A PROBLEM-ORIENTED PERSPECTIVE AND ANCHOR VERIFICATION FOR CODE OPTIMIZATION

Anonymous authorsPaper under double-blind review

ABSTRACT

Large Language Models (LLMs) have shown remarkable capabilities in solving various programming tasks, such as code generation. However, their potential for code optimization, particularly in performance enhancement, remains largely unexplored. This paper investigates the capabilities of LLMs in optimizing code for minimal execution time, addressing a critical gap in current research. The recently proposed code optimization methods construct program optimization pairs based on iterative submissions from the same programmer for the same problem. However, this approach confines LLMs to local performance improvements, neglecting global algorithmic innovation. To overcome this limitation, we adopt a completely different perspective by reconstructing the optimization pairs into a problem-oriented approach. This allows for the integration of various ideas from multiple programmers tackling the same problem. Furthermore, we observe that code optimization presents greater challenges compared to code generation, often accompanied by "optimization tax". Recognizing the inherent trade-offs in correctness and efficiency, we introduce a novel anchor verification framework to mitigate this "optimization tax". Ultimately, the problem oriented perspective combined with the anchor verification framework significantly enhances both the correct optimization ratio and speedup to new levels.

1 Introduction

LLMs and Code LLMs, such as GPT-4 Series (OpenAI et al., 2024), CodeLLaMA (Roziere et al., 2023), DeepSeek-Coder Series (Guo et al., 2024; Zhu et al., 2024) and Qwen-Coder Series (Yang et al., 2024; Hui et al., 2024), have demonstrated remarkable capabilities in software engineering tasks, garnering significant attention from both academia and industry. In tasks such as code completion and code generation, Code LLMs achieve high correctness rates (Pass@K) on widely used benchmarks like EvalPlus (Liu et al., 2023), LiveCodeBench (Jain et al., 2025), and BigCodeBench (Zhuo et al., 2025). However, despite these advancements, the code produced by these LLMs often falls short in real-world applications. It may lack the necessary optimizations to meet specific performance and efficiency requirements (Shi et al., 2024; Niu et al., 2024). As a result, the generated code often requires further refinement and optimization to align with practical constraints.

While low-level optimizing compilers and performance engineering tools have made significant advancements (Alfred et al., 2007; Wang & O'Boyle, 2018), they primarily focus on hardware-centric optimizations. High-level performance considerations, such as algorithm selection and API usage, still rely heavily on manual intervention by programmers. Automating high-level code optimization remains a major challenge and has yet to be widely explored. Code optimization can be approached from various angles. In this work, we specifically focus on time performance, with an emphasis on minimizing program execution time, given its critical importance in practical applications.

In the field of code performance optimization, the construction of optimization pairs is a critical challenge. Unlike code generation, which only requires the collection of correct code, code performance optimization demands semantically equivalent code pairs with varying levels of efficiency. This dual requirement, ensuring both functional correctness and measurable performance improvements, makes dataset creation considerably more complex. Recent study (Shypula et al., 2024) partly addressed this challenge by collecting user iterative submissions from programming platforms, such as LeetCode, creating code optimization pairs (each consisting of less efficient code and its semanti-

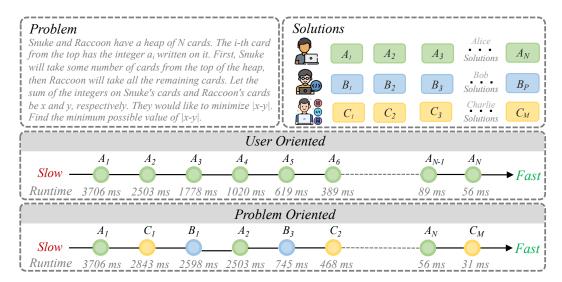


Figure 1: For a given problem, different users submit and iterate on their code solutions. The user oriented perspective constructs optimization pairs based on the individual users. In contrast, the problem oriented perspective analyzes all solutions for the problem to build trajectories.

cally equivalent, more efficient counterpart). By utilizing these optimization pairs, researchers have initially demonstrated the potential of LLMs in code optimization tasks through domain fine-tuning.

However, the current approach of constructing code optimization pairs from iterative submissions by the same user has significant limitations. We refer to this as the **User-Oriented** approach. As shown in Figure 1, a user initially submits a solution to a programming problem, but early versions may fail to meet the system's time constraints due to excessive computational overhead. Through iterative refinements, the user eventually arrives at a more efficient solution. This process captures the user's submission trajectory, which is used to construct optimization pairs such as $(A_1, A_2), (A_2, A_3), ..., (A_{N-1}, A_N)$. While this approach naturally reflects the direction of code optimization, it is inherently constrained by the thought patterns of a single programmer. Consequently, improvements tend to be incremental, building upon existing logic and paradigms. A substantial number of intuitive examples (Figure 16 - 19) in Appendix O also demonstrate this phenomenon. In contrast, real-world code optimization thrives on collaborative diversity. Code review and refactoring processes deliberately involve multiple programmers to overcome cognitive inertia, with innovation arising from the synthesis of diverse perspectives. Inspired by this insight, we hypothesize that combining different users' perspectives is beneficial for code optimization. Therefore, we propose shifting from the user-oriented perspective to a **Problem-Oriented** perspective. We restructure optimization pairs by incorporating solutions from multiple programmers addressing the same problem. As illustrated in the last part of Figure 1, solutions from different users, ordered by runtime, form a completely new optimization trajectory for the given problem. This problemoriented perspective encourages a diverse range of innovative ideas, fostering a more holistic optimization process that better mirrors the complexity and creativity of program optimization. Multidimensional analysis and experimental results show that adapting Code LLMs to problem-oriented optimization pairs greatly enhances optimization capabilities, leading to significant improvements in both optimization ratios (31.24% \rightarrow 58.90%) and speedup (2.95× \rightarrow 5.22×).

Simultaneously, code optimization is essentially a dual-objective process. It aims to enhance code efficiency while ensuring the accuracy of the optimized code. However, in practice, we find that there is often a conflict between these two goals. That is, the code optimized by LLM can't be guaranteed to be completely correct. We refer to this phenomenon as the "optimization tax". To mitigate the practical challenge, we present an innovative anchor verification framework. The core idea is to leverage the "slow but correct" nature of pre-optimized code to enhance the accuracy of the optimized code. Specifically, the anchor verification framework draws from a widely used test case execution feedback mechanism like Chen et al. (2023); Wei et al. (2024); Chen et al. (2024a) in code generation tasks. These methods depend on synthesized test cases and bidirectional execution

filtering to verify test cases and code. However, anchor verifiaction framework differs from these methods. Instead of directly synthesizing complete test cases, it first uses the LLM to interpret the "slow code" and generate test case inputs. Then, it treats the "slow code" as a test case anchor to real execution to produce precise outputs for these test case inputs. By pairing each test case input with its corresponding execution output, we create complete and verified test cases. These verified test cases are then used for the iterative refinement of the "optimized code". Further experimental results show that anchor verification framework further unlocks performance bottlenecks and pushes code optimization to new levels, significantly improving both the optimization ratio $(58.90\% \rightarrow 71.06\%)$, speedup $(5.22\times\rightarrow6.08\times)$, and correctness $(61.55\% \rightarrow 74.54\%)$. In summary, the contributions are:

- To the best of our knowledge, we are the first to introduce a problem-oriented perspective for code optimization. This perspective not only enhances the richness and diversity of optimization pairs but also significantly alleviates the data scarcity issue in code optimization.
- We reveal the performance bottlenecks in code optimization, identify the "optimization tax" and introduce the anchor verification framework to effectively mitigate the bottlenecks. The anchor verification framework fully utilizes the characteristics of the code optimization task: the code to be optimized, though inefficient, is at least functional correct.
- Multi-dimensional analysis and experiment results validate the effectiveness and robustness of both the problem-oriented perspective and the anchor verification framework, significantly and simultaneously improving the optimization ratio, speedup, and correctness.

Overall Architecture: This paper begins by presenting a problem-oriented perspective for constructing optimization pairs in Section 2. In the associated experiments, we identify the "optimization tax" and highlight the relevant performance bottlenecks. Building on these findings, we propose a novel anchor verification framework in Section 3 to further unleash LLMs' optimization potential.

2 Problem-Oriented Code Optimization

In this section, we first introduce the key distinctions of the user-oriented perspective and the problem-oriented perspective in § 2.1. Subsequently, we carry out in-depth multi-dimension analyses of both user-oriented and problem-oriented optimization pairs (§ 2.2). After that, we discuss the adaptation of Code LLMs to two perspective optimization pairs (§ 2.3) and furthermore conduct the optimization pairs percentage analysis and learning edit patterns analysis in § 2.4.

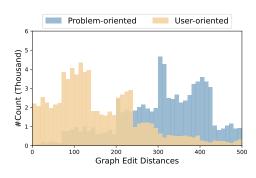
2.1 PROBLEM-ORIENTED OPTIMIZATION PAIRS

User-Oriented Perspective. In the current research, code optimization pairs are derived from PIE, introduced by Shypula et al. (2024), which focuses on optimizing program execution time by utilizing human programmers' submissions from a wide range of competitive programming tasks on CodeNet (Puri et al., 2021). A key aspect of developing PIE is recognizing the typical workflow of programmers: when faced with a problem, they usually begin with an initial solution and then iteratively refine it. As shown in Figure 1, for a given problem \mathcal{P} , users (*Alice, Bob, etc.*) have their submission trajectories, filter out incorrect submissions, and sort the rest in chronological order.

```
Alice valid submissions: [A_1, A_2, A_3, ..., A_N]
Bob valid submissions: [B_1, B_2, B_3, ..., B_P]
Charlie valid submissions: [C_1, C_2, C_3, ..., C_M]
```

The user-oriented optimization pairs are constructed by extracting sequential pairs from each user's submission trajectory. For example, Alice's valid submissions generate optimization pairs such as $(A_1,A_2),(A_2,A_3)$, and so on, while Charlie's valid submissions result in optimization pairs like $(C_1,C_2),(C_2,C_3)$, and so forth. Ultimately, aggregating all these optimization pairs forms the complete user-oriented optimization dataset (PIE).

Problem-Oriented Perspective. While user-oriented optimization pairs indicate the direction of optimization, as previously noted, they are inherently confined by the cognitive patterns of a single programmer. The detailed instances in Appendix O also illustrate this point, intuitively showing that the overall problem-solving approach and logical framework remain largely unaltered. Therefore,



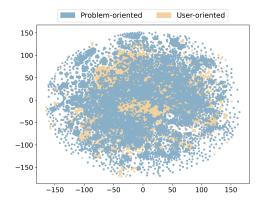


Figure 2: Program Structural Analysis of the Disparities between Problem-oriented Optimization Pairs and User-oriented Optimization Pairs using Graph Edit Distance (GED) metric.

Figure 3: Semantic Representation Analysis of Problem-oriented and User-oriented Pairs.

we shift the perspective on optimization pairs and propose a problem-oriented construction method. Specifically, we regard all submissions for the same problem \mathcal{P} from different users as a single group, thereby breaking down the barriers between different users. We sort all valid user submissions for the same \mathcal{P} based on the marked runtime and map them onto the same optimization trajectories:

All users for problem
$$\mathcal{P}$$
: $[A_1, C_1, B_1, A_2, B_3, C_2, \dots, C_M]$

Subsequently, we construct optimization pairs along the problem-oriented trajectory, such as $(A_1, C_1), (C_1, B_1), (C_1, B_2), etc.$ Ultimately, this simple but not trivial process yields the novel problem-oriented optimization dataset. This new perspective not only reflects the direction of optimization but also integrates the diverse strategies and algorithms of different programmers.

Alleviating the Data Scarcity. The problem-oriented perspective also offers a significant advantage in terms of scale. Let's assume there are \mathcal{P} problems, each with \mathcal{U} users, and each user has n_u valid submissions. The user-oriented and problem-oriented perspectives exhibit a substantial divergence in the scaling of optimization pairs:

$$\label{eq:potential} \begin{split} \text{\# optimization pairs of user oriented} &= \frac{1}{2} \cdot \sum_{p=1}^{\mathcal{P}} \sum_{u=1}^{\mathcal{U}} C_{n_u}^2 \\ \text{\# optimization pairs of problem oriented} &= \frac{1}{2} \cdot \sum_{p=1}^{\mathcal{P}} C_{\sum_{u=1}^{\mathcal{U}} n_u}^2 \end{split}$$

It can be observed that when the number of users reaches 10, the number of problem-oriented optimization pairs increases by an order of magnitude compared to user-oriented optimization pairs. This is particularly advantageous for alleviating the data scarcity issue in code optimization domain.

2.2 MULTI-DIMENSION ANALYSIS

To rigorously and comprehensively compare code optimization pairs derived from two different perspectives, we employ a multi-faceted analysis. Specifically, based on the problem-oriented approach proposed in § 2.1, we reconstruct the PIE train pairs, resulting in the PCO (Problem-oriented Code Optimization). To ensure comparability and fairness, we retained the same number of optimization pairs for each problem in PCO as in the corresponding problem in PIE, selecting those with the top speedup rankings. This guarantees that both datasets contain a total of 78K optimization pairs, as shown in Table 5. We then perform comparative analyses across three different dimensions: *Structural Analysis*, *Semantic Representation Analysis*, and *Human & LLMs Sampling Analysis*.

Structural Analysis. First, we delve into the structural differences between "slow" and "fast" code within the optimization pairs. To achieve this, we utilize Control Flow Graphs (CFGs), which effectively capture the logical structure and execution pathways of a program. In order to quantify the structural differences, we employ the Graph Edit Distance (GED) metric. This metric measures the minimum edit operation cost between the CFGs of "slow" and "fast" code. As shown in Figure 2, significant differences emerge from different perspectives: user-oriented optimization pairs exhibit a relatively small average GED, indicating that the optimizations involve minor changes, such as localized optimizations. In contrast, problem-oriented optimization pairs show a significantly higher

average GED. This indicates that these optimizations often involve global changes, such as algorithmic adjustments and major structural modifications, which contrast sharply with the incremental nature of the user-oriented perspective. Detailed instances we shown in Figure 16 - 19.

Semantic Representation Analysis. Beyond examining the structural differences within optimization pairs, we further investigate the semantic differences between these pairs. Specifically, we concatenate the "slow" and "fast" code snippets within each pair. These concatenated sequences are subsequently encoded using the CODET5P-110M-EMBEDDING model (Wang et al., 2023), which generates semantic embeddings. To facilitate visualization, these embeddings are projected using t-SNE (van der Maaten & Hinton, 2008). As shown in Figure 3, the embeddings for user-oriented pairs are tightly clustered, indicating that the code pairs represent similar coding semantics. In contrast, the embeddings for the problem-oriented pairs are more dispersed, reflecting greater diversity.

Human & LLMs Sampling Analysis. Furthermore, we conduct a sampling analysis to investigate the optimization patterns. Specifically, we randomly select 100 pairs from the PIE and PCO for human analysis, aiming to classify the types of optimizations applied. The optimizations are categorized into three main types: global algorithmic optimizations, local optimizations, and other modifications (e.g., code cleanup), with details provided in the Appendix C. As shown in Figure 4, human analysis reveals distinct trends across the different perspectives: In PIE, true global algorithmic optimizations constitute a relatively small proportion. In contrast, the majority of program pairs in PCO fall into the global algorithmic op-

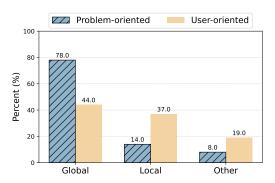


Figure 4: Human Analysis of the Optimization Types of Different Perspective.

timization category, indicating a stronger emphasis on significant algorithmic and structural improvements. The LLM analysis exhibits similar patterns, as shown in Figure 7.

2.3 Adapting LLMs to Optimization Pairs

Subsequently, we conduct supervised fine-tuning to adapt LLMs to problem-oriented (PCO) and user-oriented (PIE) optimization pairs, to evaluate their performance in code optimization domain.

Metrics. To evaluate the optimization performance, we adopt the metrics from Shypula et al. (2024):

- **Percent Optimized** [%OPT]: The fraction of programs in the test set improved by a certain method. A program must be at least 10% faster and correct to contribute.
- **Speedup** [SPEEDUP]: The absolute improvement in running time. If o and n are the "old" and "new" running times, then SPEEDUP(O, N) = $\left(\frac{o}{n}\right)$. A program must be correct to contribute.
- **Percent Correct** [CORRECT]: The proportion of programs in the test set that are functionally equivalent to the original program (included as a secondary outcome).

We count a program as functionally correct only if it passes every test case. Additionally, we report SPEEDUP as the average speedup across all test set samples. For generated programs that are either incorrect or slower than the original, we use a speedup of $1.0\times$, hence, in the worst case, the original program has a speedup of 1.0 (further explanation is shown in Appendix G). We benchmark performance using the gem5 CPU simulator environment (Binkert et al., 2011) and compile all C++ programs with GCC version 9.4.0 and C++17 as well as the -O3 optimization flag. Therefore, any reported improvements would be those on top of the optimizing compiler.

Code LLMs Selection. We select GPT-4 (*0613*), GPT-40 (Achiam et al., 2023; OpenAI et al., 2024), CODELLAMA (Roziere et al., 2023), DEEPSEEK series (Guo et al., 2024; DeepSeek-AI, 2025) and QWEN2.5-CODER series (Hui et al., 2024) for code optimization, as these LLMs are top-performing in genenral code domain. Detailed training parameters are provided in Appendix F.

Decoding Strategy. Code generation benefits from sampling multiple candidates and selecting the best one; in our case, the "best" refers to the fastest program that passes all test cases. We use

Table 1: Prompt and Fine-Tuning Results for LLMs on PIE and PCO with BEST@1 and BEST@8.

Prompt	LLMs	BEST@1			BEST@8			
/ Dataset	& Code LLMs	%ОРТ	SPEEDUP	CORRECT	%ОРТ	SPEEDUP	CORRECT	
Instruct	DEEPSEEKCODER 33B	5.28%	1.12×	30.17%	14.83%	1.23×	48.00%	
Instruct	GPT-4	12.37%	1.19×	75.28%	22.81%	1.38×	91.74%	
CoT	DEEPSEEKCODER 33B	13.91%	1.24×	37.45%	20.81%	1.55×	61.89%	
CoT	GPT-4	23.43%	1.37×	48.65%	47.92%	1.74×	80.53%	
CoT	GPT-40	28.39%	2.42×	56.48%	50.28%	2.77×	83.34%	
CoT	DEEPSEEK-V3	31.92%	2.78×	58.93%	53.86%	3.02×	87.32%	
PIE	CODELLAMA 13B DEEPSEEKCODER 7B DEEPSEEKCODER 33B QWEN2.5-CODER 7B QWEN2.5-CODER 32B	12.98%	1.73×	47.45%	41.65%	2.85×	72.27%	
PIE		23.56%	2.29×	41.27%	47.23%	3.34×	69.23%	
PIE		27.57%	2.77×	50.49%	56.76%	3.83×	81.14%	
PIE		26.96%	2.80×	41.21%	56.17%	3.85×	78.54%	
PIE		31.24%	2.95×	46.52%	60.89%	4.11×	87.95%	
PCO	CODELLAMA 13B DEEPSEEKCODER 7B DEEPSEEKCODER 33B QWEN2.5-CODER 7B QWEN2.5-CODER 32B	31.83%	3.23×	44.26%	55.87%	4.89×	69.61%	
PCO		44.38%	4.31×	45.71%	71.53%	6.24×	73.09%	
PCO		49.83%	4.57×	50.64%	74.87%	6.67×	78.29%	
PCO		54.83%	4.73×	56.26%	75.28%	6.89×	77.43%	
PCO		58.90 %	5.22 ×	61.55 %	80.77%	7.22 ×	83.03%	

BEST@k to denote this strategy, where k represents the number of samples and the temperature is set to 0.7. we use vLLM (Kwon et al., 2023) for inference and detailed prompts are in Figure 10.

2.4 Adapting Results.

Instruction Prompting. First, we use instruction prompts to guide the LLMs in optimizing code. Additionally, inspired by Chain-of-Thought (Wei et al., 2022), we ask the LLMs to reason about how to optimize the program before generating the optimized version. Details of Instruction/CoT prompts are in Appendix J. Table 1 shows that using instruct prompt and CoT did not significantly improve %OPT and SPEEDUP. The best performance by DEEPSEEK-V3 achieved 53.86%OPT and $3.02 \times SPEEDUP$ under BEST@8. Additionally, we observe that using CoT for optimization speeds up the program but can lead to a decline in CORRECT due to the complexities it introduces.

Fine-Tuning Results. As shown in Table 1, whether for different LLM series or varying parameter scales, significant performance differences are observed when finetuned on user-oriented (PIE) and problem-oriented (PCO) optimization pairs. QWEN2.5-CODER 32B on PCO at BEST@1, demonstrates substantial improvements: %OPT (31.24% \rightarrow 58.90%), SPEEDUP (2.95× \rightarrow 5.22×), and CORRECT (46.52% \rightarrow 61.55%) compared to finetuned on PIE. At BEST@8, %OPT and SPEEDUP reached 80.77% and 7.22×, respectively. This indicates a significant advantage in adapting to problem-oriented optimization pairs compared to user-oriented optimization pairs.

Finding 1: We observe that, unlike BEST@1, CORRECT slightly declines for most LLMs adapted on PCO under BEST@8 compared to PIE. This is because LLMs adapting on PCO results in more significant modifications to the code in pursuit of maximum efficiency, which slightly disrupts the balance of CORRECT. However, the gains in %OPT and SPEEDUP are substantial under BEST@8.

Finding 2: For LLMs adapted on PCO, both %OPT and CORRECT are much closer compared to PIE. This suggests that when the optimized code is correct, it is highly likely to be optimized. The closer %OPT and CORRECT are, the higher the proportion of "correct will be optimized". This insight also indicates that, for LLMs adapted on PCO, to further increase the optimization ratio and speedup, the performance bottleneck lies in ensuring correctness.

PCO Percentage Analysis. We further explore how fewer PCO optimization pairs impact %OPT, SPEEDUP, and CORRECT. To investigate this, we randomly selected a certain percentage of optimization pairs from PCO, reducing the number of pairs from 90% down to 10%, and fine-tuned QWEN2.5-CODER 32B in the same way. As shown in Figure 5, even with just 30% of the PCO optimization pairs, LLMs adapted on PCO achieve both %OPT and SPEEDUP that surpass those

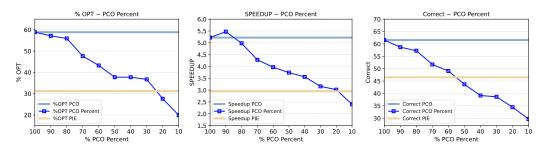


Figure 5: Performance impact of using varying percentages of PCO optimization pairs (from $100\% \rightarrow 10\%$) on %OPT, SPEEDUP, and CORRECT. The **blue** line represents the original PCO datasets, while the **yellow** line represents the original PIE datasets.

of the full PIE. Furthermore, with roughly half of the PCO pairs, CORRECT matches the full PIE. These results highlight the impressive data efficiency of the problem-oriented perspective, where fewer optimization pairs can still deliver competitive or even superior performance compared to full user-oriented optimization pairs.

Learning Edit Patterns. To further investigate whether PCO can distill effective algorithmic-improvement patterns from pairs with large structural disparities, we conducted an empirical study (Details in Appendix K). The study demonstrates that the edit-pattern (i.e., the algorithmic optimization pattern) learned by PCO is transferable and robust, rather than a mere conditional generation.

3 Anchor Verification Framework For Practicability

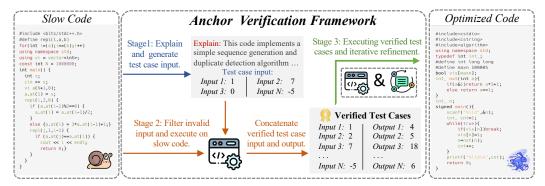


Figure 6: Anchor Verification Framework. It includes three stages: (1) generating test inputs based on the slow code's functionality, (2) constructing a verified test case set by executing inputs through the slow code, and (3) iteratively refining the optimized code with execution feedback to ensure correctness and preserve performance gains.

In Section 2, we uncover the key challenge inherent in LLM code optimization. Whether through instruct prompting or finetuning, there is always a risk that optimized code may not be 100% correct. We refer to this phenomenon as the "optimization tax". To tackle the challenge of "optimization tax", we propose a novel anchor verification framework that leverages the original "slow code" as a gold-standard verification anchor. Unlike refinement in genenral code generation, which often relies on potentially error-prone synthetic test cases for refinement, the code optimization scenario has the unique advantage: the "slow code", despite its inefficiency, is functionally correct. This inherent characteristic positions it as an ideal test case verification anchor. Building on this insight, we design the anchor verification framework (Figure 6), which consists of three main stages:

Stage 1: Test Inputs Generation. In the first stage, the LLM is prompted to explain the functionality of "slow code" and guided to generate a set of test inputs. These test inputs are designed to cover the boundary cases of the implemented functionality of "slow code". Unlike general LLM-based test case generation, this stage focuses solely on generating valid and meaningful test case inputs.

Table 2: Results of Anchor Verification Framework and compared methods with QWEN2.5-CODER, GPT-40, and DEEPSEEK-V3 on BEST@1. The baseline is the output of QWEN2.5-CODER 32B on **PCO** in Table 1. The improvement (denoted as Δ) is measured against the baseline (w/o refinement).

		BEST@1					
LLMs	Methods	%ОРТ	$\Delta\uparrow$	SPEEDUP	$\Delta\uparrow$	CORRECT	$\Delta \uparrow$
	Baseline (w/o refinement)	58.90%		5.22×		61.55%	
Qwen2.5-Coder 32B	Self Debugging	58.42%	-0.48	5.13×	-0.09	61.14%	-0.41
	Direct Test Generation	62.98%	+4.08	5.46×	+0.24	65.95%	+4.40
Instruct	Anchor Verification (Ours)	64.75%	+5.85	5.67×	+0.45	67.28%	+5.73
	Self Debugging	61.96%	+3.06	5.59×	+0.37	63.60%	+2.05
GPT-40	Direct Test Generation	65.43%	+6.53	5.71×	+0.49	68.61%	+7.06
GI I 10	Anchor Verification (Ours)	68.40%	+9.50	5.90×	+0.68	71.98%	+10.43
	Self Debugging	64.11%	+5.21	5.63×	+0.41	65.64%	+4.09
DEEPSEEK-V3	Direct Test Generation	66.26%	+7.36	$5.81 \times$	+0.59	69.53%	+7.98
	Anchor Verification (Ours)	71.06%	+12.16	6.08×	+0.86	74.54%	+12.99

Stage 2: Verified Testcase Construction. Based on the obtained test case inputs in the first stage, we feed these inputs to the "slow code" for compilation and real execution. Although the "slow code" is inefficient, it can produce the correct execution results. We filter out test case inputs that don't match the input format and gather the corresponding output results. After that, we combine the test case inputs and corresponding outputs to form fully verified test case sets.

Stage 3: Iterative Refinement. Leveraging the verified test case sets, we compile and execute the optimized code to check its correctness. If any error occurs, similar to the feedback refinement mechanism in general code generation, we provide the execution error information to the LLM backbone, enabling it to iteratively refine the optimized code.

3.1 EXPERIMENT RESULTS.

Compared Methods. To rigorously validate the effectiveness of anchor verification framework, we benchmark against two compared methods. Details explanations of baselines are in Appendix L.

- **Self-Debugging**: following Chen et al. (2024b), the self-debugging method prompts the LLM to provide line-by-line explanations of the generated code as a feedback signal for refinement.
- **Direct Test Generation**: the LLM directly generates complete test cases (including inputs and outputs) and uses these synthetic test cases to execute and iteratively refine the optimized code.

Experiments Setup. In the experiments, for all three methods, the maximum iteration count is set to 1. Detailed implementations and all corresponding prompts are also provided in Appendix L.

Main Results. We use the output of "QWEN2.5-CODER 32B finetuned on PCO" as the baseline (the last row in Table 1). We experimented with three different LLM backbones: QWEN2.5-CODER 32B INSTRUCT, GPT-40, and DEEPSEEK-V3, with the results shown in Table 2. All methods showed performance gains, except for a slight decline in the self-debugging with QWEN2.5-CODER 32B INSTRUCT. The decline can be attributed to the high demands on the LLM's ability for self-explanation and correction, and QWEN2.5-CODER 32B INSTRUCT's overall performance still lags behind the other two LLMs. Anchor verification framework demonstrated the best improvements across all three LLM backbones, particularly with DEEPSEEK-V3. Compared to the baseline, CORRECT improved by 12.99%, %OPT improved by 12.16%, and SPEEDUP increased to 6.08×. This result confirms that CORRECT is the performance bottleneck, and that improving CORRECT can simultaneously enhance both %OPT and SPEEDUP. Additionally, we also performed experiments using the output of "QWEN2.5-CODER 32B finetuned on PIE" as the baseline, as shown in Table 8. The conclusions are similar, and anchor verification continues to deliver the highest performance gains.

Root Cause of Performance Differences. To further investigate whether the difference in test case output is the root cause of the performance difference, we conducted additional comparisons. In *Comparion Group*, the testcase outputs are generated by the LLM based on "slow code" and the testcase input, instead of real executing the "slow code". Everything else remained unchanged.

Table 3 shows that the *Comparison Group* falls short of the Anchor Verification. This indicates that the partially inaccurate outputs of test cases (approx.16%) do indeed negatively impact the subsequent refinement by the LLM and underscoring the necessity of executing test case inputs to obtain their outputs within Anchor

Verification. Furthermore, Compari-

Table 3: Root Cause of Performance Differences.

DEEPSEEK-V3		BEST@1	
	%ОРТ	SPEEDUP	CORRECT
Base	58.90%	5.22×	61.55%
Direct Test Generation	66.26%	5.81×	69.53%
Comparison Group Anchor Verification	68.30%	5.91×	70.86%
	71.06%	6.08×	74.54%

son Group performed slightly better than Direct Test Generation, suggesting that the two-step approach (LLM generating testcase inputs and outputs separately) places less burden on the LLM compared to directly generating the entire testcase. Consequently, the test case quality is superior.

Increase the Number of Iterations. In the experiment setup, the iteration count for all three methods was initially set to one iteration. To investigate the impact of multiple iterations on performance,

we further verified the scenarios with three and five iterations. As shown in Table 4, the first iterations of both Direct Test Generation and Anchor Verification yield most significant performance gains. Moreover, for Direct Test Generation, the performance improvement from five iterations compared with three iterations is barely evident. In contrast, Anchor Verification still shows marked improvement. This further highlights the value of verified correct test cases for execution feedback refinement and alleviating the "optimization tax."

Table 4: Increase the Number of Iterations.

DEEPSEEK-V3	BEST@1				
	%ОРТ	%OPT SPEEDUP			
Base	58.90%	5.22×	61.55%		
	Number of Iteration $= 1$				
Direct Test Generation	66.26%	5.81×	69.53%		
Anchor Verification	71.06%	$6.08 \times$	74.54%		
	Number of Iteration $= 3$				
Direct Test Generation	68.30%	5.89×	70.76%		
Anchor Verification	74.85%	6.19×	77.81%		
	Nun	nber of Iterat	ion = 5		
Direct Test Generation	68.91%	5.92×	71.57%		
Anchor Verification	78.43%	6.37×	79.24%		

Primary Reasons for Remaining Failures. The empirical findings reveal an inherent trade-off between efficiency and correctness in program optimization: any attempt to accelerate a functionally correct but inefficient program risks introducing semantic deviations. Although the Anchor Verification Framework substantially reduces the error rate, it cannot eliminate persistent errors entirely. Consequently, achieving the ideal goal of "zero-correctness-loss optimization" remains an open challenge that deserves continued investigation. A systematic analysis of failures (shown in Appendix H) reveals that roughly half fall into the "Compiled, but semantically wrong" category, indicating that current LLMs still have blind spots in comprehending high-level program intent.

Practical Cost. To investigate the overhead of the Anchor Verification Framework, we measured the corresponding time cost for each stage (as shown in Appendix I). The results reveal that its overhead is nearly identical to that of "Direct Test Generation". This similarity arises because the two approaches share all major stages (e.g., code comprehension); the only extra step is the local sandbox execution that runs in milliseconds and incurs minimal cost compared to other stages.

Case Study. Additionally, we present case studies to intuitively show specific examples and intermediate results of the Anchor Verification Framework, as illustrated in Figure 20, 21, and 22.

Related Work. The detailed review of related work is provided in Appendix B.

4 CONCLUSION

In this paper, we introduce a problem-oriented perspective and an anchor verification framework for code optimization. The problem-oriented perspective not only enhances the diversity of optimization pairs but also significantly mitigates the data scarcity issue in the domain of code optimization. The anchor verification framework effectively alleviates the "optimization tax" while simultaneously elevating the optimization ratio, speedup, and correctness to new levels. We hope these insights will offer a practical and effective path toward advancing program efficiency.

REFERENCES

- Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023. URL https://arxiv.org/abs/2303.08774.
- V Aho Alfred, S Lam Monica, and D Ullman Jeffrey. *Compilers Principles, Techniques & Tools*. pearson Education, 2007. URL https://en.wikipedia.org/wiki/Compilers:_Principles,_Techniques,_and_Tools.
- David F. Bacon, Susan L. Graham, and Oliver J. Sharp. Compiler transformations for high-performance computing. *ACM Comput. Surv.*, 26(4):345–420, dec 1994. ISSN 0360-0300. doi: 10.1145/197405.197406. URL https://doi.org/10.1145/197405.197406.
- Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood. The gem5 Simulator. *SIGARCH Comput. Archit. News*, 2011.
- Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou, and Weizhu Chen. Codet: Code generation with generated tests. In *The Eleventh International Conference on Learning Representations*, 2023. URL https://openreview.net/forum?id=ktrw68Cmu9c.
- Mouxiang Chen, Zhongxin Liu, He Tao, Yusu Hong, David Lo, Xin Xia, and Jianling Sun. B4: Towards optimal assessment of plausible code solutions with plausible tests. In *Proceedings of the 39th IEEE/ACM International Conference on Automated Software Engineering*, ASE '24, pp. 1693–1705. ACM, October 2024a. doi: 10.1145/3691620.3695536. URL http://dx.doi.org/10.1145/3691620.3695536.
- Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models to self-debug. In *The Twelfth International Conference on Learning Representations*, 2024b. URL https://openreview.net/forum?id=KuPixIqPiq.
- DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025. URL https://arxiv.org/abs/2501.12948.
- Spandan Garg, Roshanak Zilouchian Moghaddam, Colin B. Clement, Neel Sundaresan, and Chen Wu. Deepperf: A deep learning-based approach for improving software performance, 2022. URL https://arxiv.org/abs/2206.13619.
- Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao Bi, Y Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming—the rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024. URL https://arxiv.org/abs/2401.14196.
- Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In *International Conference on Learning Representations*, 2022. URL https://openreview.net/forum?id=nZeVKeeFYf9.
- Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang, Bowen Yu, Kai Dang, et al. Qwen2. 5-coder technical report. *arXiv preprint arXiv:2409.12186*, 2024.
- Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free evaluation of large language models for code. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=chfJJYC3iL.

- Pascal Kerschke, Holger H. Hoos, Frank Neumann, and Heike Trautmann. Automated algorithm selection: Survey and perspectives. *Evolutionary Computation*, 27(1):3–45, 2019. doi: 10.1162/evco_a_00242.
 - Thomas Kistler and Michael Franz. Continuous program optimization: A case study. *ACM Trans. Program. Lang. Syst.*, 25(4):500–548, jul 2003. ISSN 0164-0925. doi: 10.1145/778559.778562. URL https://doi.org/10.1145/778559.778562.
 - Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E. Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model serving with pagedattention. In *Proceedings of the ACM SIGOPS 29th Symposium on Operating Systems Principles*, 2023.
 - Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation with alphacode. *Science*, 378(6624):1092–1097, 2022. URL https://www.science.org/doi/abs/10.1126/science.abg1158.
 - Jhe-Yu Liou, Xiaodong Wang, Stephanie Forrest, and Carole-Jean Wu. Gevo: Gpu code optimization using evolutionary computation. *ACM Trans. Archit. Code Optim.*, 17(4), nov 2020. ISSN 1544-3566. doi: 10.1145/3418055. URL https://doi.org/10.1145/3418055.
 - Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by chatGPT really correct? rigorous evaluation of large language models for code generation. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL https://openreview.net/forum?id=1qvx610Cu7.
 - Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *International Conference on Learning Representations*, 2019. URL https://openreview.net/forum?id=Bkq6RiCqY7.
 - Seungjun Moon, Hyungjoo Chae, Yongho Song, Taeyoon Kwon, Dongjin Kang, Kai Tzu iunn Ong, Seung won Hwang, and Jinyoung Yeo. Coffee: Boost your code llms by fixing bugs with feedback, 2024. URL https://arxiv.org/abs/2311.07215.
 - Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, and Caiming Xiong. Codegen: An open large language model for code with multi-turn program synthesis. In *The Eleventh International Conference on Learning Representations*, 2023. URL https://openreview.net/forum?id=iaYcJKpY2B_.
 - Changan Niu, Ting Zhang, Chuanyi Li, Bin Luo, and Vincent Ng. On evaluating the efficiency of source code generated by llms, 2024. URL https://arxiv.org/abs/2404.06041.
 - Theo X. Olausson, Jeevana Priya Inala, Chenglong Wang, Jianfeng Gao, and Armando Solar-Lezama. Is self-repair a silver bullet for code generation? In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=y0GJXRungR.
 - OpenAI, Aaron Hurst, Adam Lerer, Adam P. Goucher, and Adam Perelman et al. Gpt-4o system card, 2024. URL https://arxiv.org/abs/2410.21276.
 - Ruchir Puri, David S Kung, Geert Janssen, Wei Zhang, Giacomo Domeniconi, Vladimir Zolotov, Julian Dolby, Jie Chen, Mihir Choudhury, Lindsey Decker, et al. Codenet: A large-scale ai for code dataset for learning a diversity of coding tasks. *arXiv preprint arXiv:2105.12655*, 2021. URL https://arxiv.org/abs/2105.12655.
 - Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation models for code. arXiv preprint arXiv:2308.12950, 2023. URL https://arxiv.org/abs/2308.12950.
 - Jieke Shi, Zhou Yang, and David Lo. Efficient and green large language models for software engineering: Literature review, vision, and the road ahead, 2024. URL https://arxiv.org/abs/2404.04566.

Alexander G Shypula, Aman Madaan, Yimeng Zeng, Uri Alon, Jacob R. Gardner, Yiming Yang, Milad Hashemi, Graham Neubig, Parthasarathy Ranganathan, Osbert Bastani, and Amir Yazdanbakhsh. Learning performance-improving code edits. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=ix7rLVHXyY.

- Zifan Song, Yudong Wang, Wenwei Zhang, Kuikun Liu, Chengqi Lyu, Demin Song, Qipeng Guo, Hang Yan, Dahua Lin, Kai Chen, and Cairong Zhao. Alchemistcoder: Harmonizing and eliciting code capability by hindsight tuning on multi-source data. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL https://openreview.net/forum?id=SAQXbnvv4t.
- Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of Machine Learning Research*, 9(86):2579–2605, 2008. URL http://jmlr.org/papers/v9/vandermaaten08a.html.
- Yaoxiang Wang, Haoling Li, Xin Zhang, Jie Wu, Xiao Liu, Wenxiang Hu, Zhongxin Guo, Yangyu Huang, Ying Xin, Yujiu Yang, Jinsong Su, Qi Chen, and Scarlett Li. Epicoder: Encompassing diversity and complexity in code generation, 2025. URL https://arxiv.org/abs/2501.04694.
- Yue Wang, Hung Le, Akhilesh Gotmare, Nghi Bui, Junnan Li, and Steven Hoi. CodeT5+: Open code large language models for code understanding and generation. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pp. 1069–1088, Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.68. URL https://aclanthology.org/2023.emnlp-main.68/.
- Zheng Wang and Michael O'Boyle. Machine learning in compiler optimization. *Proceedings of the IEEE*, 106(11):1879–1901, 2018. doi: 10.1109/JPROC.2018.2817118. URL https://ieeexplore.ieee.org/abstract/document/8357388.
- Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural Information Processing Systems*, volume 35, pp. 24824–24837. Curran Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf.
- Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Source code is all you need. *arXiv preprint arXiv:2312.02120*, 2023. URL https://arxiv.org/abs/2312.02120.
- Yuxiang Wei, Federico Cassano, Jiawei Liu, Yifeng Ding, Naman Jain, Zachary Mueller, Harm de Vries, Leandro von Werra, Arjun Guha, and Lingming Zhang. Selfcodealign: Self-alignment for code generation. *arXiv preprint arXiv:2410.24198*, 2024.
- An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zhihao Fan. Qwen2 technical report. *arXiv preprint arXiv:2407.10671*, 2024.
- Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)*, Bangkok, Thailand, 2024. Association for Computational Linguistics. URL http://arxiv.org/abs/2403.13372.

- Li Zhong, Zilong Wang, and Jingbo Shang. Ldb: A large language model debugger via verifying runtime execution step-by-step. arXiv preprint arXiv:2402.16906, 2024. URL https://arxiv.org/abs/2402.16906.
- Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang, Peiyi Wang, Runxin Xu, Y Wu, Yukun Li, Huazuo Gao, Shirong Ma, et al. Deepseek-coder-v2: Breaking the barrier of closed-source models in code intelligence. *arXiv preprint arXiv:2406.11931*, 2024.
- Terry Yue Zhuo, Vu Minh Chien, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari, Imam Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, Simon Brunner, Chen GONG, James Hoang, Armel Randy Zebaze, Xiaoheng Hong, Wen-Ding Li, Jean Kaddour, Ming Xu, Zhihan Zhang, Prateek Yadav, Naman Jain, Alex Gu, Zhoujun Cheng, Jiawei Liu, Qian Liu, Zijian Wang, David Lo, Binyuan Hui, Niklas Muennighoff, Daniel Fried, Xiaoning Du, Harm de Vries, and Leandro Von Werra. Bigcodebench: Benchmarking code generation with diverse function calls and complex instructions. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=YrycTjllL0.

A THE USE OF LARGE LANGUAGE MODELS.

In the preparation of this manuscript, LLMs are utilized as a general-purpose writing assistant. Its role was strictly limited to improving the grammar, clarity, and readability of the text. The LLMs are not used for research ideation, conducting experiments, or the generation of any core scientific content. The authors take full responsibility for all content presented in this paper, including any text revised with the assistance of the LLM.

B RELATED WORKS.

LLMs for Code-Related Tasks. LLMs pre-trained on extensive code corpora have demonstrated remarkable capabilities in various programming tasks, including code completion, code generation, and code summarization (Li et al., 2022; Nijkamp et al., 2023; Roziere et al., 2023; Wei et al., 2023; Guo et al., 2024; Song et al., 2024; Wang et al., 2025). To enhance the accuracy of code generation, numerous techniques and frameworks have been proposed, such as execution feedback and self-correction mechanisms (Chen et al., 2024b; Zhong et al., 2024; Moon et al., 2024; Olausson et al., 2024). However, despite these advancements, the research of LLMs to code optimization, a field of both practical significance and considerable real-world challenges, remains underexplored in both academia and industry.

Code Optimization. With Moore's law losing momentum, program optimization has become a central focus of software engineering over past few decades (Bacon et al., 1994; Kistler & Franz, 2003; Garg et al., 2022). However, achieving high-level optimizations, such as algorithmic changes, remains challenging due to the difficulty in comprehending code semantics. Previous research has employed machine learning to enhance performance by identifying compiler transformations (Bacon et al., 1994), optimizing GPU code (Liou et al., 2020), and automatically selecting algorithms (Kerschke et al., 2019). Recently, Shypula et al. (2024) introduced the first C/C++ dataset designed for program efficiency optimization, with preliminary results demonstrating the potential of LLMs in code optimization.

C CATEGORIES OF OPTIMIZATION TYPES.

We categorize code optimization into three main categories: global algorithmic optimizations, local optimizations, and other optimizations.

• Global Algorithmic Optimizations: This type of optimization involves altering the algorithm itself to achieve significant performance improvements. Such changes can effectively reduce time complexity and enhance the speed of code execution. Examples include transforming recursive solutions into dynamic programming approaches, leveraging advanced mathematical theories, and restructuring complex data processing logic. These optimizations can lead to substantial gains in efficiency and scalability.

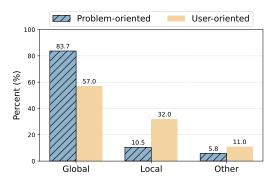


Figure 7: LLM Analysis of the Optimization Types between Problem-oriented and User-oriented Optimization Pairs.

- Local Optimizations: These optimizations focus on improving specific parts of the code without changing the overall algorithm. They include enhancing I/O functions, optimizing read/write patterns to minimize runtime delays, and reducing computational complexity in certain sections of the code. By addressing these localized issues, programs can achieve more efficient execution and better resource utilization, ultimately leading to faster and more responsive applications.
- Other Optimizations: This category involves general code cleanup and refactoring aimed at improving code readability, maintainability, and overall quality. Examples include removing unnecessary initializations and redundant code, cleaning up outdated comments, and organizing the code structure more logically.

D LLMs Analysis on Optimization Types.

Figure 7 presents the LLMs analysis of optimization types between problem-oriented and user-oriented optimization pairs. GPT-4 identifies a higher proportion of "global algorithm optimization" compared to human analysis. Upon further investigation, we find that this discrepancy is mainly due to GPT-4's tendency to categorize program pairs with significant changes as "global algorithm optimization".

E DATASETS STATISTICS.

The statistical results of the PCO and PIE are shown in Table 5. We meticulously reviewed and ensured that any particular competitive programming problem appeared in only one of the train, validation, or test sets.

Table 5: Number of unique problem ids and pairs.

Dataset	Unique Problems	Pairs
PIE	1,474	77,967
PCO	1,474	77,967
Val Test	77 41	2,544 978

F TRAINING DETAILS.

For Instruction/CoT prompt, we utilize the corresponding *chat* versions, while for fine-tuning, we employ the *base* versions of these LLMs.

776

786

787

781

792 793

794

800

801 802

808

809

Table 6: Failure mode analysis.

Failure Mode	Percent
Failed to compile (syntax/type errors) Compiled, semantic right but input/output format failure Compiled, semantic wrong	16% 31% 53%

We fine-tuned the CODELLAMA (13B), DEEPSEEKCODER (7B, 33B), and QWEN2.5-CODER (7B, 32B) models using LLAMA-FACTORY (Zheng et al., 2024) on a server equipped with 8×A100 GPUs (NVIDIA A100 80GB). During the fine-tuning process, we employed LoRA (Hu et al., 2022) (with lora_rank=8 and lora_target=all), and for both the PIE and PCO datasets, we trained the LLMs for only 2 epochs. All experiments were conducted using AdamW (Loshchilov & Hutter, 2019) optimizer with an initial learning rate 5e-5.

EXPLANATION OF SPEEDUP METRIC.

For the SPEEDUP metric, we adopted the same definition in PIE (Shypula et al., 2024) without modification. The rationale behind assigning $1.0 \times$ to failures is that code optimization cannot guarantee 100% correctness, as previously mentioned. Therefore, if the optimized code produces incorrect results, users in practice would discard it and revert to the original version—effectively meaning no speedup was achieved. Hence, we assign a 1.0× SPEEDUP for failures to reflect this scenario.

PRIMARY REASONS FOR REMAING FAILURES.

We conducted a systematic analysis of optimization failures. Among 100 optimized programs that failed the test suite, we identified three representative failure modes; the results are shown in Table 6.

- Compilation failures (syntax or type errors).
- Successful compilation with I/O-format issues, which we could manually correct to pass the tests.
- Semantic errors, i.e., the optimized code compiles but behaves incorrectly.

Notably, Table 6 reveals that roughly half of the failures fall into the third category: the model failed to fully and accurately capture the original code's semantics during optimization. This suggests that current LLMs still have blind spots in understanding high-level program intent.

PRACTICAL COST

To investigate the overhead of the Anchor Verification Framework, we measured the corresponding time cost for each stage. During the Anchor Verification Framework process, the overhead is almost identical to that of "Direct Test Generation" because the only difference is that Anchor Verification asks the LLM to produce only the test-case inputs, whereas Direct Test Generation requires the LLM to produce both inputs and outputs. All other stages—such as understanding and explaining the code—remain the same. Furthermore, we have broken down the entire pipeline into individual steps and measured the corresponding per-stage time cost, as shown in the Table 7 below:

Table 7: Average runtime overhead per method.

Time Cost	Query	Execution (testcase output)	Execution (testcase)	Refinement
Self-Debugging Direct Test Generation	13.68 s 9.27 s		0.23 s	15.85 s
Anchor Verification	7.24 s	0.22 s	0.22 s	15.16 s

From the measurement results, it can be seen that the primary time overhead for different methods is attributed to the invocation of the GPT-40 API, whereas the local sandbox environment for executing

the code is relatively significantly faster in comparison. Meanwhile, the Anchor Verification Framework relies on the correctness of the slow code and has a high tolerance for its speed—as long as the code can produce the correct output within a finite time, the generated test cases are considered valid and can be used for subsequent refinement.

J THE PROMPTS OF ADAPTING LLM ON OPTIMIZATION PAIRS.

In this section, we present the prompts for adapting the LLM to optimization pairs. The instruction prompt is shown in Figure 8, the CoT (Chain of Thought) prompt is shown in Figure 9, and the vLLM inference prompt is shown in Figure 10.

```
Given the program below,

→ improve its performance:

### Program:
{slow_code}

### Optimized Version:
```

Figure 8: Instruct Prompt.

```
Given the program, generate

→ an efficiency improvement

→ strategy to enhance its

→ performance.

### slower program:
{slow_code}

### strategy:
LLMs generated potential

→ strategy.

### optimized version:
```

Figure 9: Chain-of-thought Prompting.

K LEARNING EDIT PATTERNS

To further investigate whether the PCO approach can distill effective algorithmic-improvement patterns from pairs with large structural disparities, we conducted an empirical case study. As shown in Figure 11, within the PCO optimization pairs, a representative and efficient algorithmic paradigm is: rewriting a nested double for 100p into a pattern of "prefix-sum preprocessing + elimination of the inner loop", thereby removing the significant overhead introduced by the nested iteration.

- (i) In the PCO method, a common algorithmic paradigm shift boils down to replacing the naive double for loops by a prefix-sum + hash look-up scheme. By utilizing the prefix sum sum[0..I] and a hash table to record the occurrence counts of historical prefix sums, reducing the overall time complexity to $\mathcal{O}(n)$.
- (ii) In practice, the same improvement pattern is also applied: in matrix operations, a 2-D prefix-sum with constant-time queries dramatically reduces the nested complexity of the original multilevel loops by first precomputing a prefix sum matrix pre[i][j].

This demonstrates that the "edit" pattern (algorithmic optimization pattern) learned by PCO is transferable and robust, rather than merely conditional generation.

L IMPLEMENTATION DETAILS OF THE ANCHOR VERIFICATION FRAMEWORK AND THE COMPARED METHODS.

• Anchor Verification: In the Anchor Verification Framework, for the test case inputs in Stage 1, we prompt the LLM to generate three test case inputs based on the "slow code", the detailed prompt as illustrated in Figure 12. In Stage 2 and Stage 3, for compiling and executing both the "slow code" and "optimized code", we compile all C++ programs using GCC version 9.4.0 with C++17 and the −○3 optimization flag. In Stage 3, we leverage the verified test case sets. If an

```
Given the program below,

→ improve its performance:

### Program:
{slow_code}

### Optimized Version:
```

Figure 10: Inference Prompt.

```
int subarraySum(int* nums, int numsSize, int
    k) {
    int count = 0;
    for (int i = 0; i < numsSize; ++i) {
        int sum = 0;
        for (int j = i; j < numsSize; ++j) {
            sum += nums[j];
            if (sum == k) ++count;
            }
}</pre>
```

(a) PCO: Slow Code.

```
static Node* new_node(int key, int val) {
    Node* n = (Node*)malloc(sizeof(Node));
n->key = key; n->val = val; n->next =
        NULL;
    return n;
#define HASH_SIZE 200003
static Node * table[HASH_SIZE];
int subarraySum(int* nums, int numsSize, int
    int count = 0, sum = 0;
    for (int i = 0; i < HASH_SIZE; ++i)</pre>
         table[i] = NULL;
    put(0, 1);
         prefix_sum[0] = 1
    for (int i = 0; i < numsSize; ++i) {</pre>
         sum += nums[i];
         count += get(sum - k);
         put(sum, 1);
```

(b) PCO: Optimized Code.

```
for (int i = 0; i < n; ++i)
    for (int j = 0; j < m; ++j)
        scanf("%d", &a[i][j]);

while (q--) {
    int x1, y1, x2, y2;
    scanf("%d %d %d %d", &x1, &y1,
        &x2, &y2);
    --x1; --y1; --x2; --y2; //
        0-index
    long long sum = 0;
    for (int i = x1; i <= x2; ++i)
        for (int j = y1; j <= y2; ++j)
        sum += a[i][j];
    printf("%lld\n", sum);
}
...</pre>
```

(c) Practical Slow Code.

(d) Practical Optimized Code.

Figure 11: Case of learning edit patterns.

error occurs, we provide the error information to the LLM, allowing it to iteratively refine the optimized code based on this feedback. The detailed prompt is shown in Figure 13.

 Self-Debugging: following the approach presented in Chen et al. (2024b), the method instructs the LLM to provide line-by-line explanations of the generated program as feedback, functioning akin

to rubber duck debugging. In this process, the LLM is capable of autonomously identifying and rectifying bugs without requiring human intervention. The detailed prompt is shown in Figure 14.

• **Direct Test Generation:** The LLM generates complete test cases (including both inputs and outputs) and utilizes synthetic test cases to execute the optimized code, enabling iterative refinement. The prompt for generating complete test cases is shown in Figure 15, while the iterative refinement prompt is the same as the one used in Stage 3 of the Anchor Verification, as depicted in Figure 13.

```
Given the program below,

→ please explain and analyze

→ its functionality, and

→ provide 3 testcase inputs

→ that fully consider

→ boundary conditions and

→ code coverage. Note that

→ only the testcase inputs

→ are required.

### Program:
{slow_code}

### Explanation:
{Your explanation here}

### Test case Inputs:
{Your testcase inputs}
```

Figure 12: Anchor Verification Framework Stage 1 (Test Inputs Generation) Prompt.

```
You are a code expert, and
   your task is to correct
   the functionally
   incorrect code based on
   test cases and execution
  feedback. Analyze the
\hookrightarrow issues, apply the

→ necessary fixes, and

   ensure the corrected code
   meets the expected
    functionality and pass
   the testcase.
### Incorrect Program:
{code}
### Explanation:
{explanation}
### Testcase:
{Testcase}
### Feedback from execution:
{Feedback}
### Your corrected code
   version:
```

Figure 13: Anchor Verification Framework Stage 3 (Iterative Refinement) Prompt.

M RESULTS OF ANCHOR VERIFICATION ON PIE.

We conducted experiments using "QWEN2.5-CODER 32B fine-tuned on PIE" as the baseline and compared it with other methods. The results, shown in Table 8, demonstrate that Anchor Verification consistently delivers the highest performance gains. On the DEEPSEEK-V3 backbone, we observed improvements in %OPT (31.24% \rightarrow 47.28%), SPEEDUP (2.95× \rightarrow 3.40×), and CORRECT (46.52% \rightarrow 65.32%). Furthermore, we found that the gains in optimization ratio and speedup brought by the Anchor Verification Framework's improvements in correctness on PIE were not as significant as those observed in PCO. For example, on the DEEPSEEK-V3 backbone, CORRECT increased by 18.8%, but SPEEDUP only improved by 0.45×. In contrast, on the PCO scenario, CORRECT increased by 12.99%, while SPEEDUP saw a larger improvement of 0.86×.

N LIMITATIONS.

This paper focuses on optimizing the time efficiency of given code, without considering other optimization directions. However, in actual practice, there is a wide range of optimization avenues, such as memory optimization. Moreover, ensuring the complete accuracy of code optimization is a multifaceted and intricate issue that deserves further exploration and research.

```
975
976
          Below is a potentially
977
              problematic C++ program.
978
              Please provide a
              line-by-line explanation
979
              and correct any errors
980
              that may be present.
981
982
          ### Program:
983
          {program}
984
          ### Explanation:
985
          {Your explanation here}
986
          ### Revised Program:
987
          {Your revised program here}
988
989
```

974

990

991 992 993

994

995 996

997

1013

1014 1015

1016

1017

1018

1019 1020

1021 1022

1023

1024

1025

Figure 14: Self-Debugging Prompt.

```
Given the program below,

→ please explain and

    analyze its
    functionality, and
    generate three
    comprehensive test cases
    that thoroughly cover
   boundary conditions and
    all code paths. Each
    testcase should include
    the input and the
    corresponding expected
\hookrightarrow
    output.
### Program:
{slow_code}
### Explanation:
{Your explanation here}
### Test case:
{Your testcase}
```

Figure 15: The Prompt of Direct Test Generation Method.

Table 8: Results of Anchor Verification and compared methods with QWEN2.5-CODER, GPT-4o, and DEEPSEEK-V3 on BEST@1. The baseline is the output of QWEN2.5-CODER 32B on PIE in Table 1.

		BEST@1					
LLMs	Methods	%ОРТ	$\Delta\uparrow$	SPEEDUP	$\Delta\uparrow$	CORRECT	$\Delta \uparrow$
	Baseline (w/o refinement)	31.24%		2.95×		46.52%	
O 25 Co 22D	Self Debugging	35.69%	+4.45	3.02×	+0.07	53.74%	+7.22
QWEN2.5-CODER 32B	Direct Test Generation	38.74%	+7.50	$3.08 \times$	+0.13	57.49%	+10.97
Instruct	Anchor Verification (Ours)	40.48%	+9.24	3.17×	+0.22	59.09%	+12.57
	Self Debugging	37.47%	+6.23	3.06×	+0.11	55.65%	+9.13
GPT-40	Direct Test Generation	39.64%	+8.40	$3.13 \times$	+0.18	57.86%	+11.34
GI 1 40	Anchor Verification (Ours)	42.50%	+11.26	3.32×	+0.37	63.60%	+17.08
DEEPSEEK-V3	Self Debugging	40.61%	+9.37	$3.23 \times$	+0.28	59.62%	+13.10
	Direct Test Generation	40.17%	+8.93	$3.18 \times$	+0.23	58.73%	+12.21
	Anchor Verification (Ours)	47.28%	+16.04	3.40 ×	+0.45	65.32%	+18.80

O DETAILED EXAMPLES OF USER-ORIENTED AND PROBLEM-ORIENTED PERSPECTIVES.

We provide detailed examples, as shown in Figure 16, Figure 17, Figure 18, and Figure 19, to illustrate that in the original PIE, program optimization pairs are constructed through iterative submissions and optimizations by the same user for the same programming problem, which can be limited by the single programmer's thought patterns.

P CASE STUDY OF ANCHOR VERIFICATION FRAMEWORK.

We present three case studies to vividly illustrate specific examples of Anchor Verification, as depicted in Figure 20, Figure 21, and Figure 22. These cases offer a clear and intuitive understanding of how Anchor Verification Framework operates in practice.

1039

1040

1041

1042

1043

1044

1045

1046

1047 1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1061 1062

1063

1064

1066

1067

1068

1076

1078 1079

```
#include <iostream>
#include <stdio.h>
using namespace std;
typedef long 11;
int main() {
    int length;
    ll arr[200000];
    11 \operatorname{res}[200000] = \{0\};
    11 \text{ temp} = 0;
    11 m = 2147483647;
    scanf("%d", &length);
for (int i = 0; i <</pre>
         length; ++i) {
scanf("%ld",
              &arr[i]);
    res[0] = arr[0];
    for (int i = 1; i <
         length; ++i) {
         res[i] += res[i - 1]
              + arr[i];
    for (int i = 1; i <
         length; ++i) {
         temp = abs(res[length
              - 1] - res[i - 1]
              * 2):
         m = min(temp, m);
    printf("%ld\n", m);
    return 0;
```

```
#include <bits/stdc++.h>
using namespace std;
#define int long long
typedef vector<int> vi;
const int INF = 1e18 + 5;
void solve() {
    int n;
    cin >> n;
    vi v(n), pre(n);
int mn = INF, s = 0;
    for(int i = 0; i < n;</pre>
        i++) cin >> v[i];
    pre[0] = v[0];
for(int i = 1; i < n;</pre>
        i++) pre[i] = v[i] +
         pre[i - 1];
    for(int i = n - 1; i >=
         1; i--) {
         s += v[i];
        mn = min(mn.
             abs(pre[i - 1] -
              s));
    cout << mn;
signed main() {
    int t = 1;
    while(t--) solve();
```

```
#include<cstdio>
const int MAX = 2e5 + 5:
int a[MAX];
int main() {
    int n;
    long long sum = 0;
    scanf("%d", &n);
    for (int i = 0; i < n;</pre>
        scanf("%d", a + i);
        sum += a[i];
    long long
        left, right, temp;
    left = sum - a[n - 1];
right = a[n - 1];
    long long min = left >
        right ? left - right
        : right - left;
    left = 0;
    for (int i = 0; i < n-2;
        i++) {
        left += a[i];
        right = sum - left;
        temp = left > right ?
             left - right :
             right - left;
        if (temp < min)</pre>
             min=temp;
    printf("%d\\n", min);
    return 0;
```

(a) user1, initialization version.

(b) user1, iteration version.

(c) another user submitted version.

Figure 16: The three submitted code solutions all address problem "p03661", which asks for a split point in an array that minimizes the absolute difference between the sums of the two parts. Solutions (a) and (b) are different submissions from same user "u018679195". In (a), the prefix sum is calculated first, then the minimum difference is computed from start to finish. In (b), the prefix sum is also calculated first, but the minimum difference is computed from end to start, avoiding additional multiplication operations. Solution (c), from user "u353919145", calculates the difference between the left and right sums in real-time, requiring only one pass through the loop. It can be seen that solutions (a) and (b) only make local changes, while (c) constructs a more efficient algorithm.

```
1085
1086
          #include <bits/stdc++.h>
1087
          using namespace std;
1088
1089
          #define int long long
1090
          const int N = 1e5 + 5, M = 5,
1091
              inf = 1e15;
1092
          int dp[N][M], a[N];
1093
          char op[N];
1094
          int Sign(int x) {
1095
              if (x % 2) return -1;
1096
              return 1;
1098
         int32_t main() {
   for (int i = 0; i < N;</pre>
1099
                  i++) for (int j = 0;
1100
                  j < M; j++) dp[i][j]</pre>
                   -inf;
1101
              int n; cin >> n >> a[0];
1102
              for (int i = 1; i < n;</pre>
                  i++) cin >> op[i] >>
1103
                  a[i];
              dp[0][0] = a[0];
1104
              for (int i = 1; i < n;</pre>
1105
                  i++) for (int j = M -
                  1; j >= 0; j--) {
if (op[i] == '+')
1106
1107
                       dp[i][j] = dp[i]
1108
                       1][j] + a[i] *
                       Sign(j);
1109
                  else if (j) dp[i][j]
1110
                       = dp[i - 1][j
                       1] + a[i] *
1111
                       Sign(j);
                  if (j + 1 < M)
1112
                       dp[i][j]
1113
                       max(dp[i][j],
1114
                       dp[i][j + 1]);
1115
              cout << dp[n-1][0] <<
                   "\n";
1116
1117
```

```
#include <bits/stdc++.h>
using namespace std:
#define int long long
const int N = 1e5 + 5, M = 3,
    inf = 1e15;
int dp[N][M], a[N];
char op[N];
int Sign(int x) {
    if (x % 2) return -1;
    return 1;
int32 t main() {
    ios::sync_with_stdio(0),
       cin.tie(0),
        cout.tie(0),
        cout.tie(0);
    for (int i = 0; i < N;</pre>
        i++) for (int j = 0;
        j < M; j++) dp[i][j]
         = -inf:
    int n; cin >> n >> a[0];
    for (int i = 1; i < n;</pre>
        i++) cin >> op[i] >>
        a[i];
    dp[0][0] = a[0];
    for (int i = 1; i < n;</pre>
        i++) for (int j = M
        1; j >= 0; j--) {
if (op[i] == '+')
             dp[i][j] = dp[i]
             1][j] + a[i] *
             Sign(j);
        else if (j) dp[i][j]
             = dp[i - 1][j
             1] + a[i] *
        Sign(j);
if (j + 1 < M)
             dp[i][j]
             max(dp[i][j],
             dp[i][j + 1]);
    cout << dp[n-1][0] <<
         "\n";
```

```
#include<cstdio>
#include<algorithm>
using namespace std;
const int MAXN=int(1e5+5);
typedef long long LL;
 define INF LL(1e15)
LL s1,s2,as,n;
LL sz[MAXN], fh[MAXN];
char c[5];
int main()
    scanf("%11d",&n);
    scanf("%lld", &as);
    qetchar();
    for(LL i=1;i<=n-1;i++) {
        scanf("%s",c);
        scanf("%d", &sz[i]);
        fh[i]=c[0];
    s1=s2=-INF;
    for(LL i=1;i<=n-1;i++) {</pre>
        if(fh[i]=='-') {
            as-=sz[i];
            s1-=sz[i];
            s2+=sz[i];
            s1=max(s1,s2):
            s2=max(as,s2);
        else {
            as+=sz[i];
            s1+=sz[i];
            s2-=sz[i];
        s2=max(s1,s2);
        as=max(s2,as);
    printf("%lld",as);
```

(c) another user submitted version.

(a) user1, initialization version.

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

(b) user1, iteration version.

Figure 17: The above three code snippets all come from the problem "p03580", which involves maximizing the evaluated value of a given formula by adding an arbitrary number of pairs of parentheses and outputting the maximum possible value. (a) and (b) are from the same user "u1821171064", both employing dynamic programming algorithms with a time complexity of $\mathcal{O}\left(N*M\right)$, where N is the length of the sequence and M is the number of states. In (b), the number of states M is reduced, and input and output are optimized. (c) is from user "u863370423" and uses a greedy algorithm, which is suitable for problems with fewer current states where the global optimal solution can be achieved through local optimization, with a time complexity of $\mathcal{O}\left(N\right)$.

```
1141
1142
          #include <iostream>
1143
         using namespace std;
1144
         typedef long long LL;
1145
          #define F(i) for(int
              i=0; i < n; i++)
1146
1147
         int d[5551[555] = {0}.
             c[555][555] = {0};
1148
1149
          int qu(int 1, int r) {
              if (1 > r) return 0;
1150
              if (d[1][r] != -1) return
1151
                  d[1][r];
              return d[1][r] = c[1][r]
1152
                  + qu(1 + 1, r) + qu(1, r - 1) - qu(1 +
1153
                  1, r - 1);
1154
1155
          int main() {
1156
              memset(d, -1, sizeof(d));
1157
              int n, m, q;
              cin >> n >> m >> q;
1158
              while (m--) {
                  int 1, r;
cin >> 1 >> r;
1159
1160
                  c[1][r]++;
1161
              while (q--) {
1162
                  int 1, r;
cin >> 1 >> r;
1163
                  cout << qu(1, r) <<
1164
                       endl;
1165
              return 0;
1166
```

1167

1168

1169

1170

1171

11721173

1174

1175

1176

11771178

1179

(a) user1, initialization version.

```
#include <bits/stdc++.h>
using namespace std;
#define int long long
#define pb push_back
#define faster
    ios::sync_with_stdio(0)
const int N = 509;
vector<int> v[N + 5]:
int32_t main() {
    faster;
    int n, p, q;
    cin >> n >> p >> q;
    int x, y;
    for (int i = 1; i <= p;
        i++) {
        cin >> x >> y;
        v[x].pb(y);
    for (int i = 1; i <= n;</pre>
        i++) {
        sort(v[i].begin(),
            v[i].end());
    while (q--) {
        cin >> x >> y;
        int ans = 0;
        for (int i = x; i <=</pre>
            y; i++) {
            ans +=
                upper_bound(
            v[i].begin(),
                v[i].end(),
             v[i].begin();
        cout << ans << "\n";
    return 0;
```

(b) user1, iteration version.

```
#include <cstdio>
#define int long long
#define dotimes(i, n) for
    (int i = 0; i < (n); i++)
using namespace std;
int rint() {
  int n;
  scanf("%lld", &n);
  return n;
void wint(int n) {
 printf("%lld\n", n);
signed main() {
  int N = rint();
 int M = rint();
 int Q = rint();
 int S[N + 1][N + 1];
  dotimes(R, N + 1)
    dotimes(L, N + 1)
      S[R][L] = 0;
  dotimes(i, M) {
    int L = rint();
int R = rint();
    S[R][L]++;
  dotimes(R, N)
    dotimes(L, N)
      S[R + 1][L + 1] += S[R
           + 1][L] + S[R][L +
           1] - S[R][L];
  dotimes(i, Q) {
    int p = rint() - 1;
int q = rint();
wint(S[q][q] + S[p][p] -
S[q][p] - S[p][q]);
 return 0:
```

(c) another user submitted version.

Figure 18: The above three code segments all come from the same problem "p03283", which deals with cumulative sum queries in a 2D matrix. (a) and (b) are different submission versions from the same user "u816631826". In (a), the problem is solved using recursion and dynamic programming, but the query time complexity is high, $\mathcal{O}\left(N^2\right)$. In (b), the STL-provided binary search function is used, reducing the time complexity to $\mathcal{O}\left(N*\log(N)\right)$. (c) comes from another user "u281670674" and solves the problem using a 2D prefix sum matrix. The preprocessing time complexity is $\mathcal{O}\left(N^2\right)$, but the query time complexity for each query is $\mathcal{O}\left(1\right)$, making it more efficient.

```
1188
1189
1190
         #include <bits/stdc++.h>
1191
         using namespace std;
1192
         inline void rd(int &x) {
1193
             char ch;
          for(;!isdigit(ch=getchar()););
1194
         for (x=ch-'0';
1195
         isdigit(ch=getchar());)
             x=x*10+ch-'0';
1196
1197
          typedef long long LL;
1198
1199
         const int MAXN = 300005;
1200
         int N, n, a[MAXN], cnt[MAXN];
1201
         LL sum[MAXN];
1202
         int ans[MAXN];
1203
1204
          inline bool chk(int k, int x)
              int pos = upper_bound(a +
1206
             1, a + n + 1, x) - a;
return sum[pos-1] +
1207
                  111*(n-pos+1)*x >=
1208
                  111*k*x;
1209
1210
         int main() {
             rd(N);
1211
              for(int i = 1, x; i <= N;</pre>
                  ++i) rd(x), ++cnt[x];
1212
              for(int i = 1; i <=</pre>
1213
                  300000; ++i)
1214
                  if(cnt[i]) a[++n] =
                  cnt[i];
1215
              sort(a + 1, a + n + 1);
              for(int i = 1; i <= n;</pre>
1216
                  ++i) sum[i] =
1217
                  sum[i-1] + a[i];
1218
              int now = 0;
             for (int k = n; k >= 1;
1219
                  --k) {
                  while (now < N &&
                     chk(k, now+1))
1221
                       ++now;
                  ans[k] = now;
1222
1223
              for(int i = 1; i <= N;</pre>
                  ++i) printf("%d\n",
1224
                  ans[i]);
1225
1226
```

```
#include <bits/stdc++.h>
using namespace std;
inline void rd(int &x) {
   char ch;
for(;!isdigit(ch=getchar()););
for (x=ch-'0';
   isdigit(ch=getchar());)
       x=x*10+ch-'0';
typedef long long LL;
const int MAXN = 300005;
int n, cnt[MAXN];
LL sum[MAXN];
int ans[MAXN];
inline bool chk(int k, int x)
    { return sum[x] >=
    111*k*x; }
int main() {
    rd(n);
    for(int i = 1, x; i <= n;</pre>
        ++i) rd(x), ++cnt[x],
        ++sum[cnt[x]];
    for(int i = 1; i <= n;</pre>
        ++i) sum[i] +=
        sum[i-1];
    int now = 0;
    for(int k = n; k \ge 1;
         --k) {
        while (now < n &&
            chk(k, now+1))
            ++now;
        ans[k] = now;
    for(int i = 1; i <= n;</pre>
        ++i) printf("%d\n",
        ans[i]);
```

(b) user1, iteration version.

```
#include < bits/stdc++.h>
#include<cstdio
using namespace std;
typedef long long 11;
#define rep(i, n) for(int i =
   0; i < (n); i++)
#define repl(i, n) for(int i
   = 1; i \le (n); i++)
int hist[300002],
   cnt[300001];
const int cm = 1 << 17;</pre>
char cn[cm], * ci = cn + cm,
   ct;
inline int getint() {
    int A = 0;
    if (ci - cn + 16 > cm)
        while ((ct =
        getcha()) >= '0') A =
        A * 10 + ct - '0';
    else while ((ct = *ci++)
        >= '0') A = A * 10 +
        ct - '0';
    return A; }
const int dm = 1 << 21;</pre>
char dn[dm], * di = dn;
int main() {
    int N = getint();
    rep(i, N)
       hist[getint()]++;
    repl(i, N)
       cnt[hist[i]]++;
    int k = 1;
    rep(i, N + 1) rep(j,
       cnt[i]) hist[k++] = i
    k = N + 1;
    int ruiseki = N;
    int mae = 0;
   for (int i = N; i >= 1;
        i--) {
        while (hist [k - 1] >=
            i) {
            ruiseki -=
                hist[--k];
        int kei = N - k + 1 +
            ruiseki / i;
        for (int j = mae + 1;
            j <= kei; j++)
            putint(i);
        mae = kei:
    for (int j = mae + 1; j
        <= N; j++) {
*di++ = '0';
        *di++ = '\n';
    fwrite(dn, 1, di - dn,
        stdout);
    return 0;
```

(a) user1, initialization version.

1227 1228

1229

1230

1231

12321233

1234 1235

1236

1237

1238

1239

1240 1241 (c) another user submitted version.

Figure 19: The above three code snippets all come from the problem "p02890", which requires calculating, for each possible K value (from 1 to N), the maximum number of times K cards with different numbers can be selected and removed from N cards. (a) and (b) are from the same user "u990400947" and utilize prefix sum calculation and searching. The latter employs condition checking with a time complexity of $\mathcal{O}(N*\log(N))$. (c) uses a difference array, reducing the time complexity to $\mathcal{O}(N)$.

1258

1259

1260

1261

1262

1263

1264

1265 1266

1267

1268

12691270

1271

1272 1273

1275

127612771278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

```
1242
1243
           ** Optimized but incorrect Code **
           #include <stdio.h>
1245
           #include <algorithm>
1246
          using namespace std;
1247
          int n,k,i,a[100005];
          int main(){
1248
               scanf("%d%d", &n, &k);
1249
               for (i=1; i<=n; i++) scanf("%d", &a[i]);</pre>
1250
               sort(a+1, a+n+1);
1251
               printf("%d\n",n-lower_bound(a+1,a+n+1,k)+1);
               return 0;
1252
           }
1253
1254
1255
1256
```

```
*Below is the Explanation of slow code and generated test case

    inputs∗

**Explanation: **
This code counts how many elements in an array are greater than or
\rightarrow equal to a given value k. Here's the breakdown:
Input: Reads n (array size) and k (threshold value), followed by an
\rightarrow array h of size n.
Sorting: Sorts the array h in descending order.
Counting: Iterates through the sorted array and counts how many
\rightarrow elements are greater than or equal to k.
Output: Prints the count.
**Test Inputs:**
Test case 1 input:
5 10
15 8 12 10 20
Test case 2 input:
1 2 3 4
Test case 3 input:
7 7 7 7 7 7
```

```
** Verified Test cases **
** Test Cases**
Test case 1 input:
5 10
15 8 12 10 20
Test case 1 output:
4
Test case 2 input:
4 5
1 2 3 4
Test case 2 output:
Test case 3 input:
6 7
7 7 7 7 7 7
Test case 3 output:
6
```

```
** Optimized and Correct
#include <stdio.h>
#include <algorithm>
using namespace std;
int n, k, i, a[100005];
int main() {
    scanf("%d%d", &n, &k);
    for (i = 0; i < n; i++)</pre>
    sort(a, a + n);
    printf("%d\n", n -
    \rightarrow (lower_bound(a, a + n,
    \hookrightarrow k) - a));
    return 0;
}
```

Figure 20: Case Study 1. The reason for the error is that the offset was not calculated correctly. The correct fix is to calculate the index using $lower \ bound(...) - a$.

```
1296
1297
            ** Optimized but incorrect Code **
1298
            #include <cstdio>
1299
            #include <algorithm>
1300
           using std::min;
1301
            #define MAXN 100003
           int abs(int z) {
1302
                if (z<0) return -z;
1303
                else return z;
1304
1305
           int main(void) {
                int N,K,i,j;
1306
                int h[MAXN], p[MAXN];
scanf("%d%d", &N, &K);
1307
1308
                for (i=0;i<N;i++)</pre>
1309
1310
                     scanf("%d", h+i);
1311
                p[N-1]=0;
1312
                p[N-2] = abs(h[N-2]-h[N-1]);
1313
                for (i=N-3; i>=0; i--)
1314
                     p[i] = min(p[i+1] + abs(h[i] - h[i+1]), p[i+2]
1315
                     +abs(h[i]-h[i+2]));
1316
1317
                printf("%d\n",p[0]);
1318
                return 0;
1319
            }
1320
```

```
1321
           *Below is the Explanation of slow code and generated test case
1322

    inputs∗

1323
           **Explanation: **
1324
           This code solves a dynamic programming problem to find the minimum
1325
           \hookrightarrow cost to reach the n-th element from the first element in an
           \,\hookrightarrow\, array, where you can jump up to k steps back at each position.
1326
           \rightarrow Here s the breakdown:
1327
1328
           Input: Reads n (array size) and k (maximum jump distance), followed
1329
           \hookrightarrow by the array num.
1330
           Initialization:
           dp array is initialized to a large value, except dp[0] and dp[1],
1331
           \rightarrow which are set to 0 (starting points with no cost).
1332
           DP Transition:
1333
           For each position i from 2 to n, it calculates the minimum cost to
1334
           → reach i by considering jumps from positions j (within [i-k,
           \hookrightarrow i-1]).
1335
           The cost is the absolute difference between num[i] and num[j],
1336
           \rightarrow added to the cost to reach j.
1337
           Output: The minimum cost to reach the n-th element (dp[n]) is
1338
           → printed.
1339
           ** Test Cases**
1340
           Test case 1 input:
1341
1342
           1 3 5 2 4
1343
1344
          Test case 2 input:
1345
           10 20 10 30
1346
1347
           Test case 3 input:
1348
           1 2 3 4 5 6
1349
```

1369 1370

1371

13721373

1374

1375

1376

1377

1378

13791380

1381

1382

1383 1384

1385

1386 1387

1388

1389

1390

1391 1392

1393 1394

1395 1396

1397

13981399

1400

1401

1402

```
1350
           ** Verified Test cases **
1351
           ** Test Cases**
1352
          Test case 1 input:
1353
1354
           1 3 5 2 4
1355
          Test case 1 output:
1356
1357
          Test case 2 input:
1358
          4 1
1359
          10 20 10 30
          Test case 2 output:
1360
          40
1361
1362
          Test case 3 input:
1363
           1 2 3 4 5 6
1364
          Test case 3 output:
1365
1366
1367
```

```
Optimized and Correct Code**
#include <cstdio>
#include <algorithm>
#include <climits>
using std::min;
#define MAXN 100003
int abs(int z) {
    if (z<0)
        return -z;
    else
        return z;
int main(void) {
    int N, K, i, j;
    int h[MAXN], p[MAXN];
    scanf("%d%d", &N, &K);
    for (i=0;i<N;i++)</pre>
        scanf("%d", h+i);
    p[0] = 0;
    for (i=1; i<N; i++)</pre>
        p[i] = INT_MAX;
        for (j=1; j<=K && i-j>=0; j++)
             p[i] = min(p[i], p[i-j] + abs(h[i] - h[i-j]));
    printf("%d\n",p[N-1]);
    return 0;
}
```

Figure 21: Case Study 2. The reason for the error is that the code does not properly handle the jump limit K, and the state transition logic is incomplete, only considering the cost of adjacent positions and ignoring larger jump ranges. The correct modification is to use a double loop to dynamically update the minimum cost for each position by considering jumps up to K steps backward, thus fully addressing all possible jump scenarios.

```
1405
           ** Optimized but incorrect Code **
1406
1407
           #include<cstdio>
           #include<cstring>
1408
           #include<algorithm>
1409
           using namespace std;
1410
           int n, ans;
1411
           int a[10010];
1412
           int main(){
1413
                    scanf("%d", &n);
1414
                    for(int i=1;i<=n;i++) scanf("%d",&a[i]);</pre>
1415
                    while (1) {
1416
                             int mx=a[1],id=1;
                             for (int i=2;i<=n;i++)</pre>
1417
                                      if(a[i]>mx) mx=a[i],id=i;
1418
                             if (mx < n-1) break;
1419
                             ans+=mx/n;
1420
                             a[id]%=n;
                             for (int i=1;i<=n;i++)</pre>
1421
                                      if(i!=id) a[i]+=mx/n;
1422
1423
                    printf("%d\n", ans);
1424
           }
1425
1426
1427
           *Below is the Explanation of slow code and generated test case
           \hookrightarrow inputs*
1428
1429
           **Explanation: **
1430
           The code simulates a process where an array a of size n is
1431
           → repeatedly modified until the maximum value in the array is no
1432
           \hookrightarrow greater than n-1. The process involves the following steps:
1433
           Input: The code reads the size of the array n and the elements of
1434
           \rightarrow the array a.
1435
           Main Loop: The code enters an infinite loop that continues until
1436
           \rightarrow the maximum value in the array is less than or equal to n-1. In
1437
           \hookrightarrow each iteration:
           The maximum value maxn in the array and its index id are
1438

    identified.

1439
           If maxn is less than or equal to n-1, the loop terminates.
1440
           Otherwise:
1441
           The value at a[id] is updated to maxn % n (the remainder when maxn
           \rightarrow is divided by n).
1442
           All other elements in the array are incremented by maxn / n (the
1443
           \rightarrow quotient when maxn is divided by n).
1444
           The operation count ans is incremented by \max / n.
1445
           Output: The total number of operations ans is printed.
1446
           ** Test Cases**
1447
           Test case 1 input:
1448
           2
1449
           0 7
1450
           Test case 2 input:
1451
1452
           8 0 0 0
1453
1454
           Test case 3 input:
1455
           1 8 3 4
1456
1457
```

```
** Verified Test cases **

** Test Cases**
Test case 1 input:
2
0 7
Test case 1 output:
6

Test case 2 input:
4
8 0 0 0
Test case 2 output:
2

Test case 3 input:
4
1 8 3 4
Test case 3 output:
9
```

```
** Optimized and Correct Code**
#include<cstdio>
#include<cstring>
#include < algorithm >
using namespace std;
int n, ans;
int a[10010];
int main(){
    scanf("%d",&n);
    for(int i=1;i<=n;i++) scanf("%d",&a[i]);</pre>
    while(1){
         int mx=a[1],id=1;
         for (int i=2; i<=n; i++)</pre>
             if(a[i]>mx) mx=a[i],id=i;
         if(mx<n) break;</pre>
         ans+=mx/n;
         a[id]%=n;
         for (int i=1; i<=n; i++)</pre>
             if(i!=id) a[i]+=mx/n;
    printf("%d\n", ans);
    return 0;
}
```

Figure 22: Case Study 3. The error is that the termination condition used mx < n - 1, which prematurely stopped the loop, while the correct condition is mx < n, ensuring the loop only stops when maximum value is less than n.