limited information of the latent factor on which the group
acts. For example, if we rotate a 3D object, having single random angle of view only gives us scarce
information. In our experiments, we found that the perceptual loss guides the model to render more
visually convincing images in this circumstance.

3.3 Skip connections and attention

When applying group actions to the latent representation z, we would like to maintain generalizability
by acting on z itself instead of transforming the latent coordinates as done by Dupont et al. [9]. This
requires us to sufficiently “mix” spatial dimensions when the given group action is affecting the image
globally. However, it is a well-known fact that this will result in some loss of image details [19]. To
address this, we include skip connections in our architecture inspired by the U-Net [24].

We skip connect the higher resolution features from the earlier stages of the downsampling path to
the corresponding step of the upsampling path. Since the spatial dimensions of the higher resolution
features are not mixed adequately, an attention module [29] is applied before concatenating to the
upsampling path, where the upsampled feature is acting as the query. This gives us the overall
framework of our method, as illustrated in Figure 2. The downsampling module can employ either
convolutional layers paired with pooling layers or strided convolutions. Conversely, for upsampling,
transposed convolutional layers in conjunction with plain convolutional layers can be utilized.
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4 Induced group actions on the data space

In this section, we discuss the conditions under which a group action on the latent space, Z , will
induce a group action on the output space of the decoder, X ′ = im(D) ⊆ X . It is worth mentioning
that we don’t define this as a group action on the full data space, X , because it doesn’t make sense to
consider points in X that can’t be reconstructed by the decoder. We start with a definition:

Definition 4.1. A decoder D is called consistent with a group action of G on Z if for any z1, z2 ∈ Z
such that D(z1) = D(z2), it is the case that D(g . z1) = D(g . z2) for any g ∈ G.

Proposition 4.2. Let D be a decoder consistent with a group action α : G × Z → Z . Then D
induces a group action α̃ : G×X ′ → X ′ on X ′ = im(D), defined as follows. For any x ∈ X ′, there
exists z ∈ Z such that D(z) = x. Then α̃(g, x) = D(g . z). In other words, the following diagram
commutes:

Z Z

X ′ X ′

αg

D D

α̃g

Proof. We first note that the induced group action α̃ is a well-defined mapping. That is, α̃(g, x) does
not depend on the latent representation of x, precisely because of the consistency condition on D.
Next, we show that α̃ satisfies the properties of a group action. For any g1, g2 ∈ G and x ∈ X ′, we
can pick a z ∈ Z such that x = D(z), and we have

α̃(e, x) = D(α(e, z)) = D(z) = x, and
α̃(g2, α̃(g1, x)) = α̃(g2, D(α(g1, z)))

= D(α(g2, α(g2, z)))

= D(α(g2g1, z))

= α̃(g2g1, x),

which are the two properties for α̃ to be a group action.

The consistency condition of Definition 4.1 is difficult to check directly. The next result shows a
more intuitive condition that a decoder that can be inverted by an encoder satisfies the consistency
condition for any group action on its latent space.

Proposition 4.3. Let E : X → Z and D : Z → X be an autoencoder such that E(D(z)) = z for
all z ∈ Z . Let α : G×Z → Z be a group action. Then D is consistent with α and thus induces a
group action α̃ on X ′ (as defined in Proposition 4.2).

Proof. The condition E(D(z)) = z implies that D is injective. To see this, consider two points
z1, z2 ∈ Z such that z1 ̸= z2. Then it must be the case that D(z1) ̸= D(z2) in order for E(D(z1)) =
z1 ̸= z2 = E(D(z2)). Next, from Definition 4.1 it is clear that injectivity of D implies it is consistent
with any group action.

We note that the condition that E(D(z)) = z for all z ∈ Z , i.e., that E be a left-inverse of D, does
not imply D(E(x)) = x. In other words, the encoder and decoder are not necessarily (two-sided)
inverses of each other, as is the case in [13]. In that work, the two-sided inverse requirement means
that Z and X must be vector spaces of the same dimension. For the one-sided inverse condition in
Proposition 4.3, Z and X do not have to be isomorphic sets. For example, if Z and X are vector
spaces, Z can have smaller dimension than X .

5 Examples

5.1 2D and 3D rotations

We look at 2D and 3D rotation groups, SO(2) and SO(3). The rotation matrix g ∈ SO(k) acts on Z
in the manner described in Section 3.1. As for the group action of SO(k) on Zv, we apply a given
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rotation matrix to every subset of k dimensions separately. More specifically, we reshape zv into an
k × n matrix, with n = dim(zv)/k. Denoting this matrix as z′v , we define the group action on z as:

g . z = [vec(g · z′v); zi],
where vec() indicates reshaping the given matrix into a vector.

5.2 Image contrast transformations

An image contrast transformation is a diffeomorphic function from [0, 1] to [0, 1] that is applied to each
pixel value. We can define a two-parameter family of image contrast transformation as the affine group
on the real line, G = Aff(R1) = R>0⋉R, as follows. Note an element (a, b) ∈ G represents a scaling
by a and shift by b of the real line. The group operation of G is (a1, b1) · (a2, b2) = (a1a2, b1+a1b2).
Now, we show that G can also act on the unit interval. Let (a, b) ∈ G and x ∈ [0, 1] be a pixel
intensity, and define

(a, b) . x = σ(a logit(x) + b).

The sigmoid function σ and logit are inverse functions of each other. We can prove this is a valid
group action on [0, 1], where the group being Aff(1). The output of σ() is always in [0, 1], and
therefore, [0, 1] is closed under the group action. We can model this in the latent space with a simpler
Aff(R1) group action:

(a, b) . z = [azv + b; zi].

5.3 Cyclic group transformations

In additional to the continuous groups, our method can also be applied to discrete group actions.
The cyclic group Ck is equivalent to the set {0, 1, 2, . . . , k − 1} equipped with the binary operation
defined as addition modulo k. In implementation, this can be represented as the subset of SO(2)

consisting of discrete rotations by angles {0, 2π
k , 4π

k , . . . , 2π(k−1)
k }. Then this representation of Ck

can be incorporated into our model as described in Section 5.1.

𝑥1

𝑥2

Rotated
MNIST

Rotated and
blocked MNIST

Brain MRI NMR Plane in the sky

Figure 3: Data samples used in the experiments. Each column represents a pair related by a group
action, i.e., x1 = g . x2.

6 Experiments

We conduct experiments on five different image datasets. Our models and all the baseline models
train on pairs of images. We show some sample pairs from each dataset in Figure 3.

6.1 Datasets

Rotated MNIST dataset is obtained by simply rotating images from MNIST dataset [6] about the
center by random angles θ, where θ ∼ U [0, 2π). Bilinear interpolation is used for sampling. We
use the original train-test split and image size of 28 × 28. The group action for this dataset is 2D
rotation with the group being SO(2). The ground truth actions between each pair is easily computable
from the rotation angles. To ensure that the group action is also on the data space, as stated in
Proposition 4.3, we introduce an additional loss term, ∥z − E(D(z))∥22, where z denotes latents
encoded from real data. Please see the appendix for more details.

Rotated and blocked MNIST dataset is further processed from the rotated MNIST dataset by adding
one randomly placed 7× 7 white square to each image with probability 0.8. The group action is still
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2D rotation. Moreover, images of a pair either have no squares or have squares at the same locations.
In other words, the square is invariant to the group action. This gives us a dataset where the rotation
is acted on the latent factor—representation of the digits—and not on the whole image.

Brain MRI dataset is derived from the Human Connectome Project [11]. It consists of 1113 3D
brain magnetic resonance images with brain segmentations from FreeSurfer [10]. We took mid-
coronal 2D slices for each subject, among which 880 images are used for training and 233 for testing.
Then the image contrast transformation defined in Section 5.2 is performed only to the pixels in
the brain, leaving the remaining parts (skull, neck, etc.) unchanged. Note that this is not a simple
contrast transformation on the whole image. The model needs to identify the brain pixels, and
thus, this is again a group action on a latent factor and not the data itself. We randomly sample
a = et, t ∼ N (0, 0.25) and b ∼ N (0, 0.25) 100 times for each original image.

Neural 3D mesh renderer (NMR) [14] dataset has been used in multiple previous works in the field
of novel view synthesis. This dataset is derived from ShapeNet [3] by rendering each object at 24
fixed views around the object in a cycle. This forms a cyclic group, C24, acting on the latent factor -
the camera angle. We stick to the original split for training and evaluations.

Plane in the sky dataset is our own rendering of ShapeNet Core [3] airplane objects. Each airplane
is put in a real sky background cropped from the SWIMSEG sky image dataset [7]. We uniformly
sample 100 random 3D rotation matrices from SO(3) and rotate the plane. Different from the novel
view synthesis problem, this results in sets of images with the same sky background and varying
plane orientations. We randomly split out 20% as the testing set.

6.2 Comparison to baselines

Implementation details and baseline models. All our experiments are implemented with the
PyTorch [20] package. As illustrated in Figure 2, our encoder consists of several convolutional
downsampling modules, while our decoder comprises convolutional upsampling modules. We used
skip connections and attention modules for the two rendered 3D objects datasets. For more details of
model architectures for each dataset, readers can refer to the appendix. The training is performed by
randomly sampling pairs of data points from the same orbit. We used MSE for the reconstruction
loss, and further added LPIPS loss for rendered 3D objects datasets with a weight of 0.0005.

For the two MNIST derived datasets, we compare to Hwang et al. [13] and Winter et al. [32]. While
for the brain MRI set, we only compare to Hwang et al. [13], since Winter et al. [32] requires
tailored equivariant layer for each group and there is no readily available one for the image contrast
transformation group. For the two datasets that are rendered images of 3D objects, we compare to
two novel view synthesis models - Sajjadi et al. [25] and Dupont et al. [9].

For the encoders of Hwang et al. [13], which encode the group action given each pair, we use almost
identical architectures as our encoders. The only difference is that their encoders are variational and
require reparameterization. We carefully follow their work to implement the decoders, which are
built upon Glow [16] type of normalizing flow architectures. All the other baselines have official or
officially recognized implementations.

To evaluate the model’s ability in learning group actions accurately, we compare the predicted D(g . z)
with the ground truth image. Since Hwang et al. [13] encodes group actions based on pairs only,
we present another pair of samples, x3 and x4, s.t. x4 = g . x3, for their models to encode g. In
our experiments, we find their model performs best when given x3 and x4 having the same absolute
angles, or the same (a, b) w.r.t. the original images, as x1 and x2 respectively.

Qualitative results. The sample reconstructions for the first three datasets are shown in Figure 4. As
we can see, Hwang et al. [13] demonstrates problems learning correct rotation angles for both MNIST
derived datasets.. Visually, Winter et al. [32] and our models exhibits comparable performance on
the rotated MNIST, indicating the capability of our models to model group actions on X as well. As
for the rotated and blocked MNIST, their model attempts to learn rotation invariant representations,
leading to challenges in correctly modeling the blocks. At times, the model tends to align blocks
with the digit structures, as the rotation is acted on the digit, as illustrated in the first column of the
sample outputs. While for the brain MRI dataset, both models show impressive performance, and it
is difficult to determine a noticeable advantage visually.
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(a) Rotated MNIST (b) Rot. & bl. MNIST
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et al.
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Figure 4: Sample reconstructions on MNIST derived datasets and brain MRI dataset

Inputs

Ground
truth

Ours

Sajjadi
et al.

Dupont
et al.

(a) NMR (b) Plane in the sky

Figure 5: Sample reconstructions on NMR dataset and plane in the sky dataset

The sample reconstructions for the two rendered 3D objects datasets are shown in Figure 5. As NMR
is a novel view synthesis and two baseline models are designed for this task, we can see they both
render reasonable reconstructions with Sajjadi et al. [25] giving sharper images. Our model also
correctly learns view angle changes and even captures image details better in some cases. While for
the plane in the sky dataset, which is not a novel view synthesis dataset, we can see both baselines
struggle to give convincing results. Dupont et al. [9] has relatively better reconstructions while Sajjadi
et al. [25] sometimes miss the plane orientation significantly. Our model renders much higher quality
images with correct orientations and better details.

Table 1: Quantitative results on MNIST derived datasets and brain MRI dataset
Rotated MNIST Rot. & bl. MNIST Brain MRI

↑PSNR ↑SSIM ↑PSNR ↑SSIM ↑PSNR ↑SSIM

Winter et al. [32] 21.97 0.874 14.05 0.586 NA NA
Hwang et al. [13] 15.29 0.992 10.19 0.990 27.43 1.000
Ours 26.07 1.000 23.55 1.000 35.99 1.000
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Table 2: Quantitative results on 3D objects rendered datasets
NMR Plane in the sky

↑PSNR ↑SSIM ↓LPIPS ↑PSNR ↑SSIM ↓LPIPS

Dupont et al. [9] 26.91 0.899 0.091 24.25 0.773 0.239
Sajjadi et al. [25] 27.87 0.912 0.066 23.53 0.489 0.280
Ours 28.91 0.947 0.050 25.24 0.821 0.112

Quantitative results. We chose peak signal-to-noise ratio (PSNR) and structural similarity index
measure (SSIM) as quantitative metrics for the first three datasets and present resulting values
in Table 1. Our models consistently achieved the best results across all three datasets and both
metrics. For the NMR dataset and plane in the sky dataset, we further compute LPIPS (VGG) in
addition to PSNR and SSIM. The results are reported in Table 2. Our models also achieves best
results consistently, which aligns with the qualitative results. We can also observe that between
the two baselines, Sajjadi et al. [25] is performing better on NMR dataset, while Dupont et al. [9]
performing better on the plane in the sky dataset. Finally, it’s also worth noting that we checked
how well Proposition 4.3 is satisfied with the additional training loss to encourage it. The average z
reconstruction L2 distance is 0.304. Comparing to the standard deviation of z over the dataset being
4.043, we conclude that this property is approximately met.

Discussion. It is worth noting that the model by Winter et al. [32] is specifically tailored for group
actions on the data space X , which accounts for the performance discrepancy on the rotated and
blocked MNIST, where the block does not rotate with the rest of the image. Additionally, even
the rotated MNIST is not precisely a group action on X , given the interpolations occurring during
rotation. Their original experiment utilized blurred rotated MNIST, different from our dataset, as a
measure to mitigate this problem. As for Hwang et al. [13], it models the group as a Euclidean space
Rd under addition in the latent space. We can see that their model especially struggles on the rotation
groups, SO(2), which are not Euclidean spaces. Furthermore, the normalizing flow architecture used
for encoder/decoder enforces these mappings to be diffeomorphisms, resulting in a group action on
X , which accounts for its poor performance on the blocked MNIST.

Dupont et al. [9] incorporates group equivariance in the latent space by transforming the latent
coordinates. Although this exactly models novel view synthesis task, it is too rigid for more general
scenarios, as in the plane in the sky dataset. Furthermore, we can see that it is not very good at
capturing details from the results on NMR dataset. However, the introduction of equivariance might
have helped modeling more difficult 3D rotations of the planes, giving it better performance compared
to Sajjadi et al. [25]. On the other hand, Sajjadi et al. [25] is a transformer type of model that does
not incorporate group equivariance. It is better at capturing details and rendering sharp images as
seen in results on NMR dataset. However, it fails on the plane dataset, which is a more challenging
task than most novel view synthesis datasets, given full 3D random rotations and single input view.

Table 3: Quantitative results of ablation study on NMR dataset
↑PSNR ↑SSIM ↓LPIPS

Ablation 1 27.31 0.933 0.080
Ablation 2 26.96 0.930 0.063
Ablation 3 28.09 0.941 0.072
Ours (full) 28.91 0.947 0.050

6.3 Ablation study

We also performed an ablation study on the NMR dataset to explore how skip connections paired
with attention modules and the addition of LPIPS loss impact our model performance. We define the
following three ablation models: Ablation 1 – our model without the skip connection and trained
without the LPIPS loss; Ablation 2 – our model without the skip connection; Ablation 3 – our model
trained without the LPIPS loss. The results are listed in Table 3 and some samples are shown in
Figure 6. Combining skip connections with LPIPS loss yields the best performance across all metrics,
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Inputs Ground
truth

FullAblation
1

Ablation
2

Ablation
3

Figure 6: Samples from ablation models and our full model.

significantly enhancing image details. Skip connections alone provide a performance boost, but
adding LPIPS loss without skip connections offers minimal improvement. Notably, even without skip
connections or LPIPS, our model accurately captures object orientation and performs comparably to
baseline models, highlighting the robustness of our latent group action modeling strategy.

Input1

Input2

Swapped1

Swapped2

(a) Rotated and blocked MNIST

Input1

Input2

Swapped1

Swapped2

(b) Plane in the sky

Figure 7: Samples generated by swapping invariant and varying parts of latent representations.

We further investigate how varying and invariant information is captured by swapping the zv and
zi components of the latent representations between two inputs and decoding the results. Some
examples are shown in Figure 7. Interestingly, the model generalizes to new combinations of varying
factors (e.g., digit and plane shapes) and invariant factors (e.g., the white block and the sky), despite
not being explicitly trained in such fashion.

7 Conclusion

In this paper, we propose a novel approach of learning group actions on latent representations. Our
experimental results demonstrate that our method can effectively model a broader range of scenarios
than existing models of group actions on the data space. In addition to being able to model group
actions in the latent space, we show both theoretically and empirically that our strategy is also capable
of modeling group actions on the data space. Furthermore, we achieve state of the art performance
on the geometry-free novel view synthesis task, and we outperform previous approaches to learning
group actions in more general cases. We note that our model requires ground truth group actions
during training, which might not be available in some cases. We leave it as future work to apply our
method in semi-supervised or unsupervised manners.
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A Model Architectures

A.1 MNIST derived datasets

Table 4: The architecture of the encoder on two MNIST derived datasets
Downsampling module (32 channels)
Downsampling module (64 channels)
Downsampling module (64 channels)
Downsampling module (64 channels)
Flattening
Fully connected (256 neurons)
ELU activation
Fully connected (24 neurons)

Table 5: The architecture of the downsampling module on two MNIST derived datasets
3× 3 convolution with stride 2
ELU activation

Table 6: The architecture of the decoder on two MNIST derived datasets
Fully connected (256 neurons)
ELU activation
Fully connected (256 neurons)
ELU activation
Unflattening
Upsampling module (64 channels)
Upsampling module (64 channels)
Upsampling module (32 channels)
Upsampling module (1 channel)

Table 7: The architecture of the upsampling module on two MNIST derived datasets
3× 3 transposed convolution with stride 2
ELU activation (Sigmoid activation for the last module)
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A.2 Brain MRI dataset

Table 8: The architecture of the encoder on the brain MRI dataset
Downsampling module (32 channels)
Downsampling module (64 channels)
Downsampling module (64 channels)
2D batch normalization
Downsampling module (64 channels)
Downsampling module (64 channels)
3× 3 convolution (64 channels)
Leaky ReLU activation
3× 3 convolution (64 channels)

Table 9: The architecture of the downsampling module on the brain MRI dataset
3× 3 convolution with stride 2
Leaky ReLU activation

Table 10: The architecture of the decoder on the brain MRI dataset
3× 3 convolution (64 channels)
Leaky ReLU activation
3× 3 convolution (64 channels)
Leaky ReLU activation
Upsampling module (64 channels)
Upsampling module (64 channels)
2D batch normalization
Upsampling module (64 channels)
Upsampling module (32 channels)
Upsampling module (1 channel)

Table 11: The architecture of the upsampling module on the brain MRI dataset
3× 3 transposed convolution with stride 2
ELU activation (Sigmoid activation for the last module)
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A.3 3D objects rendered datasets

For these datasets, we employ skip connections and attention modules. For the attention model, we
use the standard architecture from Vaswani et al. [29], which is not listed here. The only difference is
that instead of self-attention, we have the input from the encoder acting as keys and values while the
input from the decoder acting as queries. For a more intuitive illustration, see Figure 2.

Table 12: The architecture of the encoder on two 3D objects rendered datasets
Convolutional block (64 channels)
Downsampling module (128 channels)
Downsampling module (256 channels)
Skip connection, input to attention module
Downsampling module (512 channels)
Downsampling module (1020 channels)

Table 13: The architecture of the downsampling module on two 3D objects rendered datasets
2× 2 max pooling
Convolutional block

Table 14: The architecture of the convolutional block on two 3D objects rendered datasets
3× 3 convolution
2D batch normalization
ReLU activation
3× 3 convolution
2D batch normalization
ReLU activation

Table 15: The architecture of the decoder on two 3D objects rendered datasets
Upsampling module (512 channels)
Upsampling module (256 channels) with skip connection
Upsampling module (128 channels)
Upsampling module (64 channels)
Channel-wise fully connected
Sigmoid activation

Table 16: The architecture of the upsampling module (without skip connection) on two 3D objects
rendered datasets

2× 2 nearest upsampling
3× 3 convolution
2D batch normalization
ReLU activation
Convolutional block

16



Table 17: The architecture of the upsampling module (with skip connection) on two 3D objects
rendered datasets

2× 2 nearest upsampling
3× 3 convolution
2D batch normalization
ReLU activation
skip connection, input to attention module
attention module output, concatenate
Convolutional block

B Number of Learnable Parameters

We also compare the numbers of learnable parameters across our models and baselines in Table 18.
As we can see, our model is relatively small which indicates we did not achieve high performance by
simply using complex architectures. The only smaller baseline model is Dupont et al. [9] on the 3D
rendered datasets. However, it is not any more efficient to train because of the rotation transformations
on the latent coordinates requires resampling.

Table 18: Comparison of learnable parameter numbers
MNIST derived datasets Brain MRI dataset 3D rendered datasets

Winter et al. [32] 1.22M – –
Hwang et al. [13] 3.06M 9.33M –
Dupont et al. [9] – – 11.2M
Sajjadi et al. [25] – – 73.9M
Ours 0.33M 0.41M 32.3M

C Training details

Our architecture was trained on 1 A100 GPU with a batch-size of 256 using the Adam optimizer. The
learning rate is 0.0001. We randomly split 1/8 of the training set as the validation set. All models
are selected based on the best validation loss. The architecture and the training was implemented in
PyTorch and the code will be made available upon publication.

For the training on the rotated MNIST dataset, we added the additional loss of ∥z −E(D(z))∥22 with
a weight of 0.0001 to enforce the assumption of Proposition 4.3 that the decoder is consistent with
the group action. While this loss term does not improve or worsen the reconstruction performance on
the test set, it induces a group action on the data space (theoretically, if it were to be exactly zero).
Exploring the implications of ensuring a group action in the data space, rather than only in the latent
space, is left for future work.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We included some theoretical analysis on our methods and its relation to
existing methods. And we conducted extensive experiments to show how our methods apply
to various scenarios and drew comparisons to existing methods.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In our conclusion, we talked about our limitations, which is reliance on ground
truth group annotations. We leave this part as our future work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

18



Answer: [Yes]

Justification: Section 4 is dedicated for this.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In addition to the description in the paper, we included more detailed model
architectures in the appendix. All our datasets can be derived from public datasets.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: The data is all derived from publicly available datasets. We believe we provided
enough details. We will make the code available in the near future.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All our splits are random except for the NMR dataset which we followed
original split. We believe the split won’t substantially affect results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We did not perform this.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We believe it is irrelevant to our results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: NA

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: NA

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of
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package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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