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Abstract
The size of spatial receptive fields, from the early
3×3 convolutions in VGGNet to the recent 7×7
convolutions in ConvNeXt, has always played a
critical role in architecture design. In this paper,
we propose a Mixture of Receptive Fields (MoRF)
instead of using a single receptive field. MoRF
contains the combinations of multiple receptive
fields with different sizes, e.g., convolutions with
different kernel sizes, which can be regarded as
experts. Such an approach serves two functions:
one is to select the appropriate receptive field ac-
cording to the input, and the other is to expand
the network capacity. Furthermore, we also in-
troduce two types of routing mechanisms, hard
routing and soft routing to automatically select
the appropriate receptive field experts. In the in-
ference stage, the selected receptive field experts
are merged via re-parameterization to maintain a
similar inference speed compared to the single re-
ceptive field. To demonstrate the effectiveness of
MoRF, we integrate the MoRF concept into mul-
tiple architectures, e.g., ResNet and ConvNeXt.
Extensive experiments show that our approach
outperforms the baselines in image classification,
object detection, and segmentation tasks without
significantly increasing the inference time.

1. Introduction
Convolutional Neural Networks (CNNs) have established
themselves as the cornerstone of various computer vision
tasks, with a series of CNN-based architectures (Krizhevsky
et al., 2012; Simonyan & Zisserman, 2015; He et al., 2016)
being proposed in recent years. Transformers, due to their
superior performance in natural language processing (NLP)
(Vaswani et al., 2017) and weakly dependent on the induc-
tive bias, have gradually been introduced to vision tasks as
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Figure 1. An example of a Mixture of Receptive fields (MoRF)
layer involves selecting the first and third receptive fields via hard
routing for interaction, and the final output is a weighted sum of
the output of the two selected experts.

an alternative to CNNs. Despite this trend, different from
the NLP, where the knowledge has extremely high infor-
mation density, visual images are filled with amounts of
redundant information. Thus, it remains arguable whether
convolutions can be completely replaced by the transformer
in vision architectures.

One critical issue in the design of vision backbones is the se-
lection of the receptive field. VGGNet (Simonyan & Zisser-
man, 2015) popularizes the use of a 3×3 convolutional layer
with a local receptive field, and subsequent architectures
have followed this design by stacking more convolutional
layers to increase the receptive field size. Dosovitskiy et
al. (Dosovitskiy et al., 2021) introduce a paradigm shift
with the Vision Transformer (ViT), which uses multi-head
self-attention to obtain a global spatial receptive field. This
design is later modified by Liu et al. (Liu et al., 2021b)
with the Swin Transformer, which restricts the range of self-
attention to a local window to obtain local receptive fields.
Other works (Xiao et al., 2021; Ding et al., 2022; Liu et al.,
2022a) have proposed alternative approaches, such as com-
bining convolutions and self-attention, or employing large
kernels instead of self-attention. Despite the differences in
these approaches, all of them highlight the crucial role of the
receptive field in visual understanding. However, designing
manually an appropriate receptive field size is challenging.
A large receptive field may result in optimization difficulty
and bring more redundant computation costs. Consequently,
a key question that arises is how to design a module that
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covers the appropriate receptive field in vision architectures.

To tackle this issue, we propose a concept of a Mixture
of Receptive Fields (MoRF), where the different receptive
fields are treated as experts, and the model is able to select
the appropriate receptive field expert for each input image.
We illustrate an example of a MoRF layer in Figure 1. Given
an input, the gating network chooses the appropriate recep-
tive field, and the output results are weighted summed. Such
an approach offers two benefits: first, it enables the selec-
tion of optimal receptive fields according to the input, and
secondly, it facilitates the expansion of the model capacity
while minimally affecting the speed of inference. Such an
approach aligns with a philosophy similar to Mixture of
Experts (MoEs) (Jacobs et al., 1991; Shazeer et al., 2017;
Lepikhin et al., 2020; Fedus et al., 2021; Du et al., 2022;
Zoph et al., 2022). However, the core motivation of MoEs
is the model scaling, whereas our focus is to select the
appropriate receptive field according to the input.

Another issue is how the network selects the appropriate
receptive field from the available experts in MoRF. We first
employ an attention module to generate attention for dif-
ferent receptive field branches based on the input. For the
selection of the appropriate receptive field, we introduce
two solutions: hard routing and soft routing. Hard routing
involves selecting the top-k receptive field experts and dis-
carding the others, which is similar to the MoE approach. In
contrast, soft routing uses weights generated by the attention
module to perform a weighted sum across all receptive field
experts, which yields better performance than hard routing
but incurs additional computational costs. To circumvent
this computational burden during inference, we implement
a kernel fusion process through a re-parameterization strat-
egy (Zagoruyko & Komodakis, 2017; Ding et al., 2021b)
to merge all receptive field experts into a single convolu-
tional kernel. This enables the model to maintain a similar
inference speed compared to using a single receptive field.

To evaluate the effectiveness of our MoRF, we integrate
the MoRF into multiple architectures, e.g., ResNet, and
ConvNeXt. Extensive experiments show that our approach
outperforms the baselines in image classification, object de-
tection, and segmentation tasks without significantly increas-
ing the inference time. We summarize our contributions as
the three folds.

• We introduce a novel concept of a Mixture of Receptive
Fields (MoRF) in vision architectures, which allows
for the dynamic selection of appropriate receptive field
experts based on input images.

• We introduce hard routing and soft routing to automati-
cally select the receptive field experts. In the inference
stage, the selected receptive field experts are merged
via re-parameterization to maintain a similar inference

speed compared to the single receptive field.

• We systematically evaluate our MoRF approach on
extensive experiments across multiple tasks, includ-
ing image classification, object detection, and seman-
tic segmentation, demonstrating its effectiveness com-
pared to existing baseline models.

2. Related Work
2.1. Vision Architectures

Prior to the advent of Transformers, CNN-based architec-
tures are widely adopted as the de-facto standard for com-
puter vision, and amounts of CNNs and their variants (Si-
monyan & Zisserman, 2015; He et al., 2016; Huang et al.,
2017b; Yu & Koltun, 2016; Dai et al., 2017; Yu et al., 2024b)
are proposed for image classification, object detection, and
semantic segmentation. Dosovitskiy et al. (Dosovitskiy
et al., 2021) introduce a transformer from the NLP domain
to vision and propose a ViT, where an image is divided
into 16×16 patches and fed into a transformer as tokens
for self-attention, achieving excellent performance. After
that, a large number of transformer variants (Touvron et al.,
2021b; Zhou et al., 2021; Touvron et al., 2021c; Chen et al.,
2021; Chu et al., 2021; Graham et al., 2021; Wang et al.,
2021; Liu et al., 2021b; Zhang et al., 2021; Liu et al., 2022b;
Lian et al., 2022b; Ren et al., 2022; 2023) are introduced.
For instance, Touvron et al. (Touvron et al., 2021b) propose
DeiT with distillation and introduce an applicable recipe.
Liu et al. (Liu et al., 2021b; 2022b) divide patches to per-
form self-attention within the local window, and design a
hierarchical architecture for various vision tasks. In ad-
dition to CNNs and Transformers, some pure MLP-based
vision architectures (Melas-Kyriazi, 2021; Touvron et al.,
2021a; Liu et al., 2021a; Hou et al., 2021; Lian et al., 2022a;
Chen et al., 2022; Yu et al., 2021; Ding et al., 2021a; Zheng
et al., 2022) are also designed. Tolstikhin et al. (Tolstikhin
et al., 2021) introduce MLP-Mixer, which consists of token-
mixing MLPs and channel-mixing MLPs for the interaction
of the spatial and channel information, respectively. Lian et
al. (Lian et al., 2022a) propose to axially shift features along
horizontal and vertical directions and introduce an AS-MLP
architecture. Furthermore, some researchers rethink the ne-
cessity of self-attention in Transformers. MetaFormer (Yu
et al., 2022; 2024a) replacing self-attention with a pooling
layer and ConvNeXt replacing self-attention with a 7×7
convolution, both of which have shown results as good as
or better than traditional Transformers. Additionally, some
works (Ding et al., 2022; Liu et al., 2022a) also introduce
large kernels for vision backbones. In this work, we incor-
porate the concept of MoE (Jacobs et al., 1991; Shazeer
et al., 2017; Lepikhin et al., 2020; Fedus et al., 2021; Du
et al., 2022; Zoph et al., 2022) into vision architectures and
propose a MoRF. It is able to automatically select the appro-
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priate receptive field based on the input while expanding the
model capacity without increasing computational cost and
inference time.

2.2. Receptive Fields in Neural Networks

The earliest known research on receptive fields can be traced
back to LeNet (LeCun et al., 1998), which utilizes 5×5
convolutional kernels for the purpose of recognizing hand-
written digits. Krizhevsky et al. (Krizhevsky et al., 2012)
introduce 11×11 convolutional kernels to cover larger recep-
tive fields. However, larger receptive fields result in higher
computational complexity. Therefore, VGGNet (Simonyan
& Zisserman, 2015) opts to use 3×3 convolutional kernels
and achieve larger receptive fields by deepening the network.
Afterward, dilated convolution (Yu & Koltun, 2016) and de-
formable convolution (Dai et al., 2017; Gao et al., 2019)
are introduced to change the shape of the receptive field.
With the advent of transformer models (Dosovitskiy et al.,
2021; Touvron et al., 2021b; Liu et al., 2021b; Wang et al.,
2021) in computer vision, self-attention has been employed
to obtain global spatial receptive fields. However, recent
studies (Xiao et al., 2021; Zhou et al., 2021; Yuan et al.,
2021a) have shown that not all layers and images require
global receptive fields. For instance, Xiao et al. (Xiao et al.,
2021) demonstrate that using convolutions in the early layer
is more effective and helps transformers see better. Swin
Transformer (Liu et al., 2021b; 2022b), on the other hand,
employs local receptive fields via a local window and per-
forms self-attention within the window, achieving superior
results. Additionally, some works (Liu et al., 2022c; Ding
et al., 2022; Liu et al., 2022a) use large kernels as a replace-
ment for self-attention in vision backbones. However, most
of these methods are designed by manually adjusting the
receptive field size. Motivated by the mixture of experts
(MoE) (Jacobs et al., 1991; Shazeer et al., 2017; Lepikhin
et al., 2020; Fedus et al., 2021; Du et al., 2022; Zoph et al.,
2022), we view receptive fields as experts, where the specific
expert will be activated based on the input image.

2.3. Dynamic Neural Networks

Dynamic neural networks are introduced to adaptively recal-
ibrate either their topology structure (Huang et al., 2017a;
Wang et al., 2018; Mullapudi et al., 2018; Fedus et al., 2021;
Zoph et al., 2022) or model weights (Yang et al., 2019; Chen
et al., 2020; Li et al., 2021; 2022) in response to varying
inputs, thereby improving the accuracy or reducing the com-
putational cost. Some works (Huang et al., 2017a; Li et al.,
2019a) advocate for the implementation of early exiting
for the reduction of parameters depending on how difficult
the sample is. Concurrently, the Mixture of Experts (MoE)
framework (Fedus et al., 2021; Lepikhin et al., 2020; Du
et al., 2022; Hazimeh et al., 2021) has been leveraged to
scale the model capacity while preserving the inference

speed on par with non-MoE architectures. Some dynamic
weight generation networks (Yang et al., 2019; Chen et al.,
2020) are capable of learning different weights based on the
input, which are then merged together during the inference
process. Different from these approaches, our investigation
delves into the impact of diverse receptive fields on model
performance. Additionally, the inference speed of the entire
network can be maintained via model re-parameterization
(Zagoruyko & Komodakis, 2017; Ding et al., 2021b).

3. Approach
3.1. Mixture of Receptive Fields

MoRF represents a comprehensive concept for the integra-
tion of receptive fields to automatically identify and select
receptive fields that are optimal for given inputs. Convolu-
tion is recognized as a pivotal and core operation for captur-
ing spatial receptive fields in modern neural networks and
is extensively employed. Therefore, we choose Convolution
as the key operation within our MoRF paradigm.

MoRF with Convolution. Given an input X ∈ RH×W×C

where H , W , and C are the height, width, and the number
of input channels, respectively, and a receptive field region
R with a kernel size of K × K, the output Yi,j,: can be
computed using the convolution operation as follows

Yi,j,: =

C∑
c=0

∑
(a,b)∈R

Xi+a,j+b,cWa,b,c,:, (1)

where W ∈ RK×K×C×C′
is the learnable weight and C ′

is the number of output channels. i, j are the index of the
spatial position. The receptive field can be adjusted by
modifying the size of the K, which is usually determined
through manual design, such as using 3×3 in VGGNet
(Simonyan & Zisserman, 2015) and ResNet (He et al., 2016)
or 7×7 in ConvNeXt (Liu et al., 2022c).

In the MoRF framework, our objective is to incorporate
multiple Convolution experts with different kernel sizes into
a unified architecture, effectively replacing a single con-
volutional kernel. As depicted in Figure 1, we employ n
Convolutions with distinct kernel sizes, where the respec-
tive receptive fields are denoted as {R1, ..., Rn}. Given
an input X , a routing network is first utilized to generate
attention logits, following which the appropriate experts are
selected to perform convolutional operations on the input.
The results are then aggregated through a weighted sum
based on routing probabilities. Formally, the output Y is
computed using the following equation

Yi,j,: =

n∑
r=1

A(X)r

C∑
c=0

∑
(a,b)∈Rr

Xi+a,j+b,cW
r
a,b,c,:, (2)
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Figure 2. (a) shows the original ConvNeXt block (Liu et al., 2022c). (b) shows our integration of MoRF into ConvNeXt with the hard
routing, where we illustrate the mixture of three receptive fields as an example. (c) shows the integration of MoRF into ConvNeXt with
the soft routing. (d) shows the inference architecture via re-parameterization, where the weights of different convolutions are merged into
one kernel.

where Rr represents the receptive field region of the r-th
receptive field expert, and A(X) is the routing network to
generate the attention logits.

Discussions. As highlighted in Sec. 1, the MoRF technique
serves two purposes: i) dynamically selecting the optimal
receptive field for the input; ii) expanding the capacity of
the model. This distinction fundamentally differentiates
our methodology from other existing approaches. Several
methods, such as Mixture of Experts (MoE) (Fedus et al.,
2021; Lepikhin et al., 2020; Du et al., 2022), employ mul-
tiple experts to construct Feed Forward Networks (FFNs),
with their primary motivation being the scaling of networks.
However, our approach additionally focuses on the dynamic
selection of receptive fields, different from the primary in-
tent of these methods. Although Neural Architecture Search
(NAS) (Pham et al., 2018; Liu et al., 2018; Guo et al., 2020;
Lian et al., 2020; Wan et al., 2020) dynamically searches for
suitable operations (including convolutions with different
kernel sizes) to obtain receptive fields, these methods often
require an additional search phase and cannot automatically
adjust the receptive field based on the input after the search
phase is completed. In contrast, our MoRF can dynamically
select the optimal receptive field for the input during infer-
ence. Other approaches, e.g., dynamic convolution (Yang
et al., 2019; Chen et al., 2020; Ma et al., 2020), generate
weights of the convolution based on the input, but they typi-
cally consider convolutional kernels with identical receptive
fields. Our approach employs a mixture of multiple recep-
tive fields, thereby extending beyond the scope of existing
dynamic convolution strategies. Some similar methods, e.g.,
SKNet (Li et al., 2019b) and RF-Next (Gao et al., 2022),
also explore receptive fields. However, compared to SKNet,
we employ more receptive fields in vision architectures via

re-parameterization trick instead of only two kernels. Com-
pared to RF-Next, our MoRF is input-dependent and can
choose the appropriate receptive field for each image. More
importantly, we borrow the idea of mixture of experts to
expand the receptive field size, and our network achieves
superior performance, which shows the effectiveness of our
method.

3.2. Model Instantiation

We primarily instantiate ConvNeXt as our model architec-
ture for the visualization and detailed introduction of our
method. MoRF is also integrated into other networks, e.g.,
ResNet (He et al., 2016), by replacing the single receptive
field convolutions with a mixture of multiple receptive field
convolutions. Further results are listed in Sec. 4.

A Revisit of ConvNeXt. A complete ConvNeXt archi-
tecture includes: i) a patchy stem layer with a 4×4 non-
overlapping convolution; ii) a four-stage feature extraction
process with progressively increasing channels; iii) a down-
sampling component for connecting different stages; iv) a
classification head for image classification. The core of each
stage is the ConvNeXt block, composed of a 7×7 depthwise
convolution (Howard et al., 2017; Chollet, 2017), a layer
normalization (Ba et al., 2016), a GeLU activation function
(Hendrycks & Gimpel, 2016), and two 1×1 convolutions,
as shown in Figure 2(a).

ConvNeXt + MoRF. We integrate MoRF into the standard
ConvNeXt architecture, incorporating three primary mod-
ifications as follows: i) The convolution replacement of a
single kernel (7×7) with multiple kernel sizes, resulting
in several branches with different kernel sizes; ii) Given
the presence of multiple branches, we utilize an attention
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module to generate attention for each branch; iii) The im-
plementation of a routing operation is used to select the
appropriate receptive field branch, where two routing mech-
anisms (hard routing and soft routing) are introduced.

Attention Module. The primary function of the attention
module A(X) is to generate attention for different receptive
field branches based on the input X , thereby facilitating the
selection of the appropriate receptive field. Given an input
X , the module initially employs the Global Average Pooling
(GAP) to transform X into a feature vector. This is followed
by two Fully Connected (FC) layers, interconnected via a
GELU activation function.

Hard Routing. Following existing MoE methods (Fedus
et al., 2021; Lepikhin et al., 2020; Du et al., 2022), we can
employ the hard routing strategy to select the receptive field
branch. Assuming the output of the last FC layer in the
attention module as x ∈ RN×d where N denotes the batch
size and d denotes the dimension, and the routing network
R and n expert networks. The output is computed as the
weighted sum of multiple expert networks, with the weights
determined by the gating network. Consequently, the output
Y is

Y =

n∑
r=1

R(x)r[Wr ∗X +Br], (3)

where Wr represents its corresponding kernel weight, and B
is the bias term. The operator ∗ signifies the convolutional
operation. The routing network R is usually chosen to be a
noisy gating network as follows

R(x) = Softmax(topk(H(x), k)), (4)

where the number of activated experts is determined by k.
H(x) is obtained using a trainable gating weight matrix
Wg ∈ Rd×n and a noise weight matrix Wσ ∈ Rd×n as
follows

H(x)r = (x ·Wg)r + σ · Softplus((x ·Wσ)r), (5)

where σ ∼ N (0, 1) represents the Gaussian noise. At the
inference phase, we remove this noise term. Hard routing
exclusively selects the top-k receptive field branches for
convolution and weighted sum, concurrently setting the
remaining branches to zero, as depicted in Figure 2(b).

Soft Routing. A hard routing strategy that leverages the top-
k experts may result in overlooking the potential impacts
of non-top-k experts. Therefore, we also propose a soft
routing strategy by incorporating a comprehensive set of re-
ceptive fields, enabling a more flexible and adaptive feature
extraction mechanism. This is accomplished by performing
a weighted summation of the outputs from all the different
receptive field convolutions, as illustrated in Figure 2(c).

Specifically, we can reformulate Eq (3) into the following
form

Y =

n∑
r=1

αr[Wr ∗X +Br], (6)

where αr denotes the weighting coefficient for the r-th
convolution expert.

While this soft routing technique provides a more representa-
tive feature map, it is computationally intensive as it requires
processing across all convolutional experts. To circumvent
this computational burden during inference, we implement
a kernel fusion process through a re-parameterization strat-
egy, as shown in Figure 2(d). This consolidation effectively
merges all individual kernels into a single convolutional
kernel. The re-parameterized convolutional operation thus
maintains similar inference throughput compared to conven-
tional single-kernel convolutions, while leveraging the adap-
tive benefits of the soft routing. The re-parameterization
process is as follows

Y =

n∑
r=1

αr[Wr ∗X +Br]

=

n∑
r=1

αrWr ∗X +

n∑
r=1

αrBr

= W ∗X +B,

(7)

where W and B are the merged convolutional weights
and biases, respectively. With this re-parameterization, the
model preserves computational efficiency without sacrific-
ing the richness of the feature maps from different receptive
field experts, enabling real-time inference with enhanced
representational capabilities.

4. Experiments
4.1. ImageNet Classification

Settings. To evaluate the effectiveness of our proposed
MoRF, we select a wide range of model sizes to conduct
experiments with ResNet-18 (He et al., 2016), ResNet-50
(He et al., 2016), and ConvNeXt (Liu et al., 2022c) on the
ImageNet-1K dataset (Deng et al., 2009). We follow the
experimental settings of ConvNeXt (Liu et al., 2022c), and
train our model for 300 epochs with the first 20 epochs used
for warm-up. The initial learning rate is set to 0.001 with
cosine decay and we use a batch size of 1024. We employ
the AdamW (Loshchilov & Hutter, 2019) to optimizer our
networks. The more specific details and the hyperparameters
can be found in the appendix.

Results. Table 1 presents the results of image classification
on ImageNet-1K. We compare our method with existing
transformers-based and CNN-based architectures across
a variety of model scales and the results outperform the
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Model Input
Resolution

Top-1
(%) Params. Throughput

(imgs / s)

DY-ResNet-18 (Chen et al., 2020) 224×224 73.8 45M -
ResNet-18 (He et al., 2016) 224×224 70.4 12M 1643.2
+MoRF (hard) 224×224 74.2 20M 1488.9
+MoRF (soft) 224×224 74.6 20M 1402.6

DY-ResNet-50 (Chen et al., 2020) 224×224 79.0 101M -
SKNet-50 (Li et al., 2019b) 224×224 79.2 28M 1004.4
ResNet-50 (He et al., 2016) 224×224 78.4 26M 1250.3
+MoRF (hard) 224×224 79.2 37M 1028.6
+MoRF (soft) 224×224 79.5 37M 992.9

RegNetY-8GF (Radosavovic et al., 2020) 224×224 81.7 39M 591.6
DeiT-S/16 (Touvron et al., 2021b) 224×224 79.8 22M 940.4
Swin-T (Liu et al., 2021b) 224×224 81.3 29M 755.2
Focal-T (Yang et al., 2022) 224×224 82.2 29M -
ViP-Small/7 (Hou et al., 2021) 224×224 81.5 25M 719.0
AS-MLP-T (Lian et al., 2022a) 224×224 81.3 28M 1047.7
ConvNeXt-T (Liu et al., 2022c) 224×224 82.1 29M 774.7
+MoRF (hard) 224×224 82.3 31M 732.8
+MoRF (soft) 224×224 82.6 31M 718.5

Swin-S (Liu et al., 2021b) 224×224 83.0 50M 436.9
Focal-S (Yang et al., 2022) 224×224 83.5 51M -
T2T-ViTt-24 (Yuan et al., 2021b) 224×224 82.6 65M -
ViP-Medium/7 (Hou et al., 2021) 224×224 82.7 55M 418.0
AS-MLP-S (Lian et al., 2022a) 224×224 83.1 50M 619.5
ConvNeXt-S (Liu et al., 2022c) 224×224 83.1 50M 447.1
+MoRF (hard) 224×224 83.5 52M 418.5
+MoRF (soft) 224×224 83.7 52M 406.7

DeiT-B (Touvron et al., 2021b) 224×224 81.8 86M 292.3
Swin-B (Liu et al., 2021b) 224×224 83.3 88M 278.1
Focal-B (Yang et al., 2022) 224×224 83.8 90M -
ViP-Large/7 (Hou et al., 2021) 224×224 83.2 88M 298.0
AS-MLP-B (Lian et al., 2022a) 224×224 83.3 88M 455.2
ConvNeXt-B (Liu et al., 2022c) 224×224 83.8 89M 292.1
+MoRF (hard) 224×224 84.0 91M 263.8
+MoRF (soft) 224×224 84.2 91M 254.1

Swin-B (Liu et al., 2021b) 384×384 84.5 88M 85.1
ConvNeXt-B (Liu et al., 2022c) 384×384 85.1 89M 95.7
+MoRF (hard) 384×384 85.2 91M 69.6
+MoRF (soft) 384×384 85.3 91M 60.3

Table 1. The experimental results of different architectures on
ImageNet-1K. ‘+MoRF (hard/soft)’ means that we integrate the
MoRF method in the above architectures with hard routing and
soft routing. For that, we show the Params. and throughput in the
inference stage. Throughput is measured with a batch size of 64
on a single V100 GPU (32GB).

baselines. Specifically, for ResNet-18 and ResNet-50, our
method with soft routing surpasses the baseline by 7.4%
(74.6% vs. 70.4%) and 1.4% (79.5% vs. 78.4%) with simi-
lar parameters and throughput1, respectively. Such results
also exceed dynamic convolution (Chen et al., 2020) based
ResNet. From ConvNeXt-T to ConvNeXt-B, integrating
our MoRF also outperforms the baselines at 224×224 and
384×384 resolutions, further demonstrating the effective-
ness of our method. In addition, employing soft routing
achieves marginally superior performance compared to hard
routing. This improvement is attributed to the enhanced
spatial feature interaction facilitated by the use of a more
diverse range of receptive fields. Compared to the baselines,
the introduction of MoRF incurs some additional parame-
ters, primarily from the attention module. However, this

1We measure the parameters and throughput in the inference
stage after re-parameterization.

increase in the number of parameters is marginal relative to
those of the whole architecture. Additionally, thanks to the
re-parameterization of our method at the inference stage, the
inference throughput remains comparable to the standard
ConvNeXt.

4.2. The Impacts of Model Configurations

In order to investigate the impacts of different configura-
tions on performance improvement, we conduct a series of
experiments to analyze the following structures and hyper-
parameters configurations. Specifically, We systematically
evaluate the impacts of the receptive field experts and the
routing functions. Unless specified, all experiments are
implemented in ImageNet-1K with running 100 epochs.

The Receptive Field Experts. In the case of ConvNeXt, a
kernel size of 7×7 is used to obtain the local receptive field,
which does not require a large receptive field. In MoRF, we
first evaluate the impact of the number of receptive fields.
Table 2a presents the results of different mixtures of recep-
tive field experts. We show the performance of a mixture of
receptive field experts with {3, 5, 7}, {3, 5, 7, 9, 11} and {3,
5, 7, 9, 11, 13, 15}, respectively. When the receptive field
experts are {3, 5, 7, 9, 11}, the model achieves better results.
It is possible because a small number of experts limit the
model’s capacity, while too many experts make it challeng-
ing for the model to optimize. Furthermore, we consider the
impact of larger receptive field experts in Table 2b. In our
MoRF setting, we do not observe better results with larger
kernels. When the kernel size increases, the number of pa-
rameters will also increase and throughput will decrease,
although the re-parameterization trick is employed.

Attention Functions. In our study, we also validate the
impact of various attention functions within the soft routing
mechanism. The results are shown in Table 2c. Specifically,
we evaluate the effectiveness of sigmoid, softmax, and un-
normalized attention functions. Our findings indicate that
the unnormalized attention mechanism notably enhances
accuracy, establishing its superiority in this context.

4.3. Frequency Analysis

One of the primary objectives of MoRF is to enable the
model to learn the adaptive receptive field based on an input
image. To investigate the preferences of different receptive
field experts for each sample in every block, we visualize the
frequency with which these experts are selected in various
layers in hard routing, as shown in Figure 3. We observe
that from the first block to the final block, the selection of
receptive field experts for each sample in each block is rela-
tively random and does not reflect a particularly pronounced
statistical preference. This phenomenon is interesting be-
cause it contradicts our intuition. Previous hybrid networks
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Model Top-1 (%) Params. Throughput.
(imgs/s)

ConvNeXt 80.19 29M 775

{3, 5, 7} 80.26/80.41 30M 762
{3, 5, 7, 9, 11} 80.43/80.62 31M 742
{3, 5, 7, 9, 11, 13, 15} 80.39/80.59 31M 726

(a) The impacts of the number of receptive field
experts. We choose {3, 5, 7}, {3, 5, 7, 9, 11},
{3, 5, 7, 9, 11, 13, 15} as the receptive field
experts, where the number shows the kernel size
in convolutions.

Model Top-1 (%) Params. Throughput.
(imgs/s)

ConvNeXt 80.19 29M 775

{3, 5, 7, 9, 11} 80.43/80.62 31M 742
{3, 7, 11, 15, 19} 80.38/80.58 31M 720
{3, 9, 15, 21, 27} 80.41/80.62 32M 701

(b) The impacts of large receptive fields. We
choose {3, 5, 7, 9, 11}, {3, 7, 11, 15, 19},
and {3, 9, 15, 21, 27} as the receptive field
experts, where the number shows the kernel
size in convolutions.

Attention
function Top-1 (%) Params. Throughput.

(imgs/s)

ConvNeXt 80.19 29M 775

sigmoid 80.37 30M 759
softmax 80.41 30M 742
unnormalized 80.62 31M 726

(c) The impacts of the attention function
in the soft routing. The channel-wise at-
tention establishes a better accuracy.

Table 2. The impacts of different model configurations. We show the accuracy with the hard routing and soft routing for the evaluation of
receptive field experts and split them with a slash (/).
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Figure 3. From top to bottom, from left to right, we visualize the
frequency of selected experts for each block inserted in MoRF.
We forward all the samples in the ImageNet-1K validation set to
the pre-trained ConvNeXt + MoRF model. Different colors in
the pie chart represent different receptive field experts, such as
convolution with a kernel size of 3×3. The number on top of the
chart represents the frequency of choosing this expert.

that combine convolutions and transformers typically use
convolutional layers in the initial layers and self-attention in
the final layers. However, our results show that each sample
has its own preference, and some samples still choose larger
receptive fields in the initial layers and local receptive fields
in the later layers. Moreover, due to the presence of down-
sampling in various layers, the feature map size in the last
layer is 7×7. Therefore, when we observe the last figure
(bottom-right), we can see that most samples choose a ker-
nel larger than or equal to 7×7 (64%), which is equivalent
to covering the global receptive field. In contrast, in the
first block (top-left), the samples tend to choose the local
receptive field. As a result, previous works using convolu-
tions in the initial layers and self-attention in the final layers
satisfy most samples (though not all) and achieve excellent
performance.
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Figure 4. The curves of accuracy, training and inference through-
puts with the cumulative increase in kernel sizes. Left: accuracy;
Right: throughput.

4.4. Training and Inference Cost

In light of our implementation involving a mixture of re-
ceptive fields for network training, an increased training
cost is consequently introduced compared to the single re-
ceptive field. To systematically assess this, we conduct a
quantitative evaluation of the impact of kernel size on sev-
eral key performance: accuracy, training throughput, and
inference throughput, as depicted in Figure 4. We show
curves of accuracy, training and inference throughputs with
the cumulative increase in kernel sizes, where we train the
model for 100 epochs, as done in Sec. 4.2. We find that the
introduction of a greater number and larger size of kernels
leads to a more gradual smoothing of the accuracy curve. It
is particularly noteworthy that, while training throughput
encounters a rapid decline with the enlargement of kernel
size, the decline in inference throughput tends to be more
gradual.

4.5. Object Detection

In addition to validating the efficacy of our MoRF model in
image classification, we further explore its effectiveness in
object detection. To this end, we adopt the Mask R-CNN
framework and mmdetection (Chen et al., 2019), following
the settings of ConvNeXt (Liu et al., 2022c). The experi-
ments are conducted in the COCO datasets (Lin et al., 2014),
which contains 118K training data and 5K validation data.
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Backbone APb APb
50 APb

75 APm APm
50 APm

75 Params.

Mask R-CNN (3×)

ResNet50 (He et al., 2016) 41.0 61.7 44.9 37.1 58.4 40.1 44M
ResNet101 (He et al., 2016) 42.8 63.2 47.1 38.5 60.1 41.3 63M
PVT-Small (Wang et al., 2021) 43.0 65.3 46.9 39.9 62.5 42.8 44M
Swin-T (Liu et al., 2021b) 46.0 68.2 50.2 41.6 65.1 44.8 48M
ConvNeXt-T (Liu et al., 2022c) 46.2 67.9 50.8 41.7 65.0 44.9 48M
+MoRF (hard) 46.5 68.3 50.8 41.9 65.2 45.0 50M
+MoRF (soft) 46.8 68.7 51.0 42.2 65.5 45.2 50M

Cascade Mask R-CNN (3×)

Swin-T (Liu et al., 2021b) 50.5 69.3 54.9 43.7 66.6 47.1 86M
ConvNeXt-T (Liu et al., 2022c) 50.4 69.1 54.8 43.7 66.5 47.3 86M
+MoRF (hard) 50.8 69.6 55.1 44.0 67.0 47.4 88M
+MoRF (soft) 51.1 69.8 55.4 44.2 67.3 47.5 88M

Swin-S (Liu et al., 2021b) 51.9 70.7 56.3 45.0 68.2 48.8 107M
ConvNeXt-S (Liu et al., 2022c) 51.9 70.8 56.5 45.0 68.4 49.1 108M
+MoRF (hard) 52.1 71.0 56.6 45.1 68.5 49.1 110M
+MoRF (soft) 52.2 71.1 56.7 45.2 68.5 49.2 110M

Swin-B (Liu et al., 2021b) 51.9 70.5 56.4 45.0 68.1 48.9 145M
ConvNeXt-B (Liu et al., 2022c) 52.7 71.3 57.2 45.6 68.9 49.5 146M
+MoRF (hard) 52.8 71.5 57.2 45.6 69.0 49.6 148M
+MoRF (soft) 52.9 71.7 57.3 45.7 69.1 49.6 148M

Table 3. The object detection and instance segmentation results
with Mask R-CNN and Cascade Mask R-CNN (3x schedule)
on the COCO val2017 dataset, respectively. For ConvNeXt +
MoRF (hard/soft), Params. means the inference parameters after
re-parameterization.

To train the ConvNeXt + MoRF (hard/soft) backbones, we
use the model pre-trained on ImageNet-1K and use a typical
3x schedule (36 epochs). We employ a multi-scale training
strategy (Carion et al., 2020; Sun et al., 2021) that resizes the
shorter side to 800 and the longer side to at most 1333. Our
model is trained using the AdamW optimizer with a batch
size of 16 (2 images per GPU × 8 GPUs) and a learning
rate of 0.0001.

The experimental results are reported in Table 3. We mea-
sure the object detection and instance segmentation with
APb for the box and APm for the mask. Our ConvNeXt +
MoRF achieves better performance compared to the base-
lines (ConvNeXt).

Specifically, Mask R-CNN + ConvNeXt-T achieves 46.2
APb and 41.7 APm with the 48M parameters. Our Mask
R-CNN + ConvNeXt + MoRF (soft) has 46.8 APb and 42.2
APm with similar parameters, which is better. Additionally,
our model with Cascade Mask R-CNN also achieves better
performance compared to the baselines, which shows the
effectiveness of our MoRF in object detection and instance
segmentation. Similar to image classification, the increased
number of parameters in our MoRF models is primarily due
to features selecting larger receptive fields in some blocks to
cover long-range dependencies in object detection, resulting
in a larger kernel size of the convolution for computation.
However, such an increase in parameters is marginal.

Method Backbone
mIoU
(ms) Params.

DANet (Fu et al., 2019a) ResNet-101 45.2 69M
DeepLabv3+ (Chen et al., 2018) ResNet-101 44.1 63M
ACNet (Fu et al., 2019b) ResNet-101 45.9 -
DNL (Yin et al., 2020) ResNet-101 46.0 69M
OCRNet (Yuan et al., 2020) ResNet-101 45.3 56M
UperNet (Xiao et al., 2018) ResNet-101 44.9 86M

OCRNet (Yuan et al., 2020) HRNet-w48 45.7 71M
DeepLabv3+ (Chen et al., 2018) ResNeSt-101 46.9 66M
DeepLabv3+ (Chen et al., 2018) ResNeSt-200 48.4 88M

UperNet (Xiao et al., 2018)

Swin-T (Liu et al., 2021b) 45.8 60M
ConvNeXt-T (Liu et al., 2022c) 46.7 60M

+MoRF (hard) 47.2 63M
+MoRF (soft) 47.7 63M

Swin-S (Liu et al., 2021b) 49.5 81M
ConvNeXt-S (Liu et al., 2022c) 49.6 82M

+MoRF (hard) 49.9 85M
+MoRF (soft) 50.1 85M

Swin-B (Liu et al., 2021b) 49.7 121M
ConvNeXt-B (Liu et al., 2022c) 49.9 122M

+MoRF (hard) 50.3 125M
+MoRF (soft) 50.6 125M

Table 4. The semantic segmentation results on the ADE20K vali-
dation set. For ConvNeXt + MoRF (hard/soft), Params. means the
inference parameters after re-parameterization.

4.6. Semantic Segmentation

Following the settings of ConvNeXt (Liu et al., 2022c),
we conduct experiments of semantic segmentation on the
ADE20K dataset (Zhou et al., 2017), which consists of
20,210 training images and 2,000 validation images. Uper-
Net (Xiao et al., 2018) and mmsegmentation (Contribu-
tors, 2020) frameworks are employed with our ConvNeXt
+ MoRF (hard/soft) backbones. We train our models with
a batch size of 16 (2 images per GPU × 8 GPUs) and a
learning rate of 6 × 10−5 for 160K iterations using the
AdamW optimizer. We use data augmentation techniques
such as horizontal flipping, random re-scaling within a ratio
range of [0.5, 2.0], and random photometric distortion, as
employed by ConvNeXt (Liu et al., 2022c). The input reso-
lution is set to 512×512, and all the models are fine-tuned
with pre-trained models on ImageNet-1K.

We list the experimental results in Table 4, where the per-
formance is measured by multi-scale mIoU. With similar
parameters, UperNet + ConvNeXt-T (soft) achieves a better
result than UperNet + ConvNeXt-T (47.7 vs. 46.7) in terms
of ms mIoU, which shows the effectiveness of our MoRF in
the semantic segmentation task.

5. Conclusion
In this paper, we explore the impact of dynamic receptive
fields on vision architectures. Specifically, we introduce
a novel framework, termed Mixture of Receptive Fields
(MoRF), which diverges from the conventional single recep-
tive field approach. MoRF encompasses a combination of
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various receptive fields, such as convolutions with diverse
kernel sizes, where each convolution is regarded as a special-
ized expert. Such an approach allows for both the dynamic
selection of suitable receptive fields for the given input and
the expansion of the network capacity. Additionally, we
incorporate two distinct routing mechanisms—hard routing
and soft routing—to autonomously determine the optimal
receptive field experts. During the inference phase, these
selected experts are merged through re-parameterization,
thereby preserving inference speeds comparable to those
of architectures with a single receptive field. To validate
the effectiveness of MoRF, we integrate this concept into
various types and scales of architectures, including ResNet
and ConvNeXt. Our comprehensive experiments demon-
strate that MoRF-enhanced architectures achieve superior
performance in tasks such as image classification, object
detection, and segmentation, without markedly increasing
model parameters and inference times.

Limitations. Due to resource constraints, the implemen-
tation of a vast array of receptive field experts, as used in
models like the Mixture of Experts (MoE), for instance,
128 experts, remains beyond our current experimental ca-
pacity. Consequently, our investigations are constrained
to a selection of seven receptive field experts. The inte-
gration of a larger mixture of receptive field experts will
result in an increase in training resources. A potential so-
lution is the optimization using CUDA kernels, which will
be considered as future work. Furthermore, during infer-
ence, re-parameterization reduces the computational cost,
but the training phase remains resource-intensive. Future
work could apply this concept to transformer architectures,
such as by designing varying window sizes for attention
interactions to dynamically select receptive fields.
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A. Training Recipes and Dataset Details
We list the detailed training recipes for our two models: ConvNeXt-T and ResNet-50 with MoRF in Table 5. To be specific,
we use a batch size of 4096 and a learning rate of 4e−3 for the above models. We use the Adam optimizer and train the
model for 300 epochs. We also employ data augmentation techniques such as mixup (Zhang et al., 2017) and cutmix (Yun
et al., 2019) to increase the size of our training dataset. We also use label smoothing (Szegedy et al., 2016) with a smooth
ratio of 0.1 and DropPath (Huang et al., 2016) strategy. After training our models using the specified recipe, we achieved
higher accuracy on the ImageNet-1K dataset compared to the baselines, which demonstrates the effectiveness of our training
recipe for optimizing the performance of machine learning models.

We conduct experiments on the ImageNet-1K dataset, which contains about 1.28 million training samples and 50,000
validation samples. These samples are categorized into 1,000 different classes, providing a diverse range of categories such
as different breeds of dogs, various types of vehicles, and numerous everyday objects.

ConvNeXt-T ResNet-50

training config ImageNet-1K ImageNet-1K
2242 2242

weight init trunc. normal (0.2) kaiming normal
optimizer AdamW AdamW
base learning rate 4e-3 4e-3
weight decay 0.05 0.05
optimizer momentum β1, β2=0.9, 0.999 β1, β2=0.9, 0.999
batch size 4096 4096
training epochs 300 300
learning rate schedule cosine decay cosine decay
warmup epochs 20 20
warmup schedule linear linear
layer-wise lr decay None None
randaugment (Cubuk et al., 2020) (9, 0.5) (9, 0.5)
mixup (Zhang et al., 2017) 0.8 0.8
cutmix (Yun et al., 2019) 1.0 1.0
random erasing (Zhong et al., 2020) 0.25 0.25
label smoothing (Szegedy et al., 2016) 0.1 0.1
stochastic depth (Huang et al., 2016) 0.1 0.1
layer scale (Touvron et al., 2021c) 1e-6 1e-6
head init scale (Touvron et al., 2021c) 1.0 1.0
gradient clip None None
exp. mov. avg. (EMA) (Polyak & Juditsky, 1992) 0.9999 None

Table 5. The training recipes for ConvNeXt-T and ResNet-50 with MoRF, respectively.

B. Architecture Details
In our work, we perform the instantiation of the ConvNeXt model, integrating it with the MoRF framework. To facilitate a
comprehensive understanding of the models, we present the architecture details in Table 5, assuming an input image size of
224× 224. The second column of Table 5 illustrates the output size of the image output at each stage within the models.
We employ the notation “Concat n× n” to denote the concatenation of n× n neighboring features in a patch following
Swin Transformer (Liu et al., 2021b). This technique has been shown to be effective in capturing local information in
images. Additionally, we incorporate receptive field experts through the deployment of five distinct convolutional layers,
each characterized by varying kernel dimensions, specifically denoted as d(3, 5, 7, 9, 11). These techniques enable the
model to capture both local and global features of an image.

C. Visualizations
In our study, we employ the Grad-CAM algorithm (Selvaraju et al., 2017), to methodically analyze and compare the attention
maps of various models. This algorithm computes the gradients of the predicted class score relative to the feature maps of
the last convolutional layer. We effectively visualize these attention maps for two key model configurations: the standard
ConvNeXt and the enhanced ConvNeXt integrated with MoRF, as depicted in Figure 6.

All models are trained on the ImageNet-1K dataset, and the specific configurations of these experiments are systematically
presented in Table 5. A critical analysis of these results show that our proposed ConvNeXt + MoRF model demonstrates
superior performance in generating high-quality attention maps. This enhanced performance of the ConvNeXt + MoRF
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downsp. rate
(output size) ConvNeXt-T + MoRF

stage 1 4×
(56×56)

concat 4×4, 96-d, LN

,

d(3, 5, 7, 9, 11), 96
1×1, 384
1×1, 96

 × 3

stage 2 8×
(28×28)

concat 2×2, 192-d , LNd(3, 5, 7, 9, 11), 192
1×1, 768
1×1, 192

 × 3

stage 3 16×
(14×14)

concat 2×2, 384-d , LNd(3, 5, 7, 9, 11), 384
1×1, 1536
1×1, 384

 × 9

stage 4 32×
(7×7)

concat 2×2, 768-d , LNd(3, 5, 7, 9, 11), 768
1×1, 3072
1×1, 768

 × 3

Global Average Pooling (GAP), Head

Figure 5. Architecture details of ConvNeXt-T with MoRF.
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Figure 6. Visualization of attention maps. From top to bottom,
each row shows the RGB image, ConvNeXt, and our ConvNeXt
with MoRF.

model is primarily attributed to its innovative use of a mixture of receptive fields. This feature enables the model to adaptively
and selectively focus on the most helpful receptive fields for different objects, thereby optimizing the attention mechanism
for improved image classification accuracy.

D. More Ablation Experiments
In this study, we present an experimental study of the effectiveness of integrating a mixture of receptive fields (MoRF)
within Convolutional Neural Networks (CNNs) to augment their performance in image classification. To this end, we insert
the MoRF into ConvNeXt in different layers, and evaluate its performance on the ImageNet-1K dataset. ConvNeXt consists
of four stages with [3, 3, 9, 3] blocks, and we insert MoRF from stage-1 to stage-4 to investigate its impact on the model’s
accuracy. We train the model on ImageNet-1K for 100 epochs by default and the results are presented in Table 6.

stage-1 stage-2 stage-3 stage-4 Accuracy (%)

80.19

✓ 80.34/80.42
✓ 80.32/80.40

✓ 80.29/80.40
✓ 80.24/80.35

✓ ✓ ✓ ✓ 80.43/80.62

Table 6. The impacts of inserting MoRF into different layers. We show the accuracy with the hard routing and soft routing for the
evaluation of receptive field experts and split them with a slash (/).

From this table, we observe a significant improvement in accuracy when MoRF is inserted in different layers of the model.
Notably, the most substantial improvement is recorded when MoRF is incorporated into all stages, achieving accuracy levels
of 80.43% and 80.62%, thereby underscoring the potential of MoRF to significantly elevate CNN performance in image
classification tasks. Furthermore, our findings reveal a more pronounced benefit when MoRF is added to the lower-level
layers as compared to its inclusion solely in the higher-level layers. This differential impact may be attributed to the inherent
nature of high-level layers, which typically already possess a global receptive field for features. In contrast, the integration
of MoRF in lower-level layers appears to be more advantageous, likely due to their enhanced capacity for local feature
refinement and extraction.
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