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ABSTRACT

Large Language Models (LLMs) have shown remarkable capabilities in solving
various programming tasks, such as code generation. However, their potential
for code optimization, particularly in performance enhancement, remains largely
unexplored. This paper investigates the capabilities of LLMs in optimizing code
for minimal execution time, addressing a critical gap in current research. The re-
cently proposed code optimization methods construct program optimization pairs
based on iterative submissions from the same programmer for the same problem.
However, this approach confines LLMs to local performance improvements, ne-
glecting global algorithmic innovation. To overcome this limitation, we adopt a
completely different perspective by reconstructing the optimization pairs into a
problem-oriented approach. This allows for the integration of various ideas from
multiple programmers tackling the same problem. Furthermore, we observe that
code optimization presents greater challenges compared to code generation, of-
ten accompanied by "optimization tax". Recognizing the inherent trade-offs in
correctness and efficiency, we introduce a novel anchor verification framework
to mitigate this "optimization tax". Ultimately, the problem oriented perspective
combined with the anchor verification framework significantly enhances both the
correct optimization ratio and speedup to new levels.

1 INTRODUCTION

LLMs and Code LLMs, such as GPT-4 Series (OpenAI et al., 2024), CodeLLaMA (Roziere et al.,
2023), DeepSeek-Coder Series (Guo et al., 2024; Zhu et al., 2024) and Qwen-Coder Series (Yang
et al., 2024; Hui et al., 2024), have demonstrated remarkable capabilities in software engineer-
ing tasks, garnering significant attention from both academia and industry. In tasks such as code
completion and code generation, Code LLMs achieve high correctness rates (Pass@K) on widely
used benchmarks like EvalPlus (Liu et al., 2023), LiveCodeBench (Jain et al., 2025), and Big-
CodeBench (Zhuo et al., 2025). However, despite these advancements, the code produced by these
LLMs often falls short in real-world applications. It may lack the necessary optimizations to meet
specific performance and efficiency requirements (Shi et al., 2024; Niu et al., 2024). As a result, the
generated code often requires further refinement and optimization to align with practical constraints.

While low-level optimizing compilers and performance engineering tools have made significant ad-
vancements (Alfred et al., 2007; Wang & O’Boyle, 2018), they primarily focus on hardware-centric
optimizations. High-level performance considerations, such as algorithm selection and API usage,
still rely heavily on manual intervention by programmers. Automating high-level code optimization
remains a major challenge and has yet to be widely explored. Code optimization can be approached
from various angles. In this work, we specifically focus on time performance, with an emphasis on
minimizing program execution time, given its critical importance in practical applications.

In the field of code performance optimization, the construction of optimization pairs is a critical chal-
lenge. Unlike code generation, which only requires the collection of correct code, code performance
optimization demands semantically equivalent code pairs with varying levels of efficiency. This
dual requirement, ensuring both functional correctness and measurable performance improvements,
makes dataset creation considerably more complex. Recent study (Shypula et al., 2024) partly ad-
dressed this challenge by collecting user iterative submissions from programming platforms, such
as LeetCode, creating code optimization pairs (each consisting of less efficient code and its semanti-
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then Raccoon will take all the remaining cards. Let the 
sum of the integers on Snuke's cards and Raccoon's cards 
be x and y, respectively. They would like to minimize |x-y|. 
Find the minimum possible value of |x-y|.
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Figure 1: For a given problem, different users submit and iterate on their code solutions. The user
oriented perspective constructs optimization pairs based on the individual users. In contrast, the
problem oriented perspective analyzes all solutions for the problem to build trajectories.

cally equivalent, more efficient counterpart). By utilizing these optimization pairs, researchers have
initially demonstrated the potential of LLMs in code optimization tasks through domain fine-tuning.

However, the current approach of constructing code optimization pairs from iterative submissions
by the same user has significant limitations. We refer to this as the User-Oriented approach. As
shown in Figure 1, a user initially submits a solution to a programming problem, but early ver-
sions may fail to meet the system’s time constraints due to excessive computational overhead.
Through iterative refinements, the user eventually arrives at a more efficient solution. This pro-
cess captures the user’s submission trajectory, which is used to construct optimization pairs such
as (A1, A2), (A2, A3), ..., (AN−1, AN ). While this approach naturally reflects the direction of code
optimization, it is inherently constrained by the thought patterns of a single programmer. Con-
sequently, improvements tend to be incremental, building upon existing logic and paradigms. A
substantial number of intuitive examples (Figure 16 - 19) in Appendix O also demonstrate this phe-
nomenon. In contrast, real-world code optimization thrives on collaborative diversity. Code review
and refactoring processes deliberately involve multiple programmers to overcome cognitive iner-
tia, with innovation arising from the synthesis of diverse perspectives. Inspired by this insight, we
hypothesize that combining different users’ perspectives is beneficial for code optimization. There-
fore, we propose shifting from the user-oriented perspective to a Problem-Oriented perspective.
We restructure optimization pairs by incorporating solutions from multiple programmers addressing
the same problem. As illustrated in the last part of Figure 1, solutions from different users, ordered
by runtime, form a completely new optimization trajectory for the given problem. This problem-
oriented perspective encourages a diverse range of innovative ideas, fostering a more holistic opti-
mization process that better mirrors the complexity and creativity of program optimization. Multi-
dimensional analysis and experimental results show that adapting Code LLMs to problem-oriented
optimization pairs greatly enhances optimization capabilities, leading to significant improvements
in both optimization ratios (31.24% → 58.90%) and speedup (2.95×→5.22×).

Simultaneously, code optimization is essentially a dual-objective process. It aims to enhance code
efficiency while ensuring the accuracy of the optimized code. However, in practice, we find that
there is often a conflict between these two goals. That is, the code optimized by LLM can’t be
guaranteed to be completely correct. We refer to this phenomenon as the "optimization tax". To
mitigate the practical challenge, we present an innovative anchor verification framework. The core
idea is to leverage the "slow but correct" nature of pre-optimized code to enhance the accuracy of
the optimized code. Specifically, the anchor verification framework draws from a widely used test
case execution feedback mechanism like Chen et al. (2023); Wei et al. (2024); Chen et al. (2024a) in
code generation tasks. These methods depend on synthesized test cases and bidirectional execution
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filtering to verify test cases and code. However, anchor verifiaction framework differs from these
methods. Instead of directly synthesizing complete test cases, it first uses the LLM to interpret the
"slow code" and generate test case inputs. Then, it treats the "slow code" as a test case anchor to real
execution to produce precise outputs for these test case inputs. By pairing each test case input with
its corresponding execution output, we create complete and verified test cases. These verified test
cases are then used for the iterative refinement of the "optimized code". Further experimental results
show that anchor verification framework further unlocks performance bottlenecks and pushes code
optimization to new levels, significantly improving both the optimization ratio (58.90% → 71.06%),
speedup (5.22×→6.08×), and correctness (61.55% → 74.54%). In summary, the contributions are:

• To the best of our knowledge, we are the first to introduce a problem-oriented perspective for
code optimization. This perspective not only enhances the richness and diversity of optimiza-
tion pairs but also significantly alleviates the data scarcity issue in code optimization.

• We reveal the performance bottlenecks in code optimization, identify the "optimization tax"
and introduce the anchor verification framework to effectively mitigate the bottlenecks. The
anchor verification framework fully utilizes the characteristics of the code optimization task:
the code to be optimized, though inefficient, is at least functional correct.

• Multi-dimensional analysis and experiment results validate the effectiveness and robustness of
both the problem-oriented perspective and the anchor verification framework, significantly and
simultaneously improving the optimization ratio, speedup, and correctness.

Overall Architecture: This paper begins by presenting a problem-oriented perspective for con-
structing optimization pairs in Section 2. In the associated experiments, we identify the "optimiza-
tion tax" and highlight the relevant performance bottlenecks. Building on these findings, we propose
a novel anchor verification framework in Section 3 to further unleash LLMs’ optimization potential.

2 PROBLEM-ORIENTED CODE OPTIMIZATION

In this section, we first introduce the key distinctions of the user-oriented perspective and the
problem-oriented perspective in § 2.1. Subsequently, we carry out in-depth multi-dimension analy-
ses of both user-oriented and problem-oriented optimization pairs (§ 2.2). After that, we discuss the
adaptation of Code LLMs to two perspective optimization pairs (§ 2.3) and furthermore conduct the
optimization pairs percentage analysis and learning edit patterns analysis in § 2.4.

2.1 PROBLEM-ORIENTED OPTIMIZATION PAIRS

User-Oriented Perspective. In the current research, code optimization pairs are derived from PIE,
introduced by Shypula et al. (2024), which focuses on optimizing program execution time by uti-
lizing human programmers’ submissions from a wide range of competitive programming tasks on
CodeNet (Puri et al., 2021). A key aspect of developing PIE is recognizing the typical workflow
of programmers: when faced with a problem, they usually begin with an initial solution and then
iteratively refine it. As shown in Figure 1, for a given problem P , users (Alice, Bob, etc.) have their
submission trajectories, filter out incorrect submissions, and sort the rest in chronological order.

Alice valid submissions: [A1, A2, A3, . . . , AN ]

Bob valid submissions: [B1, B2, B3, . . . , BP ]

Charlie valid submissions: [C1, C2, C3, . . . , CM ]

The user-oriented optimization pairs are constructed by extracting sequential pairs from each user’s
submission trajectory. For example, Alice’s valid submissions generate optimization pairs such as
(A1, A2), (A2, A3), and so on, while Charlie’s valid submissions result in optimization pairs like
(C1, C2), (C2, C3), and so forth. Ultimately, aggregating all these optimization pairs forms the
complete user-oriented optimization dataset (PIE).

Problem-Oriented Perspective. While user-oriented optimization pairs indicate the direction of
optimization, as previously noted, they are inherently confined by the cognitive patterns of a single
programmer. The detailed instances in Appendix O also illustrate this point, intuitively showing that
the overall problem-solving approach and logical framework remain largely unaltered. Therefore,
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Figure 2: Program Structural Analysis of
the Disparities between Problem-oriented Opti-
mization Pairs and User-oriented Optimization
Pairs using Graph Edit Distance (GED) metric.

Figure 3: Semantic Representation Analysis of
Problem-oriented and User-oriented Pairs.

we shift the perspective on optimization pairs and propose a problem-oriented construction method.
Specifically, we regard all submissions for the same problem P from different users as a single
group, thereby breaking down the barriers between different users. We sort all valid user submissions
for the same P based on the marked runtime and map them onto the same optimization trajectories:

All users for problem P: [A1, C1, B1, A2, B3, C2, . . . , CM ]

Subsequently, we construct optimization pairs along the problem-oriented trajectory, such as
(A1, C1), (C1, B1), (C1, B2), etc. Ultimately, this simple but not trivial process yields the novel
problem-oriented optimization dataset. This new perspective not only reflects the direction of opti-
mization but also integrates the diverse strategies and algorithms of different programmers.

Alleviating the Data Scarcity. The problem-oriented perspective also offers a significant advantage
in terms of scale. Let’s assume there are P problems, each with U users, and each user has nu valid
submissions. The user-oriented and problem-oriented perspectives exhibit a substantial divergence
in the scaling of optimization pairs:

# optimization pairs of user oriented =
1

2
·
∑P

p=1

∑U
u=1C

2
nu

# optimization pairs of problem oriented =
1

2
·
∑P

p=1C
2∑U

u=1 nu

It can be observed that when the number of users reaches 10, the number of problem-oriented op-
timization pairs increases by an order of magnitude compared to user-oriented optimization pairs.
This is particularly advantageous for alleviating the data scarcity issue in code optimization domain.

2.2 MULTI-DIMENSION ANALYSIS

To rigorously and comprehensively compare code optimization pairs derived from two different per-
spectives, we employ a multi-faceted analysis. Specifically, based on the problem-oriented approach
proposed in § 2.1, we reconstruct the PIE train pairs, resulting in the PCO (Problem-oriented Code
Optimization). To ensure comparability and fairness, we retained the same number of optimization
pairs for each problem in PCO as in the corresponding problem in PIE, selecting those with the top
speedup rankings. This guarantees that both datasets contain a total of 78K optimization pairs, as
shown in Table 5. We then perform comparative analyses across three different dimensions: Struc-
tural Analysis, Semantic Representation Analysis, and Human & LLMs Sampling Analysis.

Structural Analysis. First, we delve into the structural differences between "slow" and "fast" code
within the optimization pairs. To achieve this, we utilize Control Flow Graphs (CFGs), which ef-
fectively capture the logical structure and execution pathways of a program. In order to quantify the
structural differences, we employ the Graph Edit Distance (GED) metric. This metric measures the
minimum edit operation cost between the CFGs of "slow" and "fast" code. As shown in Figure 2,
significant differences emerge from different perspectives: user-oriented optimization pairs exhibit
a relatively small average GED, indicating that the optimizations involve minor changes, such as lo-
calized optimizations. In contrast, problem-oriented optimization pairs show a significantly higher

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

average GED. This indicates that these optimizations often involve global changes, such as algo-
rithmic adjustments and major structural modifications, which contrast sharply with the incremental
nature of the user-oriented perspective. Detailed instances we shown in Figure 16 - 19.

Semantic Representation Analysis. Beyond examining the structural differences within optimiza-
tion pairs, we further investigate the semantic differences between these pairs. Specifically, we
concatenate the "slow" and "fast" code snippets within each pair. These concatenated sequences are
subsequently encoded using the CODET5P-110M-EMBEDDING model (Wang et al., 2023), which
generates semantic embeddings. To facilitate visualization, these embeddings are projected using
t-SNE (van der Maaten & Hinton, 2008). As shown in Figure 3, the embeddings for user-oriented
pairs are tightly clustered, indicating that the code pairs represent similar coding semantics. In con-
trast, the embeddings for the problem-oriented pairs are more dispersed, reflecting greater diversity.
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Figure 4: Human Analysis of the Optimization
Types of Different Perspective.

Human & LLMs Sampling Analysis. Fur-
thermore, we conduct a sampling analysis to
investigate the optimization patterns. Specifi-
cally, we randomly select 100 pairs from the
PIE and PCO for human analysis, aiming to
classify the types of optimizations applied. The
optimizations are categorized into three main
types: global algorithmic optimizations, local
optimizations, and other modifications (e.g.,
code cleanup), with details provided in the Ap-
pendix C. As shown in Figure 4, human anal-
ysis reveals distinct trends across the different
perspectives: In PIE, true global algorithmic
optimizations constitute a relatively small pro-
portion. In contrast, the majority of program
pairs in PCO fall into the global algorithmic op-
timization category, indicating a stronger emphasis on significant algorithmic and structural im-
provements. The LLM analysis exhibits similar patterns, as shown in Figure 7.

2.3 ADAPTING LLMS TO OPTIMIZATION PAIRS

Subsequently, we conduct supervised fine-tuning to adapt LLMs to problem-oriented (PCO) and
user-oriented (PIE) optimization pairs, to evaluate their performance in code optimization domain.

Metrics. To evaluate the optimization performance, we adopt the metrics from Shypula et al. (2024):

• Percent Optimized [%OPT]: The fraction of programs in the test set improved by a certain
method. A program must be at least 10% faster and correct to contribute.

• Speedup [SPEEDUP]: The absolute improvement in running time. If o and n are the "old" and
"new" running times, then SPEEDUP(O, N) =

(
o
n

)
. A program must be correct to contribute.

• Percent Correct [CORRECT]: The proportion of programs in the test set that are functionally
equivalent to the original program (included as a secondary outcome).

We count a program as functionally correct only if it passes every test case. Additionally, we re-
port SPEEDUP as the average speedup across all test set samples. For generated programs that are
either incorrect or slower than the original, we use a speedup of 1.0×, hence, in the worst case, the
original program has a speedup of 1.0 (further explanation is shown in Appendix G). We benchmark
performance using the gem5 CPU simulator environment (Binkert et al., 2011) and compile all C++
programs with GCC version 9.4.0 and C++17 as well as the -O3 optimization flag. Therefore, any
reported improvements would be those on top of the optimizing compiler.

Code LLMs Selection. We select GPT-4 (0613), GPT-4O (Achiam et al., 2023; OpenAI et al.,
2024),CODELLAMA (Roziere et al., 2023), DEEPSEEK series (Guo et al., 2024; DeepSeek-AI,
2025) and QWEN2.5-CODER series (Hui et al., 2024) for code optimization, as these LLMs are
top-performing in genenral code domain. Detailed training parameters are provided in Appendix F.

Decoding Strategy. Code generation benefits from sampling multiple candidates and selecting the
best one; in our case, the "best" refers to the fastest program that passes all test cases. We use
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Table 1: Prompt and Fine-Tuning Results for LLMs on PIE and PCO with BEST@1 and BEST@8.

Prompt LLMs BEST@1 BEST@8

/ Dataset & Code LLMs %OPT SPEEDUP CORRECT %OPT SPEEDUP CORRECT

Instruct DEEPSEEKCODER 33B 5.28% 1.12× 30.17% 14.83% 1.23× 48.00%
Instruct GPT-4 12.37% 1.19× 75.28% 22.81% 1.38× 91.74%

CoT DEEPSEEKCODER 33B 13.91% 1.24× 37.45% 20.81% 1.55× 61.89%
CoT GPT-4 23.43% 1.37× 48.65% 47.92% 1.74× 80.53%
CoT GPT-4O 28.39% 2.42× 56.48% 50.28% 2.77× 83.34%
CoT DEEPSEEK-V3 31.92% 2.78× 58.93% 53.86% 3.02× 87.32%

PIE CODELLAMA 13B 12.98% 1.73× 47.45% 41.65% 2.85× 72.27%
PIE DEEPSEEKCODER 7B 23.56% 2.29× 41.27% 47.23% 3.34× 69.23%
PIE DEEPSEEKCODER 33B 27.57% 2.77× 50.49% 56.76% 3.83× 81.14%
PIE QWEN2.5-CODER 7B 26.96% 2.80× 41.21% 56.17% 3.85× 78.54%
PIE QWEN2.5-CODER 32B 31.24% 2.95× 46.52% 60.89% 4.11× 87.95%

PCO CODELLAMA 13B 31.83% 3.23× 44.26% 55.87% 4.89× 69.61%
PCO DEEPSEEKCODER 7B 44.38% 4.31× 45.71% 71.53% 6.24× 73.09%
PCO DEEPSEEKCODER 33B 49.83% 4.57× 50.64% 74.87% 6.67× 78.29%
PCO QWEN2.5-CODER 7B 54.83% 4.73× 56.26% 75.28% 6.89× 77.43%
PCO QWEN2.5-CODER 32B 58.90% 5.22× 61.55% 80.77% 7.22× 83.03%

BEST@k to denote this strategy, where k represents the number of samples and the temperature is
set to 0.7. we use vLLM (Kwon et al., 2023) for inference and detailed prompts are in Figure 10.

2.4 ADAPTING RESULTS.

Instruction Prompting. First, we use instruction prompts to guide the LLMs in optimizing code.
Additionally, inspired by Chain-of-Thought (Wei et al., 2022), we ask the LLMs to reason about
how to optimize the program before generating the optimized version. Details of Instruction/CoT
prompts are in Appendix J. Table 1 shows that using instruct prompt and CoT did not significantly
improve %OPT and SPEEDUP. The best performance by DEEPSEEK-V3 achieved 53.86%OPT and
3.02×SPEEDUP under BEST@8. Additionally, we observe that using CoT for optimization speeds
up the program but can lead to a decline in CORRECT due to the complexities it introduces.

Fine-Tuning Results. As shown in Table 1, whether for different LLM series or varying parameter
scales, significant performance differences are observed when finetuned on user-oriented (PIE) and
problem-oriented (PCO) optimization pairs. QWEN2.5-CODER 32B on PCO at BEST@1, demon-
strates substantial improvements: %OPT (31.24% → 58.90%), SPEEDUP (2.95×→5.22×), and
CORRECT (46.52% → 61.55%) compared to finetuned on PIE. At BEST@8, %OPT and SPEEDUP
reached 80.77% and 7.22×, respectively. This indicates a significant advantage in adapting to
problem-oriented optimization pairs compared to user-oriented optimization pairs.

Finding 1: We observe that, unlike BEST@1, CORRECT slightly declines for most LLMs adapted
on PCO under BEST@8 compared to PIE. This is because LLMs adapting on PCO results in more
significant modifications to the code in pursuit of maximum efficiency, which slightly disrupts the
balance of CORRECT. However, the gains in %OPT and SPEEDUP are substantial under BEST@8.

Finding 2: For LLMs adapted on PCO, both %OPT and CORRECT are much closer compared to
PIE. This suggests that when the optimized code is correct, it is highly likely to be optimized. The
closer %OPT and CORRECT are, the higher the proportion of "correct will be optimized". This
insight also indicates that, for LLMs adapted on PCO, to further increase the optimization ratio and
speedup, the performance bottleneck lies in ensuring correctness.

PCO Percentage Analysis. We further explore how fewer PCO optimization pairs impact %OPT,
SPEEDUP, and CORRECT. To investigate this, we randomly selected a certain percentage of op-
timization pairs from PCO, reducing the number of pairs from 90% down to 10%, and fine-tuned
QWEN2.5-CODER 32B in the same way. As shown in Figure 5, even with just 30% of the PCO
optimization pairs, LLMs adapted on PCO achieve both %OPT and SPEEDUP that surpass those

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 5: Performance impact of using varying percentages of PCO optimization pairs (from
100% → 10%) on %OPT, SPEEDUP, and CORRECT. The blue line represents the original PCO
datasets, while the yellow line represents the original PIE datasets.

of the full PIE. Furthermore, with roughly half of the PCO pairs, CORRECT matches the full PIE.
These results highlight the impressive data efficiency of the problem-oriented perspective, where
fewer optimization pairs can still deliver competitive or even superior performance compared to full
user-oriented optimization pairs.

Learning Edit Patterns. To further investigate whether PCO can distill effective algorithmic-
improvement patterns from pairs with large structural disparities, we conducted an empirical study
(Details in Appendix K). The study demonstrates that the edit-pattern (i.e., the algorithmic optimiza-
tion pattern) learned by PCO is transferable and robust, rather than a mere conditional generation.

3 ANCHOR VERIFICATION FRAMEWORK FOR PRACTICABILITY

Slow Code Optimized Code

Explain: This code implements a 
simple sequence generation and 
duplicate detection algorithm …

Test case input: 
Input 1:  1   Input 2: 7
Input 3:  0         Input N: -5

Stage1: Explain 
and  generate 

test case input.

Stage 2: Filter invalid
input and execute on 

slow code.

Concatenate 
verified test case 
input and output.

Input 1:  1   Output 1: 4
Input 2:  2   Output 2: 5
Input 3:  7   Output 3: 18
. . .                        . . . 
Input N:  -5 Output N: 6

Stage 3: Executing verified test 
cases and iterative refinement. 

Anchor  Verification Framework

&

Verified Test Cases

Figure 6: Anchor Verification Framework. It includes three stages: (1) generating test inputs based
on the slow code’s functionality, (2) constructing a verified test case set by executing inputs through
the slow code, and (3) iteratively refining the optimized code with execution feedback to ensure
correctness and preserve performance gains.

In Section 2, we uncover the key challenge inherent in LLM code optimization. Whether through
instruct prompting or finetuning, there is always a risk that optimized code may not be 100% correct.
We refer to this phenomenon as the "optimization tax". To tackle the challenge of "optimization
tax", we propose a novel anchor verification framework that leverages the original "slow code" as a
gold-standard verification anchor. Unlike refinement in genenral code generation, which often relies
on potentially error-prone synthetic test cases for refinement, the code optimization scenario has
the unique advantage: the "slow code", despite its inefficiency, is functionally correct. This inherent
characteristic positions it as an ideal test case verification anchor. Building on this insight, we design
the anchor verification framework (Figure 6), which consists of three main stages:

Stage 1: Test Inputs Generation. In the first stage, the LLM is prompted to explain the functional-
ity of "slow code" and guided to generate a set of test inputs. These test inputs are designed to cover
the boundary cases of the implemented functionality of "slow code". Unlike general LLM-based
test case generation, this stage focuses solely on generating valid and meaningful test case inputs.
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Table 2: Results of Anchor Verification Framework and compared methods with QWEN2.5-CODER,
GPT-4o, and DEEPSEEK-V3 on BEST@1. The baseline is the output of QWEN2.5-CODER 32B on
PCO in Table 1. The improvement (denoted as ∆) is measured against the baseline (w/o refinement).

LLMs Methods
BEST@1

%OPT ∆ ↑ SPEEDUP ∆ ↑ CORRECT ∆ ↑

Baseline (w/o refinement) 58.90% 5.22× 61.55%

QWEN2.5-CODER 32B
INSTRUCT

Self Debugging 58.42% -0.48 5.13× -0.09 61.14% -0.41
Direct Test Generation 62.98% +4.08 5.46× +0.24 65.95% +4.40

Anchor Verification (Ours) 64.75% +5.85 5.67× +0.45 67.28% +5.73

GPT-4o
Self Debugging 61.96% +3.06 5.59× +0.37 63.60% +2.05

Direct Test Generation 65.43% +6.53 5.71× +0.49 68.61% +7.06
Anchor Verification (Ours) 68.40% +9.50 5.90× +0.68 71.98% +10.43

DEEPSEEK-V3
Self Debugging 64.11% +5.21 5.63× +0.41 65.64% +4.09

Direct Test Generation 66.26% +7.36 5.81× +0.59 69.53% +7.98
Anchor Verification (Ours) 71.06% +12.16 6.08× +0.86 74.54% +12.99

Stage 2: Verified Testcase Construction. Based on the obtained test case inputs in the first stage,
we feed these inputs to the "slow code" for compilation and real execution. Although the "slow
code" is inefficient, it can produce the correct execution results. We filter out test case inputs that
don’t match the input format and gather the corresponding output results. After that, we combine
the test case inputs and corresponding outputs to form fully verified test case sets.

Stage 3: Iterative Refinement. Leveraging the verified test case sets, we compile and execute
the optimized code to check its correctness. If any error occurs, similar to the feedback refinement
mechanism in general code generation, we provide the execution error information to the LLM
backbone, enabling it to iteratively refine the optimized code.

3.1 EXPERIMENT RESULTS.

Compared Methods. To rigorously validate the effectiveness of anchor verification framework, we
benchmark against two compared methods. Details explanations of baselines are in Appendix L.

• Self-Debugging: following Chen et al. (2024b), the self-debugging method prompts the LLM to
provide line-by-line explanations of the generated code as a feedback signal for refinement.

• Direct Test Generation: the LLM directly generates complete test cases (including inputs and
outputs) and uses these synthetic test cases to execute and iteratively refine the optimized code.

Experiments Setup. In the experiments, for all three methods, the maximum iteration count is set
to 1. Detailed implementations and all corresponding prompts are also provided in Appendix L.

Main Results. We use the output of "QWEN2.5-CODER 32B finetuned on PCO" as the baseline (the
last row in Table 1). We experimented with three different LLM backbones: QWEN2.5-CODER 32B
INSTRUCT, GPT-4o, and DEEPSEEK-V3, with the results shown in Table 2. All methods showed
performance gains, except for a slight decline in the self-debugging with QWEN2.5-CODER 32B IN-
STRUCT. The decline can be attributed to the high demands on the LLM’s ability for self-explanation
and correction, and QWEN2.5-CODER 32B INSTRUCT’s overall performance still lags behind the
other two LLMs. Anchor verification framework demonstrated the best improvements across all
three LLM backbones, particularly with DEEPSEEK-V3. Compared to the baseline, CORRECT im-
proved by 12.99%, %OPT improved by 12.16%, and SPEEDUP increased to 6.08×. This result
confirms that CORRECT is the performance bottleneck, and that improving CORRECT can simul-
taneously enhance both %OPT and SPEEDUP. Additionally, we also performed experiments using
the output of "QWEN2.5-CODER 32B finetuned on PIE" as the baseline, as shown in Table 8. The
conclusions are similar, and anchor verification continues to deliver the highest performance gains.

Root Cause of Performance Differences. To further investigate whether the difference in test case
output is the root cause of the performance difference, we conducted additional comparisons. In
Comparion Group, the testcase outputs are generated by the LLM based on "slow code" and the
testcase input, instead of real executing the "slow code". Everything else remained unchanged.
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Table 3: Root Cause of Performance Differences.

DEEPSEEK-V3 BEST@1

%OPT SPEEDUP CORRECT

Base 58.90% 5.22× 61.55%
Direct Test Generation 66.26% 5.81× 69.53%

Comparison Group 68.30% 5.91× 70.86%
Anchor Verification 71.06% 6.08× 74.54%

Table 3 shows that the Comparison
Group falls short of the Anchor Ver-
ification. This indicates that the par-
tially inaccurate outputs of test cases
(approx.16%) do indeed negatively
impact the subsequent refinement by
the LLM and underscoring the ne-
cessity of executing test case inputs
to obtain their outputs within Anchor
Verification. Furthermore, Compari-
son Group performed slightly better than Direct Test Generation, suggesting that the two-step ap-
proach (LLM generating testcase inputs and outputs separately) places less burden on the LLM
compared to directly generating the entire testcase. Consequently, the test case quality is superior.

Increase the Number of Iterations. In the experiment setup, the iteration count for all three meth-
ods was initially set to one iteration. To investigate the impact of multiple iterations on performance,

Table 4: Increase the Number of Iterations.

DEEPSEEK-V3 BEST@1

%OPT SPEEDUP CORRECT

Base 58.90% 5.22× 61.55%
Number of Iteration = 1

Direct Test Generation 66.26% 5.81× 69.53%
Anchor Verification 71.06% 6.08× 74.54%

Number of Iteration = 3
Direct Test Generation 68.30% 5.89× 70.76%

Anchor Verification 74.85% 6.19× 77.81%
Number of Iteration = 5

Direct Test Generation 68.91% 5.92× 71.57%
Anchor Verification 78.43% 6.37× 79.24%

we further verified the scenarios with
three and five iterations. As shown in
Table 4, the first iterations of both Di-
rect Test Generation and Anchor Ver-
ification yield most significant per-
formance gains. Moreover, for Direct
Test Generation, the performance im-
provement from five iterations com-
pared with three iterations is barely
evident. In contrast, Anchor Verifica-
tion still shows marked improvement.
This further highlights the value of
verified correct test cases for execu-
tion feedback refinement and allevi-
ating the "optimization tax."

Primary Reasons for Remaining Failures. The empirical findings reveal an inherent trade-off
between efficiency and correctness in program optimization: any attempt to accelerate a function-
ally correct but inefficient program risks introducing semantic deviations. Although the Anchor
Verification Framework substantially reduces the error rate, it cannot eliminate persistent errors en-
tirely. Consequently, achieving the ideal goal of "zero-correctness-loss optimization" remains an
open challenge that deserves continued investigation. A systematic analysis of failures (shown in
Appendix H) reveals that roughly half fall into the "Compiled, but semantically wrong" category,
indicating that current LLMs still have blind spots in comprehending high-level program intent.

Practical Cost. To investigate the overhead of the Anchor Verification Framework, we measured
the corresponding time cost for each stage (as shown in Appendix I). The results reveal that its
overhead is nearly identical to that of "Direct Test Generation". This similarity arises because the
two approaches share all major stages (e.g., code comprehension); the only extra step is the local
sandbox execution that runs in milliseconds and incurs minimal cost compared to other stages.

Case Study. Additionally, we present case studies to intuitively show specific examples and inter-
mediate results of the Anchor Verification Framework, as illustrated in Figure 20, 21, and 22.

Related Work. The detailed review of related work is provided in Appendix B.

4 CONCLUSION

In this paper, we introduce a problem-oriented perspective and an anchor verification framework for
code optimization. The problem-oriented perspective not only enhances the diversity of optimization
pairs but also significantly mitigates the data scarcity issue in the domain of code optimization. The
anchor verification framework effectively alleviates the "optimization tax" while simultaneously
elevating the optimization ratio, speedup, and correctness to new levels. We hope these insights will
offer a practical and effective path toward advancing program efficiency.
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andro Von Werra. Bigcodebench: Benchmarking code generation with diverse function calls and
complex instructions. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=YrycTjllL0.

A THE USE OF LARGE LANGUAGE MODELS.

In the preparation of this manuscript, LLMs are utilized as a general-purpose writing assistant. Its
role was strictly limited to improving the grammar, clarity, and readability of the text. The LLMs
are not used for research ideation, conducting experiments, or the generation of any core scientific
content. The authors take full responsibility for all content presented in this paper, including any
text revised with the assistance of the LLM.

B RELATED WORKS.

LLMs for Code-Related Tasks. LLMs pre-trained on extensive code corpora have demonstrated
remarkable capabilities in various programming tasks, including code completion, code generation,
and code summarization (Li et al., 2022; Nijkamp et al., 2023; Roziere et al., 2023; Wei et al., 2023;
Guo et al., 2024; Song et al., 2024; Wang et al., 2025). To enhance the accuracy of code generation,
numerous techniques and frameworks have been proposed, such as execution feedback and self-
correction mechanisms (Chen et al., 2024b; Zhong et al., 2024; Moon et al., 2024; Olausson et al.,
2024). However, despite these advancements, the research of LLMs to code optimization, a field of
both practical significance and considerable real-world challenges, remains underexplored in both
academia and industry.

Code Optimization. With Moore’s law losing momentum, program optimization has become a
central focus of software engineering over past few decades (Bacon et al., 1994; Kistler & Franz,
2003; Garg et al., 2022). However, achieving high-level optimizations, such as algorithmic changes,
remains challenging due to the difficulty in comprehending code semantics. Previous research has
employed machine learning to enhance performance by identifying compiler transformations (Bacon
et al., 1994), optimizing GPU code (Liou et al., 2020), and automatically selecting algorithms (Ker-
schke et al., 2019). Recently, Shypula et al. (2024) introduced the first C/C++ dataset designed for
program efficiency optimization, with preliminary results demonstrating the potential of LLMs in
code optimization.

C CATEGORIES OF OPTIMIZATION TYPES.

We categorize code optimization into three main categories: global algorithmic optimizations, local
optimizations, and other optimizations.

• Global Algorithmic Optimizations: This type of optimization involves altering the algorithm
itself to achieve significant performance improvements. Such changes can effectively reduce time
complexity and enhance the speed of code execution. Examples include transforming recursive
solutions into dynamic programming approaches, leveraging advanced mathematical theories, and
restructuring complex data processing logic. These optimizations can lead to substantial gains in
efficiency and scalability.
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Figure 7: LLM Analysis of the Optimization Types between Problem-oriented and User-oriented
Optimization Pairs.

• Local Optimizations: These optimizations focus on improving specific parts of the code without
changing the overall algorithm. They include enhancing I/O functions, optimizing read/write
patterns to minimize runtime delays, and reducing computational complexity in certain sections
of the code. By addressing these localized issues, programs can achieve more efficient execution
and better resource utilization, ultimately leading to faster and more responsive applications.

• Other Optimizations: This category involves general code cleanup and refactoring aimed at
improving code readability, maintainability, and overall quality. Examples include removing un-
necessary initializations and redundant code, cleaning up outdated comments, and organizing the
code structure more logically.

D LLMS ANALYSIS ON OPTIMIZATION TYPES.

Figure 7 presents the LLMs analysis of optimization types between problem-oriented and user-
oriented optimization pairs. GPT-4 identifies a higher proportion of "global algorithm optimization"
compared to human analysis. Upon further investigation, we find that this discrepancy is mainly
due to GPT-4’s tendency to categorize program pairs with significant changes as "global algorithm
optimization".

E DATASETS STATISTICS.

The statistical results of the PCO and PIE are shown in Table 5. We meticulously reviewed and
ensured that any particular competitive programming problem appeared in only one of the train,
validation, or test sets.

Table 5: Number of unique problem ids and pairs.

Dataset Unique Problems Pairs

PIE 1,474 77,967

PCO 1,474 77,967

Val 77 2,544
Test 41 978

F TRAINING DETAILS.

For Instruction/CoT prompt, we utilize the corresponding chat versions, while for fine-tuning, we
employ the base versions of these LLMs.

14
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Table 6: Failure mode analysis.

Failure Mode Percent

Failed to compile (syntax/type errors) 16%
Compiled, semantic right but input/output format failure 31%
Compiled, semantic wrong 53%

We fine-tuned the CODELLAMA (13B), DEEPSEEKCODER (7B, 33B), and QWEN2.5-CODER (7B,
32B) models using LLAMA-FACTORY (Zheng et al., 2024) on a server equipped with 8×A100 GPUs
(NVIDIA A100 80GB). During the fine-tuning process, we employed LoRA (Hu et al., 2022) (with
lora_rank=8 and lora_target=all), and for both the PIE and PCO datasets, we trained the LLMs
for only 2 epochs. All experiments were conducted using AdamW (Loshchilov & Hutter, 2019)
optimizer with an initial learning rate 5e-5.

G EXPLANATION OF SPEEDUP METRIC.

For the SPEEDUP metric, we adopted the same definition in PIE (Shypula et al., 2024) without mod-
ification. The rationale behind assigning 1.0× to failures is that code optimization cannot guarantee
100% correctness, as previously mentioned. Therefore, if the optimized code produces incorrect
results, users in practice would discard it and revert to the original version—effectively meaning no
speedup was achieved. Hence, we assign a 1.0× SPEEDUP for failures to reflect this scenario.

H PRIMARY REASONS FOR REMAING FAILURES.

We conducted a systematic analysis of optimization failures. Among 100 optimized programs that
failed the test suite, we identified three representative failure modes; the results are shown in Table 6.

• Compilation failures (syntax or type errors).
• Successful compilation with I/O-format issues, which we could manually correct to pass the tests.
• Semantic errors, i.e., the optimized code compiles but behaves incorrectly.

Notably, Table 6 reveals that roughly half of the failures fall into the third category: the model failed
to fully and accurately capture the original code’s semantics during optimization. This suggests that
current LLMs still have blind spots in understanding high-level program intent.

I PRACTICAL COST

To investigate the overhead of the Anchor Verification Framework, we measured the corresponding
time cost for each stage. During the Anchor Verification Framework process, the overhead is almost
identical to that of "Direct Test Generation" because the only difference is that Anchor Verification
asks the LLM to produce only the test-case inputs, whereas Direct Test Generation requires the
LLM to produce both inputs and outputs. All other stages—such as understanding and explaining
the code—remain the same. Furthermore, we have broken down the entire pipeline into individual
steps and measured the corresponding per-stage time cost, as shown in the Table 7 below:

Table 7: Average runtime overhead per method.

Time Cost Query Execution (testcase output) Execution (testcase) Refinement

Self-Debugging 13.68 s — — —
Direct Test Generation 9.27 s — 0.23 s 15.85 s
Anchor Verification 7.24 s 0.22 s 0.22 s 15.16 s

From the measurement results, it can be seen that the primary time overhead for different methods is
attributed to the invocation of the GPT-4o API, whereas the local sandbox environment for executing

15
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the code is relatively significantly faster in comparison. Meanwhile, the Anchor Verification Frame-
work relies on the correctness of the slow code and has a high tolerance for its speed—as long as
the code can produce the correct output within a finite time, the generated test cases are considered
valid and can be used for subsequent refinement.

J THE PROMPTS OF ADAPTING LLM ON OPTIMIZATION PAIRS.

In this section, we present the prompts for adapting the LLM to optimization pairs. The instruction
prompt is shown in Figure 8, the CoT (Chain of Thought) prompt is shown in Figure 9, and the
vLLM inference prompt is shown in Figure 10.

Given the program below,
improve its performance:↪→

### Program:
{slow_code}

### Optimized Version:

Figure 8: Instruct Prompt.

Given the program, generate
an efficiency improvement
strategy to enhance its
performance.

↪→
↪→
↪→

### slower program:
{slow_code}

### strategy:
LLMs generated potential

strategy.↪→

### optimized version:

Figure 9: Chain-of-thought Prompting.

K LEARNING EDIT PATTERNS

To further investigate whether the PCO approach can distill effective algorithmic-improvement pat-
terns from pairs with large structural disparities, we conducted an empirical case study. As shown
in Figure 11, within the PCO optimization pairs, a representative and efficient algorithmic paradigm
is: rewriting a nested double for loop into a pattern of "prefix-sum preprocessing + elimination of
the inner loop", thereby removing the significant overhead introduced by the nested iteration.

(i) In the PCO method, a common algorithmic paradigm shift boils down to replacing the naive
double for loops by a prefix-sum + hash look-up scheme. By utilizing the
prefix sum sum[0..I] and a hash table to record the occurrence counts
of historical prefix sums, reducing the overall time complexity to O (n).

(ii) In practice, the same improvement pattern is also applied: in matrix operations, a 2-D
prefix-sum with constant-time queries dramatically reduces the nested complex-
ity of the original multilevel loops by first precomputing a prefix sum matrix
pre[i][j].

This demonstrates that the "edit" pattern (algorithmic optimization pattern) learned by PCO is trans-
ferable and robust, rather than merely conditional generation.

L IMPLEMENTATION DETAILS OF THE ANCHOR VERIFICATION
FRAMEWORK AND THE COMPARED METHODS.

• Anchor Verification: In the Anchor Verification Framework, for the test case inputs in Stage
1, we prompt the LLM to generate three test case inputs based on the "slow code", the detailed
prompt as illustrated in Figure 12. In Stage 2 and Stage 3, for compiling and executing both the
"slow code" and "optimized code", we compile all C++ programs using GCC version 9.4.0 with
C++17 and the -O3 optimization flag. In Stage 3, we leverage the verified test case sets. If an
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Given the program below,
improve its performance:↪→

### Program:
{slow_code}

### Optimized Version:

Figure 10: Inference Prompt.

...
int subarraySum(int* nums, int numsSize, int

k) {
int count = 0;
for (int i = 0; i < numsSize; ++i) {

int sum = 0;
for (int j = i; j < numsSize; ++j) {

sum += nums[j];
if (sum == k) ++count;

}
}

...

(a) PCO: Slow Code.

...
static Node* new_node(int key, int val) {

Node* n = (Node*)malloc(sizeof(Node));
n->key = key; n->val = val; n->next =

NULL;
return n;

}
#define HASH_SIZE 200003
static Node* table[HASH_SIZE];

int subarraySum(int* nums, int numsSize, int
k) {
int count = 0, sum = 0;

for (int i = 0; i < HASH_SIZE; ++i)
table[i] = NULL;

put(0, 1); //
prefix_sum[0] = 1

for (int i = 0; i < numsSize; ++i) {
sum += nums[i];
count += get(sum - k);
put(sum, 1);

}
...

(b) PCO: Optimized Code.

...
for (int i = 0; i < n; ++i)

for (int j = 0; j < m; ++j)
scanf("%d", &a[i][j]);

while (q--) {
int x1, y1, x2, y2;
scanf("%d %d %d %d", &x1, &y1,

&x2, &y2);
--x1; --y1; --x2; --y2; //

0-index
long long sum = 0;
for (int i = x1; i <= x2; ++i)

for (int j = y1; j <= y2; ++j)
sum += a[i][j];

printf("%lld\n", sum);
}

...

(c) Practical Slow Code.

...
for (int i = 0; i < n; ++i)

for (int j = 0; j < m; ++j)
scanf("%d", &a[i][j]);

long long pre[1005][1005] = {0};
for (int i = 1; i <= n; ++i)

for (int j = 1; j <= m; ++j)
pre[i][j] = pre[i-1][j] +

pre[i][j-1] -
pre[i-1][j-1] +
a[i-1][j-1];

while (q--) {
int x1, y1, x2, y2;
scanf("%d %d %d %d", &x1, &y1,

&x2, &y2);
long long sum = pre[x2][y2] -

pre[x1-1][y2] - pre[x2][y1-1]
+ pre[x1-1][y1-1];

printf("%lld\n", sum);
}

...

(d) Practical Optimized Code.

Figure 11: Case of learning edit patterns.

error occurs, we provide the error information to the LLM, allowing it to iteratively refine the
optimized code based on this feedback. The detailed prompt is shown in Figure 13.

• Self-Debugging: following the approach presented in Chen et al. (2024b), the method instructs the
LLM to provide line-by-line explanations of the generated program as feedback, functioning akin
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to rubber duck debugging. In this process, the LLM is capable of autonomously identifying and
rectifying bugs without requiring human intervention. The detailed prompt is shown in Figure 14.

• Direct Test Generation: The LLM generates complete test cases (including both inputs and out-
puts) and utilizes synthetic test cases to execute the optimized code, enabling iterative refinement.
The prompt for generating complete test cases is shown in Figure 15, while the iterative refinement
prompt is the same as the one used in Stage 3 of the Anchor Verification, as depicted in Figure 13.

Given the program below,
please explain and analyze
its functionality, and
provide 3 testcase inputs
that fully consider
boundary conditions and
code coverage. Note that
only the testcase inputs
are required.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

### Program:
{slow_code}

### Explanation:
{Your explanation here}

### Test case Inputs:
{Your testcase inputs}

Figure 12: Anchor Verification Framework Stage
1 (Test Inputs Generation) Prompt.

You are a code expert, and
your task is to correct
the functionally
incorrect code based on
test cases and execution
feedback. Analyze the
issues, apply the
necessary fixes, and
ensure the corrected code
meets the expected
functionality and pass
the testcase.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

### Incorrect Program:
{code}

### Explanation:
{explanation}

### Testcase:
{Testcase}

### Feedback from execution:
{Feedback}

### Your corrected code
version:↪→

Figure 13: Anchor Verification Framework
Stage 3 (Iterative Refinement) Prompt.

M RESULTS OF ANCHOR VERIFICATION ON PIE.

We conducted experiments using "QWEN2.5-CODER 32B fine-tuned on PIE" as the baseline and
compared it with other methods. The results, shown in Table 8, demonstrate that Anchor Verifi-
cation consistently delivers the highest performance gains. On the DEEPSEEK-V3 backbone, we
observed improvements in %OPT (31.24% → 47.28%), SPEEDUP (2.95×→3.40×), and CORRECT
(46.52% → 65.32%). Furthermore, we found that the gains in optimization ratio and speedup
brought by the Anchor Verification Framework’s improvements in correctness on PIE were not as
significant as those observed in PCO. For example, on the DEEPSEEK-V3 backbone, CORRECT
increased by 18.8%, but SPEEDUP only improved by 0.45×. In contrast, on the PCO scenario,
CORRECT increased by 12.99%, while SPEEDUP saw a larger improvement of 0.86×.

N LIMITATIONS.

This paper focuses on optimizing the time efficiency of given code, without considering other op-
timization directions. However, in actual practice, there is a wide range of optimization avenues,
such as memory optimization. Moreover, ensuring the complete accuracy of code optimization is a
multifaceted and intricate issue that deserves further exploration and research.
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Below is a potentially
problematic C++ program.
Please provide a
line-by-line explanation
and correct any errors
that may be present.

↪→
↪→
↪→
↪→
↪→

### Program:
{program}

### Explanation:
{Your explanation here}

### Revised Program:
{Your revised program here}

Figure 14: Self-Debugging Prompt.

Given the program below,
please explain and
analyze its
functionality, and
generate three
comprehensive test cases
that thoroughly cover
boundary conditions and
all code paths. Each
testcase should include
the input and the
corresponding expected
output.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

### Program:
{slow_code}

### Explanation:
{Your explanation here}

### Test case:
{Your testcase}

Figure 15: The Prompt of Direct Test Genera-
tion Method.

Table 8: Results of Anchor Verification and compared methods with QWEN2.5-CODER, GPT-4o,
and DEEPSEEK-V3 on BEST@1. The baseline is the output of QWEN2.5-CODER 32B on PIE in
Table 1.

LLMs Methods
BEST@1

%OPT ∆ ↑ SPEEDUP ∆ ↑ CORRECT ∆ ↑

Baseline (w/o refinement) 31.24% 2.95× 46.52%

QWEN2.5-CODER 32B
INSTRUCT

Self Debugging 35.69% +4.45 3.02× +0.07 53.74% +7.22
Direct Test Generation 38.74% +7.50 3.08× +0.13 57.49% +10.97

Anchor Verification (Ours) 40.48% +9.24 3.17× +0.22 59.09% +12.57

GPT-4o
Self Debugging 37.47% +6.23 3.06× +0.11 55.65% +9.13

Direct Test Generation 39.64% +8.40 3.13× +0.18 57.86% +11.34
Anchor Verification (Ours) 42.50% +11.26 3.32× +0.37 63.60% +17.08

DEEPSEEK-V3
Self Debugging 40.61% +9.37 3.23× +0.28 59.62% +13.10

Direct Test Generation 40.17% +8.93 3.18× +0.23 58.73% +12.21
Anchor Verification (Ours) 47.28% +16.04 3.40× +0.45 65.32% +18.80

O DETAILED EXAMPLES OF USER-ORIENTED AND PROBLEM-ORIENTED
PERSPECTIVES.

We provide detailed examples, as shown in Figure 16, Figure 17, Figure 18, and Figure 19, to
illustrate that in the original PIE, program optimization pairs are constructed through iterative sub-
missions and optimizations by the same user for the same programming problem, which can be
limited by the single programmer’s thought patterns.

P CASE STUDY OF ANCHOR VERIFICATION FRAMEWORK.

We present three case studies to vividly illustrate specific examples of Anchor Verification, as de-
picted in Figure 20, Figure 21, and Figure 22. These cases offer a clear and intuitive understanding
of how Anchor Verification Framework operates in practice.
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#include <iostream>
#include <stdio.h>
using namespace std;
typedef long ll;

int main() {
int length;
ll arr[200000];
ll res[200000] = {0};
ll temp = 0;
ll m = 2147483647;
scanf("%d", &length);
for (int i = 0; i <

length; ++i) {
scanf("%ld",

&arr[i]);
}
res[0] = arr[0];
for (int i = 1; i <

length; ++i) {
res[i] += res[i - 1]

+ arr[i];
}
for (int i = 1; i <

length; ++i) {
temp = abs(res[length

- 1] - res[i - 1]

* 2);
m = min(temp, m);

}
printf("%ld\n", m);
return 0;

}

(a) user1, initialization version.

#include <bits/stdc++.h>
using namespace std;

#define int long long
typedef vector<int> vi;

const int INF = 1e18 + 5;

void solve() {
int n;
cin >> n;
vi v(n), pre(n);
int mn = INF, s = 0;
for(int i = 0; i < n;

i++) cin >> v[i];
pre[0] = v[0];
for(int i = 1; i < n;

i++) pre[i] = v[i] +
pre[i - 1];

for(int i = n - 1; i >=
1; i--) {
s += v[i];
mn = min(mn,

abs(pre[i - 1] -
s));

}
cout << mn;

}

signed main() {
speed;
int t = 1;
while(t--) solve();

}

(b) user1, iteration version.

#include<cstdio>
const int MAX = 2e5 + 5;
int a[MAX];
int main() {

int n;
long long sum = 0;
scanf("%d", &n);
for (int i = 0; i < n;

i++)
{

scanf("%d", a + i);
sum += a[i];

}
long long

left,right,temp;
left = sum - a[n - 1];
right = a[n - 1];
long long min = left >

right ? left - right
: right - left;

left = 0;
for (int i = 0; i < n-2;

i++) {
left += a[i];
right = sum - left;
temp = left > right ?

left - right :
right - left;

if (temp < min)
min=temp;

}
printf("%d\\n", min);
return 0;

}

(c) another user submitted version.

Figure 16: The three submitted code solutions all address problem "p03661", which asks for a
split point in an array that minimizes the absolute difference between the sums of the two parts.
Solutions (a) and (b) are different submissions from same user "u018679195". In (a), the prefix sum
is calculated first, then the minimum difference is computed from start to finish. In (b), the prefix sum
is also calculated first, but the minimum difference is computed from end to start, avoiding additional
multiplication operations. Solution (c), from user "u353919145", calculates the difference between
the left and right sums in real-time, requiring only one pass through the loop. It can be seen that
solutions (a) and (b) only make local changes, while (c) constructs a more efficient algorithm.
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#include <bits/stdc++.h>

using namespace std;

#define int long long

const int N = 1e5 + 5, M = 5,
inf = 1e15;

int dp[N][M], a[N];

char op[N];

int Sign(int x) {
if (x % 2) return -1;
return 1;

}

int32_t main() {
for (int i = 0; i < N;

i++) for (int j = 0;
j < M; j++) dp[i][j]
= -inf;

int n; cin >> n >> a[0];
for (int i = 1; i < n;

i++) cin >> op[i] >>
a[i];

dp[0][0] = a[0];
for (int i = 1; i < n;

i++) for (int j = M -
1; j >= 0; j--) {
if (op[i] == '+')

dp[i][j] = dp[i -
1][j] + a[i] *
Sign(j);

else if (j) dp[i][j]
= dp[i - 1][j -
1] + a[i] *
Sign(j);

if (j + 1 < M)
dp[i][j] =
max(dp[i][j],
dp[i][j + 1]);

}
cout << dp[n-1][0] <<

"\n";
}

(a) user1, initialization version.

#include <bits/stdc++.h>
using namespace std;

#define int long long
const int N = 1e5 + 5, M = 3,

inf = 1e15;

int dp[N][M], a[N];
char op[N];

int Sign(int x) {
if (x % 2) return -1;
return 1;

}

int32_t main() {
ios::sync_with_stdio(0),

cin.tie(0),
cout.tie(0),
cout.tie(0);

for (int i = 0; i < N;
i++) for (int j = 0;
j < M; j++) dp[i][j]
= -inf;

int n; cin >> n >> a[0];
for (int i = 1; i < n;

i++) cin >> op[i] >>
a[i];

dp[0][0] = a[0];
for (int i = 1; i < n;

i++) for (int j = M -
1; j >= 0; j--) {
if (op[i] == '+')

dp[i][j] = dp[i -
1][j] + a[i] *
Sign(j);

else if (j) dp[i][j]
= dp[i - 1][j -
1] + a[i] *
Sign(j);

if (j + 1 < M)
dp[i][j] =
max(dp[i][j],
dp[i][j + 1]);

}
cout << dp[n-1][0] <<

"\n";
}

(b) user1, iteration version.

#include<cstdio>
#include<algorithm>
using namespace std;
const int MAXN=int(1e5+5);
typedef long long LL;
#define INF LL(1e15)
LL s1,s2,as,n;
LL sz[MAXN],fh[MAXN];
char c[5];
int main()
{

scanf("%lld",&n);
scanf("%lld",&as);
getchar();
for(LL i=1;i<=n-1;i++) {

scanf("%s",c);
scanf("%d",&sz[i]);
fh[i]=c[0];

}
s1=s2=-INF;
for(LL i=1;i<=n-1;i++) {

if(fh[i]=='-') {
as-=sz[i];
s1-=sz[i];
s2+=sz[i];
s1=max(s1,s2);
s2=max(as,s2);

}
else {

as+=sz[i];
s1+=sz[i];
s2-=sz[i];

}
s2=max(s1,s2);
as=max(s2,as);

}
printf("%lld",as);

}

(c) another user submitted version.

Figure 17: The above three code snippets all come from the problem "p03580", which involves max-
imizing the evaluated value of a given formula by adding an arbitrary number of pairs of parentheses
and outputting the maximum possible value. (a) and (b) are from the same user "u1821171064", both
employing dynamic programming algorithms with a time complexity of O (N ∗M), where N is the
length of the sequence and M is the number of states. In (b), the number of states M is reduced, and
input and output are optimized. (c) is from user "u863370423" and uses a greedy algorithm, which
is suitable for problems with fewer current states where the global optimal solution can be achieved
through local optimization, with a time complexity of O (N).
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#include <iostream>
#include <cstring>
using namespace std;
typedef long long LL;
#define F(i) for(int

i=0;i<n;i++)

int d[555][555] = {0},
c[555][555] = {0};

int qu(int l, int r) {
if (l > r) return 0;
if (d[l][r] != -1) return

d[l][r];
return d[l][r] = c[l][r]

+ qu(l + 1, r) +
qu(l, r - 1) - qu(l +
1, r - 1);

}

int main() {
memset(d, -1, sizeof(d));
int n, m, q;
cin >> n >> m >> q;
while (m--) {

int l, r;
cin >> l >> r;
c[l][r]++;

}
while (q--) {

int l, r;
cin >> l >> r;
cout << qu(l, r) <<

endl;
}
return 0;

}

(a) user1, initialization version.

#include <bits/stdc++.h>
using namespace std;

#define int long long
#define pb push_back
#define faster

ios::sync_with_stdio(0)

const int N = 509;
vector<int> v[N + 5];

int32_t main() {
faster;
int n, p, q;
cin >> n >> p >> q;
int x, y;
for (int i = 1; i <= p;

i++) {
cin >> x >> y;
v[x].pb(y);

}
for (int i = 1; i <= n;

i++) {
sort(v[i].begin(),

v[i].end());
}
while (q--) {

cin >> x >> y;
int ans = 0;
for (int i = x; i <=

y; i++) {
ans +=

upper_bound(
v[i].begin(),

v[i].end(),
y)

- v[i].begin();
}
cout << ans << "\n";

}
return 0;

}

(b) user1, iteration version.

#include <cstdio>
#define int long long
#define dotimes(i, n) for

(int i = 0; i < (n); i++)

using namespace std;

int rint() {
int n;
scanf("%lld", &n);
return n;

}

void wint(int n) {
printf("%lld\n", n);

}

signed main() {
int N = rint();
int M = rint();
int Q = rint();
int S[N + 1][N + 1];
dotimes(R, N + 1)
dotimes(L, N + 1)

S[R][L] = 0;
dotimes(i, M) {
int L = rint();
int R = rint();
S[R][L]++;

}
dotimes(R, N)
dotimes(L, N)

S[R + 1][L + 1] += S[R
+ 1][L] + S[R][L +
1] - S[R][L];

dotimes(i, Q) {
int p = rint() - 1;
int q = rint();
wint(S[q][q] + S[p][p] -

S[q][p] - S[p][q]);
}
return 0;

}

(c) another user submitted version.

Figure 18: The above three code segments all come from the same problem "p03283", which deals
with cumulative sum queries in a 2D matrix. (a) and (b) are different submission versions from the
same user "u816631826". In (a), the problem is solved using recursion and dynamic programming,
but the query time complexity is high, O

(
N2

)
. In (b), the STL-provided binary search function is

used, reducing the time complexity to O (N ∗ log(N)). (c) comes from another user "u281670674"
and solves the problem using a 2D prefix sum matrix. The preprocessing time complexity is O

(
N2

)
,

but the query time complexity for each query is O (1), making it more efficient.
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#include <bits/stdc++.h>

using namespace std;

inline void rd(int &x) {
char ch;

for(;!isdigit(ch=getchar()););
for(x=ch-'0';
isdigit(ch=getchar());)

x=x*10+ch-'0';
}

typedef long long LL;

const int MAXN = 300005;

int N, n, a[MAXN], cnt[MAXN];

LL sum[MAXN];

int ans[MAXN];

inline bool chk(int k, int x)
{
int pos = upper_bound(a +

1, a + n + 1, x) - a;
return sum[pos-1] +

1ll*(n-pos+1)*x >=
1ll*k*x;

}

int main() {
rd(N);
for(int i = 1, x; i <= N;

++i) rd(x), ++cnt[x];
for(int i = 1; i <=

300000; ++i)
if(cnt[i]) a[++n] =
cnt[i];

sort(a + 1, a + n + 1);
for(int i = 1; i <= n;

++i) sum[i] =
sum[i-1] + a[i];

int now = 0;
for(int k = n; k >= 1;

--k) {
while(now < N &&

chk(k, now+1))
++now;

ans[k] = now;
}
for(int i = 1; i <= N;

++i) printf("%d\n",
ans[i]);

}

(a) user1, initialization version.

#include <bits/stdc++.h>

using namespace std;

inline void rd(int &x) {
char ch;

for(;!isdigit(ch=getchar()););
for(x=ch-'0';

isdigit(ch=getchar());)
x=x*10+ch-'0';

}

typedef long long LL;

const int MAXN = 300005;

int n, cnt[MAXN];

LL sum[MAXN];

int ans[MAXN];

inline bool chk(int k, int x)
{ return sum[x] >=
1ll*k*x; }

int main() {
rd(n);
for(int i = 1, x; i <= n;

++i) rd(x), ++cnt[x],
++sum[cnt[x]];

for(int i = 1; i <= n;
++i) sum[i] +=
sum[i-1];

int now = 0;
for(int k = n; k >= 1;

--k) {
while(now < n &&

chk(k, now+1))
++now;

ans[k] = now;
}
for(int i = 1; i <= n;

++i) printf("%d\n",
ans[i]);

}

(b) user1, iteration version.

#include<bits/stdc++.h>
#include<cstdio>
using namespace std;
typedef long long ll;
#define rep(i, n) for(int i =

0; i < (n); i++)
#define rep1(i, n) for(int i

= 1; i <= (n); i++)

int hist[300002],
cnt[300001];

const int cm = 1 << 17;
char cn[cm], * ci = cn + cm,

ct;

inline int getint() {
int A = 0;
if (ci - cn + 16 > cm)

while ((ct =
getcha()) >= '0') A =
A * 10 + ct - '0';

else while ((ct = *ci++)
>= '0') A = A * 10 +
ct - '0';

return A;}

const int dm = 1 << 21;
char dn[dm], * di = dn;

int main() {
int N = getint();
rep(i, N)

hist[getint()]++;
rep1(i, N)

cnt[hist[i]]++;
int k = 1;
rep(i, N + 1) rep(j,

cnt[i]) hist[k++] = i
k = N + 1;
int ruiseki = N;
int mae = 0;
for (int i = N; i >= 1;

i--) {
while (hist[k - 1] >=

i) {
ruiseki -=

hist[--k];
}
int kei = N - k + 1 +

ruiseki / i;

for (int j = mae + 1;
j <= kei; j++)
putint(i);

mae = kei;
}
for (int j = mae + 1; j

<= N; j++) {
*di++ = '0';
*di++ = '\n';

}
fwrite(dn, 1, di - dn,

stdout);
return 0;

}

(c) another user submitted version.

Figure 19: The above three code snippets all come from the problem "p02890", which requires
calculating, for each possible K value (from 1 to N), the maximum number of times K cards with
different numbers can be selected and removed from N cards. (a) and (b) are from the same user
"u990400947" and utilize prefix sum calculation and searching. The latter employs condition check-
ing with a time complexity of O (N ∗ log(N)). (c) uses a difference array, reducing the time com-
plexity to O (N).
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** Optimized but incorrect Code **

#include <stdio.h>
#include <algorithm>
using namespace std;
int n,k,i,a[100005];
int main(){

scanf("%d%d",&n,&k);
for(i=1;i<=n;i++) scanf("%d",&a[i]);
sort(a+1,a+n+1);
printf("%d\n",n-lower_bound(a+1,a+n+1,k)+1);
return 0;

}

*Below is the Explanation of slow code and generated test case
inputs*↪→

**Explanation:**
This code counts how many elements in an array are greater than or

equal to a given value k. Here's the breakdown:↪→

Input: Reads n (array size) and k (threshold value), followed by an
array h of size n.↪→

Sorting: Sorts the array h in descending order.
Counting: Iterates through the sorted array and counts how many

elements are greater than or equal to k.↪→
Output: Prints the count.

**Test Inputs:**
Test case 1 input:
5 10
15 8 12 10 20

Test case 2 input:
4 5
1 2 3 4

Test case 3 input:
6 7
7 7 7 7 7 7

** Verified Test cases **
** Test Cases**
Test case 1 input:
5 10
15 8 12 10 20
Test case 1 output:
4

Test case 2 input:
4 5
1 2 3 4
Test case 2 output:
0

Test case 3 input:
6 7
7 7 7 7 7 7
Test case 3 output:
6

** Optimized and Correct
Code**↪→

#include <stdio.h>
#include <algorithm>
using namespace std;
int n, k, i, a[100005];
int main() {

scanf("%d%d", &n, &k);
for (i = 0; i < n; i++)

scanf("%d", &a[i]);↪→
sort(a, a + n);
printf("%d\n", n -

(lower_bound(a, a + n,
k) - a));

↪→
↪→
return 0;

}

Figure 20: Case Study 1. The reason for the error is that the offset was not calculated correctly. The
correct fix is to calculate the index using lower_bound(...)− a.
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** Optimized but incorrect Code **

#include <cstdio>
#include <algorithm>
using std::min;
#define MAXN 100003
int abs(int z){

if (z<0) return -z;
else return z;

}
int main(void){

int N,K,i,j;
int h[MAXN], p[MAXN];
scanf("%d%d",&N,&K);
for (i=0;i<N;i++)
{

scanf("%d",h+i);
}
p[N-1]=0;
p[N-2]=abs(h[N-2]-h[N-1]);
for(i=N-3;i>=0;i--)
{

p[i]=min(p[i+1]+abs(h[i]-h[i+1]),p[i+2]
+abs(h[i]-h[i+2]));

}
printf("%d\n",p[0]);
return 0;

}

*Below is the Explanation of slow code and generated test case
inputs*↪→

**Explanation:**
This code solves a dynamic programming problem to find the minimum

cost to reach the n-th element from the first element in an
array, where you can jump up to k steps back at each position.
Here's the breakdown:

↪→
↪→
↪→

Input: Reads n (array size) and k (maximum jump distance), followed
by the array num.↪→

Initialization:
dp array is initialized to a large value, except dp[0] and dp[1],

which are set to 0 (starting points with no cost).↪→
DP Transition:
For each position i from 2 to n, it calculates the minimum cost to

reach i by considering jumps from positions j (within [i-k,
i-1]).

↪→
↪→
The cost is the absolute difference between num[i] and num[j],

added to the cost to reach j.↪→
Output: The minimum cost to reach the n-th element (dp[n]) is

printed.↪→

** Test Cases**
Test case 1 input:
5 2
1 3 5 2 4

Test case 2 input:
4 1
10 20 10 30

Test case 3 input:
6 3
1 2 3 4 5 6
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** Verified Test cases **
** Test Cases**
Test case 1 input:
5 2
1 3 5 2 4
Test case 1 output:
5

Test case 2 input:
4 1
10 20 10 30
Test case 2 output:
40

Test case 3 input:
6 3
1 2 3 4 5 6
Test case 3 output:
5

** Optimized and Correct Code**

#include <cstdio>
#include <algorithm>
#include <climits>

using std::min;
#define MAXN 100003
int abs(int z){

if (z<0)
return -z;

else
return z;

}

int main(void){
int N,K,i,j;
int h[MAXN], p[MAXN];
scanf("%d%d",&N,&K);
for (i=0;i<N;i++)
{

scanf("%d",h+i);
}
p[0] = 0;
for(i=1;i<N;i++)
{

p[i] = INT_MAX;
for(j=1;j<=K && i-j>=0;j++)
{

p[i] = min(p[i], p[i-j] + abs(h[i] - h[i-j]));
}

}
printf("%d\n",p[N-1]);

return 0;
}

Figure 21: Case Study 2. The reason for the error is that the code does not properly handle the jump
limit K, and the state transition logic is incomplete, only considering the cost of adjacent positions
and ignoring larger jump ranges. The correct modification is to use a double loop to dynamically
update the minimum cost for each position by considering jumps up to K steps backward, thus fully
addressing all possible jump scenarios.
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** Optimized but incorrect Code **

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int n,ans;
int a[10010];

int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
while(1){

int mx=a[1],id=1;
for(int i=2;i<=n;i++)

if(a[i]>mx) mx=a[i],id=i;
if(mx<n-1) break;
ans+=mx/n;
a[id]%=n;
for(int i=1;i<=n;i++)

if(i!=id) a[i]+=mx/n;
}
printf("%d\n",ans);

}

*Below is the Explanation of slow code and generated test case
inputs*↪→

**Explanation:**
The code simulates a process where an array a of size n is

repeatedly modified until the maximum value in the array is no
greater than n-1. The process involves the following steps:

↪→
↪→

Input: The code reads the size of the array n and the elements of
the array a.↪→

Main Loop: The code enters an infinite loop that continues until
the maximum value in the array is less than or equal to n-1. In
each iteration:

↪→
↪→
The maximum value maxn in the array and its index id are

identified.↪→
If maxn is less than or equal to n-1, the loop terminates.
Otherwise:
The value at a[id] is updated to maxn % n (the remainder when maxn

is divided by n).↪→
All other elements in the array are incremented by maxn / n (the

quotient when maxn is divided by n).↪→
The operation count ans is incremented by maxn / n.
Output: The total number of operations ans is printed.

** Test Cases**
Test case 1 input:
2
0 7

Test case 2 input:
4
8 0 0 0

Test case 3 input:
4
1 8 3 4

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

** Verified Test cases **

** Test Cases**
Test case 1 input:
2
0 7
Test case 1 output:
6

Test case 2 input:
4
8 0 0 0
Test case 2 output:
2

Test case 3 input:
4
1 8 3 4
Test case 3 output:
9

** Optimized and Correct Code**

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;

int n,ans;
int a[10010];

int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
while(1){

int mx=a[1],id=1;
for(int i=2;i<=n;i++)

if(a[i]>mx) mx=a[i],id=i;
if(mx<n) break;
ans+=mx/n;
a[id]%=n;
for(int i=1;i<=n;i++)

if(i!=id) a[i]+=mx/n;
}
printf("%d\n",ans);
return 0;

}

Figure 22: Case Study 3. The error is that the termination condition used mx < n − 1, which
prematurely stopped the loop, while the correct condition is mx < n, ensuring the loop only stops
when maximum value is less than n.
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