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Abstract

The recent emergence of hybrid models has introduced a transformative approach to com-
puter vision, gradually moving beyond conventional convolutional neural networks and vi-
sion transformers. However, efficiently combining these two approaches to better capture
long-range dependencies in complex images remains a challenge. In this paper, we present
HHANET (Inception Inspired Attention Network), an efficient hybrid visual backbone de-
signed to improve the modeling of long-range dependencies in complex visual recognition
tasks. The core innovation of iANET is the iiABlock, a unified building block that inte-
grates a modified global -MHSA (Multi-Head Self-Attention) and convolutional layers in
parallel. This design enables iiABlock to simultaneously capture global context and local
details, making it effective for extracting rich and diverse features. By efficiently fusing
these complementary representations, iiABlock allows iiANET to achieve strong feature in-
teraction while maintaining computational efficiency. Extensive qualitative and quantitative
evaluations on some SOTA benchmarks demonstrate improved performance.

1 Introduction

From autonomous drones to urban planning, understanding complex visual scenes is more critical than
ever, yet traditional models struggle to capture such complexity. Over the last decade, deep Convolutional
Neural Network (CNN) architectures have emerged as the de facto standard for solving most computer
vision (CV) tasks, including image classification He et al.| (2016]); [Tan & Le| (2019)), object detection Ren
et al.| (2015); [Redmon & Farhadi| (2017) and segmentation Long et al.| (2015) with compelling results. The
prevalence of CNN architectures is not coincidental, as they excel at capturing spatial features and patterns
in images. However, the dominance of CNN architectures is being challenged by the emergence of ViT
(Vision in Transformer) Dosovitskiy et al.| (2020]), presenting a transformative approach to solving CV tasks.
Interestingly, this groundbreaking model outperforms SOTA CNN-based models on ImageNet benchmark
Dosovitskiy et al.| (2020) and emerges as a competitive alternative [Han et al.| (2022)). Practically, ViT works
exactly like the text-based Natural Language Processing (NLP) transformers but with patch embedding. It
divides the input image into patches, projects them into a high-dimensional feature space through a linear
projection layer, adds positional embedding, passes them through a transformer encoder, and finally maps
the output to a fixed-length vector for classification tasks.

Significantly, the key component of ViT is the self-attention mechanism [Dosovitskiy et al.| (2020) within the
encoder, which enables the model to capture long-range dependencies by allowing each element in the input
sequence to attend to all other elements, considering their relative importance Dosovitskiy et al.| (2020).
While this capability allows the model to selectively focus on distantly related pixels, facilitating the effi-
cient capture of contextual information across the entire input sequence, it encounters limitations such as
increased computational complexity, reduced interpretability, data hungry, and challenges in handling spa-
tial information effectively compared to CNNs. In contrast, CNN-based models, while effective at capturing
local features through parameter sharing and local receptive fields, struggle with capturing long-range de-
pendencies, limiting their ability to integrate distant pixel relationships. These limitations have led to the
development of hybrid models, which combine their strengths to improve performance Haruna et al.| (2025)).
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Figure 1: iANET Grad-CAM [Selvaraju et al.| (2017) comparison and other state-of-the-art models, e.g.,
(a) shows an aerial image of viaduct, mountain, storage tanks, and river featuring complex infrastructure
consisting of multiple spans, roads, and surrounding landscapes. The primary objective is to accurately
detect and classify various elements to facilitate efficient maintenance, safety management, and infrastructure
planning. Consequently, capturing long-range dependencies in this scenario is crucial for comprehending the
spatial layout of different viaducts, mountains, storage tanks, and rivers, their interactions, and potential
structural issues. (b) ResNet-50 highlights strong local features but fails to capture long-range dependencies.
(¢) ViT-B/16 demonstrates limited interpretability, primarily focusing on small, scattered regions. (d)
The proposed iiANET (hybrid model) exhibits enhanced ability to capture long-range dependencies, global
context, and improved interpretability.
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Specifically, previous hybrid designs have aimed to enhance capturing long-range dependencies for various
CV tasks [Guo et al| (2022)); |Srinivas et al. (2021); Dai et al. (2021a). However, the design of hybrid
models introduces additional design complexities [Haruna et al.[(2025), and computational costs compared to
monolithic models [Khan et al.| (2023)), while also potentially leading to information loss due to feature fusion
of distinct models|[Haruna et al.| (2025]). Lastly, more effort is needed to design efficient hybrid models capable
of capturing long-range dependencies in complex images, a challenge that remains largely unaddressed.

In this work, we propose a novel architectural block, the iiABlock (Inception-Inspired Attention Block), which
serves as the core component of our model, iANET. The iiABlock is a carefully designed hybrid module
that integrates parallel convolutional layers for efficient local feature extraction, and a global 2D Multi-
Head Self-Attention (MHSA) mechanism with Registers to effectively model long-range dependencies. The
outputs from these branches are then fused via concatenation and feature shuffling, enabling rich interaction
between local and global features. By leveraging the complementary strengths of CNNs and transformers in
a lightweight design, iiANET offers a simple yet powerful solution for understanding complex visual scenes
with long-range dependencies. For example, on the AID (Aerial Image Dataset) [Xia et al.| (2017)), iiANET-B
and iiANET-L achieve an accuracy of 80.57% and 83.11% respectively, outperforming ResNet-50 (71.93%),
ViT-B/224 (69.93%), and DINAT-B (79.12%). These results highlight iANET’s effectiveness in modeling
long-range dependencies in challenging datasets. The contributions of this paper are summarized as follows:

e From a methodological perspective, we identify that existing vision models struggle to efficiently
capture long-range dependencies and global context in complex scenes, creating a gap in robust
visual understanding.

e We introduce iiABlock, a novel hybrid module that integrates parallel convolutional branches with
global rMHSA, enabling efficient capture of long-range dependencies in complex vision tasks.

o Extensive experimental results on commonly used benchmarks demonstrate that iANET outper-
forms some existing SOTA methods.

2 Related Work

CNN-based methods have seen various attempts to enhance their ability to capture LRD in images. |[Don-
ahue et al. (2015) introduced the Long-term Recurrent Convolutional Network (LRCN) by fusing CNNs
with LSTMs, while [Yu et al.| (2017) proposed the Dilated Residual Network (DRN) using multiple dilation
rates to expand receptive fields, and [Yu & Koltun| (2015]) designed a Dilated Convolution (DC) model to
improve global context in semantic segmentation. ADRnet augments CNN with advection, diffusion, and
reaction terms to enable non-local feature transport and improve LRD spatio-temporal modeling |Zakariaei
et al.| (2024]). These approaches advanced CNN capacity for LRD but face limitations: LRCN increases com-
putational complexity due to recurrent connections, DRN can lose fine-grained spatial details from varying
dilation rates, and DC suffers from gridding artifacts. The emergence of ViT [Dosovitskiy et al.| (2020)); Liu
et al.|(2021a) offered a breakthrough in capturing LRD via attention mechanisms, achieving SOTA perfor-
mance. However, their quadratic complexity, high data requirements, and weaker inductive bias compared
to CNN demand substantial computational resources. To address these trade-offs, hybrid methods combine
CNN feature extraction with ViT global dependency modeling Haruna et al.| (2025). [Zhang et al.| (2022) pro-
posed ELAN, using group-wise multi-scale self-attention for super-resolution; |Guo et al.| (2022)) introduced
CMT (CNN Meet ViT) to integrate attention into CNN blocks; and [Srinivas et al.| (2021]) developed BoTNet
by replacing the final ResNet block with MHSA. While effective, these methods often apply attention at later
stages with smaller spatial dimensions, limiting effectiveness, and face challenges such as memory constraints
(CMT-L), structural complexity, and information loss from fusing distinct methods [Peng et al.| (2021); [Dai
et al.| (2021Db); [Hassani & Shi| (2022); [Wu et al.| (2021)). CNN excel at local detail capture but struggle with
LRD Haruna et al.| (2025); Khan et al. (2023), RNNs handle such dependencies but lack parallelism and
train slowly Banerjee et al.| (2019)), and ViT capture them efficiently but require more memory [Dosovitskiy!
et al.| (2020). However, it remains a challenge to efficiently combine CNN and ViT architectures due to
design complexity, higher computational costs, feature fusion losses, and interpretability issues. This paper
addresses this gap by proposing a hybrid model that efficiently captures LRD in complex images.
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3 Method

3.1 Our Approach: iiABlock

The iiABlock is the core component of the proposed iiANET, designed to capture both local and global fea-
tures in complex visual scenes. It combines parallel convolutional layers for efficient extraction of localized
features with a global 2D r-MHSA mechanism augmented by Register tokens to model long-range depen-
dencies. The convolutional branch leverages parameter sharing and local receptive fields, while 2D r-MHSA
attends to distant pixel relationships across the input, with Register tokens to enhance interpretability. To
merge these complementary features, we introduce a lightweight fusion strategy using feature concatenation
followed by channel shuffling, enabling rich local-global interactions with minimal computational cost. This
balanced design offers a favorable trade-off between speed and accuracy, providing a robust backbone for
downstream visual recognition tasks. Figure [2]illustrates the iiABlock architecture.
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Figure 2: iIABLOCK design showing r-MHSA, inverted bottleneck, ECANET and Atrous block

3.2 Local Details

To extract fine-grained features and spatial patterns from complex images, iiABlock introduces components
for modeling local details. This is important for recognizing textures, edges, and region-specific patterns.

Inverted Bottleneck (Efficient Convolutional Block) iiABlock utilizes the inverted bottleneck in parallel
to improve computational efficiency and enhance local feature extraction, consisting of 1x1 convolutions
for dimensionality reduction, 3x3 depth-wise separable convolution for spatial information extraction, and
1x1 convolution for projection. Notably, this block is limited to capturing local context with a fixed kernel,
making it less effective in understanding prevalent global context in complex images Dai et al.| (2021a)), e.g.,
road, viaduct, bridge. Given the depth-wise operation in equation

Yi = Z Wi—j * Tj (1)

JEL(3)

y; calculates the output at position i by taking a weighted sum of the input x;, where z;,7; € RP. The
weights w,_; determine the contribution of each input x; to the output, and L£(¢) represents a local neigh-
borhood, typically a 3 x 3 grid centered around i. The small size of £(7) limits the receptive field’s ability to
capture intricate details, particularly in complex images with prevalent long-range dependencies. To miti-
gate the limitation of the inverted bottleneck in capturing long-range dependencies, we also introduce atrous
convolution into the iiABlock.
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Atrous Convolution (Ezpanding Receptive Field) In iiABlock, a single 3 x 3 atrous convolution expands
the receptive field without increasing parameters. Unlike standard convolution, it applies a dilation rate r
to space kernel elements, covering a wider area while preserving resolution and computational efficiency (See
equation [2] Given an input feature map z and filter w, the output at location i is:

K-1

yli} =Y ali+r-k]-wlk] (2)

k=0

This captures mid-range dependencies and enriches contextual understanding, bridging local and global rep-
resentations. However, it remains insufficient for fully modeling global, long-range dependencies in complex
scenes, which are further addressed by integrating a global r-MHSA module into iiABlock.

3.3 Global Details

r-MHSA (Capturing global context and long-range dependencies). To capture global context and long-range
dependencies in complex images, iiABlock integrates a modified global 2D r-MHSA mechanism. Unlike CNN
layers limited to local receptive fields, r-MHSA allows each spatial location to attend to all others, effectively
modeling contextual relationships across the entire image. Given a 2D input feature X € RE*#*W reshaped
into X € RIWXd (where d is the feature dimension), linear projections generate queries Q@ = X Wa, keys
K = XWk, and values V = XWy . Attention Z with h heads is computed as shown in Equation 3] enabling
each token to attend to all others and capture long-range dependencies.

QK"

dy;

Zn(Qq, K, V) = softmax \% (3)

Here, Q; interacts with all keys in K across the entire sequence, unlike the standard MHSA, which attends
within a limited context window. This enables the model to consider the relationships between all tokens
regardless of their positional distance, capturing the global context and long-range dependencies prevalent in
complex images. The softmax operation normalizes these scores and produces attention weights, which, when
applied to the value matrix V', compute the final attended values. However, this interaction is order-agnostic
and doesn’t capture positional relationships in the input sequence. Therefore, in image data where spatial
information is essential, integrating positional encodings is necessary to effectively complement MHSA.

Relative Position Encoding Srinivas et al.| (2021)) MHSA is permutation equivariant with no positional
encoding. This characteristic limits its representational power, particularly for vision tasks involving highly
structured data like images. Notably, it is added to the input image representation before the MHSA is
applied, and it is used to guide the attention weights to focus on relevant pixels based on their relative
positions in the input image.

QKT +Q;r

&

Zn(Qi, K, V) = softmax Vv 4)

Where 7 is a trainable matrix. Lastly, reshape Z(X);, back to its original spatial shape of X € RE*HxW,
This addresses MHSA’s order-agnostic nature, enhancing its representational power.

Registers (Improving interpretability). While the self-attention mechanism significantly improves the net-
work’s ability to capture long-range dependencies, it struggles with poor interpretability [Darcet et al.| (2023)).
We instead add additional learnable tokens to mitigate prevalent artifacts in the attention mechanism caused
by high norms in image areas with low information during inference or training, similar to the implementa-
tion by [Darcet et al.| (2023). In this case, it is a global MHSA where the attention mechanism has a single
input image, in contrast to having several patches. We initialize the register tokens for queries and keys
as Rok € RNXHWXHW “where N is the number of register tokens and HW is the spatial dimension, then

D
Toag XHW

value register tokens as Ry € RV* , where D is the dimension. The operations expand both Rgx
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and Ry to RBXNXHXW and RN X maa XHW yegpectively (equation and @) effectively creating B copies of
the register tokens for each batch, where B is the batch size. This step ensures that each batch has its own
set of register tokens, facilitating batch-wise parallel processing in the attention mechanism.

Rok = repeat(R{ g, nhw — bnhw', b = B) (5)

Ry = repeat(Ry,, nhw — bnhw', b = B) (6)

Then integrate the register tokens into the attention mechanism as Q; K ; =Q;KT+ Ror and Vg =V + Ry
before computing the attention, where Zg is the final 2D-MHSA output with registers. After computation,
the register tokens are discarded (See equation .

QiK} +Q;R

di

Zh(Q;, K, V) = softmax Vi (7)

3.4 Features Recalibration

ECANET (Channel-wise Recalibration and Down-Sampling). While long-range dependencies in computer
vision span both spatial and channel dimensions, traditional CNNs and attention mechanisms often empha-
size spatial adaptivity, neglecting channel-wise adaptability. To address this, iiABlock integrates ECANET
Wang et al.| (2020)), which efficiently computes channel attention weights by modeling inter-channel relation-
ships. Compared to SENET Hu et al.|(2018]), ECANET offers improved efficiency, scalability, and accuracy.
Given input X € RE*HXW “adaptive average pooling reduces spatial dimensions to P € RE*1*1 followed
by a 1 X 1 convolution and sigmoid activation to produce attention weights Z € [0,1]. These weights mod-
ulate channel significance through element-wise multiplication: ECA = X ® Z. Feature maps are then
downsampled via a 1 x 1 convolution with stride 2 after each stage.

3.5 Feature Interaction Fusion

iiABlock enables efficient multi-scale feature learning through a structured feature interaction mechanism
that splits input channels into three branches: atrous convolution, inverted bottleneck, and r-MHSA. Each
branch processes its feature subset independently and the outputs are fused via concatenation, followed by
channel shuffling to enhance cross-branch interaction. This design captures short-range, long-range, and
channel-specific dependencies in parallel while maintaining simplicity and low computational cost, outper-
forming complex fusion strategies such as heavy cross-attention |Chen et al.| (2021a)) or multi-level stacking |Li
et al[(2019). Empirically, we found the channel ratio r = (1:6:1) optimal. For input X € RE*H*W channels
are split as x1, ©2, £3 with dimensions approximately |C/8], [3C'/4], and |C/8], respectively. Corresponding
functions f1, f2, and f3 process each branch, whose outputs are concatenated (Figure |3). Finally, channel
shuffling is applied to strengthen inter-branch interaction, defined in equation [}

X = shuffle(f(z)) € ROXIXW, 8)

The fused output X effectively combines diverse receptive fields and attention mechanisms with efficiency
and expressiveness. Table [I| presents the schematic details of iiABlock.

Table 1: Schematic of spatial sizes and channel allocations across branches and fusion.

Branch Input Size Operation Output Size
r-MHSA ExHxW r-MHSA ExHxW
Inverted Bottleneck 3¢« HxW Convolution ¢ HxW
Atrous Conv % x HxW Atrous Conv % x HxW
Fusion (C/8+3C/4+C/8) x HxW concat(yi,y2,y3) — shuffle Cx Hx W
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3.6 Computational-Efficiency

iiABlock processes visual inputs X € REXW*H (with M = W - H) using r-MHSA, dilated, and inverted
bottleneck convolutions. Given an expansion factor E = 2C', their computational complexities are:

Q(MHSA) = 4MC? + 2M?C, (9)

Q(DilatedConv) = 18 M C?, (10)

Q(Bottleneck) = MC? (2 + 92) , (11)
roor

where r is the channel reduction ratio. To enhance global modeling, iiANET adds Register Tokens to the
r-MHSA branch. For N register tokens per head, the cost becomes:

Q(MHSA+Reg) = 4(M + N)C? + 2(M + N)*C, (12)

where N < M, making the added cost negligible while improving stability and representation quality.
Overall, -MHSA captures global context but scales quadratically with M, whereas dilated and bottleneck
convolutions scale linearly, offering efficient local feature extraction. iiABlock balances both for scalable
high-resolution performance.

3.7 Memory-Efficiency

To reduce memory consumption and computational cost, we allocate the r-MHSA branch only 1/8 of the
input channels. Additionally, r-MHSA is placed deep in the network where the spatial dimensions are
low, mitigating the quadratic scaling with sequence length M. This design ensures that global attention is
captured effectively without excessive memory usage, allowing iiABlock to process high-resolution images
efficiently.

3.8 HANET Architectural Overview

iIANET is a hybrid visual recognition backbone architecture designed to enhance capturing long-range de-
pendencies in complex images while maintaining computational efficiency. At each stage, iANET stacks
iiABlock in parallel across four stages. Each iiABlock captures both short-range and long-range depen-
dencies while incorporating global context, enabling the model to process intricate patterns effectively. The
architecture is also non-isotropic as it down-samples spatial features at every stage, allowing for a progressive
abstraction of features. By stacking iiABlock in parallel at each stage, iiANET efficiently captures both fine-
grained local details and global context, making it well-suited for complex vision tasks. Figure [3 illustrates
iiANET’s architecture.
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Figure 3: iIANET architectural overview.

Stem (Initial stage) Given the higher resolutions of complex images, this component serves to compress
the computational costs of iIANET by shrinking the spatial dimensions of the input image to half, trading
off spatial details for improved model efficiency and basic feature extraction Bello et al. (2021)). Let the
input image be X € R¥*>*H>XW e apply two sequential 3 x 3 convolutional layers, each followed by a batch
normalization and ReLU activation function, with the initial layer using a stride of 2.
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iiABlock (Building Blocks) The iiANET-B and iiANET-L variants stack iiABlocks in non-isotropic config-
urations of [2,3,5,2] and [2, 3,10, 4] across four stages to capture multi-scale features while reducing spatial
resolution. At each stage, input feature maps are down-sampled, yielding spatial dimensions of H/4 x W/4,
H/8 x W/8, H/16 x W/16, and H/32 x W/32. Inspired by Inception designs [Szegedy et al.| (2015]), multiple
iiABlocks run in parallel per stage, enabling simultaneous processing of features with varied receptive fields.
These branches are fused via concatenation followed by channel shuffling to promote cross-path interac-
tion. This hierarchical, multi-branch structure allows iiANET to efficiently capture short and long-range
dependencies while maintaining a compact, efficient architecture suited for complex vision tasks.

Output Layer. After the final stage, Adaptive Pooling reduces the feature map to a fixed size, which is
then passed through a Fully Connected layer for classification.

4 Experimental Results and Comparisons

We evaluate iiANET qualitatively and quantitatively on several widely used benchmark datasets, comparing
it with some state-of-the-art CNN, ViT, SSM and hybrid models. The evaluation covers classification
performance and effectiveness as a backbone for object detection and segmentation, focusing on iiANET’s
ability to capture long-range dependencies in complex images.

Datasets and Metrics. Experiments are conducted on diverse datasets: AID Xia et al. (2017)) (10,000
images, 30 scene classes), Oxford-IIIT [Parkhi et al| (2012)) (4,978 images, 37 cat and dog breeds), and
RLD [Sethy et al.| (2020) (5,932 images, 4 disease categories). Additionally, ImageNet1K Deng et al. (2009)
(1.28M images, 1,000 classes), COCO-2017 [Lin et al.| (2014]) (118K training images, 80 object categories),
and ADE20K Zhou et al.| (2017)) (25K images, 150 semantic categories) are employed to assess generalization
and robustness. Metrics include top-1/top-5 accuracy, Average Precision (AP), FLOPs, and throughput,
providing comprehensive performance insights.

Experimental Setup. Training was performed on a Linux system with an Intel Core i7-8700K CPU, 2
NVIDIA Titan XP GPUs (12GB), and 32GB RAM. Models were trained for 90 or 150 epochs with batch
size 16 using the AdamW optimizer, an initial learning rate of 0.0001, and a decay rate of 0.05. For fair
comparison, some baseline models were re-trained on AID, Oxford-III, and RLD using the authors’ default
settings, while models with reported results were taken from the original publications to ensure fairness and
consistency, as full re-training under a unified configuration would be computationally infeasible.

4.1 Qualitative Evaluation and Comparison: iiANET Visual Inspection

We applied Grad-CAM |Selvaraju et al.| (2017)) on the final layer of iiANET and several state-of-the-art models
ResNet-50/100[He et al.| (2016)), EfficientNet-B4/B5|Tan & Le|(2019)), DenseNet-169/201 Huang et al.| (2017,
ViT-B/L-16 [Dosovitskiy et al.| (2020), CoatNet-3 |Dai et al.| (2021a)), and BoTNet |Srinivas et al.| (2021) with
visualizations shown in Figure[d, CNN-based models generate localized heatmaps around objects due to their
limited receptive fields, while ViT-based models produce scattered attention spots, indicating interpretability
challenges. Hybrid models better capture long-range dependencies and improve interpretability. Notably,
iIANET excels at precisely outlining complex objects with minimal background noise, suggesting enhanced
accuracy and reliability in tasks reliant on long-range dependencies, such as medical imaging, autonomous
driving, remote sensing, and security surveillance.

4.2 Qualitative Results on Detection and Segmentation

Figure [5] presents qualitative results on object detection, instance segmentation, and semantic segmentation
tasks. Specifically, we evaluate iIANET as a backbone within Faster R-CNN |Ren et al.| (2015) and Mask
R-CNN [He et al, (2017) on the COCO val2017 dataset Lin et al.| (2014)), and UperNet Xiao et al. (2018)
for semantic segmentation on ADE20K |Zhou et al| (2017). The visual results demonstrate that iANET
effectively generalizes across different dense prediction tasks, capturing both fine-grained object boundaries
and global contextual cues. This shows that iIANET can be seamlessly integrated into standard detection
and segmentation frameworks while maintaining quality visual predictions.
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AID Dataset
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Figure 4: Visual inspection of iANET compared to some SOTA models using Grad-CAM
highlights the model’s ability to focus on complex object regions. The heatmaps demonstrate
iIANET’s improved capacity to capture long-range dependencies and provide more interpretable attention
on relevant spatial structures compared to ResNet-50, BoTNet, ViT-B/16, and CoAtNet.
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Object Detection Instance Segmentation Semantic Segmentation

Figure 5: Qualitative results of object detection and instance segmentation on COCO val2017
(2014)), and semantic segmentation on ADE20K Zhou et al.| (2017). From left to right, the results are obtained
using iiIANET as the backbone in Faster R-CNN, Mask R-CNN, and UperNet for semantic segmentation.

4.3 Quantitative Evaluation and Comparison
4.3.1 Classification performance

Table [2|shows IANET classification performance across three standard benchmark datasets. The quantita-
tive evaluation involves comparing iiANET-B and iANET-L with several recent state-of-the-art models in
terms of both accuracy and computational cost on ImageNet-1K, AID and Oxford-III.

¢ ImageNet-1K: iiANET-L achieves a competitive top-1 accuracy of 84.9% while maintaining com-
putational efficiency with only 13.45 GFLOPs and 50.9M parameters. This demonstrates a decent
accuracy-efficiency tradeoff, outperforming larger and more computationally expensive models such
as ViT-L/16 (76.5%, 59.69 GFLOPs) and CoAtNet-3 (84.5%, 32.53 GFLOPs). These results show
iiANET’s ability to learn robust, discriminative features with minimal complexity.

e AID Dataset: Contains complex spatial structures and long-range dependencies, which challenge
traditional models. iiIANET-B shows good performance, achieving 80.57% top-1 accuracy using only
8.22 GFLOPs. This surpasses some established CNN-based backbones such as ResNet-101 (68.93%)
and DenseNet-201 (71.60%), as well as some transformer-based models like ViT-B/16 (69.93%),
indicating IANET’s enhanced ability for modeling spatial complexity in aerial imagery.

¢ Oxford-IIIT Pets: In the fine-grained Oxford-IIIT Pets classification task, which requires distin-
guishing subtle visual differences between classes, iiANET-L achieves the highest top-1 accuracy of
76.23%, outperforming some strong baselines including CrossViT-B (73.1%) and DeiT-B (71.0%).
The smaller variant iANET-B, achieves 74.04%, outperforming ViT-B/16 (51.23%) and ResNet-101
(59.25%), demonstrating strong generalization and fine-grained discriminative power.

10
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Analysis. We observe that iiANET outperforms some CNN and transformer-based baselines across these
datasets, achieving a better balance between accuracy and computational cost. Notably, ViT variants
underperform on smaller datasets like AID and Oxford-IIIT Pets, likely due to limited training samples
and the need for large-scale data to learn robust representations. In contrast, iANET’s hybrid backbone
effectively captures both local details and long-range dependencies, providing improved generalization and
fine-grained discriminative power.

4.3.2 Object Detection

We evaluate iANET as a backbone for YOLOv8 on the COCO val2017 and test2017 datasets (Table [3).
Both iiANET-(B, L) show good performance, achieving bounding box mAP of 62.6% and 63.1% on val2017,
and 63.0% and 64.4% on test2017, respectively. Compared to backbones like ResNet-50 and Swin variants,
iIANET achieves comparable or better accuracy with slightly lower computational cost, highlighting its
efficiency in capturing multi-scale features and long-range dependencies. These results indicate that iIANET
effectively balances precision, recall, and computational efficiency for object detection in complex scenes.

4.3.3 Instance Segmentation

We evaluate iiANET on COCO val2017 for instance segmentation using Mask R-CNN (1x schedule) (Table[4]).
Both iANET-B and iiANET-L achieve better results compared to some CNN and transformer backbones,
with AP® of 45.3% and 45.8% and AP™ of 39.5% and 42.1%. The results show iiANET ability to capture
long-range dependencies and accurately segment instances in images with complex structures and occlusions.

4.3.4 Semantic Segmentation

Table compares semantic segmentation (SS) performance on the ADE20K dataset across various backbones
using the UPerNet framework. Traditional CNN-based models such as ResNet-101 with DeepLab v3+ or
UPerNet achieve mIoUs below 45%, while transformer-based and hybrid architectures show clear gains.
Swin-B and Focal-B improve SS to 49% mloU but at the cost of over 120M parameters. In contrast, the
proposed iiIANET models achieve better accuracy with notably fewer parameters: iIANET-B attains 48.5%
mloU with 66M parameters, and iiANET-L achieves 49.2% mlIoU with 92 M, outperforming some heavier
transformer baselines. This demonstrates iiANET’s strong balance between efficiency and SS performance.

4.4 \Visualizing long-range spatial transport

Convergence Plot (box task)
— ResNetso
TANET

0 10 20 30 40 50
Epoch

Convergence Plot (circle task)

\ — ResNets0
TANET

Loss (MSE, log scale)

Loss (MSE, log scale)

Convergence Plot (shifted_rectangle task) Convergence Plot (cross task)

— ResNetso
TANET

— ResNetso
HANET

\
4x10%
3x107

Epoch

Loss (MSE, log scale)
Loss (MSE, log scale)

Figure 6: To evaluate the models’ ability to capture long-range dependencies, we transport information across
distant spatial regions. We place the source in one corner and the target in another corner using various
shapes. Both ResNet-50 and iiANET are trained under identical settings (AdamW, 1r=0.001, 50 epochs,
input 2242, MSE loss). iiANET achieves faster, smoother convergence and more accurate reconstruction
than ResNet-50, effectively capturing long-range dependencies and spatial transport patterns.
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Table 2: Classification result comparison on ImageNet-1K, AID, and Oxford-III datasets.

Backbone Size Train Params FLOPs Top-1 Top-5

ResNet-101 [He et al. 2016P 2242 90 44.5M 14.58G  78.0%  94.0%
=] EffNet-B5|Tan & Le[(2019 2242 90 30.4M 449G 83.6%  96.7%
S| Dense201 [Huang et al.[(2017 2242 90 20.0M 7.35G  T7.42%  93.6%
€' ViT-L/16 [Dosovitskiy et al.|(2020) 2242 150  304.3M  59.69G  76.53% = 93.2%
=| MobileViT-S Mehta & Rastegari (]2021]) 2562 90 6M 2G 77.0%  94.6%
2| DilateFormer-B |Jiao et al.| (2023 2242 120 48M 9.96G  84.9% -

sl BoT50 Srinivas et al.| (2021 2562 90 25.6M 3.18G 84.4% -

§| CoAtNet-3 Dai et al. '2021bb 2242 90 168M 32.53G  84.5% -

Al Vim-S |Zhu et al.[(2024) 2242 90 26M 53G  80.3% -

M SAND-ViT-B |Nguyen et al.|(2022) 224 90 89M 171G 80.4% -

e VMamba-T Liu et al.|(2025) 2242 90 30M 4.9G 82.6% -

& Swin-T [Dai et al.| (2021b) 2242 300 20M 415G 81.3% -

% DeiT-B [Touvron et al.[(2021) 2242 120 86M 175G  81.8% -

U Cross-ViT-B|Chen et al.[(2021D) 2242 120 105M 201G 82.2% -

S CvT-21|Liu et al.|(2021a) 2242 300 32M 7.1G 82.5% -

E Next-ViT-B [Li et al. (2022p 2242 300 44.8M 8.3G 83.2% -
iiANET-B 2992 90 25.2M 822G  79.34% 94.71%
1ANET-L 2092 120 50.9M 13.45G  84.9%  96.83%
ResNet-101 [He et al. 12016p 2242 90 44.5M 14.58G  68.93%  93.37%
EffNet-B5 [Tan & Le|(2019 2242 90 30.4M 449G  65.73% 92.07%
Dense201 Huang et al.| (2017 2242 90 20.0M 7.35G  71.60% 94.37%

ic] ViT-B/16 |Dosovitskiy et al.|(2020) 2242 150 86.6M  16.86G  69.93% 93.27%

S| MobileViT-S [Mehta & Rastegari|(2021) 2562 90 6M 2G 66.76% 91.23%

< DINAT-B Hassani & Shil(2022) 2242 90 90M 13.7G 79.12% 93.27%

=| BoT50 Srinivas et al.|(2021) 2562 90 25.6M 3.18G  72.50% 94.27%

+|  CoAtNet-3|Dai et al. 2021h 2242 90 168M 32.53G  80.17% 94.93%

g Vim-S Zhu et al.|(2024 2242 90 26M 5.3G 74.2% -

54| VMamba-T [Liu et al.| (2025 2242 90 30M 49G  78.9% -

A Swin-T [Dai et al.| (2021D) 2242 300 20M 145G 78.0% -

< DeiT-B [Touvron et al.[(2021) 2242 120 86M 175G 81.2% -
Cross-ViT-B|Chen et al.[(2021b) 2242 120 105M 20.1G  80.6% -
iiANET-B 2992 90 25.2M 822G  80.57% 95.67%
{ANET-L 2992 90 50.9M 13.45G  83.11% 96.07%
ResNet-50 He et al.|(2016) 2242 90 25.6M 771G 59.07%  86.61%

—~ ResNet-101 He ct al. F2016p 2242 90  445M  14.58G  59.25% 87.38%

g EffNet-B5 |Tan & Le|(2019 2242 90 30.4M 449G  47.54% 78.92%

Q) Dense201 Huang et al.[(2017 2242 90 20.0M 7.35G  62.55% 86.84%

—] ViT-B/16 Dosovitskiy et al.| (2020 2242 150 86.6M 16.86G  51.23% 82.31%

2 ViT-L/16 |Dosovitskiy et al.| (2020 2242 150 304.3M  59.69G  53.19% 83.28%

! MobileViT-S Mehta & Rastegari|(2021) 2562 90 6M 2G 51.89% 84.52%

Z| DiNAT-B [Hassani & Shi] (2022) 2242 90 90M 137G 69.37%  92.09%

5| DilateFormer-B [Jiao et al.[(2023) 224?120 48M 9.96G  64.85% 88.18%

A BoT50 Srinivas et al.|(2021) 2562 90 25.6M 3.18G  64.13% 90.00%

E CoAtNet-3 Dai et al.|(2021b 2242 90 168M 32.53G  67.57% 91.36%

A VMamba-T Liu et al.| (2025) 2242 90 30M 4.9G 67.8% -

£ Swin-T [Dai et al.| (2021D) 2242 300 20M 415G 72.3% -

8 DeiT-B [Touvron et al.[(2021) 2242 120 86M 175G 71.0% -

»  Cross-ViT-B |Chen et al.|(]2021b} 2242 120 105M 20.1G 73.1% -

O ANET-B 2992 90  252M 822G 74.04% 93.98%
iiANET-L 2992 90 50.9M 13.45G  76.23% 94.54%
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Table 3: Object detection results on the COCO dataset.

Backbone

Object Detector

AP? val2017 AP? test2017

ResNet-50 (Carion et al.| (2020)
FD-SwinV2-G |Wei et al.| (2022)
Florence-CoSwin-H [Yuan et al.| (2021))
Swin-L [Liu et al.| (2021b])

BEiT-3 |Wang et al.| (2022)

Swin V2-G |Liu et al.| (2022
iiIANET-B

iiANET-L

Faster R-CNN
HTC++
DyHead
DINO

ViTDet
HTC++
YOLOvS
YOLOvS

36.7

62.0
63.2
62.5
62.6
63.1

37.9
64.2
62.4
63.3
63.7
63.1
63.0
64.4

Table 4: Instance Segmentation on COCO dataset with Mask R-CNN (1x schedule).

Backbone APP  APRs*  APRe*  AP™mak  APRRsk APRRE
ResNet-50 [He et al[ (2016) 38.0 58.6 414 34.4 55.1 36.7
PVT-M Hassani et al.| (2023) 42.0 64.4 45.6 39.0 61.6 42.1
TRT-ViT-C |Wang et al.|[(2021a) 44.7 66.9 48.8 40.8 63.9 44.0
Focal-T [Xia et al.| (2022) 44.8 67.7 49.2 41.0 64.7 44.2
UniFormer-S/h14 [Yang et al.| (2021a) 45.6 68.1 49.7 41.6 64.8 45.0
Swin-T [Li et al.| (2023) 42.2 64.6 46.2 39.1 61.6 42.0
Dilate-S |Jiao et al.| (2023]) 45.8 68.2 50.1 41.7 65.3 44.7
BoT50 [Srinivas et al.| (2021]) 43.7 - - 37.9 - -
PVT-L |Wang et al.| (2021b) 42.9 65.0 46.6 39.5 61.9 42.5
CAE-GReaT |Zhang et al.| (2024 - - - 44.0 67.9 47.3
iiANET-B 45.3 65.1 49.8 39.5 58.9 58.0
iiIANET-L 45.8 68.3 51.7 42.1 65.1 59.5

4.5 Ablation Studies

We performed ablation studies to analyze the impact of different components, scaling, and efficiency of

iiANET.

Settings. All ablation experiments were conducted on the AID dataset |Xia et al.| (2017) using an NVIDIA

GeForce RTX 2070 with Max-Q Design (8 GB VRAM), CUDA 12.1 and PyTorch 2.0.

4.5.1 iiABlock vs. MHSA Complexity Analysis

Table [6] shows iiA Block and MHSA evaluation across channel-spatial scaling, and attention heads.

o Channel Scaling (32—64—128 @ 112x112): iiABlock shows more efficient scaling with channel
width, achieving lower FLOPs (—5.4%), fewer parameters (—25.4%), and ~ 28% faster inference
compared to MHSA. Its memory growth is also smaller, confirming better computational efficiency.

o Spatial Resolution (28x28—14x14 @ 512/1024): iiABlock achieves ~ 30% lower FLOPs,
29% fewer parameters, and 20% faster latency than MHSA. It also uses slightly less memory and
maintains higher throughput, demonstrating robust efficiency across scales.

o Heads (2—4 @ 56x56): With 2x heads, iiABlock maintains about 4% lower FLOPs and 21%
fewer parameters, while achieving up to +34% higher throughput than MHSA. Although latency

increases slightly, iiABlock consistently achieves faster inference and better scaling efficiency.
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Table 5: Semantic segmentation results on the ADE20K dataset.

Backbone Method img size #param mloU %
ResNet-101 [He et al.| (2016) DeepLab v3+ 5122 63M 44.1
ResNet-101 [He et al.| (2016)) UperNet 5122 86M 44.9
DeiT-S [Touvron et al.| (2021)) UperNet 5122 43M 44.0
Swin-B [Dai et al.| (2021b) UperNet 5122 121M 48.1
ViM-S [Zhu et al.| (2024) UperNet 5122 46M 44.9
Focal-B [Yang et al.| (2021b) UperNet 5122 126 49.0
MambaVision-B |[Hatamizadeh & Kautz| (2024) UperNet 5122 126 49.1
iANET-B UperNet 5122 66M 48.5
iiANET-L UperNet 5122 92M 49.2

Table 6: Complexity comparison between iiABlock and MHSA across scaling dimensions.

Type Spatial Dim. In/Out FLOPs(G) Params Latency (ms) TP(img/s) Head
Scaling Channels
iiABlock (112,112) 32/64 1.024 5.932K 38.87 25.73 1
iiABlock (112,112) 64/128 1.230 21.944K 41.32 24.20 1
MHSA (112,112) 32/64 1.040 7.520K 53.93 18.54 1
MHSA (112,112) 64/128 1.317 29.376K 57.90 17.27 1
Scaling Attention Heads
iiABlock (56,56) 32/64 108.471M 5.932K 9.44 105.94 2
iiABlock (56,56) 32/64 167.472M 5.932K 12.00 83.34 4
MHSA (56,56) 32/64 112.586M 7.520K 12.64 79.11 2
MHSA (56,56) 32/64 171.586M 7.520K 12.81 78.05 4
Scaling Spatial Dimension
iiABlock (28,28) 512/1024 1.037 1.305M 5.59 178.74 4
iiABlock (14,14) 512/1024  257.627TM 1.305M 4.14 241.35 4
MHSA (28,28) 512/1024 1.454 1.841M 6.61 151.29 4
MHSA (14,14) 512/1024  361.842M 1.841M 4.32 231.71 4

4.5.2 Effect of iiABlock Components

Table [7] highlights the effectiveness of the proposed combination of modules within the iiABlock. Variant
(¢), which integrates MBConv, Dilated Convolution, and MHSA, achieves the best performance with a top-1
accuracy of 80.57%. This demonstrates that the synergy between local depth-wise convolutions, dilated
receptive fields, and global attention significantly improves feature representation. Variants (a), (b), and (e)
show progressive improvements, while (d), which lacks MBConv, suffers a performance drop, underscoring
the importance of lightweight local feature extraction.

Table 7: Ablation studies on various variants of iiABlock using the AID dataset.

Settings Model (Components) Size Top-1
(a) MBConv?2 209 69.23%
(b) MBConv + Dilated Conv 299  74.85%
(c) MBConv + Dilated Conv + MHSA 299  80.57%
(d) Dilated + MHSA 209 67.01%
(e) MBConv + MHSA 209 78.72%
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4.5.3 Ablation on MHSA Heads and Block Ratio

Table [§] presents the results of ablation experiments in which the channel ratio was modified from 1.6.1 to
2.4.2, resulting in a reduction of 9.6M parameters and 2.97G FLOPs, with a corresponding 6.36% decrease in
top-1 accuracy. Increasing the number of MHSA heads in the last iiANET block from 8 to 16 caused minimal
changes in computational cost and a -0.34% change in accuracy. These results indicate that reducing the
block width improves efficiency but decreases accuracy, while increasing attention heads has minimal effect,
suggesting the original configuration is near optimal.

Table 8: Ablation study on the effect of changing the MHSA head size and iiABlock ratio on AID dataset.

Settings Model (Components) Size #params FLOPs Top-1
HANET (all layers) Ratio: 1.6.1 — 2.4.2 299 15.72M 5.64G  74.21%
HANET (layers) Head Size: 8 — 16 299 25.32 8.604G  80.23%

4.5.4 Effects of Different Fusion Strategies

Table [J] compares cross attention, gated fusion, and additive fusion in iANET-B. Additive fusion provides
a better trade-off, with lower computational cost (8.60 GFLOPs), fewer parameters 25.32M, and faster
inference (27.70 ms, 36.10 img/s), with a slight decrease in top-1 accuracy 80.57% compared to gated fusion.
Cross attention achieves higher accuracy 81.32% but at the cost of increased complexity and latency.

Table 9: Ablation studies on fusion

Fusion Type #params FLOPs latency(m/s) TP(img/sec) Top-1 (%)
Cross Attention (Chen et al.| (2021c¢) 27.18M 9.39G 42.95 23.29 81.32%
Gated fusion [Jiang & Ji (2022)) 28.422M 9.56G 36.66 27.28 80.75 %
Additive Fusion 25.32M 8.60G 27.70 36.10 80.57%

4.5.5 Effect of register tokens

Table [I0]demonstrates that introducing register tokens into the 2D-MHSA improves performance on the AID
dataset. With four registers, the model achieves the highest top-1 accuracy of 80.57%, compared to 80.36%
without any. The consistent improvement suggests that registers help compensate for MHSA’s order-agnostic
nature by enhancing the contextual richness of learned representations.

Table 10: Ablation study on the effect of adding register tokens to 2D-MHSA mechanism

Registers  Top-1

0 80.36%
1 80.37%
2 80.45%
4 80.57%
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Figure 7: Grad-CAM [Selvaraju et al| (2017) heatmaps illustrating the effect of registers on iANET for
the AID dataset [Xia et al|(2017). Adding registers to the r-MHSA module enables iiANET to capture
long-range dependencies more effectively, improving interpretability of the learned representations.

Viaduct Mountains Storagetanks River

o

iiANET Input

iiANET-Registers

5 Conclusion

This work proposed iiANET, a novel hybrid model designed to efficiently improve long-range dependencies
in complex images by integrating CNN layers and the MHSA mechanism with registers in parallel. Com-
prehensive qualitative and quantitative results show improvements in capturing long-range dependencies
compared to some previous SOTA models. Additionally, we validate the performance of our model across
diverse datasets and highlight its potential as an efficient backbone for visual downstream tasks.

5.1 Limitations

iIANET is effective on images with prevalent long-range dependencies but may be less effective on datasets
with mostly localized objects. Its multi-branch and ratio design can also introduce scaling challenges, making
it difficult to determine optimal configurations in some downstream visual recognition tasks.
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