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Abstract

The recent emergence of hybrid models has introduced a transformative approach to com-
puter vision, gradually moving beyond conventional convolutional neural networks and vi-
sion transformers. However, efficiently combining these two approaches to better capture
long-range dependencies in complex images remains a challenge. In this paper, we present
iiANET (Inception Inspired Attention Network), an efficient hybrid visual backbone de-
signed to improve the modeling of long-range dependencies in complex visual recognition
tasks. The core innovation of iiANET is the iiABlock, a unified building block that inte-
grates a modified global r-MHSA (Multi-Head Self-Attention) and convolutional layers in
parallel. This design enables iiABlock to simultaneously capture global context and local
details, making it effective for extracting rich and diverse features. By efficiently fusing
these complementary representations, iiABlock allows iiANET to achieve strong feature in-
teraction while maintaining computational efficiency. Extensive qualitative and quantitative
evaluations on some SOTA benchmarks demonstrate improved performance.

1 Introduction

From autonomous drones to urban planning, understanding complex visual scenes is more critical than ever,
yet traditional models fall short. Over the last decade, deep Convolutional Neural Network (CNN) architec-
tures have emerged as the de facto standard for solving most computer vision (CV) tasks, including image
classification He et al. (2016); Tan & Le (2019), object detection Ren et al. (2015); Redmon & Farhadi (2017)
and segmentation Long et al. (2015) with compelling results. The prevalence of CNN architectures is not
coincidental, as they excel at capturing spatial features and patterns in images. However, the dominance of
CNN architectures is being challenged by the emergence of ViT (Vision in Transformer) Dosovitskiy et al.
(2020), presenting a transformative approach to solving CV tasks. Interestingly, this groundbreaking model
outperforms SOTA CNN-based models on ImageNet benchmark Dosovitskiy et al. (2020) and emerges as a
competitive alternative Han et al. (2022). Practically, ViT works exactly like the text-based Natural Lan-
guage Processing (NLP) transformers but with patch embedding. It divides the input image into patches,
projects them into a high-dimensional feature space through a linear projection layer, adds positional em-
bedding, passes them through a transformer encoder, and finally maps the output to a fixed-length vector
for classification tasks.

Significantly, the key component of ViT is the self-attention mechanism Dosovitskiy et al. (2020) within
the encoder, which enables the model to capture long-range dependencies by allowing each element in the
input sequence to attend to all other elements, considering their relative importance Dosovitskiy et al.
(2020). While this capability allows the model to selectively focus on distantly related pixels, facilitating the
efficient capture of contextual information across the entire input sequence, it encounters limitations such
as increased computational complexity, reduced interpretability, data hungry, and challenges in handling
spatial information effectively compared to CNNs Haruna et al. (2025). In contrast, CNN-based models,
while effective at capturing local features through parameter sharing and local receptive fields, struggle with
capturing long-range dependencies, limiting their ability to integrate distant pixel relationships Haruna et al.
(2025). These limitations have led to the development of hybrid models, which combine their strengths to
improve performance Haruna et al. (2025).
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Figure 1: iiANET Grad-CAM comparison and other state-of-the-art models, e.g., (a) shows an aerial image
of viaduct, mountain, storage tanks, and river featuring complex infrastructure consisting of multiple spans,
roads, and surrounding landscapes. The primary objective is to accurately detect and classify various el-
ements to facilitate efficient maintenance, safety management, and infrastructure planning. Consequently,
capturing long-range dependencies in this scenario is crucial for comprehending the spatial layout of differ-
ent viaducts, mountains, storage tanks, and rivers, their interactions, and potential structural issues. (b)
illustrates ResNet-50’s inability to capture long-range dependencies, but local features (c) demonstrate the
limitations of ViT-B/16 interpretability, as it primarily highlights tiny spots on the image. (d) It is a hybrid
model, depicting notable improvements in capturing long-range dependencies, global context, and improved
interpretability.
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Specifically, previous hybrid designs have aimed to enhance capturing long-range dependencies for various
CV tasks Guo et al. (2022); Srinivas et al. (2021); Dai et al. (2021a). However, the design of hybrid
models introduces additional design complexities Haruna et al. (2025), and computational costs compared to
monolithic models Khan et al. (2023), while also potentially leading to information loss due to feature fusion
of distinct models Haruna et al. (2025). Lastly, more effort is needed to design efficient hybrid models capable
of capturing long-range dependencies in complex images, a challenge that remains largely unaddressed.

In this work, we propose a novel architectural block, the iiABlock (Inception-Inspired Attention Block), which
serves as the core component of our model, iiANET. The iiABlock is a carefully designed hybrid module
that integrates parallel convolutional layers for efficient local feature extraction, and a global 2D Multi-
Head Self-Attention (MHSA) mechanism with Registers to effectively model long-range dependencies. The
outputs from these branches are then fused via concatenation and feature shuffling, enabling rich interaction
between local and global features. By leveraging the complementary strengths of CNNs and transformers in
a lightweight design, iiANET offers a simple yet powerful solution for understanding complex visual scenes
with long-range dependencies. For example, on the AID (Aerial Image Dataset) Xia et al. (2017), iiANET-B
and iiANET-L achieve an accuracy of 80.57% and 83.11% respectively, outperforming ResNet-50 (71.93%),
ViT-B/224 (69.93%), and DiNAT-B (79.12%). These results highlight iiANET’s effectiveness in modeling
long-range dependencies in challenging datasets. The contributions of this paper are summarized as follows:

• We introduce iiABlock, a novel hybrid module that integrates parallel convolutional branches with
global rMHSA, enabling efficient capture of long-range dependencies in complex vision tasks.

• We propose iiANET, a robust and efficient backbone model for visual recognition downstream tasks,
such as object detection and semantic segmentation.

• Extensive experimental results on commonly used benchmarks demonstrate that iiANET outper-
forms some existing SOTA methods.

2 Related Work

CNN-based methods have seen various attempts to enhance their ability to capture long-range dependencies
in images. Donahue et al. (2015) introduced the Long-term Recurrent Convolutional Network (LRCN) by
fusing CNNs with LSTMs, while Yu et al. (2017) proposed the Dilated Residual Network (DRN) using
multiple dilation rates to expand receptive fields, and Yu & Koltun (2015) designed a Dilated Convolution
(DC) model to improve global context in semantic segmentation. These approaches advanced CNN capacity
for long-range dependencies but face limitations: LRCN increases computational complexity due to recurrent
connections, DRN can lose fine-grained spatial details from varying dilation rates, and DC suffers from
gridding artifacts. The emergence of ViT Dosovitskiy et al. (2020); Liu et al. (2021a) offered a breakthrough
in capturing long-range dependencies via attention mechanisms, achieving SOTA performance. However,
their quadratic complexity, high data requirements, and weaker inductive bias compared to CNN demand
substantial computational resources. To address these trade-offs, hybrid methods combine CNN feature
extraction with ViT global dependency modeling Haruna et al. (2025). Zhang et al. (2022) proposed ELAN,
using group-wise multi-scale self-attention for super-resolution; Guo et al. (2022) introduced CMT (CNN
Meet ViT) to integrate attention into CNN blocks; and Srinivas et al. (2021) developed BoTNet by replacing
the final ResNet block with MHSA. While effective, these methods often apply attention at later stages with
smaller spatial dimensions, limiting effectiveness, and face challenges such as memory constraints (CMT-
L), structural complexity, and information loss from fusing distinct methods Peng et al. (2021); Dai et al.
(2021b); Hassani & Shi (2022); Wu et al. (2021).

Overall, CNN excel at local detail capture but struggle with long-range dependencies Haruna et al. (2025);
Khan et al. (2023), RNNs handle such dependencies but lack parallelism and train slowly Banerjee et al.
(2019), and ViT capture them efficiently but require more memory Dosovitskiy et al. (2020). However,
it remains a challenge to efficiently combine CNN and ViT architectures due to design complexity, higher
computational costs, feature fusion losses, and interpretability issues. This paper addresses this gap by
proposing a hybrid model that efficiently captures long-range dependencies in complex images.
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3 Method

3.1 Our Approach: iiABlock

The iiABlock is the core component of the proposed iiANET, designed to capture both local and global fea-
tures in complex visual scenes. It combines parallel convolutional layers for efficient extraction of localized
features with a global 2D r-MHSA mechanism augmented by Register tokens to model long-range depen-
dencies. The convolutional branch leverages parameter sharing and local receptive fields, while 2D r-MHSA
attends to distant pixel relationships across the input, with Register tokens to enhance interpretability. To
merge these complementary features, we introduce a lightweight fusion strategy using feature concatenation
followed by channel shuffling, enabling rich local–global interactions with minimal computational cost. This
balanced design offers a favorable trade-off between speed and accuracy, providing a robust backbone for
downstream visual recognition tasks. Figure 2 illustrates the iiABlock architecture.

Figure 2: iiABLOCK design showing r-MHSA, inverted bottleneck, ECANET and Atrous block

3.2 Local Details

To extract fine-grained features and spatial patterns from complex images, iiABlock introduces components
for modeling local details. This is important for recognizing textures, edges, and region-specific patterns.

Inverted Bottleneck (Efficient Convolutional Block) iiABlock utilizes the inverted bottleneck in parallel
to improve computational efficiency and enhance local feature extraction, consisting of 1×1 convolutions
for dimensionality reduction, 3×3 depth-wise separable convolution for spatial information extraction, and
1×1 convolution for projection. Notably, this block is limited to capturing local context with a fixed kernel,
making it less effective in understanding prevalent global context in complex images Dai et al. (2021a), e.g.,
road, viaduct, bridge. Given the depth-wise operation in equation 1.

yi =
∑

j∈L(i)

wi−j · xj (1)

yi calculates the output at position i by taking a weighted sum of the input xi, where xi, yi ∈ RD. The
weights wi−j determine the contribution of each input xj to the output, and L(i) represents a local neigh-
borhood, typically a 3 × 3 grid centered around i. The small size of L(i) limits the receptive field’s ability to
capture intricate details, particularly in complex images with prevalent long-range dependencies. To miti-
gate the limitation of the inverted bottleneck in capturing long-range dependencies, we also introduce atrous
convolution into the iiABlock.
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Atrous Convolution (Expanding Receptive Field) In iiABlock, a single 3 × 3 atrous convolution expands
the receptive field without increasing parameters. Unlike standard convolution, it applies a dilation rate r
to space kernel elements, covering a wider area while preserving resolution and computational efficiency (See
equation 2. Given an input feature map x and filter w, the output at location i is:

y[i] =
K∑

k=1
x[i + r · k] · w[k] (2)

This captures mid-range dependencies and enriches contextual understanding, bridging local and global rep-
resentations. However, it remains insufficient for fully modeling global, long-range dependencies in complex
scenes, which are further addressed by integrating a global r-MHSA module into iiABlock.

3.3 Global Details

r-MHSA (Capturing global context and long-range dependencies). To capture global context and long-range
dependencies in complex images, iiABlock integrates a modified global 2D r-MHSA mechanism. Unlike CNN
layers limited to local receptive fields, r-MHSA allows each spatial location to attend to all others, effectively
modeling contextual relationships across the entire image. Given a 2D input feature x ∈ RH×W ×C reshaped
into x ∈ RHW ×d (where d is the feature dimension), linear projections generate queries Q = xWQ, keys
K = xWK , and values V = xWV . Attention Z with h heads is computed as shown in Equation 3, enabling
each token to attend to all others and capture long-range dependencies.

Zh(Qi, K, V ) = softmax

QiK
⊤√

dh
k

 V (3)

Here, Qi interacts with all keys in K across the entire sequence, unlike the standard MHSA, which attends
within a limited context window. This enables the model to consider the relationships between all tokens
regardless of their positional distance, capturing the global context and long-range dependencies prevalent in
complex images. The softmax operation normalizes these scores and produces attention weights, which, when
applied to the value matrix V , compute the final attended values. However, this interaction is order-agnostic
and doesn’t capture positional relationships in the input sequence. Therefore, in image data where spatial
information is essential, integrating positional encodings is necessary to effectively complement MHSA.

Relative Position Encoding Srinivas et al. (2021) MHSA is permutation equivariant with no positional
encoding. This characteristic limits its representational power, particularly for vision tasks involving highly
structured data like images. Notably, it is added to the input image representation before the MHSA is
applied, and it is used to guide the attention weights to focus on relevant pixels based on their relative
positions in the input image.

Zh(Qi, K, V ) = softmax

QiK
⊤ + QiR√

dh
k

 V (4)

Where R is a trainable matrix. Lastly, reshape Z(x)h back to its original spatial shape of x ∈ RH×W ×C .
This addresses MHSA’s order-agnostic nature, enhancing its representation power.

Registers (Improving interpretability). While the self-attention mechanism significantly improves the net-
work’s ability to capture long-range dependencies, it struggles with poor interpretability Darcet et al. (2023).
We instead add additional learnable tokens to mitigate prevalent artifacts in the attention mechanism caused
by high norms in image areas with low information during inference or training, similar to the implementa-
tion by Darcet et al. (2023). In this case, it is a global MHSA where the attention mechanism has a single
input image, in contrast to having several patches. We initialize the register tokens for queries and keys
as Rqk ∈ RN×HW ×HW , where N is the number of register tokens and HW is the spatial dimension, then
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value register tokens as Rv ∈ RN× D
head ×HW , where D is the dimension. The operations expand both Rqk

and Rv to RB×N×H×W and RN× D
head ×HW , respectively (equation 5 and 6) effectively creating B copies of

the register tokens for each batch, where B is the batch size. This step ensures that each batch has its own
set of register tokens, facilitating batch-wise parallel processing in the attention mechanism.

Rqk = repeat
(
R′

qk, nhw → bnhw′, b = B
)

(5)

Rv = repeat
(
R′

v, nhw → bnhw′, b = B
)

(6)

Then integrate the register tokens into the attention mechanism as QiK
⊤
R = QiK

⊤ + Rqk and VR = V + Rv

before computing the attention, where ZR is the final 2D-MHSA output with registers. After computation,
the register tokens are discarded (See equation 7).

Zh
R(Qi, K, V ) = softmax

QiK
⊤
R + QiR√

dh
k

 VR (7)

3.4 Features Recalibration

ECANET (Channel-wise Recalibration and Down-Sampling). While long-range dependencies in computer
vision span both spatial and channel dimensions, traditional CNNs and attention mechanisms often empha-
size spatial adaptivity, neglecting channel-wise adaptability. To address this, iiABlock integrates ECANET
Wang et al. (2020), which efficiently computes channel attention weights by modeling inter-channel relation-
ships. Compared to SENET Hu et al. (2018), ECANET offers improved efficiency, scalability, and accuracy.
Given input x ∈ RH×W ×C , adaptive average pooling reduces spatial dimensions to p ∈ R1×1×C , followed
by a 1 × 1 convolution and sigmoid activation to produce attention weights Z ∈ [0, 1]. These weights
modulate channel significance through element-wise multiplication: ECA = x ⊗ Z. Feature maps are then
down-sampled via a 1 × 1 convolution with stride 2 after each stage.

3.5 Feature Interaction Fusion

iiABlock enables efficient multi-scale feature learning through a structured feature interaction mechanism
that splits input channels into three branches—r-MHSA, inverted bottleneck, and atrous convolution pro-
cesses them separately, then fuses outputs via concatenation followed by channel shuffling to enhance cross-
branch interaction. This design captures short-range, long-range, and channel-specific dependencies in par-
allel while maintaining simplicity and low computational cost, outperforming more complex fusion strategies
like heavy cross-attention Chen et al. (2021) or multi-level stacking Li et al. (2019). Empirically, we found
the channel ratio r = (1:6 :1) optimal. For input x ∈ RH×W ×C , channels are split as x1, x2, x3 with dimen-
sions approximately ⌊C/8⌋, ⌊3C/4⌋, and ⌊C/8⌋, respectively. Corresponding functions f1, f2, and f3 process
each branch, whose outputs are concatenated (Figure 3). Finally, channel shuffling is applied to strengthen
inter-branch interactions, defined as x̂ = shuffle(f(x)) ∈ RH×W ×C . The fused output x̂ effectively combines
diverse receptive fields and attention mechanisms with efficiency and expressiveness.

3.6 iiANET Architectural Overview

iiANET is a hybrid visual recognition backbone architecture designed to enhance capturing long-range de-
pendencies in complex images while maintaining computational efficiency. At each stage, iiANET stacks
iiABlock in parallel across four stages. Each iiABlock captures both short-range and long-range dependen-
cies while incorporating global context, enabling the model to process intricate patterns effectively. The
architecture is also non-isotropic as it down-samples spatial features at every stage, allowing for a progres-
sive abstraction of features. By stacking iiABlock in parallel at each stage, iiANET efficiently captures
both fine-grained local details and global context, making it well-suited for complex vision tasks. Figure
3 shows the iiANET architectural design in detail. Stem (Initial stage) Given the higher resolutions of
complex images, this component serves to compress the computational costs of iiANET by shrinking the
spatial dimensions of the input image to half, trading off spatial details for improved model efficiency and
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Figure 3: iiANET architectural overview.

basic feature extraction Bello et al. (2021). Let the input image be x ∈ RH×W ×3, we apply two sequential
3 × 3 convolutional layers, each followed by a batch normalization and ReLU activation function, with the
initial layer using a stride of 2.

iiABlock (Main Building Blocks) The iiANET-B and iiANET-L variants stack iiABlocks in non-isotropic
configurations of [2, 3, 5, 2] and [2, 3, 10, 4] across four stages to capture multi-scale features while reducing
spatial resolution. At each stage, input feature maps are down-sampled, yielding spatial dimensions of H/4×
W/4, H/8×W/8, H/16×W/16, and H/32×W/32. Inspired by Inception designs, multiple iiABlocks run in
parallel per stage, enabling simultaneous processing of features with varied receptive fields. These branches
are fused via concatenation followed by channel shuffling to promote cross-path interaction. This hierarchical,
multi-branch structure allows iiANET to efficiently capture both short- and long-range dependencies while
maintaining a compact, computationally efficient architecture suited for complex vision tasks.

Output Layer. After the final stage, Adaptive Pooling reduces the feature map to a fixed size, which is
then passed through a Fully Connected layer for classification.

4 Experimental Results and Comparisons

We evaluate iiANET qualitatively and quantitatively on several widely used benchmark datasets, comparing
it with state-of-the-art CNN, ViT, and hybrid models. The evaluation covers classification performance and
effectiveness as a backbone for object detection and segmentation, focusing on iiANET’s ability to capture
long-range dependencies in complex images.

Datasets and Metrics. Experiments are conducted on diverse datasets: AID Xia et al. (2017) (10,000
images, 30 scene classes), Oxford-III Parkhi et al. (2012) (4,978 images, 37 cat and dog breeds), and RLD
Sethy et al. (2020) (5,932 images, 4 disease categories). Additionally, COCO-2017 Lin et al. (2014) and
ImageNet1K Deng et al. (2009) assess generalization and robustness. Metrics include top-1/top-5 accuracy,
Average Precision (AP), FLOPs, and throughput, providing comprehensive performance insights.

Experimental Setup. Training was performed on a Linux system with an Intel Core i7-8700K CPU, 2
NVIDIA Titan XP GPUs (12GB), and 32GB RAM. Models were trained for 90 or 150 epochs with batch
size 16 using the AdamW optimizer, an initial learning rate of 0.0001, and a decay rate of 0.05. For fair
comparison, baseline models were re-trained on AID, Oxford-III, and RLD using the authors’ default settings.

4.1 Qualitative Evaluation and Comparison: iiANET Visual Inspection

We applied Grad-CAM Selvaraju et al. (2017) on the final layer of iiANET and several state-of-the-art
models—ResNet-50/100 He et al. (2016), EfficientNet-B4/B5 Tan & Le (2019), DenseNet-169/201 Huang
et al. (2017), ViT-B/L-16 Dosovitskiy et al. (2020), CoatNet-3 Dai et al. (2021a), and BoTNet Srinivas
et al. (2021) with visualizations shown in Figure 4. CNN-based models generate localized heatmaps around
objects due to their limited receptive fields, while ViT-based models produce scattered attention spots,
indicating interpretability challenges. Hybrid models better capture long-range dependencies and improve
interpretability. Notably, iiANET excels at precisely outlining complex objects with minimal background
noise, suggesting enhanced accuracy and reliability in tasks reliant on long-range dependencies, such as
medical imaging, autonomous driving, remote sensing, and security surveillance.
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AID Dataset

Input ResNet-50 ResNet-101 EffNet-B4 EffNet-B5 Dense169

Dense201 CoAtNet ViT-B/16 ViT-L/16 BoTNet50 iiANET

OXFORD-III Dataset

Input ResNet-50 ResNet-101 EffNet-B4 EffNet-B5 Dense169

Dense201 CoAtNet ViT-B/16 ViT-L/16 BoTNet50 iiANET

RLD Dataset

Input ResNet-50 ResNet-101 EffNet-B4 EffNet-B5 Dense169

Dense201 CoAtNet ViT-B/16 ViT-L/16 BoTNet50 iiANET

Figure 4: Visual inspection of iiANET compared to some SOTA models using Grad-CAM Selvaraju et al.
(2017) highlights the model’s ability to focus on complex object regions. The heatmaps demonstrate
iiANET’s improved capacity to capture long-range dependencies and provide more interpretable attention
on relevant spatial structures compared to ResNet-50, BoTNet, ViT-B/16, and CoAtNet.

8



Under review as submission to TMLR

4.2 Quantitative Evaluation and Comparison

Table 1 shows iiANET classification performance across four standard benchmark datasets. The quantitative
evaluation involves comparing iiANET-B and iiANET-L with several recent state-of-the-art models in terms
of both accuracy and computational cost on ImageNet-1K, AID, Oxford-III, and RLD datasets.

(1) ImageNet-1K: iiANET-L achieves a competitive top-1 accuracy of 84.9% while maintaining compu-
tational efficiency with only 17.07 GFLOPs and 52.3M parameters. This demonstrates a decent accuracy-
efficiency tradeoff, outperforming larger and more computationally expensive models such as ViT-L/16
(76.5%, 59.69 GFLOPs) and CoAtNet-3 (84.5%, 32.53 GFLOPs). These results show iiANET’s ability to
learn robust, discriminative features with minimal complexity.

(2) AID Dataset: Contains complex spatial structures and long-range dependencies, which challenge tradi-
tional models. iiANET shows good performance, achieving 80.57% top-1 accuracy using only 8.22 GFLOPs.
This surpasses somes established convolutional backbones such as ResNet-101 (68.93%) and DenseNet-201
(71.60%), as well as some transformer-based models like ViT-B/16 (69.93%), indicating iiANET’s enhanced
ability for modeling spatial complexity in aerial imagery.

(3) Oxford-IIIT Pets: In the fine-grained Oxford-IIIT Pets classification task, which requires distinguish-
ing subtle visual differences between classes, iiANET-L achieves the highest top-1 accuracy of 76.23%, out-
performing some strong baselines including CrossViT-B (73.1%) and DeiT-B (71.0%). The smaller variant,
iiANET-B, also performs well with 74.04%, also has a higher score than ViT-B/16 (51.23%) and ResNet-101
(59.25%). These results demonstrate iiANET’s strong generalization and fine-grained discriminative power.

This analysis shows iiABlock as a strong visual backbone, enabling both iiANET-B and iiANET-L to capture
long-range dependencies while maintaining a favorable trade-off among accuracy, parameter count, and
computational cost. These characteristics make iiANET a promising backbone for deployment in resource-
constrained environments across domains such as medical imaging, autonomous driving, and remote sensing.

Object detection on COCO val2017 in Table 2, we experiment with iiANET as a backbone, the YOLOv8
on the COCO dataset, our results show that both iiANET-B and iiANET-L demonstrate better performance
in comparison to other methods in terms of mAP across all evaluation metrics. Specifically, iiANET-B and
iiANET-L achieve mAP of (62.6%, 63.1%) and (63.0%, 64.4%) for AP val2017 and AP test2017, indicating
their proficiency in detecting objects with high precision and recall.

Instance segmentation on COCO val2017 in Table 3, we also experiment with the effectiveness of iiANET
in capturing long-range dependencies on instance segmentation tasks. Table 3 demonstrates better perfor-
mance in comparison to other models in instance segmentation tasks. Both iiANET-B and iiANET-L achieve
better AP box of (45.3% and 45.8%) and AP mask of (39.5% and 42.1%), indicating their capability to ac-
curately segment instances in images with varying complexities and occlusions.

4.3 Ablation

We performed series of ablation studies to investigate iiANET-B capacity from different aspects, we use
image classification tasks.

Analysis. Table 4 highlights the effectiveness of the proposed combination of modules within the iiABlock.
Variant (c), which integrates MBConv, Dilated Convolution, and MHSA, achieves the best performance with
a top-1 accuracy of 80.57%. This demonstrates that the synergy between local depth-wise convolutions,
dilated receptive fields, and global attention significantly improves feature representation. Variants (a),
(b), and (e) show progressive improvements, while (d), which lacks MBConv, suffers a performance drop,
underscoring the importance of lightweight local feature extraction.
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Table 1: Classification result comparison on ImageNet-1K, AID, and Oxford-III datasets.

Backbone Size Train #Params FLOPs Throughput Top-1 Acc. Top-5 Acc.
IMAGENET-1K Deng et al. (2009)

ResNet-101 2242 90 44.5M 14.58G - 78.0% 94.0%
EffNet-B5 2242 90 30.4M 4.49G - 83.6% 96.7%
Dense201 2242 90 20.0M 7.35G - 77.42% 93.6%
ViT-L/16 2242 150 304.3M 59.69G - 76.53% 93.2%
MobileViT-S 2562 90 6M 2G - 77.0% 94.6%
Dilate-B 2242 120 48M 9.96G - 84.9% -
BoT50 2562 90 25.6M 3.18G - 84.4% -
CoAtNet-3 2242 90 168M 32.53G - 84.5% -
Vim-S 2242 90 26M 5.3G 811 80.3% -
S4ND-ViT-B 2242 90 89M 17.1G 397 80.4% -
VMamba-T 2242 90 30M 4.9G 1686 82.6% -
Swin-T 2242 300 29M 4.5G 755.2 81.3% -
DeiT-B 2242 120 86M 17.5G 292.3 81.8% -
Cross-ViT-B 2242 120 105M 20.1G 1321 82.2% -
iiANET-B 2992 90 25.2M 8.22G - 79.34% 94.71%
iiANET-L 2992 120 52.3M 17.07G - 84.9% 96.83%

AID Xia et al. (2017)
ResNet-101 2242 90 44.5M 14.58G - 68.93% 93.37%
EffNet-B5 2242 90 30.4M 4.49G 81.85 65.73% 92.07%
Dense201 2242 90 20.0M 7.35G 76.38 71.60% 94.37%
ViT-B/16 2242 150 86.6M 16.86G 48.01 69.93% 93.27%
MobileViT-S 2562 90 6M 2G 1986 66.76% 91.23%
DiNAT-B 2242 90 90M 13.7G 764 79.12% 93.27%
BoT50 2562 90 25.6M 3.18G 95.20 72.50% 94.27%
CoAtNet-3 2242 90 168M 32.53G 27.92 80.17% 94.93%
Vim-S 2242 90 26M 5.3G 811 74.2% -
VMamba-T 2242 90 30M 4.9G 1686 78.9% -
Swin-T 2242 300 29M 4.5G 755.2 78.0% -
DeiT-B 2242 120 86M 17.5G 292.3 81.2% -
Cross-ViT-B 2242 120 105M 20.1G 1321 80.6% -
iiANET-B 2992 90 25.2M 8.22G - 80.57% 95.67%
iiANET-L 2992 90 52.3M 17.07G - 83.11% 96.07%

OXFORD-III Parkhi et al. (2012)
ResNet-50 2242 90 25.6M 7.71G 119.75 59.07% 86.61%
ResNet-101 2242 90 44.5M 14.58G 105.80 59.25% 87.38%
EffNet-B5 2242 90 30.4M 4.49G 96.84 47.54% 78.92%
Dense201 2242 90 20.0M 7.35G 98.82 62.55% 86.84%
ViT-B/16 2242 150 86.6M 16.86G - 51.23% 82.31%
ViT-L/16 2242 150 304.3M 59.69G - 53.19% 83.28%
MobileViT-S 2562 90 6M 2G 1986 51.89% 84.52%
DiNAT-B 2242 90 90M 13.7G 764 69.37% 92.09%
Dilate-B 2242 120 48M 9.96G - 64.85% 88.18%
BoT50 2562 90 25.6M 3.18G 118.97 64.13% 90.00%
CoAtNet-3 2242 90 168M 32.53G 43.80 67.57% 91.36%
VMamba-T 2242 90 30M 4.9G 1686 67.8% -
Swin-T 2242 300 29M 4.5G 755.2 72.3% -
DeiT-B 2242 120 86M 17.5G 292.3 71.0% -
Cross-ViT-B 2242 120 105M 20.1G 1321 73.1% -
iiANET-B 2992 90 25.2M 8.22G 51.44 74.04% 93.98%
iiANET-L 2992 90 52.3M 17.07G - 76.23% 94.54%
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Table 2: Object detection results on the COCO dataset.

Backbone Object Detector APb val2017 APb test2017
ResNet-50 Carion et al. (2020) Faster R-CNN 36.7 37.9
FD-SwinV2-G Wei et al. (2022) HTC++ - 64.2
Florence-CoSwin-H Yuan et al. (2021) DyHead 62.0 62.4
Swin-L Liu et al. (2021b) DINO 63.2 63.3
BEiT-3 Wang et al. (2022) ViTDet - 63.7
Swin V2-G Liu et al. (2022) HTC++ 62.5 63.1
iiANET-B YOLOv8 62.6 63.0
iiANET-L YOLOv8 63.1 64.4

Table 3: Instance Segmentation on COCO dataset with Mask R-CNN (1x schedule).

Backbone APbox APbox
50 APbox

75 APmask APmask
50 APmask

75
ResNet-50 He et al. (2016) 38.0 58.6 41.4 34.4 55.1 36.7
PVT-M Hassani et al. (2023) 42.0 64.4 45.6 39.0 61.6 42.1
TRT-ViT-C Wang et al. (2021) 44.7 66.9 48.8 40.8 63.9 44.0
Focal-T Xia et al. (2022) 44.8 67.7 49.2 41.0 64.7 44.2
UniFormer-S/h14 Yang et al. (2021) 45.6 68.1 49.7 41.6 64.8 45.0
Swin-T Li et al. (2023) 42.2 64.6 46.2 39.1 61.6 42.0
Dilate-S Jiao et al. (2023) 45.8 68.2 50.1 41.7 65.3 44.7
BoT50 Srinivas et al. (2021) 43.7 - - 37.9 - -
iiANET-B 45.3 65.1 49.8 39.5 58.9 58.0
iiANET-L 45.8 68.3 51.7 42.1 65.1 59.5

Table 5: Ablation study on the effect of changing the MHSA head size and iiABlock ratio on AID dataset.

Settings Model (Components) Size Top-1 Accuracy
iiANET Ratio: 1.6.1 → 2.4.2 299 74.21%
iiANET Head Size: 8 → 16 299 76.85%

Table 6: Ablation study on the effect of adding Register tokens to the 2D-MHSA mechanism on AID dataset.

Number of Registers Top-1 Accuracy
0 80.57%
1 80.61%
2 80.62%
4 80.77%

Analysis. Table 6 demonstrates that introducing register tokens into the 2D-MHSA improves performance
on the AID dataset. With four registers, the model achieves the highest top-1 accuracy of 80.77%, compared
to 80.57% without any. The consistent improvement suggests that registers help compensate for MHSA’s
order-agnostic nature by enhancing the contextual richness of learned representations.

Analysis. Table 5 shows that increasing the MHSA head size from 8 to 16 significantly improves the model’s
performance, boosting top-1 accuracy to 76.85%. This gain comes with a minor GPU processing increase
of approximately 3%–5%. Additionally, adjusting the internal ratio of the iiABlock from 1.6.1 to 2.4.2
also enhances accuracy, though at the cost of increased computational complexity. These results emphasize
the importance of careful architectural tuning for achieving optimal performance-efficiency tradeoffs.
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Table 4: Ablation studies on various variants of iiABlock using the AID dataset.

Settings Model (Components) Size Top-1 Accuracy
(a) MBConv2 299 69.23%
(b) MBConv + Dilated Conv 299 74.85%
(c) MBConv + Dilated Conv + MHSA 299 80.57%
(d) Dilated + MHSA 299 67.01%
(e) MBConv + MHSA 299 78.72%

Figure 5: Visual effect of registers on iiANET for the AID dataset, showing how adding registers to the
r-MHSA module enhances interpretability.
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5 Conclusion

This work proposed iiANET, a novel hybrid model designed to efficiently improve long-range dependencies
in complex images by integrating CNN layers and the MHSA mechanism with registers in parallel. Com-
prehensive qualitative and quantitative results show improvements in capturing long-range dependencies
compared to some previous SOTA models. Additionally, we validate the performance of our model across
diverse datasets and highlight its potential as a backbone in object detection and segmentation models.

Limitations. iiANET performs better on images with long-range dependencies but is less effective for
datasets like ImageNet-1K with localized objects. Its multi-branch design may also cause scaling issues,
increasing memory and computation on very high-resolution inputs or limited hardware.

12
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