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Abstract001

Low-Resource Languages (LRLs) present sig-002
nificant challenges in natural language process-003
ing due to their limited linguistic resources and004
underrepresentation in standard datasets. While005
recent advances in Large Language Models006
(LLMs) and Neural Machine Translation have007
substantially improved translation capabilities008
for high-resource languages, performance dis-009
parities persist for LRLs, particularly impact-010
ing privacy-sensitive and resource-constrained011
scenarios. This paper systematically evalu-012
ates current LLMs in 200 languages using013
the FLORES-200 benchmark and demonstrates014
their limitations in LRL translation capability.015
We also explore alternative data sources, includ-016
ing news articles and bilingual dictionaries, and017
demonstrate how knowledge distillation from018
large pre-trained teacher models can signifi-019
cantly improve the performance of small LLMs020
on LRL translation tasks. For example, this021
approach increases EN⇒LB with the LLM-as-022
a-Judge score on the validation set from 0.36023
to 0.89 for Llama-3.2-3B. Furthermore, we ex-024
amine different fine-tuning configurations, pro-025
viding practical insights on optimal data scale,026
training efficiency, and the preservation of gen-027
eralization capabilities of models under study1.028

1 Introduction029

Low-resource languages (LRLs) suffer from a lack030

of critical linguistic resources, and this scarcity is031

often rooted in socioeconomic, geographical, and032

political factors, which contribute to their poor sup-033

port in academic research and industrial applica-034

tions (Nigatu et al., 2024).035

Recent progress has greatly improved transla-036

tion for High-Resource Languages (HRLs), large037

performance gaps remain for LRLs, especially in038

areas like finance and government, where privacy is039

crucial and models often run on low-power, offline040

devices (Zhong et al., 2024). Recent multilingual041
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transfer and pretraining learning methods (Conneau 042

et al., 2020; Artetxe and Schwenk, 2019), exempli- 043

fied by initiatives such as No Language Left Behind 044

(NLLB; Costa-jussa et al., 2022), have greatly im- 045

proved cross-lingual representation and translation 046

quality. However, these approaches typically rely 047

on high quality substantial parallel datasets, which 048

are rarely available to LRLs, especially in formal 049

domains such as news and official communications. 050

Translation from LRLs into HRLs is typically more 051

straightforward because of the greater abundance 052

of target-side resources, while the reverse direction 053

remains considerably challenging. Furthermore, 054

portable Small LLMs(SLMs), which is of a param- 055

eter size less than 4B, critical for mobile devices, 056

exhibits weaker performance in LRL tasks, exac- 057

erbating the existing translation gap. To explore 058

the current “landscape” and the applicability of 059

transformer-based models for LRLs, this article 060

makes the following three key contributions: 061

First, we quantitatively analyze LLM perfor- 062

mance across 200 languages using the FLORES- 063

200 benchmark (Section 4), highlighting disparities 064

that affect underrepresented languages. Our analy- 065

sis underscores the concerning state of LLMs for 066

LRLs and reveals that SLMs exhibit even more 067

pronounced deficiencies on these languages. Sec- 068

ond, we demonstrate that alternative single-sided 069

data sources (e.g., news articles and monolingual 070

resources) can be used to distill knowledge from 071

teacher models (Section 5), improving translation 072

quality on both sides (LRL ⇔ HRL) in SLMs and 073

help address the scarcity of parallel data. Third, 074

we explore various fine-tuning settings (Section 6), 075

showing that even minimal data augmentation (as 076

little as 1% of the total data) can markedly reduce 077

performance gaps without compromising model 078

generalization, while also confirming the ineffi- 079

ciency of Low-Rank Adaptation (LoRA) (Hu et al., 080

2021). 081
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2 Related Work082

2.1 Generative Models083

Transformer-based architectures have significantly084

advanced machine translation through multilin-085

gual embeddings and nuanced language generation086

(Zhao et al., 2023; Zhao et al.). Current transla-087

tion models typically employ encoder-decoder ar-088

chitectures with attention mechanisms (Bahdanau089

et al., 2015; Vaswani et al., 2017; Naveed et al.,090

2024), or decoder-only frameworks exemplified by091

the GPT series, recognized for computational ef-092

ficiency and ease of fine-tuning (Gao et al., 2022;093

Hendy et al., 2023). Recent methods such as back-094

translation (Sennrich et al., 2016), unsupervised095

translation (Lample et al., 2018), and multilingual096

systems such as OPUSMT (Tiedemann and Thottin-097

gal, 2020) further enhance translation quality. How-098

ever, decoder-only models often face limitations for099

LRLs due to predominantly English-centric train-100

ing data (Brown et al., 2020; Hasan et al., 2024),101

leading to translation inaccuracies and hallucina-102

tions (Benkirane et al., 2024). Despite these chal-103

lenges, recent findings suggest that decoder-only ar-104

chitectures may outperform encoder-decoder mod-105

els in certain translation tasks (Gao et al., 2022;106

Silva et al., 2024), motivating our investigation into107

their application for improving LRL translations.108

2.2 Limited Support for LRLs109

Despite considerable advances, current LLMs of-110

fer insufficient support for low-resource languages.111

Research consistently demonstrates substantial per-112

formance degradation in LRL translation tasks113

compared to high-resource languages (Robinson114

et al., 2023). This performance gap arises primarily115

from unbalanced training datasets that overwhelm-116

ingly favor high-resource languages (Blasi et al.,117

2022b; Lankford et al., 2021). Furthermore, tok-118

enization biases and uneven data exposure hinder119

the ability of the models to accurately capture lin-120

guistic nuances unique to LRLs (Shen et al., 2024).121

Addressing these shortcomings requires targeted122

data enhancement techniques and customized fine-123

tuning methods to significantly enhance LLM ca-124

pabilities for low-resource language tasks (Elsner125

et al., 2024; Li et al., 2025).126

3 Research Questions127

• RQ1: How effectively do LLMs handle trans-128

lation tasks for LRLs, and how does their129

translation quality vary between languages?130

• RQ2: To what extent can LLM translation 131

performance for LRLs be improved through 132

targeted data augmentation? 133

• RQ3: How does fine-tuning affect LLM per- 134

formance on LRL translation tasks? Does fine- 135

tuning lead to a drop in the models general 136

capabilities? 137

4 Investigation of LRL in LLM 138

4.1 Situation of Language Support in LLMs 139

Recent investigations have revealed that although 140

LLMs are increasingly advertised as multilingual, 141

their effective support in languages is often lim- 142

ited to a subset of high-resource languages. More- 143

over, systematic evaluations of language-specific 144

performance remain scarce (for example (Lai et al., 145

2024; Marchisio et al., 2024; Lifewire, 2024; Ahuja 146

et al., 2024)). Table 1 summarizes several mod- 147

els included in our experiments, their approximate 148

parameter sizes, and the estimated number of lan- 149

guages they reportedly support. These figures are 150

derived from official model documentation, bench- 151

marking reports, and recent academic studies. 152

Model Size Languages Date

GPT-4o-mini — ∼25 Jul. 2024
Llama-3.1-8B-it 8B/3B ∼30 Jul. 2024
Llama-3.2-3B-it 3B ∼20 Sept. 2024
Mistral-8B-Instruct-2410 8B ∼25 Oct. 2024
Phi-3-mini-4k-instruct 4B ∼20 Apr. 2024
Phi-3.5-mini-instruct 4B ∼20 Aug. 2024
Qwen2.5 Instruct 1.5B/3B ∼25 Sept. 2024
Gemma-2 Instruct 2B/9B ∼20 Jul. 2024

Table 1: Overview of Multilingual Support in LLMs

Despite these encouraging multilingual claims, 153

the existing literature reveals that rigorous 154

language-specific performance evaluations, espe- 155

cially for low-resource languages, are insufficient. 156

Most current research focuses on high-resource 157

benchmarks, leaving open critical questions about 158

fairness and the accessibility of LLMs for diverse 159

linguistic communities. 160

4.2 Evaluating LLM Language Ability 161

We use the FLORES-200 benchmark to system- 162

atically assess the performance of LLMs in mul- 163

tilingual machine translation tasks (Costa-jussa 164

et al., 2022; Goyal et al., 2021a; Guzmán et al., 165

2019). FLORES-200 offers rigorously curated 166

human-validated translation datasets across 200 167

languages that span diverse linguistic families and 168
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Figure 1: Evaluation pipeline on FLORES-200

writing systems, making it highly effective for eval-169

uating translation quality in high-resource and low-170

resource linguistic contexts. Our experiments lever-171

age the full FLORES-200 dataset to comprehen-172

sively evaluate translation quality across as many173

languages as possible, emphasizing translations174

from various source languages into English.175

In addition to traditional metrics, we evaluated176

translation quality using the LLM-As-A-Judge177

(LLMaaJ) scores (Niklaus et al., 2025), which uses178

a large LLM to score translations from 0 to 1 based179

on semantic equivalence and naturalness. A score180

of 1.0 denotes a perfect translation and 0.0 a to-181

tally incorrect one. In practice, we consider a score182

≥ 0.8 as indicative of a good translation. LLMaaJ183

is tolerant of synonyms, paraphrases, and structural184

differences between languages, making it better at185

assessing translation quality when there are multi-186

ple valid ways to phrase a sentence or when gram-187

matical and typological variations, such as omit-188

ted pronouns, are appropriate (Zheng et al., 2023;189

Piergentili et al., 2025). This makes it particularly190

suitable for the evaluation task.191

Regarding the LLMs investigated, as shown in192

Figure 1, we systematically traversed prominent193

proprietary APIs and open source models (refer to194

Table 1), presenting results using LLMaaJ metrics195

with quantitative semantic evaluations, providing196

a clearer and more balanced view of multilingual197

translation quality, highlighting differences caused198

by resource gaps and stylistic variations. Detailed199

LLMaaJ and BLEU scores for all source-to-English200

translations are provided in the Appendix Table 5201

and the Appendix Table 6.202

4.3 Analysis of for Low-Resource Languages 203

in FLORES-200 with LLMs 204

In this paper, we present Figure 2 to reveals stark 205

regional disparities in LRLs to answer RQ1. In 206

this analysis, LRLs are operationally defined as 207

those that comprise less than 0.1% of web content 208

(according to W3Techs statistics2). The average 209

LLMaaJ scores were calculated exclusively for the 210

selected LRLs that also exist in the FLORES-200 211

dataset. Country - LRLs pairs were identified based 212

on a mapping that utilizes Wikipedia-derived esti- 213

mates of language speaker distribution. 214

It is important to note that the missing country 215

data in Figure 2 shows limitations of the evalua- 216

tion set, not a lack of LLM weaknesses. For some 217

cross-border languages, such as Wolof, we cannot 218

get an accuracy estimate of the native speaker popu- 219

lation; we just use the arithmetic mean of all LRLs’ 220

scores in this country instead. Some countries ap- 221

pear blank (in color Gray on the map), not because 222

the model did well there, but because no language 223

from those countries was included in the LRLs cat- 224

egory. For example, the United States and Canada 225

do not have data shown because their indigenous 226

and minority languages (e.g., Navajo, Cree) were 227

not part of FLORES-200. 228

In Figure 2, much of Sub-Saharan Africa shows 229

consistently low average scores, indicating that 230

LLMs struggled most with African languages that 231

have little web presence or training data. For exam- 232

ple, countries like Angola, Cameroon, and Kenya 233

(each home to multiple under-resourced languages) 234

rank among the lowest in terms of LLMaaJ per- 235

formance. This aligns with previous findings that 236

African languages are among the most underserved 237

due to limited resources and data scarcity (Nekoto 238

et al., 2020; Joshi et al., 2020). 239

By contrast, some regions fare relatively better 240

on this metric. Several Asian and Eastern Euro- 241

pean countries show moderate average scores for 242

their low-resource languages, likely reflecting the 243

slightly higher availability of data or overlap with 244

more well-supported languages. For instance, the 245

models’ performance on languages like Sinhala or 246

Macedonian, while still modest, is higher than on 247

many African languages, possibly because these 248

languages have benefited from closer ties to their 249

corresponding HRLs or inclusion in past multilin- 250

gual datasets. However, the general trend is that 251

2https://w3techs.com/technologies/overview/
content_language
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Figure 2: "Low-Resource" Linguistic geographical distribution results of Flores-200. Some countries might not be
accurate because the Low-resource language spoken population is not statistically accurate, especially in Africa.

LRLs worldwide lag far behind HRLs in LLM per-252

formance, a pattern also observed in other multilin-253

gual system evaluations (Blasi et al., 2022a; Sanh254

et al., 2022). A concise analysis of the economic255

correlation with LRL is presented in Appendix D.1256

to provide additional informative insights.257

5 Fine-tuning on LRLs258

Previous analyses show that current models per-259

form unevenly in LRLs, favoring high-resource lan-260

guages and neglecting LRLsespecially in SLMsas261

illustrated by the Germanic language branch in Fig-262

ure 3. Addressing this issue requires improved263

data collection, knowledge distillation from larger264

LLMs, inclusive benchmarks, and effective bias265

mitigation to ensure that advances in NLP bene-266

fit all language communities. We chose to focus267

on one of the Germanic languages, Luxembour-268

gish, which is an LRL similar to German. It per-269

forms poorly in SLLMs but relatively well in larger270

LLMs, as shown in Figure 3. Our goal is to explore271

approaches to enhance its translation performance.272

5.1 Background and Scene273

In this article, Luxembourgish serves as a represen-274

tative case. Although officially recognized, it lacks275

sufficient high-quality corpora resources, leading276

to poor performance in SLMs. Its blend of Ger-277

manic roots and French influence adds complex-278

ity to NLP tasks. While larger LLMs handle Ger-279

manic languages reasonably well, they struggle280

with LRLs like Luxembourgish. Previous efforts to281

address this include LuxemBERT (Lothritz et al.,282
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Figure 3: LLMaaJ scores of LLMs on Germanic-to-
English translation, ordered by native speaker popula-
tion.

2022), LuxT5 (Plum et al., 2024), and LetzTrans- 283

late (Song et al., 2023), a low-resource translation 284

system based on OPUS-MT. Furthermore, gener- 285

ating LRL from English is more challenging for 286

LLMs than in the reverse direction of previous 287

research (Howcroft and Gkatzia, 2022). LLMs ex- 288

hibit a certain degree of fluent translation from LRL 289

to English, but not vice versa (Gao et al., 2020). 290

This asymmetry is also reflected to some extent in 291

the hallucination issues observed when generating 292

Luxembourgish, more details can be found in the 293

Appendix G.2. 294

5.2 Distillations and Soft-Target Quality 295

In our scenario, having only a Luxembourgish cor- 296

pus without English translations rules out conven- 297

tional parallel-corpus training approaches, accu- 298

rately reflecting the typical data situation and model 299

generation of LRLs. To bridge the gap between 300

comprehension and generation in this low-resource 301
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scenario, we propose a distillation-based approach.302

Using a teacher model that demonstrates a robust303

understanding of Luxembourgish, we can distill its304

knowledge into a student model using the available305

LRL single-side corpus. This process is expected to306

enhance the generation capabilities of the student307

model, enabling it to produce high-quality Lux-308

embourgish output despite the limited data, and309

thus address the core challenge of low-resource310

language translation. According to further human311

labeling of our GPT-4o distillation dataset in Lux-312

embourgish to English translation, 92% of our sam-313

ples were marked as fully correct.314

5.3 Data Collection and Augmentations315

For training dataset, we constructed a Luxembour-316

gish dataset using multiple sources, including the317

LuxemBERT corpus, example sentences in the Lux-318

embourgish Online Dictionary (LOD) dataset3, and319

additional news articles collected from previous320

research published data on RTL Lëtzebuerg4, fol-321

lowing the LuxemBERT work.322

Prior research has demonstrated that integrat-323

ing dictionary entries can effectively enrich low-324

resource translation systems by providing explicit325

lexical alignments and clarifying semantic nu-326

ances. For example, Ghazvininejad’s work im-327

proved translation fidelity in settings where parallel328

data is scarce (Ghazvininejad et al., 2023). Inspired329

by these findings, we also explore how the addi-330

tion group of datasets with dictionary checks using331

LOD can complement our distillation approach as332

shown in Figure 4. Details of using the dictionary333

usage in the Appendix C.

Wéi vill Sprooche schwätzt Dir?

Input for Fine-tuning

Soft
 Target

Translate it
 to English?

How many languages   do you speak?

Sprooche=Language !

Figure 4: Pipeline of data augmentation
334

5.4 Model Fine-Tuning335

The state-of-the-art decoder-only models are typ-336

ically trained in three stages: pretraining, Super-337

vised Fine-Tuning (SFT), and further tuning us-338

ing Reinforcement Learning from Human Feed-339

3https://data.public.lu/en/datasets/letzebuerger-online-
dictionnaire-lod-linguistesch-daten/

4https://www.rtl.lu/

back (Ouyang et al., 2022). When combined with 340

techniques such as LoRA, SFT can also signifi- 341

cantly improve performance on tasks with fewer 342

resources. In this study, in order to validate our dis- 343

tillation strategy, we primarily adopt model distilla- 344

tion from LRL-side corpora and then incorporate 345

SFT to equip the model to generate and reverse- 346

translate the target language. We use the classical 347

approach of supervised instruction fine-tuning with 348

LoRA method for 2 different models. The funda- 349

mental logic is to provide the model with input 350

prompts and corresponding responses, optimizing 351

the model to minimize prediction loss within this 352

fixed framework. In decoder-only models, text gen- 353

eration is performed recursively by predicting the 354

probability distribution over the vocabulary for the 355

next token. SFT primarily aims to maximize the 356

probability of the correct next token, thereby teach- 357

ing the trained model the relationships between 358

semantics, vocabulary, and syntax in LRL, as well 359

as their correspondence with HRL. 360

6 Experiments 361

6.1 Models and Datasets 362

The latest open-source models are used as bench- 363

mark models, and their instruction-tuned versions 364

are utilized to leverage their general capabilities 365

in generating dialogues and answering questions. 366

Based on the current leaderboard for Luxembour- 367

gish proficiency in LLMs (Lothritz and Cabot, 368

2025), combined with the experimental results for 369

the Germanic language group in Section 4, we 370

select the top two base tiny models, which are 371

Llama-3.2-3B-Instruct from Meta and Gemma-2- 372

2b-it from Google. 373

The design of the input templates is considered 374

crucial. In order to prevent the model from los- 375

ing its general communication and generalization 376

abilities after instruction tuning, it is necessary for 377

prompts to be designed in alignment with chat tem- 378

plates that can be understood by the model. Based 379

on this, basic prompt testing is conducted to iden- 380

tify the most suitable prompt for the model. Chat- 381

based models have been observed to be prone to 382

losing their communication capabilities after SFT, 383

leading to the generation of endless content and 384

a significant increase in the likelihood of halluci- 385

nations. Therefore, in the design of the questions, 386

the corresponding starting prompts are set at the 387

beginning of the model responses, such as "Here is 388

the translation: ". Through this linguistic guidance, 389

5



MT Direction Models Methods
Val 300 FLORE 200

SPBLEU CharF++ Jaccard LLMaaJ SPBLEU CharF++ Jaccard LLMaaJ

EN-LB

Nllb-200-3.3B
BM

19.97 37.03 0.27 0.75 31.14 49.62 0.35 0.85
Llama-3.3-70B-Instruct 24.35 46.58 0.27 0.87 22.55 43.08 0.26 0.83

Llama-3.2-3B-Instruct

BM 6.46 26.78 0.12 0.36 4.80 22.10 0.09 0.36
DN 37.98 55.41 0.37 0.82 14.61 38.04 0.19 0.51
DL 40.71 57.37 0.40 0.79 20.93 41.51 0.22 0.52
DG 42.01 57.89 0.41 0.88 22.80 42.26 0.25 0.70

DGDC 42.16 57.87 0.42 0.89 23.40 42.90 0.26 0.83

Gemma-2-2b-it

BM 5.82 22.71 0.10 0.50 4.61 20.78 0.07 0.51
DN 41.77 57.71 0.42 0.89 20.41 41.21 0.25 0.78
DL 43.78 59.02 0.44 0.87 24.03 42.95 0.28 0.79
DG 44.58 59.73 0.45 0.87 23.47 42.72 0.28 0.76

DGDC 44.12 59.10 0.45 0.90 23.50 42.49 0.28 0.82

LB-EN

Nllb-200-3.3B
BM

40.51 56.81 0.48 0.81 48.45 65.03 0.56 0.85
Llama-3.3-70B-Instruct 54.14 74.24 0.57 0.89 33.96 58.02 0.41 0.86

Llama-3.2-3B-Instruct

BM 26.31 45.98 0.33 0.58 17.62 36.79 0.26 0.46
DN 42.78 59.33 0.48 0.82 29.37 53.88 0.38 0.79
DL 54.64 70.98 0.57 0.82 31.72 56.50 0.41 0.79
DG 59.88 74.97 0.63 0.90 32.78 57.69 0.42 0.81

DGDC 57.88 73.46 0.60 0.89 32.56 57.60 0.41 0.85

Gemma-2-2b-it

BM 27.11 47.44 0.34 0.60 14.99 37.77 0.26 0.45
DN 41.58 57.63 0.49 0.83 42.46 60.55 0.51 0.83
DL 58.95 72.15 0.62 0.83 41.47 60.33 0.50 0.82
DG 65.44 76.96 0.68 0.86 42.67 61.30 0.51 0.86

DGDC 62.75 75.13 0.65 0.89 42.73 61.25 0.51 0.85

Table 2: This table presents the performance results obtained from training on datasets generated using different
distillation models and methods. We report experimental results on two datasets, VAL 300 and FLORES 200.
Additionally, we evaluated the performance of Nllb-200-3.3B and Llama-3.3-70B-Instruct on the same datasets,
which strongly validate the effectiveness of our training approach. BM refers to the Base Model without any SFT.
LLMaaJ refers to LLM-as-a-Judge, which gives a score from 0.0 to 1.0 with a granularity of 0.1.

the probability of hallucination is reduced and the390

model is also able to learn when to stop.391

For the training data set, the LRL monolin-392

gual corpus is used primarily as the base mate-393

rial, from which the LRL-to-English mapping ca-394

pability is distilled from larger models. As de-395

scribed in Section 5.3, publicly available press396

datasets and dictionary example sentences are uti-397

lized as the monolingual corpus, and distillation398

is performed using various teacher models. Fi-399

nally, the correct word-to-word mapping capa-400

bility is reinforced through the lemma search to401

verify the dictionary content. We classify fake402

targets distilled into four categories: fake tar-403

gets obtained by distilling NLLB (Distill-NLLB,404

DN), the fake targets obtained by distilling Llama405

3.2 70B (Distill-Llama, DL), the fake targets ob-406

tained by distilling GPT-4O (Distill-GPT4O, DG),407

and the fake targets obtained after performing408

dictionary checking (Distill-GPT-Dict-Checking,409

DGDC). Each category contains 621,033 data sam-410

ples used for model training, all having the same411

LRL side texts, while the corresponding fake tar-412

gets are generated by different teacher models.413

For the validation set, the latest 300 press data en-414

tries (Val 300) from 2024 are used as monolingual 415

corpus data, and the corresponding LRL entities are 416

identified for the English mappings, thus prevent- 417

ing biases that may arise from the model having 418

been trained on the validation dataset. And we also 419

do a manual check for English translations. Fur- 420

thermore, we utilize the FLORES-200 benchmark 421

as an additional validation test set. 422

6.2 Metrics 423

There are multiple options of metrics available for 424

MT tasks (Lo et al., 2023) and we mainly used 425

the following three metrics for performance eval- 426

uation in our experiments: SPBLEU (Sentence- 427

Piece BLEU), CharF++, and the Jaccard index. SP- 428

BLEU measures the similarity between machine 429

translation outputs and reference translations us- 430

ing n-gram precision, employing a standardized 431

SentencePiece model for subword tokenization and 432

allowing effective differentiation between the per- 433

formance of high-resource and low-resource lan- 434

guages, making it very valuable for comparative 435

evaluation of multilingual models. CharF++ ex- 436

tends the character-level F score (Popović, 2015) 437

metric used for machine translation evaluation, 438
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incorporating both character and word n-grams,439

showing a strong correlation with human judg-440

ments at both the system and the segment levels.441

The Jaccard index (da F. Costa, 2021) represents442

a fundamental statistical method to measure the443

similarity between sample sets, offering mathemat-444

ical simplicity and interpretability, which makes it445

widely applicable across scientific disciplines.446

6.3 Results447

6.3.1 Fine-Tuning Results448

The results in Table 2 clearly demonstrate that fine-449

tuning in both translation directions is highly ef-450

fective. For example, the baseline EN→LB mod-451

els exhibit BLEU scores around 30, but after fine-452

tuning, these scores increase to nearly 38–40 values453

approaching our threshold for high-quality trans-454

lations (BLEU > 40). In contrast, LB→EN trans-455

lations consistently score above 40, yet generat-456

ing fluent Luxembourgish in the EN→LB direc-457

tion remains a significant challenge. Furthermore,458

our experiments indicate that even a 3B model,459

when effectively distilled, can rival or even surpass460

larger models in low-resource language translation461

tasks. Our results indicate that GPT-4o-based dis-462

tillation methods, in particular, produce substantial463

improvements in translation quality, confirming464

that parallel corpora generated by LLM represent a465

viable and promising strategy for supporting LRL466

translation tasks. In order to validate the model467

translation performance, we also extracted a por-468

tion of the data and asked Luxembourgers who are469

at least bilingual in Luxembourgish and English to470

label it as ground truth as data quality validation.471

The SPBLEU score achieved with these labeled472

data was 51.08 on our fine-tuned Gemma 2–2b,473

showing a comparable score calculated using GPT-474

generated data as ground truth. Regarding the LL-475

MaaJ score of the model, we obtained performance476

evaluation results and trends that are largely consis-477

tent with those of the SPBLEU parameter, further478

cross-validating the feasibility of LLMaaJ. How-479

ever, since LLMs are black-box models with lim-480

ited interpretability, the scores produced by LL-481

MaaJ can only serve as a reference and do not482

guarantee accuracy or validity.483

To address RQ2, the performance improvement484

of the model after fine-tuning with data distilla-485

tion enhancement is highly significant. For the two486

tested models, the performance gains are reflected487

in SPBLEU scores that surpass those of certain488

expert translation models. Furthermore, the en- 489

hancement observed in the EN→LB direction is 490

greater than that in the reverse direction, further 491

strengthening the models ability to generate Lux- 492

embourgish. Therefore, LRLs can substantially 493

improve the translation capacity of the model for 494

low-resource languages, and even smaller models 495

can achieve promising results. 496

6.3.2 Parameter Influence 497

Figure 5: Performance as a function of training data size
ratio. The dashed lines with transparency indicate the
trend of CharF++ scores, while the solid lines represent
the SPBLEU scores. The x-axis denotes the proportion
of the training data relative to the full original training
set.

To answer RQ3, we carry out multiple exper- 498

iments on fine-tuning approaches. Figure 5 illus- 499

trates the strong influence of the size of the data 500

set on the quality of the translation in both direc- 501

tions (English⇔Luxembourgish), more detailed 502

data in the Appendix Table 8. Even using as little 503

as 1% of the available data yields modest improve- 504

ments over the base model, yet the most substan- 505

tial gains emerge only at higher data ratios. For 506

example, increasing the data from 25% to 100% 507

nearly doubles SPBLEU in the EN→LB direction 508

for both Llama 3.2–3B and Gemma 2–3B. Notably, 509

Gemma 2–3B seems to learn faster in the lower 510

data regimes, but shows some performance attenu- 511

ation beyond the 50% threshold. 512

We also experimented with LoRA-based fine- 513

tuning but found it consistently underperformed 514

compared to full fine-tuning, regardless of the rank 515

parameter. As shown in the full Table 7 in the Ap- 516

pendix, varying LoRA rank from 8 to 64 yielded 517

only marginal differences, suggesting that the rank 518

size does not substantially affect the final BLEU 519

scores in this scenario. Finally, we tested whether 520

fine-tuning induced catastrophic forgetting in gen- 521
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MT Direction Model BOOLQ CB COPA MULTIRC RECORD RTE WIC WSC AVG

BM(Base Model) Llama-3.2-3B-Instruct 0.62 0.55 0.71 0.52 0.41 0.64 0.51 0.28 0.53
Gemma-2-2b-it 0.73 0.55 0.86 0.81 0.56 0.82 0.49 0.56 0.67

En-LB Llama-3.2-3B-Instruct-FT 0.64 0.39 0.60 0.52 0.39 0.60 0.48 0.11 0.47
Gemma-2-2b-it-FT 0.71 0.52 0.89 0.75 0.41 0.72 0.51 0.49 0.62

LB-EN Llama-3.2-3B-Instruct-FT 0.64 0.30 0.69 0.51 0.46 0.62 0.52 0.24 0.50
Gemma-2-2b-it-FT 0.69 0.25 0.90 0.76 0.45 0.73 0.51 0.43 0.59

Table 3: Variations in overall performance on the SuperGLUE benchmark before and after distillation training,
evaluating whether fine-tuning on LRLs induces catastrophic forgetting. The model names appended with the suffix
“-FT” denote the models after applying the proposed distillation fine-tuning method.

eral tasks; the Appendix Table 3 indicates that the522

model retains over 85% of its original capabilities,523

implying that translation-specific training does not524

critically compromise overall performance.525

6.3.3 Catastrophic Forgetting526

As a general-purpose model, it is capable of not527

only performing translation tasks but also handling528

multiple tasks such as planning, solving mathemat-529

ical problems, coding, etc., other than translation.530

However, after fine-tuning the model specifically531

for translation purposes, a critical question arises:532

Does the model suffer catastrophic forgetting? This533

issue is of urgent concern and has significant impli-534

cations for the potential of the model for general-535

ized usage. To investigate this, we compared the536

model performance with the SuperGLUE bench-537

mark (Sarlin et al., 2020) before and after training.538

SuperGLUE is a widely adopted benchmark suite539

for evaluating LLM performance.540

Table 3 presents the performance results, indi-541

cating that fine-tuning, while enhancing translation542

capabilities, has a minimal impact on the model’s543

proficiency in other tasks, demonstrating its robust-544

ness and adaptability. The analysis of Table 3 con-545

firms that fine-tuning LLMs with Luxembourgish546

and English datasets enhances translation perfor-547

mance while preserving the model’s overall apti-548

tude across various tasks. This balance is crucial for549

developing versatile and reliable language models550

capable of handling both specialized and general551

applications effectively.552

7 Conclusion553

In this study, based on evaluations conducted using554

the FLORES-200 dataset, we quantitatively assess555

both state-of-the-art open-source and closed-source556

models, and analyze the global geographic distri-557

bution of LLM support for LRLs, which shows558

quantitative evidence on the current state of techno-559

logical inequity. Unfortunately, LLMs are still not560

a silver bullet for some endangered LRLs now. 561

Furthermore, using Luxembourgish as a repre- 562

sentative case, we successfully leveraged a mono- 563

lingual Luxembourgish corpus through knowledge 564

distillation and data augmentation techniques to 565

fine-tune compact 2B/3B scale LLMs for both 566

translation directions between Luxembourgish and 567

English. Our results indicate that, although smaller 568

models inherently face challenges in handling 569

LRLs compared to larger architectures, targeted dis- 570

tillation substantially improves their performance. 571

The fine-tuned models produce usable and reli- 572

able translations, as demonstrated not only by tra- 573

ditional semantic metrics but also by LLM-as-a- 574

Judge, an LLM-based evaluator. 575

Finally, our analysis highlights the impact of 576

dataset size, revealing that even minimal data aug- 577

mentation can significantly enhance translation per- 578

formance, while the marginal benefits of additional 579

data tend to diminish as the dataset grows. More- 580

over, fine-tuning does not substantially impair the 581

generalization capabilities of larger models. 582

Together, the rapid advancement of LLMs may 583

not extend to LRLs and is geographically correlated 584

with regional development. Although languages 585

closely related to HRLs can partially mitigate this 586

issue, most LRLs are still unsupported by current 587

LLMs. This highlights the limitations of LLMs, the 588

severity of the issue, and the need for greater tech- 589

nological equity. Additionally, the findings of this 590

paper provide practical guidance for developing 591

portable and cost-effective translation models that 592

support certain LRLs while preserving the over- 593

all capabilities of the models, pointing toward a 594

promising future for enhancing LRL translation 595

with transformer-based approaches. 596

Limitations 597

This study has several limitations that should be 598

considered. Firstly, despite efforts to gather diverse 599

data sources, the dataset size and diversity for Lux- 600
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embourgish remain constrained compared to high-601

resource languages. As a result, the generalizabil-602

ity of our findings might be limited. Additionally,603

our reliance on knowledge distillation from large604

pre-trained models assumes access to high-quality605

pretrained models, which may not be feasible in606

all low-resource contexts. Lastly, translation per-607

formance metrics such as BLEU scores may not608

fully capture the nuanced linguistic accuracy or cul-609

tural appropriateness of translations, necessitating610

complementary qualitative assessments in future611

studies. Moreover, future work may explore the val-612

idation of fine-tuning and distillation performance613

on a second low-resource language, as well as on614

artificially constructed languages, such as Elvish.615

For LRL analysis, we still have a lot of LRLs that616

have not been considered, like the Khoe languages617

branch in Namibia.618

Ethics Statement619

All models and resources developed in this work620
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purposes according to OpenAI usage guidelines;622
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have been reviewed to ensure full compliance with628

copyright, attribution, and sharing requirements.629

No personally identifiable information (PII) is630

collected during this research. All data processing,631

storage, and retention policies are fully aligned632

with the EU General Data Protection Regulation633

(GDPR). The dataset of LOD.lu is under the CC0634

license. As most of RTL datasets are based on635

articles from RTL, we cannot publish them, but we636
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will be released under an open-source, research-639

oriented license (e.g., CC BY-NC), accompanied640
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through periodic reevaluation of datasets and model644

outputs, prompt updates in response to emerging645

concerns, and consultation with interdisciplinary646

advisory boards to ensure adherence to the highest647

ethical standards.648
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Appendix961

A Data Processing962

Dataset selection directly impacts the reliability963

and generalizability of experimental results. Our964

criteria include having enough test samples, provid-965

ing reference responses, and minimizing potential966

biases from overlap with pre-training data.967

FLORES-200 (Costa-jussa et al., 2022) is a968

benchmark dataset specifically designed for low-969

resource and multilingual machine translation, serv-970

ing as an extended version of FLORES-101 (Goyal971

et al., 2021b). It covers 200 languages and con-972

sists of sentences extracted from 842 web articles,973

with an average length of approximately 21 words.974

These sentences are divided into three datasets: dev,975

devtest, and a hidden test set. Since we require976

additional evaluation metrics, we use devtest as977

our set of tests in this study. In our paper, we 978

primarily evaluate the translation performance of 979

all 200 languages into English. However, in the 980

subsequent model training, we focus solely on the 981

Luxembourgish-English language pair for training 982

and testing. 983

The VAL 300 validation set was constructed us- 984

ing 300 pieces of official news content from July 985

2024 as the source data. The corresponding ground 986

truth in Luxembourg was generated using Chat- 987

GPT, followed by dictionary-based verification to 988

ensure validity. Furthermore, we extracted 30 sam- 989

ples from the dataset and engaged Luxembourgish- 990

English bilingual speakers to perform a quality as- 991

sessment. 992

B Experiments settings 993

In our experiments, we used primarily two distinct 994

models for supervised fine-tuning (SFT) to eval- 995

uate performance and optimization strategies. To 996

ensure an effective training process, several hyper- 997

parameters and model configurations were metic- 998

ulously selected. Specifically, the warm-up ratio 999

was set to 0.5, facilitating a gradual increase in 1000

the learning rate during the initial training phase 1001

for improved convergence stability. The maximum 1002

gradient norm was restricted to 0.3, serving as a 1003

mechanism to prevent excessively large parameter 1004

updates and promote stable optimization dynamics. 1005

Furthermore, the input sequence length was capped 1006

at 512 tokens, ensuring that all processed data ad- 1007

hered to this fixed-length constraint. A weight de- 1008

cay of 0.01 was applied to regularize the model 1009

parameters and mitigate the risk of overfitting. It is 1010

worth noting that all of our models were trained for 1011

only one epoch. This decision was based on our 1012

observation that evaluation metrics reached their 1013

optimal performance after a single epoch, while 1014

additional epochs exacerbated the impact of noisy 1015

data without yielding performance improvements. 1016

To ensure reproducibility across experiments, a 1017

fixed random seed of 3407 was utilized. For model 1018

architecture selection, two distinct approaches 1019

were considered: standard fine-tuning and LoRA. 1020

In cases where LoRA was employed, specific 1021

layers were targeted for adaptation, including 1022

"q_proj," "k_proj," "v_proj," "o_proj," "gate_proj," 1023

"up_proj," and "down_proj." The LoRA alpha pa- 1024

rameter was configured to a value of 8, while the 1025

dropout rate for LoRA layers was set to 0, indi- 1026

cating that no dropout-based regularization was 1027
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applied to these low-rank adaptation layers.1028

For tokenization and input preparation, a stan-1029

dardized procedure was adopted to ensure con-1030

sistency in sequence length across the examples.1031

The tokenizer processed each input field by trun-1032

cating sequences exceeding the maximum length1033

of 512 tokens and padding shorter sequences to1034

this fixed length. This was achieved using the1035

‘padding="max_length"‘ option, thereby guaran-1036

teeing uniformity in input representation prior to1037

model training.1038

Model Reference SFT Methods

Llama-3.2-3B-Instruct Llama, 2024 FS/ LoRA SFT
gemma-2-2b-it Google, 2024 FS/ LoRA SFT

Table 4: Various models and their SFT methods. "FS/
Lora SFT" refers to full-size and "Lora SFT" denotes
Low-Rank Adaptation SFT only.

C Dictionary Processing1039

In our approach to enhancing translation accuracy,1040

particularly for Luxembourgish, we developed a1041

retrieval pipeline using Haystack 2.0. The pipeline1042

utilizes a BM25 retriever to identify relevant dic-1043

tionary entries that align closely with the input text.1044

The retrieved dictionary entries are then incorpo-1045

rated directly into the prompt provided to GPT-4O,1046

offering multiple lexical choices that help clarify1047

ambiguous terms.1048

This method operates as follows: first, the BM251049

retriever ranks and returns the most relevant dic-1050

tionary entries based on the Luxembourgish input.1051

These entries serve as additional context within1052

the prompt, guiding GPT-4o toward more accurate1053

translations. Subsequently, the original Luxem-1054

bourgish sentence and the relevant dictionary con-1055

text are submitted to GPT-4o for translation. By1056

explicitly integrating these dictionary options into1057

the prompt, GPT-4o is better equipped to resolve1058

lexical ambiguities and correct potential translation1059

errors, enhancing translation accuracy and coher-1060

ence.1061

D Language Ability On LLMs1062

D.1 Translation Performance and Human1063

Development Disparities1064

Figure 6 reveals a clear positive correlation be-1065

tween a countrys human development level (HDI)1066

and the translation quality of its low-resource lan-1067

guages as judged by LLMs. Each point in the scat-1068

ter represents a FLORES-200 language linked to a1069

countrys HDI, and the overall trend slopes upward 1070

higher-HDI countries tend to have languages with 1071

higher LLMaaJ translation scores. This suggests 1072

that socioeconomic factors underpin disparities in 1073

LLM translation coverage, echoing the digital lan- 1074

guage divide observed in AI research (Okolo and 1075

Tano, 2024). In other words, languages from more 1076

developed regions generally receive far better sup- 1077

port in large multilingual models than those from 1078

less developed regions. 1079

When grouping languages by development tiers, 1080

the performance gap is stark. Languages from Very 1081

High HDI countries (HDI 0.80) achieve an average 1082

LLMaaJ score of around 0.54, more than double 1083

the 0.22 average for languages from Low HDI 1084

countries (HDI < 0.55). Median scores likewise 1085

jump from only 0.15 in low-HDI settings to 0.53 1086

in very-high-HDI settings. This means a typical 1087

low-resource language in a highly developed soci- 1088

ety enjoys significantly better machine translation 1089

quality than one in a low-development context. Cru- 1090

cially, it is not simply the number of speakers but 1091

the socioeconomic context and digital resources 1092

that dictate how well a language is served by AI. 1093

For instance, Hindi (with over 500 million speak- 1094

ers) has historically been treated as low-resource 1095

for NLP, whereas a smaller language like Dutch 1096

(with a fraction of the speakers, but backed by a 1097

high-HDI country) is well-supported. The greater 1098

availability of data and funding in high-HDI envi- 1099

ronments allows LLMs to achieve markedly better 1100

translations for those languages. 1101

Geographic disparities are especially pro- 1102

nounced. Nearly all African languages in the study 1103

cluster toward the lower-left of Figure 6, indicating 1104

both low HDI and poor translation performance. In 1105

fact, none of the African languages evaluated ap- 1106

proach the top tier of LLMaaJ scores a finding con- 1107

sistent with reports that even state-of-the-art multi- 1108

lingual models still lag on African languages due to 1109

limited training data and quality. By contrast, Euro- 1110

pean languages (from countries with generally high 1111

HDI) occupy the upper range of the plot; these lan- 1112

guages achieve some of the highest scores (e.g. mi- 1113

nority languages like Occitan in France reach LL- 1114

MaaJ ≈ 0.76). Several Asian languages spoken in 1115

high-HDI regions likewise perform strongly for ex- 1116

ample, Standard Malay (Malaysia/Brunei) attains 1117

average scores above 0.80 in our data. Meanwhile, 1118

many languages of low-HDI countries remain at 1119

the bottom: Dzongkha of Bhutan (medium HDI) 1120

has one of the lowest scores (LLMaaJ ≈ 0.03), 1121
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Figure 6: Scatter Plot of LLMaaJ Score and HDI Relation for LRLs

and numerous Sub-Saharan African languages (e.g.1122

Tigrinya of Eritrea) register below 0.10. These1123

patterns suggest that languages benefiting from a1124

robust digital infrastructure or from close linguistic1125

ties to well-resourced tongues (as Occitan does to1126

French) see far better outcomes, whereas languages1127

in impoverished or isolated settings are left behind.1128

Overall, the strong HDI-performance correla-1129

tion highlights a systemic inequality in LLM cov-1130

erage. The correlation coefficient score between1131

HDI and LLMaaJ average score is 0.566, indicat-1132

ing a medium-high correlation. Communities in1133

low-development regions face a double disadvan-1134

tage: they are underserved by technology on top1135

of existing socio-economic challenges. Indeed,1136

globally fewer than 1% of languages have suffi-1137

cient data to be considered high-resource, leaving1138

speakers of the other 99% essentially cut off from1139

global technological progress. This lack of access1140

to quality translation and language tools can hinder1141

information access, education, and opportunities,1142

thereby exacerbating the digital divide and reinforc-1143

ing global inequalities. Our findings underscore1144

that current multilingual AI models, despite their1145

broad reach, de facto offer far stronger support for1146

languages of wealthy, high-HDI communities than1147

for those of poorer regions. Addressing this gap1148

will require concerted efforts to bring truly inclu-1149

sive language coverage to the forefront, rather than1150

merely adding more languages without improving 1151

quality for the most disadvantaged. 1152

D.2 Result Tables 1153
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Table 5: The LLMaaJ results on the FLORES-200 dataset are derived from evaluations of 10 distinct large language
models. Population estimates are based on heterogeneous sources, and the reported population are not guaranteed to
be accurate. Therefore, they should be interpreted with appropriate caution.

Language Name Language
Branch Population GPT4o

mini
Llama-
3.1-8B

Llama-
3.2-3B

Ministral
-8B Phi-3 Phi-3.5 Qwen2.5

-1.5B
Qwen2.5
-3B

gemma2
-2b

gemma2
-9b

Central Atlas Tamazight

Berber

3-4 million 0.017 0.008 0.006 0.008 0.007 0.014 0.006 0.01 0.011 0.014
Kabyle 5 million 0.078 0.054 0.027 0.025 0.02 0.038 0.02 0.042 0.028 0.08
Tamasheq (Latin script) 500,000 0.143 0.101 0.067 0.082 0.088 0.093 0.061 0.09 0.096 0.142
Tamasheq (Tifinagh script) 500,000 0.021 0.009 0.007 0.009 0.008 0.022 0.005 0.013 0.016 0.018
Hausa Chadic 40 million 0.774 0.534 0.166 0.132 0.089 0.101 0.082 0.11 0.228 0.656
Somali Cushitic 20 million 0.735 0.257 0.112 0.143 0.077 0.121 0.063 0.107 0.112 0.5
West Central Oromo 10 million 0.617 0.079 0.067 0.047 0.028 0.051 0.023 0.07 0.035 0.121
Amharic

Semitic

32 million 0.627 0.254 0.015 0.024 0.008 0.013 0.018 0.054 0.148 0.59
Hebrew 9 million 0.892 0.859 0.587 0.853 0.464 0.599 0.578 0.757 0.802 0.874
Maltese 520,000 0.892 0.793 0.551 0.428 0.237 0.261 0.202 0.311 0.627 0.855
Modern Standard Arabic 335 millions 0.881 0.858 0.792 0.847 0.573 0.799 0.771 0.832 0.814 0.863
Tigrinya 9 million 0.209 0.066 0.006 0.02 0.016 0.017 0.007 0.026 0.041 0.211
Egyptian Arabic 60 million 0.851 0.807 0.701 0.776 0.451 0.68 0.658 0.753 0.718 0.815
Mesopotamian Arabic 15 million 0.862 0.839 0.715 0.794 0.497 0.713 0.686 0.774 0.751 0.83
Moroccan Arabic 30 million 0.816 0.659 0.529 0.596 0.316 0.508 0.491 0.58 0.555 0.736
Najdi Arabic 10 million 0.861 0.868 0.772 0.826 0.542 0.775 0.751 0.817 0.788 0.842
North Levantine Arabic 20 million 0.869 0.813 0.706 0.774 0.461 0.677 0.654 0.757 0.735 0.823
South Levantine Arabic 24 million 0.875 0.824 0.714 0.788 0.485 0.715 0.673 0.767 0.743 0.831
TaÄôizzi-Adeni Arabic 11 million 0.869 0.857 0.748 0.816 0.525 0.75 0.725 0.802 0.783 0.842
Tunisian Arabic 11 million 0.837 0.724 0.611 0.686 0.418 0.611 0.57 0.667 0.631 0.773
Khmer Khmer 16 million 0.797 0.718 0.415 0.08 0.061 0.082 0.117 0.259 0.233 0.699
Santali Munda 7.5 million 0.018 0.073 0.007 0.002 0.004 0.005 0.001 0.01 0.052 0.387
Vietnamese Vietic 76 million 0.881 0.867 0.839 0.856 0.623 0.676 0.833 0.854 0.849 0.875
Acehnese (Arabic script)

Malayo-Polynesian

3.5 million 0.141 0.054 0.025 0.042 0.005 0.03 0.014 0.049 0.021 0.097
Acehnese (Latin script) 3.5 million 0.394 0.309 0.195 0.213 0.169 0.219 0.157 0.235 0.209 0.385
Balinese 3.3 million 0.652 0.542 0.375 0.322 0.274 0.298 0.249 0.35 0.383 0.624
Banjar (Arabic script) 4 million 0.179 0.083 0.039 0.054 0.008 0.045 0.019 0.05 0.021 0.093
Banjar (Latin script) 4 million 0.688 0.604 0.459 0.436 0.282 0.297 0.302 0.422 0.47 0.69
Buginese 4 million 0.346 0.228 0.161 0.172 0.161 0.188 0.133 0.194 0.198 0.296
Cebuano 21 million 0.877 0.743 0.496 0.538 0.379 0.38 0.287 0.414 0.614 0.819
Ilocano 8 million 0.765 0.526 0.33 0.265 0.239 0.245 0.162 0.255 0.372 0.672
Indonesian 43 million L1 0.894 0.883 0.859 0.871 0.814 0.815 0.841 0.869 0.869 0.889
Javanese 82 million 0.837 0.7 0.489 0.376 0.256 0.308 0.286 0.436 0.527 0.767
Minangkabau (Arabic script) 6.5 million 0.157 0.057 0.03 0.037 0.006 0.044 0.012 0.038 0.018 0.081
Minangkabau (Latin script) 6.5 million 0.671 0.618 0.422 0.365 0.251 0.265 0.26 0.383 0.416 0.704
Pangasinan 1.5 million 0.487 0.38 0.282 0.291 0.292 0.298 0.206 0.269 0.319 0.492
Plateau Malagasy 5 million 0.813 0.313 0.126 0.289 0.069 0.098 0.074 0.129 0.13 0.504
Standard Malay 18 million L1 0.889 0.872 0.829 0.858 0.742 0.728 0.769 0.83 0.853 0.881
Sundanese 42 million 0.854 0.687 0.464 0.414 0.286 0.325 0.324 0.45 0.47 0.748
Tagalog 28 million 0.889 0.846 0.751 0.798 0.667 0.621 0.428 0.624 0.816 0.876
Waray 3.7 million 0.856 0.679 0.447 0.552 0.386 0.408 0.297 0.403 0.553 0.79
Fijian 330,000 0.501 0.146 0.072 0.094 0.084 0.108 0.057 0.097 0.103 0.226
Maori 185,000 (L2) 0.689 0.412 0.176 0.295 0.166 0.192 0.102 0.2 0.183 0.471
Samoan 500,000 0.728 0.313 0.117 0.118 0.09 0.121 0.076 0.121 0.126 0.4
Central Aymara Aymara 2 million 0.168 0.085 0.074 0.083 0.072 0.092 0.061 0.093 0.087 0.126
Esperanto Constructed 2 million (est.) 0.89 0.869 0.798 0.865 0.714 0.707 0.574 0.708 0.807 0.878
Tok Pisin (English-based) 4 million 0.739 0.529 0.279 0.356 0.299 0.306 0.163 0.249 0.369 0.721
Haitian Creole (French-based) 10 million 0.839 0.615 0.381 0.443 0.24 0.281 0.169 0.304 0.406 0.739
Papiamento (Iberian-based) 340,000 0.831 0.702 0.505 0.536 0.426 0.439 0.352 0.504 0.499 0.783
Kabuverdianu (Portuguese-based) 1.2 million 0.786 0.587 0.436 0.496 0.38 0.412 0.319 0.459 0.454 0.672
Kannada

Dravidian

44 million 0.825 0.77 0.663 0.775 0.016 0.026 0.081 0.314 0.624 0.816
Malayalam 38 million 0.845 0.797 0.664 0.777 0.015 0.027 0.102 0.341 0.663 0.844
Tamil 75 million 0.821 0.799 0.675 0.739 0.053 0.093 0.061 0.19 0.669 0.814
Telugu 81 million 0.846 0.802 0.731 0.772 0.031 0.045 0.108 0.337 0.667 0.831
Tosk Albanian Albanian 3 million 0.884 0.828 0.655 0.806 0.263 0.288 0.213 0.365 0.622 0.836
Armenian Armenian 6.7 million 0.867 0.835 0.569 0.838 0.086 0.124 0.078 0.22 0.634 0.841
Latgalian

Baltic
150,000 0.581 0.361 0.182 0.276 0.138 0.173 0.115 0.218 0.233 0.442

Lithuanian 3 million 0.877 0.815 0.668 0.801 0.297 0.292 0.326 0.541 0.787 0.864
Standard Latvian 1.75 million 0.886 0.822 0.665 0.812 0.322 0.35 0.353 0.59 0.785 0.872
Welsh

Celtic
875,000 (L2) 0.896 0.816 0.577 0.749 0.136 0.183 0.118 0.285 0.419 0.813

Irish 1.2 million (L2) 0.86 0.731 0.428 0.58 0.107 0.137 0.082 0.21 0.249 0.72
Scottish Gaelic 60,000 0.8 0.567 0.276 0.249 0.098 0.134 0.073 0.174 0.144 0.564
Afrikaans

Germanic

7 million 0.901 0.878 0.82 0.855 0.684 0.72 0.687 0.786 0.847 0.89
Danish 5.8 million 0.901 0.884 0.855 0.879 0.767 0.81 0.756 0.838 0.873 0.891
German 95 million (L1) 0.898 0.89 0.88 0.891 0.887 0.884 0.863 0.881 0.885 0.894
Limburgish 1.3 million 0.784 0.719 0.535 0.533 0.381 0.418 0.354 0.492 0.601 0.796
Eastern Yiddish 1 million 0.834 0.618 0.1 0.166 0.039 0.053 0.017 0.117 0.261 0.78
Faroese 70,000 0.845 0.639 0.417 0.491 0.254 0.279 0.183 0.317 0.375 0.709
Icelandic 350,000 0.876 0.768 0.526 0.714 0.241 0.252 0.173 0.315 0.476 0.789
Norwegian Bokml 4 million 0.888 0.87 0.84 0.865 0.748 0.784 0.726 0.814 0.858 0.881
Norwegian Nynorsk 750,000 0.89 0.864 0.816 0.86 0.65 0.687 0.637 0.756 0.838 0.88
Swedish 10 million 0.899 0.892 0.875 0.879 0.791 0.822 0.777 0.841 0.874 0.893
Dutch 24 million 0.883 0.874 0.859 0.873 0.81 0.86 0.828 0.856 0.864 0.878
Luxembourgish 400,000 0.874 0.767 0.565 0.557 0.396 0.404 0.281 0.41 0.493 0.792
Greek Greek 13 million 0.88 0.854 0.791 0.852 0.604 0.635 0.475 0.672 0.82 0.868
Assamese

Indo-Aryan

15 million 0.785 0.666 0.467 0.32 0.035 0.067 0.167 0.396 0.464 0.719
Awadhi 38 million 0.841 0.769 0.655 0.696 0.243 0.519 0.313 0.53 0.689 0.796
Bengali 265 million 0.855 0.81 0.742 0.791 0.097 0.14 0.392 0.644 0.728 0.831
Bhojpuri 50 million 0.834 0.702 0.56 0.596 0.191 0.444 0.239 0.418 0.602 0.768
Chhattisgarhi 16 million 0.821 0.672 0.541 0.605 0.191 0.471 0.256 0.445 0.589 0.735
Eastern Panjabi 33 million 0.848 0.831 0.686 0.733 0.017 0.037 0.103 0.417 0.587 0.824
Gujarati 55 million 0.853 0.807 0.693 0.725 0.012 0.024 0.197 0.497 0.649 0.838
Hindi 600 million (L2) 0.871 0.841 0.806 0.832 0.408 0.727 0.49 0.705 0.822 0.862
Magahi 14 million 0.843 0.741 0.634 0.667 0.242 0.497 0.293 0.509 0.682 0.801
Maithili 35 million 0.855 0.722 0.589 0.57 0.191 0.454 0.245 0.422 0.624 0.788
Marathi 83 million 0.864 0.809 0.716 0.726 0.131 0.253 0.227 0.464 0.69 0.831
Nepali 25 million 0.851 0.75 0.576 0.717 0.205 0.375 0.233 0.465 0.688 0.825
Odia 37 million 0.796 0.692 0.242 0.027 0.014 0.025 0.055 0.365 0.041 0.637
Sanskrit 14000+ 0.624 0.536 0.389 0.41 0.18 0.31 0.165 0.327 0.341 0.596
Sindhi 32 million 0.824 0.721 0.346 0.126 0.042 0.081 0.064 0.167 0.214 0.625
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Sinhala 17 million 0.793 0.703 0.026 0.019 0.011 0.016 0.017 0.118 0.233 0.729
Urdu 100+ million L2 0.855 0.828 0.701 0.736 0.188 0.215 0.276 0.505 0.674 0.822
Kashmiri (Arabic script) 7 million 0.497 0.315 0.17 0.221 0.051 0.089 0.062 0.145 0.202 0.383
Kashmiri (Devanagari script) 7 million 0.411 0.213 0.146 0.191 0.069 0.132 0.073 0.144 0.16 0.299
Central Kurdish

Iranian

6 million 0.594 0.763 0.224 0.071 0.014 0.026 0.033 0.099 0.127 0.574
Dari 10-12 million 0.86 0.873 0.745 0.793 0.405 0.415 0.561 0.684 0.775 0.84
Northern Kurdish 15 million 0.615 0.454 0.187 0.455 0.078 0.114 0.1 0.16 0.131 0.447
Southern Pashto 20 million 0.792 0.725 0.395 0.601 0.077 0.12 0.127 0.241 0.234 0.588
Tajik 8-9 million 0.848 0.766 0.212 0.178 0.05 0.1 0.075 0.193 0.141 0.682
Western Persian 55 million 0.873 0.894 0.804 0.839 0.438 0.463 0.601 0.741 0.822 0.864
Catalan

Romance

4 million 0.895 0.885 0.851 0.88 0.781 0.792 0.785 0.843 0.859 0.886
French 80+ million (L1) 0.896 0.891 0.885 0.892 0.892 0.889 0.881 0.887 0.886 0.894
Friulian 600,000 0.796 0.689 0.501 0.577 0.45 0.46 0.376 0.504 0.492 0.751
Galician 2.4 million 0.893 0.869 0.84 0.875 0.832 0.827 0.804 0.85 0.853 0.883
Italian 65 million 0.891 0.882 0.872 0.887 0.884 0.879 0.863 0.875 0.878 0.889
Ligurian 500,000 0.759 0.65 0.493 0.581 0.499 0.498 0.394 0.538 0.522 0.731
Lombard 3.5 million (est.) 0.817 0.663 0.49 0.597 0.447 0.458 0.348 0.503 0.504 0.747
Occitan 2 million 0.889 0.847 0.765 0.806 0.698 0.692 0.622 0.731 0.73 0.858
Portuguese 230 million 0.899 0.891 0.879 0.892 0.888 0.884 0.873 0.883 0.886 0.892
Romanian 24 million 0.898 0.889 0.867 0.873 0.729 0.77 0.754 0.829 0.867 0.893
Sardinian 1 million 0.758 0.68 0.505 0.538 0.426 0.426 0.34 0.476 0.51 0.746
Spanish 483 million L1 0.887 0.877 0.866 0.883 0.877 0.876 0.863 0.875 0.877 0.885
Venetian 2 million 0.858 0.792 0.677 0.772 0.614 0.612 0.542 0.695 0.703 0.842
Asturian 400,000 0.864 0.844 0.78 0.814 0.727 0.73 0.677 0.749 0.797 0.861
Sicilian 4.7 million 0.829 0.704 0.537 0.628 0.419 0.454 0.343 0.509 0.544 0.782
Belarusian

Slavic

6.5 million 0.865 0.815 0.651 0.812 0.171 0.223 0.333 0.567 0.744 0.846
Russian 150 million (L1) 0.889 0.883 0.86 0.884 0.791 0.846 0.855 0.872 0.867 0.888
Ukrainian 35 million 0.892 0.875 0.822 0.873 0.616 0.762 0.729 0.818 0.858 0.885
Bosnian 3 million 0.895 0.869 0.804 0.871 0.612 0.576 0.644 0.788 0.823 0.883
Bulgarian 8 million 0.891 0.869 0.821 0.865 0.624 0.635 0.728 0.812 0.856 0.883
Croatian 5.6 million 0.891 0.87 0.826 0.866 0.595 0.563 0.646 0.781 0.828 0.88
Macedonian 2 million 0.89 0.858 0.762 0.858 0.432 0.45 0.592 0.742 0.797 0.872
Serbian 6.5 million 0.893 0.875 0.801 0.86 0.423 0.456 0.585 0.753 0.825 0.884
Slovenian 2.1 million 0.889 0.85 0.767 0.839 0.531 0.518 0.578 0.727 0.819 0.878
Czech 10.5 million 0.892 0.882 0.856 0.87 0.697 0.771 0.779 0.847 0.862 0.887
Polish 38 million 0.885 0.873 0.846 0.867 0.714 0.763 0.777 0.847 0.861 0.881
Silesian 1 million 0.808 0.698 0.557 0.592 0.362 0.401 0.38 0.541 0.587 0.784
Slovak 5.2 million 0.892 0.864 0.802 0.862 0.602 0.693 0.689 0.807 0.852 0.882
Japanese Japonic 125 million 0.878 0.858 0.825 0.851 0.761 0.819 0.799 0.846 0.833 0.869
Georgian South Caucasian 4 million 0.856 0.776 0.449 0.801 0.104 0.138 0.137 0.273 0.541 0.794
Korean Koreanic 81 million 0.875 0.843 0.786 0.842 0.573 0.766 0.76 0.823 0.792 0.861
Basque Isolate 750,000 0.865 0.79 0.563 0.786 0.184 0.233 0.128 0.24 0.558 0.832
Halh Mongolian Eastern Mongolic 3 million 0.834 0.699 0.151 0.514 0.042 0.084 0.065 0.136 0.147 0.613
Wolof Atlantic 10 million 0.3 0.141 0.088 0.109 0.107 0.147 0.08 0.12 0.11 0.173
Nigerian Fulfulde 14 million 0.191 0.105 0.061 0.072 0.075 0.092 0.05 0.085 0.081 0.128
Bemba

Bantu

4 million 0.302 0.13 0.092 0.107 0.098 0.11 0.068 0.103 0.124 0.249
Chokwe 1.3 million 0.147 0.096 0.071 0.077 0.075 0.117 0.062 0.092 0.098 0.136
Ganda 7 million 0.45 0.156 0.091 0.107 0.08 0.092 0.065 0.097 0.099 0.247
Kamba 4 million 0.202 0.126 0.087 0.095 0.098 0.118 0.068 0.108 0.101 0.171
Kikongo 7 million 0.267 0.118 0.074 0.103 0.101 0.11 0.076 0.12 0.112 0.189
Kikuyu 8 million 0.239 0.158 0.095 0.116 0.112 0.139 0.085 0.119 0.122 0.199
Kimbundu 3 million 0.133 0.077 0.056 0.075 0.071 0.087 0.054 0.077 0.082 0.125
Kinyarwanda 12 million 0.788 0.296 0.096 0.098 0.071 0.091 0.068 0.115 0.114 0.494
Lingala 8-10 million 0.554 0.156 0.095 0.134 0.117 0.135 0.094 0.141 0.118 0.225
Luba-Kasai 6.5 million 0.201 0.1 0.083 0.115 0.104 0.125 0.087 0.112 0.121 0.188
Northern Sotho 5 million 0.632 0.205 0.104 0.117 0.103 0.124 0.092 0.148 0.118 0.38
Nyanja 12 million 0.7 0.215 0.11 0.129 0.101 0.127 0.086 0.133 0.166 0.436
Rundi 9 million 0.679 0.194 0.083 0.083 0.07 0.086 0.062 0.113 0.101 0.322
Shona 11 million 0.764 0.208 0.103 0.149 0.095 0.124 0.086 0.123 0.143 0.531
Southern Sotho 5.6 million 0.744 0.196 0.095 0.1 0.089 0.111 0.087 0.136 0.125 0.461
Swahili 100+ million L2 0.857 0.768 0.665 0.602 0.212 0.233 0.09 0.188 0.736 0.839
Swati 2.5 million 0.55 0.168 0.111 0.112 0.081 0.103 0.073 0.122 0.116 0.382
Tsonga 3 million 0.525 0.15 0.081 0.095 0.082 0.108 0.057 0.092 0.096 0.242
Tswana 5 million 0.624 0.193 0.092 0.104 0.088 0.111 0.075 0.122 0.113 0.377
Tumbuka 2 million 0.504 0.166 0.094 0.105 0.089 0.114 0.069 0.114 0.125 0.284
Umbundu 6 million 0.135 0.076 0.063 0.069 0.064 0.086 0.045 0.078 0.087 0.122
Xhosa 8.2 million 0.776 0.248 0.124 0.154 0.103 0.132 0.077 0.139 0.192 0.612
Zulu 12 million 0.799 0.264 0.101 0.111 0.082 0.107 0.095 0.127 0.168 0.619
Fon Gbe 1.7 million 0.108 0.075 0.054 0.065 0.068 0.079 0.041 0.062 0.075 0.107
Ewe 7 million 0.138 0.097 0.071 0.08 0.068 0.083 0.054 0.074 0.077 0.124
Kabiye Gur 1.2 million 0.099 0.101 0.065 0.072 0.051 0.074 0.035 0.061 0.078 0.138
Mossi 7.5 million 0.124 0.076 0.064 0.077 0.066 0.081 0.057 0.076 0.077 0.117
Akan Kwa 11 million 0.511 0.201 0.109 0.127 0.128 0.148 0.088 0.135 0.147 0.306
Twi 17 million 0.504 0.226 0.133 0.14 0.129 0.161 0.09 0.143 0.158 0.341
Bambara Mande 14 million 0.119 0.086 0.067 0.076 0.069 0.094 0.051 0.077 0.084 0.12
Dyula 3 million 0.12 0.066 0.054 0.073 0.076 0.097 0.051 0.074 0.073 0.105
Igbo Volta 27 million 0.691 0.397 0.137 0.091 0.074 0.092 0.063 0.078 0.148 0.483
Yoruba 28 million 0.579 0.216 0.087 0.081 0.068 0.097 0.059 0.077 0.088 0.311
Sango Ubangian 5 million (L2) 0.154 0.101 0.076 0.091 0.098 0.113 0.074 0.096 0.108 0.145
Luo

Nilotic
4.2 million 0.169 0.087 0.068 0.08 0.094 0.1 0.066 0.078 0.086 0.139

Nuer 1.4 million 0.065 0.038 0.033 0.036 0.023 0.037 0.02 0.05 0.038 0.065
Southwestern Dinka 2 million 0.134 0.111 0.089 0.096 0.096 0.11 0.072 0.098 0.107 0.136
Central Kanuri (Arabic script) Saharan 4 million 0.043 0.02 0.01 0.019 0.017 0.027 0.011 0.017 0.015 0.026
Central Kanuri (Latin script) 4 million 0.153 0.1 0.073 0.092 0.112 0.12 0.074 0.104 0.087 0.143
Ayacucho Quechua Quechua II 1 million 0.232 0.182 0.109 0.112 0.113 0.139 0.084 0.129 0.126 0.194
Chinese (Simplified)

Sinitic
920 million (L1) 0.884 0.872 0.847 0.871 0.775 0.829 0.859 0.868 0.855 0.878

Chinese (Traditional) 31 million 0.881 0.861 0.825 0.857 0.714 0.807 0.847 0.855 0.842 0.871
Yue Chinese 60 million 0.884 0.896 0.828 0.858 0.724 0.8 0.84 0.862 0.846 0.873
Burmese

Tibeto-Burman

33 million 0.748 0.672 0.075 0.616 0.021 0.033 0.033 0.094 0.178 0.638
Dzongkha 700,000 0.068 0.11 0.004 0.007 0.004 0.008 0.001 0.005 0.006 0.119
Jingpho 900,000 0.131 0.093 0.075 0.08 0.084 0.106 0.065 0.097 0.072 0.111
Meitei (Bengali script) 1.8 million 0.155 0.065 0.046 0.061 0.012 0.031 0.02 0.052 0.043 0.129
Mizo 900,000 0.334 0.325 0.203 0.185 0.189 0.217 0.158 0.219 0.328 0.593
Standard Tibetan 1.2 million 0.103 0.185 0.011 0.007 0.012 0.014 0.01 0.015 0.018 0.191
Shan

Tai
3 million 0.128 0.417 0.085 0.092 0.107 0.132 0.08 0.1 0.118 0.191

Lao 7.5 million 0.658 0.384 0.073 0.081 0.069 0.093 0.071 0.132 0.125 0.521
Thai 36 million 0.879 0.868 0.819 0.828 0.451 0.591 0.773 0.831 0.818 0.872
Guarani Tupi 6-7 million 0.547 0.269 0.186 0.181 0.182 0.221 0.14 0.198 0.207 0.331
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Northern Uzbek Karluk 27 million 0.866 0.765 0.539 0.733 0.115 0.151 0.168 0.349 0.501 0.787
Uyghur 10 million 0.773 0.674 0.157 0.12 0.011 0.032 0.023 0.11 0.026 0.44
Bashkir

Kipchak

1.2 million 0.837 0.762 0.311 0.463 0.128 0.192 0.143 0.243 0.384 0.746
Crimean Tatar 300,000 0.765 0.609 0.42 0.518 0.175 0.257 0.215 0.366 0.418 0.705
Kazakh 13 million 0.868 0.788 0.399 0.755 0.102 0.149 0.187 0.325 0.498 0.808
Kyrgyz 4.5 million 0.827 0.731 0.333 0.655 0.086 0.15 0.162 0.278 0.308 0.709
Tatar 5 million 0.863 0.776 0.376 0.715 0.112 0.177 0.158 0.266 0.375 0.739
North Azerbaijani

Oghuz

9-10 million 0.837 0.776 0.618 0.749 0.21 0.262 0.267 0.491 0.636 0.804
South Azerbaijani 15-20 million 0.572 0.437 0.236 0.413 0.065 0.117 0.094 0.146 0.273 0.546
Turkish 75 million 0.884 0.857 0.809 0.82 0.497 0.614 0.625 0.775 0.825 0.878
Turkmen 7 million 0.834 0.538 0.289 0.287 0.102 0.153 0.115 0.211 0.257 0.656
Estonian Finnic 1.1 million 0.89 0.838 0.708 0.811 0.175 0.222 0.314 0.531 0.777 0.869
Finnish 5.4 million 0.89 0.867 0.805 0.843 0.453 0.606 0.42 0.61 0.821 0.881
Hungarian Ugric 13 million 0.887 0.871 0.839 0.852 0.486 0.641 0.399 0.61 0.829 0.879

Table 6: The Corpus BLEU results on the FLORES-200 dataset are derived from evaluations of 10 distinct large
language models. Population estimates are based on heterogeneous sources, and the reported population are not
guaranteed to be accurate. Therefore, they should be interpreted with appropriate caution.

Language Name Language
Branch Population GPT4o

Mini
Llama
3.1 8B

Llama
3.2 3B

Ministral
8B Phi-3 Phi-3.5 Qwen2.5

1.5B
Qwen2.5
3B

gemma-2
2B

gemma-2
9B

Central Atlas Tamazight

Berber

3-4 million 1.4 0.4 0.4 0.2 1.0 0.8 0.2 0.8 0.4 1.4
Kabyle 5 million 4.0 3.3 1.4 0.9 1.7 0.7 0.5 1.5 1.4 4.3
Tamasheq (Latin script) 500,000 5.2 3.9 2.7 1.9 4.3 1.7 1.0 3.4 3.3 4.9
Tamasheq (Tifinagh script) 500,000 1.3 0.4 0.3 0.2 1.0 0.7 0.1 0.5 0.6 1.1
Hausa Chadic 40 million 30.4 20.0 7.5 2.9 3.9 1.6 1.5 4.5 8.9 25.9
Somali Cushitic 20 million 26.6 10.8 5.3 3.2 4.0 1.3 1.9 4.0 4.2 19.1
West Central Oromo 10 million 17.2 3.5 1.9 0.9 1.7 0.7 0.3 1.5 1.1 4.2
Amharic

Semitic

32 million 18.0 8.4 1.1 0.4 1.0 0.8 0.6 2.7 4.8 19.1
Hebrew 9 million 43.6 36.4 21.2 36.9 18.1 9.3 22.3 31.7 33.1 42.6
Maltese 520,000 51.8 41.1 26.1 16.8 9.1 3.6 4.4 12.2 28.3 49.4
Modern Standard Arabic 330 million 39.2 30.1 29.5 33.9 19.0 16.0 27.2 32.6 31.3 38.6
Modern Standard Arabic
(Romanized) 330 million 25.1 10.1 4.5 4.8 2.9 1.3 1.3 6.3 2.2 14.2

Tigrinya 9 million 4.7 1.8 0.7 0.3 0.7 0.7 0.2 1.3 1.1 5.5
Egyptian Arabic 60 million 30.9 11.6 21.6 24.9 13.0 10.5 18.4 23.6 21.7 29.5
Mesopotamian Arabic 15 million 33.8 12.2 23.0 26.7 14.9 12.5 20.8 25.9 24.7 31.9
Moroccan Arabic 30 million 29.1 13.7 17.0 18.1 9.9 7.3 13.2 18.4 16.3 25.7
Najdi Arabic 10 million 38.5 19.3 29.0 32.5 17.8 19.6 25.7 31.1 30.1 37.4
North Levantine Arabic 20 million 37.5 15.9 25.0 27.8 15.1 12.5 21.2 27.4 25.0 34.4
South Levantine Arabic 24 million 40.5 15.5 27.1 31.3 17.3 12.7 23.7 30.3 28.1 37.3
Taizzi-Adeni Arabic 11 million 35.6 11.2 25.6 29.2 16.3 15.7 23.3 28.0 27.3 33.9
Tunisian Arabic 11 million 30.7 15.3 19.9 22.2 12.8 10.0 17.5 21.8 19.9 28.1
Khmer Khmer 16 million 25.3 17.4 12.5 2.0 3.1 1.7 3.5 9.2 6.3 22.3
Santali Munda 7.5 million 0.7 3.9 0.5 0.1 0.4 0.3 0.1 0.1 2.1 12.7
Vietnamese Vietic 76 million 35.8 33.4 30.0 31.4 19.7 12.5 28.6 32.1 29.7 36.6
Acehnese (Arabic script)

Malayo-Polynesian

3.5 million 4.8 1.5 1.0 0.9 0.6 0.5 0.4 1.6 0.5 3.1
Acehnese (Latin script) 3.5 million 12.7 10.7 6.9 5.4 6.1 2.8 2.7 6.2 6.2 13.5
Balinese 3.3 million 22.9 17.9 12.4 8.0 8.5 3.6 4.9 10.1 11.9 22.4
Banjar (Arabic script) 4 million 6.2 1.4 1.2 0.8 0.6 0.5 0.4 1.9 0.5 3.1
Banjar (Latin script) 4 million 24.9 22.4 15.9 12.7 10.0 4.7 7.3 14.4 15.8 27.1
Buginese 4 million 10.2 6.7 5.2 4.5 5.1 2.6 2.7 5.9 6.0 9.4
Cebuano 21 million 42.8 32.6 20.7 19.4 14.3 5.6 9.3 16.3 24.1 39.2
Ilocano 8 million 29.2 20.5 13.6 7.2 8.4 3.8 4.1 9.3 12.6 26.5
Indonesian 43 million L1 44.4 40.9 37.0 38.0 32.4 22.9 33.5 37.3 38.0 44.9
Javanese 82 million 37.7 27.2 18.1 10.3 8.3 3.0 6.7 14.2 18.1 33.4
Minangkabau (Arabic script) 6.5 million 5.7 1.3 0.8 0.7 0.6 0.5 0.3 1.3 0.3 2.9
Minangkabau (Latin script) 6.5 million 24.9 23.1 16.0 9.8 8.9 4.3 6.9 12.4 13.4 27.8
Pangasinan 1.5 million 17.8 14.7 11.7 9.7 10.6 5.4 5.8 10.3 11.0 18.1
Plateau Malagasy 5 million 27.4 11.0 5.2 9.5 3.7 1.5 1.5 3.9 4.5 17.1
Standard Malay 18 million L1 44.5 38.6 34.9 37.7 28.4 17.1 30.1 35.3 36.7 44.5
Sundanese 42 million 35.7 23.5 15.0 10.2 8.0 3.0 6.8 13.6 14.6 29.2
Tagalog 28 million 45.4 40.2 32.5 32.7 24.9 17.8 14.6 26.1 34.7 44.9
Waray 3.7 million 43.3 30.2 18.8 21.4 13.0 6.0 8.5 17.1 21.4 38.1
Fijian 330,000 13.3 5.9 3.5 3.0 3.7 1.5 1.5 3.7 3.6 8.9
Maori 50,000 L1 23.1 14.5 7.8 9.5 7.5 1.4 3.8 8.2 7.1 16.8
Samoan 500,000 26.2 12.5 5.9 3.9 4.5 1.3 1.9 4.6 4.4 16.0
Central Aymara Aymara 2 million 5.7 2.8 2.8 2.3 3.5 1.5 1.0 2.8 2.6 4.8
Esperanto N/A 45.1 40.3 35.2 40.6 30.2 14.0 23.7 30.5 35.1 44.3
Tok Pisin (English-based) 120,000 L1 19.8 15.2 9.9 11.4 10.4 2.9 3.7 8.0 11.2 22.6
Haitian Creole (French-based) 10 million 37.8 24.7 15.3 15.7 8.5 1.9 4.2 11.3 14.9 32.2
Papiamento (Iberian-based) 340,000 42.1 32.1 21.1 19.2 15.7 5.0 10.3 19.2 18.0 38.9
Kabuverdianu (Portuguese-based) 1.2 million 39.6 24.2 17.3 18.1 14.8 5.9 9.3 17.7 16.4 31.1
Kannada

South Dravidian
44 million 29.1 17.8 19.2 23.0 1.2 1.3 2.1 8.6 16.3 28.8

Malayalam 38 million 30.8 21.6 18.6 22.7 1.4 0.9 2.3 8.8 18.1 31.4
Tamil 75 million 27.7 16.0 19.3 21.3 2.5 1.8 1.9 6.8 17.4 29.0

Telugu South-Central
Dravidian 81 million 34.8 25.0 23.9 25.0 2.2 1.9 3.0 9.5 19.5 33.5

Tosk Albanian Albanian 3 million 39.1 28.9 22.8 31.5 8.7 3.0 5.6 12.1 21.1 36.3
Armenian Armenian 6.7 million 37.6 28.7 18.6 31.9 3.1 1.3 2.8 8.2 20.9 35.3
Latgalian

Baltic
150,000 19.5 11.3 6.3 6.9 3.9 1.4 2.1 5.9 5.5 14.7

Lithuanian 3 million 33.7 28.0 20.2 26.1 8.6 3.9 8.7 16.7 25.7 33.9
Standard Latvian 1.75 million 36.1 28.0 20.1 27.8 8.5 3.0 9.2 18.3 27.0 35.0
Welsh Celtic 875,000 55.0 45.4 29.5 37.8 7.4 2.2 5.5 14.7 19.5 47.0
Irish Celtic (Goidelic) 170k L1 37.1 27.8 16.0 20.9 5.6 2.0 3.5 10.2 10.0 30.2
Scottish Gaelic 60,000 30.6 19.6 10.5 8.6 4.4 1.2 2.8 7.1 5.8 21.0
Afrikaans

Germanic

7 million 56.7 52.7 47.2 50.4 36.0 18.6 36.1 45.0 48.7 56.5
Danish 5.8 million 48.3 45.0 40.3 44.1 35.0 30.4 34.2 40.7 43.6 48.5
German 95 million (L1) 44.0 41.3 38.7 41.3 40.0 34.9 35.6 38.4 40.4 44.1
Limburgish 1.3 million 36.4 32.9 23.2 21.6 14.8 6.3 13.1 20.7 25.5 38.2
Eastern Yiddish 1 million 49.5 25.9 7.5 9.1 3.8 1.0 0.5 7.0 14.0 45.9
Faroese 70,000 36.9 25.8 16.5 17.9 10.4 3.9 5.9 12.5 14.0 29.9
Icelandic 350,000 35.2 27.0 17.5 24.4 9.6 4.0 6.9 12.4 16.5 30.0
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Norwegian Bokmål 4 million 43.5 40.6 36.8 40.1 30.6 23.8 30.3 36.3 39.2 44.0
Norwegian Nynorsk 750,000 45.0 41.1 37.2 40.5 26.4 14.4 26.4 34.0 39.4 45.0
Swedish 10 million 48.1 46.0 42.9 43.5 35.6 31.2 36.1 40.9 43.0 48.6
Dutch 24 million 31.6 29.7 28.5 29.7 25.8 25.0 25.6 28.6 29.9 32.1
Luxembourgish 400,000 46.6 34.4 23.7 22.5 14.0 5.7 7.0 15.4 19.0 38.6
Greek Greek 13 million 35.5 32.4 28.2 31.2 19.3 13.9 15.5 23.7 29.8 35.8
Assamese

Indo-Aryan

15 million 26.3 15.5 12.7 6.9 1.8 1.2 4.2 9.2 11.6 23.3
Awadhi 38 million 33.0 6.0 18.6 19.0 6.8 6.1 7.7 13.7 19.1 29.3
Bengali 265 million 33.0 22.6 24.0 24.3 3.8 2.0 10.8 19.1 21.8 31.7
Bhojpuri 50 million 26.5 13.8 14.0 13.4 5.6 3.8 5.0 9.7 14.1 22.7
Chhattisgarhi 16 million 36.6 12.7 17.0 16.7 5.7 5.1 5.5 13.2 17.6 29.3
Eastern Panjabi 33 million 34.8 12.2 23.7 23.9 1.3 0.7 2.9 12.6 18.0 34.5
Gujarati 55 million 36.0 18.8 23.5 22.6 1.3 1.0 5.1 15.2 19.9 35.0
Hindi 600 million 38.8 33.2 29.9 30.6 12.5 16.3 13.8 23.2 30.1 39.1
Magahi 14 million 38.2 14.1 20.9 19.7 7.0 6.1 7.2 13.9 22.1 33.7
Maithili 35 million 36.9 12.0 16.1 12.6 5.1 3.3 4.9 9.4 15.3 28.4
Marathi 83 million 34.1 21.0 21.9 20.1 3.7 2.2 4.9 12.7 19.9 33.3
Nepali 25 million 37.6 24.0 17.1 22.4 5.8 4.6 5.3 13.3 20.4 34.9
Odia 37 million 27.3 21.2 5.7 0.6 1.4 1.1 1.9 9.5 1.1 18.9
Sanskrit Few thousand L1 15.7 12.7 8.6 7.3 4.3 1.9 2.8 6.7 6.5 15.4
Sindhi 32 million 35.9 8.2 11.6 2.8 1.9 0.9 1.6 4.9 5.7 24.4
Sinhala 17 million 25.8 20.0 1.0 0.4 1.0 0.6 0.6 3.7 5.3 23.1
Urdu 70 million L1 33.3 8.8 22.7 22.7 5.5 2.6 7.4 14.9 20.4 32.2
Kashmiri (Arabic script) 7 million 14.2 6.4 4.9 3.0 2.3 1.1 1.2 3.8 4.3 10.3
Kashmiri (Devanagari script) 7 million 11.3 5.1 3.9 3.0 3.4 2.0 1.2 4.0 3.5 8.1
Central Kurdish

Iranian

6 million 19.3 5.9 8.1 2.2 1.1 0.6 1.1 3.3 4.1 19.7
Dari 10-12 million 37.0 10.1 27.7 29.7 12.6 4.6 17.5 24.2 28.4 36.8
Northern Kurdish 15 million 19.3 14.5 6.3 13.2 3.2 1.2 1.4 3.9 4.0 15.5
Southern Pashto 20 million 29.0 9.0 12.2 17.3 2.9 1.1 3.6 7.0 5.8 19.9
Tajik 8-9 million 30.9 11.4 6.1 4.2 2.2 1.0 1.7 5.4 3.7 23.1
Western Persian 55 million 34.8 15.6 27.8 29.7 12.6 3.7 17.5 24.6 28.4 35.8
Catalan

Romance

4 million 46.4 43.2 39.6 42.3 33.1 25.0 32.8 38.9 40.6 46.6
French 80+ million (L1) 45.2 42.9 39.9 42.6 41.6 37.3 38.2 41.3 42.1 45.5
Friulian 600,000 33.7 28.2 19.3 20.1 14.8 5.0 12.2 17.5 16.9 31.8
Galician 2.4 million 41.4 37.0 33.5 36.7 33.8 24.2 30.9 34.6 36.0 40.5
Italian 65 million 32.9 31.2 29.8 31.8 30.6 27.4 27.6 30.5 31.4 34.2
Ligurian 500,000 35.1 28.3 20.3 22.6 19.2 7.0 13.1 21.0 20.7 33.7
Lombard 3.5 million (est.) 35.8 25.9 19.6 22.4 16.1 5.9 10.4 18.8 19.2 32.2
Occitan 2 million 52.1 46.1 38.5 40.5 31.6 11.3 25.8 35.9 34.4 47.7
Portuguese 230 million 49.8 47.3 44.1 46.7 45.0 41.5 42.0 45.1 46.1 49.9
Romanian 24 million 43.1 40.0 36.9 37.9 27.5 15.9 29.4 34.8 38.6 43.9
Sardinian 1 million 34.4 31.2 22.0 21.6 15.6 6.1 11.8 19.1 20.7 35.7
Spanish 483 million L1 30.9 28.4 27.0 29.7 28.5 23.8 26.2 27.9 29.3 31.1
Venetian 2 million 40.0 34.7 27.0 31.7 23.9 6.6 18.6 28.3 28.8 40.5
Asturian 400,000 39.8 37.5 32.9 34.7 29.2 14.9 26.0 29.7 33.1 40.1
Sicilian 4.7 million 35.5 28.9 21.7 24.4 15.3 3.8 11.4 19.1 20.1 34.4
Belarusian

Slavic (East)
6.5 million 20.8 16.5 13.1 17.4 4.7 2.6 6.3 11.7 15.3 20.2

Russian 150 million (L1) 35.9 33.0 30.5 33.2 26.6 24.3 28.7 31.5 32.4 35.9
Ukrainian 35 million 39.7 36.2 31.2 35.3 22.1 21.6 24.7 31.1 34.3 39.9
Bosnian

Slavic (South)

3 million 42.5 38.1 32.0 37.1 22.5 12.2 23.9 31.9 33.6 42.2
Bulgarian 8 million 40.9 37.3 33.2 35.6 22.2 17.9 25.5 31.9 35.2 41.3
Croatian 5.6 million 37.7 34.9 31.3 33.4 20.4 12.0 22.3 29.0 30.7 37.8
Macedonian 2 million 42.0 37.7 30.7 36.1 16.0 7.9 21.3 30.3 32.0 41.7
Serbian 6.5 million 43.3 39.7 33.0 36.9 15.7 7.7 21.1 30.6 34.4 42.8
Slovenian 2.1 million 35.9 30.9 26.5 29.2 17.0 9.3 17.2 24.5 28.4 35.4
Czech

Slavic (West)

10.5 million 40.2 37.8 34.2 35.5 24.6 23.1 27.2 33.8 35.1 40.4
Polish 38 million 30.1 27.5 25.3 26.6 19.9 14.1 21.9 25.2 27.0 30.5
Silesian <1 million 36.1 27.4 22.5 21.9 13.0 6.0 13.5 20.7 21.7 35.2
Slovak 5.2 million 39.7 34.6 30.1 34.2 20.5 14.6 23.6 30.5 33.6 39.3
Japanese Japonic 125 million 26.5 23.2 20.5 21.9 17.8 16.6 18.9 22.4 21.7 26.3
Georgian South Caucasian 4 million 27.5 20.3 11.3 21.5 3.2 1.4 3.0 7.0 12.1 24.4
Korean Koreanic 81 million 29.3 25.1 21.1 24.4 13.9 16.5 19.4 23.8 20.9 29.0
Basque N/A 750,000 30.1 24.7 15.3 23.6 4.9 1.6 2.8 6.2 15.3 28.8
Halh Mongolian Eastern Mongolic 3 million 28.1 8.9 4.4 12.1 1.6 0.9 1.2 4.3 3.5 17.6
Wolof Atlantic 10 million 10.2 5.7 3.9 2.9 4.4 1.4 2.0 5.0 3.5 6.7
Nigerian Fulfulde AtlanticFula 14 million 6.8 4.1 2.5 2.5 3.9 1.6 1.3 3.5 2.6 5.3
Bemba

Bantu

4 million 10.4 6.1 4.3 3.9 5.5 2.1 1.8 4.5 5.1 9.9
Chokwe 1.3 million 5.7 3.5 2.9 1.9 4.0 1.6 1.5 3.1 3.2 5.0
Ganda 7 million 15.0 7.1 4.5 3.0 4.6 1.7 1.9 4.1 4.2 10.1
Kamba 4 million 7.6 5.8 4.3 2.9 4.9 1.6 1.5 4.2 3.4 6.9
Kikongo 7 million 8.8 4.4 3.2 2.6 4.4 1.7 1.4 4.4 3.5 6.0
Kikuyu 8 million 8.2 5.7 3.3 3.2 4.8 1.9 1.3 3.8 3.8 6.5
Kimbundu 3 million 6.0 3.3 2.6 2.3 3.6 1.4 1.2 3.5 3.4 5.5
Kinyarwanda 12 million 27.7 11.3 4.6 3.5 4.1 1.2 1.4 3.8 4.6 17.9
Lingala 8-10 million 16.0 5.8 4.2 3.9 4.9 1.5 1.9 4.7 3.7 7.8
Luba-Kasai 6.5 million 7.7 3.8 2.7 2.9 4.1 2.0 1.8 4.4 3.9 6.8
Northern Sotho 5 million 27.9 9.9 5.4 3.6 4.7 1.8 1.3 5.0 4.4 18.0
Nyanja 12 million 21.9 8.7 4.4 3.8 4.7 1.5 2.3 5.4 6.1 15.3
Rundi 9 million 18.0 6.8 3.6 2.4 3.2 1.4 1.3 3.4 3.1 10.3
Shona 11 million 23.7 8.7 4.6 3.4 4.9 1.7 1.5 5.3 5.4 17.7
Southern Sotho 5.6 million 29.0 9.3 5.0 3.3 5.0 1.6 1.2 4.9 4.4 18.5
Swahili 16 million L1 43.1 35.0 28.8 23.8 8.5 1.5 3.4 9.2 29.5 42.3
Swati 2.5 million 18.2 7.3 4.2 3.3 4.0 1.7 1.6 4.6 3.6 14.1
Tsonga 3 million 18.6 7.3 4.3 3.0 4.7 1.7 1.7 4.1 3.5 9.9
Tswana 5 million 19.5 7.5 4.4 2.7 4.2 1.6 1.0 4.1 4.1 12.9
Tumbuka 2 million 11.7 6.2 3.7 3.2 4.3 1.5 1.4 4.1 4.4 8.6
Umbundu 6 million 5.5 3.0 2.7 2.2 3.6 1.3 1.0 3.1 3.0 5.0
Xhosa 8.2 million 31.8 10.5 5.4 4.6 5.1 1.5 1.6 5.6 6.8 25.0
Zulu 12 million 33.4 11.1 4.6 3.2 4.2 1.5 1.4 4.7 5.1 24.7
Fon Gbe 1.7 million 3.7 2.4 1.7 1.4 2.8 1.2 0.9 2.3 2.2 3.5
Ewe 7 million 5.1 2.9 2.5 2.1 3.3 1.3 0.8 2.4 2.2 4.3
Kabiyè Gur 1.2 million 3.8 3.1 1.9 1.6 2.7 1.2 0.5 2.2 2.2 4.5
Mossi 7.5 million 4.5 2.7 2.3 2.4 3.3 1.1 1.4 3.0 2.9 4.5
Akan Kwa 11 million 13.4 7.5 5.0 3.6 5.9 2.2 1.5 5.2 5.3 10.4
Twi 17 million 14.6 9.0 5.4 3.4 5.8 2.3 1.6 5.4 5.6 11.8
Bambara Mande 14 million 5.8 3.0 2.6 2.4 3.9 1.1 1.0 3.7 3.0 5.0
Dyula 3 million 4.2 2.0 1.6 1.8 3.0 1.0 0.8 2.6 2.6 3.6
Igbo VoltaNiger 27 million 24.0 14.2 5.7 1.6 3.5 1.6 0.9 3.7 5.7 17.6
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Yoruba 28 million 17.3 8.6 3.9 2.8 3.5 1.2 1.7 4.4 3.4 11.0
Sango Creolized Ubangian 400,000 L1 4.7 3.0 2.3 2.4 3.6 1.1 1.4 3.3 2.7 4.1
Luo

Nilotic
4.2 million 6.3 3.6 3.3 2.9 3.9 1.6 1.7 3.9 3.2 5.3

Nuer 1.4 million 3.4 2.0 1.8 1.1 2.2 0.9 0.6 1.7 1.8 3.0
Southwestern Dinka 2 million 6.1 5.0 3.8 3.5 5.0 2.0 1.8 4.0 4.5 6.0
Central Kanuri (Arabic script) Saharan 4 million 2.2 1.1 0.7 0.6 0.9 0.6 0.3 1.3 0.5 1.4
Central Kanuri (Latin script) 4 million 5.9 3.1 2.8 2.9 4.9 2.3 1.2 4.0 2.6 5.3
Ayacucho Quechua Quechua 1 million 6.3 5.6 3.7 2.7 4.3 2.0 1.2 3.6 3.4 5.5
Chinese (Simplified)

Sinitic
920 million 28.8 25.4 23.9 24.8 19.8 19.7 24.5 26.4 24.5 28.6

Chinese (Traditional) 31 million 27.4 23.8 21.8 23.4 17.3 16.5 22.5 25.0 22.0 27.3
Yue Chinese 60 million 29.6 14.8 23.5 25.7 19.6 15.7 24.6 26.7 23.6 29.5
Burmese

Tibeto-Burman

33 million 21.5 12.1 2.1 14.3 1.3 0.9 1.3 4.2 4.0 17.7
Dzongkha 700,000 0.8 1.5 0.1 0.0 0.1 0.1 0.0 0.3 0.1 1.6
Jingpho 900,000 4.0 2.5 1.8 1.8 2.7 1.4 0.9 2.5 2.3 3.9
Meitei (Bengali script) 1.8 million 4.4 1.9 1.8 1.0 0.8 0.7 0.3 1.8 0.9 4.1
Mizo 900,000 9.3 8.6 6.8 5.2 5.9 3.1 2.7 5.4 8.3 14.2
Standard Tibetan 1.2 million 1.9 3.5 0.4 0.1 0.6 0.5 0.3 0.7 0.5 3.8
Shan Southwestern Tai 3 million 4.0 6.0 1.7 1.1 2.4 1.7 0.7 1.6 3.2 5.1
Lao Tai 7.5 million 20.1 10.3 2.2 2.1 3.5 2.5 1.8 6.3 3.7 17.8
Thai 36 million 29.6 21.0 23.6 23.0 11.4 10.6 20.1 25.1 23.7 30.6
Guarani TupiGuarani 6-7 million 16.1 8.9 5.6 4.3 5.6 1.8 2.0 5.5 5.7 10.4
Northern Uzbek Karluk 27 million 32.2 21.5 14.0 21.0 3.3 1.0 3.7 8.7 12.0 28.5
Uyghur 10 million 20.3 7.3 4.4 3.0 0.8 0.4 0.6 2.9 1.5 11.0
Bashkir

Kipchak

1.2 million 27.4 16.3 7.9 10.2 3.5 1.2 2.6 6.0 8.7 23.1
Crimean Tatar 300,000 24.6 16.9 11.7 13.8 5.6 2.4 4.9 9.7 11.3 23.0
Kazakh 13 million 33.8 19.6 11.6 20.9 3.1 1.5 4.5 9.3 12.3 28.6
Kyrgyz 4.5 million 22.6 11.1 7.6 13.9 2.5 1.1 3.1 6.4 6.6 17.9
Tatar 5 million 29.1 13.9 10.2 19.1 3.5 1.4 3.0 7.2 8.8 23.3
North Azerbaijani

Oghuz

9-10 million 22.8 13.2 13.9 17.2 5.0 2.5 5.0 10.3 13.3 21.7
South Azerbaijani 15-20 million 14.7 5.4 5.6 8.9 2.3 0.9 1.3 3.7 5.5 14.4
Turkish 75 million 37.9 33.4 27.3 28.9 12.8 9.3 18.5 26.0 28.4 37.9
Turkmen 7 million 29.2 15.5 8.7 6.7 3.2 1.6 2.1 5.6 5.9 21.3
Estonian Finnic 1.1 million 38.2 31.3 23.2 28.7 6.2 2.4 8.9 17.5 26.6 36.6
Finnish 5.4 million 35.0 30.5 26.0 28.5 12.2 10.0 11.8 19.6 26.6 34.0
Hungarian Ugric 13 million 35.5 31.7 28.4 29.3 13.8 11.5 11.3 19.6 28.3 35.5
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E LoRA Ranking Influence1154

We conducted experiments to assess how the LoRA1155

(Low-Rank Adaptation) rank parameter influences1156

fine-tuning performance on translation tasks involv-1157

ing Luxembourgish and English. Specifically, we1158

evaluated ranks of 8, 16, 32, and 64 across our1159

models. The results, presented in Table 7, indicate1160

that variations in the LoRA rank parameter have1161

minimal influence on the overall translation perfor-1162

mance, with differences typically within 12 BLEU1163

points. More importantly, models fine-tuned using1164

LoRA consistently underperformed compared to1165

their fully fine-tuned counterparts, achieving no-1166

tably lower BLEU scores compare to table 2.1167

Due to the consistently lower performance and1168

negligible differences observed among varying1169

LoRA ranks, we opted not to use LoRA fine-tuning1170

in our primary experiments. Instead, we focused on1171

full-model fine-tuning, which demonstrated signif-1172

icantly better results. These findings suggest that,1173

although LoRA provides computational efficiency,1174

its limited parameter updates are insufficient to1175

capture the nuanced linguistic features required for1176

effectively translating low-resource languages such1177

as Luxembourgish.1178

F Dataset Size Influence1179

Table 8 in the appendix presents a comprehensive1180

analysis of how dataset size influences translation1181

performance in our low-resource Luxembourgish-1182

English setting. We experimented with dataset1183

sizes ranging from as small as 1% to the full dataset1184

(100%). The results demonstrate a clear, positive1185

correlation between the amount of data utilized1186

during fine-tuning and the subsequent translation1187

quality, as measured by BLEU scores.1188

In both translation directions (EN→LB and1189

LB→EN), we observed that even very small1190

datasets (e.g., 1%5%) provide measurable improve-1191

ments over baseline models, indicating that the1192

models begin acquiring beneficial linguistic pat-1193

terns early in the fine-tuning process. However,1194

substantial performance gains occur predominantly1195

when increasing the dataset size beyond 25%.1196

For instance, moving from 25% to 100% dataset1197

size nearly doubles the SPBLEU scores for the1198

EN→LB direction, clearly highlighting the signifi-1199

cance of sufficient data availability for generating1200

fluent, accurate translations in low-resource lan-1201

guages.1202

Interestingly, the Gemma-2-3B model displayed1203

a relatively faster learning trajectory compared to 1204

the Llama-3.2-3B model in smaller data regimes 1205

(below 50%). Nevertheless, Gemma-2-3B exhib- 1206

ited a notable attenuation in performance improve- 1207

ments beyond the 50% data threshold, suggesting a 1208

diminishing return effect when datasets grow larger. 1209

Conversely, the Llama-3.2-3B model showed stead- 1210

ier improvements without significant attenuation up 1211

to the full dataset size, potentially indicating better 1212

scalability of linguistic capabilities with increased 1213

training data. 1214

G Case Study 1215

This section mainly presents several interesting text 1216

cases encountered during the pre-trained LLM gen- 1217

eration process, which were identified through our 1218

manual quality checks. 1219

G.1 Uncontrollable output 1220

A notable translation issue arises from unnecessary 1221

explanatory notes appended by the model, which 1222

negatively affects automated evaluation metrics. 1223

Consider the following example, where the original 1224

English input was: 1225

"He added that “they should not, however,
be asked to take on obligations that go be-
yond their development stage, responsibility
and capabilities.”"

1226

The model produced: 1227

"Dëi gouf och gesäftlech gesëtt datt “si
si och net an Obergrenzen vum ieren En-
twéckelungsschatz, Responsabilität a Fähig-
keeten uerecht bestallt.” (Note: Please keep
in mind that Luxembourgish is a complex
and nuanced language, and translations may
vary depending on regional dialects and con-
texts. This translation is provided in stan-
dard Luxembourgish)"

1228

The corresponding ground truth translation in 1229

Luxembourgish is: 1230

"Hien huet bäigefüügt, datt “se awer net
opgefuerdert sollte ginn, Verflichtungen ze
iwwerhuelen, déi iwwer hiren Entwéck-
lungsniveau, hir Verantwortung a Fäeg-
keeten erausginn.”"

1231
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Table 7: Impact of LoRA Rank on Performance During Fine-Tuning, Evaluated Across Three Rank Values

EN-LB Rank
(LoRA)

Val 300 FLORE 200
SPBLEU CharF++ Jaccard SPBLEU CharF++ Jaccard

Llama 3.2 -3B

base Model 6.46 26.78 0.12 4.80 22.10 0.09
r = 32 12.95 33.09 0.19 9.46 29.64 0.14
r = 64 13.05 33.59 0.19 9.23 28.93 0.14
r = 128 13.32 34.09 0.20 9.27 29.16 0.14

Gemma 2-2B

base Model 5.82 22.71 0.10 4.61 20.78 0.07
r = 32 13.07 33.36 0.21 8.88 27.93 0.16
r = 64 13.17 33.35 0.21 9.12 28.06 0.16
r = 128 13.31 33.69 0.21 9.21 28.20 0.16

Table 8: Impact of Dataset Size on the Performance of Fine-Tuning

English to
Luxembourgish

Dataset
Ratio

Val 300 FLORE 200
SPBLEU CharF++ Jaccard SPBLEU CharF++ Jaccard

Llama 3.2 -3B

0% 6.46 26.78 0.12 4.80 22.10 0.09
1% 9.36 31.88 0.16 6.53 26.31 0.10
10% 18.61 40.51 0.23 9.79 30.65 0.14
50% 27.75 47.52 0.30 13.39 34.67 0.17
100% 42.16 57.87 0.42 23.40 42.90 0.26

Gemma 2-2B

0% 5.82 22.71 0.10 4.61 20.78 0.07
1% 14.36 35.06 0.21 9.01 27.99 0.15
10% 30.58 49.32 0.34 15.99 36.12 0.22
50% 41.32 57.18 0,42 22.30 41.69 0.27
100% 44.12 59.10 0.45 23.50 42.49 0.28

Luxembourgish
to English

Val 300 FLORE 200
SPBLEU CharF++ Jaccard SPBLEU CharF++ Jaccard

Llama 3.2 -3B

base Model 26.31 45.98 0.33 17.62 36.79 0.26
1% 34.18 54.63 0.4 22.68 45.98 0.32
10% 43.28 61.86 0.48 26.11 50.51 0.36
50% 49.60 67.15 0.53 29.18 54.35 0.39
100% 57.88 73.46 0.60 32.56 57.60 0.41

Gemma 2-2B

base Model 27.11 47.44 0.34 14.99 37.77 0.26
1% 43.00 59.80 0.47 29.25 49.15 0.38
10% 54.41 68.86 0.58 36.14 55.67 0.45
50% 61.26 73.91 0.64 41.06 59.94 0.49
100% 62.75 75.13 0.65 42.73 61.25 0.51
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The inclusion of this extraneous note, likely orig-1232

inating from instruction-tuned general translation1233

settings or cautious model outputs designed for con-1234

versational contexts, significantly impacts BLEU1235

and related metrics. Such notes introduce irrelevant1236

lexical content and length discrepancies, lowering1237

similarity scores and thereby inaccurately reflect-1238

ing the model’s genuine translation ability.1239

To mitigate this issue, explicit prompt engineer-1240

ing or fine-tuning with specific stopping criteria and1241

clearer output formatting instructions is essential.1242

This strategy helps ensure that model-generated1243

translations remain concise, relevant, and aligned1244

closely with evaluation metric expectations.1245

G.2 Repetition Problem1246

During pre-training, we frequently encountered1247

the issue of model hallucination, characterized by1248

repetitive generation. This problem was notably1249

less severe in the Gemma model compared to the1250

Llama model. The repetitive generation primarily1251

occurred in the English-to-Luxembourgish trans-1252

lation direction, largely due to the model’s insuf-1253

ficient understanding of Luxembourgish. Conse-1254

quently, the model frequently confused Luxembour-1255

gish with German, exacerbating this confusion fur-1256

ther.1257

Below is an example of input:1258

Translate the following English input text
into Luxembourgish. Do not include any
additional information or unrelated content.
Input: The United States Strategic Com-
mand of the U.S. Department of Defense
office is tracking the debris.

1259

Below is an illustrative output that presents repet-1260

itive generation:1261

Here is the translation: D’United States
Strategic Command vum ustrategeschen
vum ustrategeschen Ufuerderungsbüro vum
ustrategeschen Ufuerderungsbüro vum us-
trategeschen Ufuerderungsbüro vum us-
trategeschen Ufuerderungsbüro vum us-
trategeschen Ufuerderungsbüro vum us-
trategeschen ...

1262

We also observed that when distillation datasets1263

contained a small amount of hallucinated datasuch1264

as infinitely repeating Luxembourgish content (par-1265

ticularly prominent in Llama 3.3 70B)the subse- 1266

quently fine-tuned models strongly inherited these 1267

hallucination patterns, resulting in substantial per- 1268

formance degradation. Therefore, maintaining 1269

high-quality data for fine-tuning is crucial. In com- 1270

parison, data distilled from ChatGPT rarely exhib- 1271

ited infinite repetition issues, enabling the model 1272

to learn appropriate stopping criteria during gen- 1273

eration. Additionally, we found that incorporating 1274

certain generation prompts during training, such as 1275

"Here is the translation: ", could partially mitigate 1276

the inherited infinite generation problems originat- 1277

ing from distilled models of Llama. 1278

G.3 Hallucination to German 1279

Given the English input sentence: 1280

"At first glance, it looks slightly chaotic at
the arrival, the children make a game of
clapping hands with everyone who arrives,
but that also contributes to the special charm
of the event. The Widdebierg is not as high
as one might assume from the logo, but it is
still 386 meters, which is not nothing,"

1281

the model produced the following output: 1282

"Bei der Ankunft blickt man zunächst et-
was chaotisch aus, die Kinder machen ein
Spiel mit der Klatsch der Hände mit jedem,
der kommt, aber das tragen auch zur beson-
deren Charme vun der Ävent vun der Éieren.
Dëi Widdebiergëstcher Ääschten, well dass
méi méi vun der Logo, mä si méi och 386
Méter, wéi déi éis gët nach Léck, wat déi-
weis méi och net."

1283

In contrast, the Luxembourgish ground truth is: 1284

"Op den éischte Bléck gesäit et op der Ar-
rivée liicht chaotesch aus, d’Kanner maache
sech e Spaass draus, jidderengem, deen
ukënnt, an dHand ze klatschen, mä och dat
dréit zum spezielle Charme vun der Mani-
festatioun bäi. De Widdebierg ass wuel net
esou héich wéi een dat um Logo kéint un-
huelen, mä ëmmerhi sinn et 386 Meter, dat
ass net grad näischt."

1285

This incorrect translation output primarily re- 1286

sults from excessive usage of German vocabu- 1287
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lary rather than proper Luxembourgish expressions.1288

This phenomenon likely arises due to several fac-1289

tors:1290

• Data Sparsity and Language Proximity:1291

Luxembourgish and German share consid-1292

erable lexical and syntactic similarities. In1293

conditions of limited Luxembourgish-specific1294

training data, the model might unintention-1295

ally rely heavily on its knowledge of German,1296

leading to significant linguistic interference.1297

• Pretraining Corpus Bias: The predominance1298

of German texts over Luxembourgish in mul-1299

tilingual pretraining datasets likely reinforces1300

German lexical and structural patterns, espe-1301

cially under resource-constrained fine-tuning1302

conditions.1303

• Limited Distinctive Training Examples:1304

Insufficient distinct Luxembourgish exam-1305

ples during fine-tuning might not effectively1306

guide the model away from Germanic lexical1307

choices, resulting in mixed-language outputs1308

or incorrect lexical selections.1309

Addressing this issue effectively requires either1310

extensive additional training data or targeted lin-1311

guistic resources explicitly designed to empha-1312

size lexical and grammatical distinctions between1313

closely related languages such as Luxembourgish1314

and German.1315

H Prompt Design for LLM1316

H.1 Prompt for LLM-as-a-Judge1317

For the prompt, we mainly adopt the previous le-1318

gal translation prompt structure (Niklaus et al.,1319

2025) but customize it simply for only the tran-1320

sation needs without any domain emphasis specifi-1321

cation. In this paper, we primarily employ Gemma-1322

3-12B-it as the evaluation model to assess transla-1323

tion quality, given its strong instruction-following1324

capabilities and competitive performance among1325

open-weight LLMs. For efficient model inference,1326

we adopt SGLang as the serving framework, which1327

enables streamlined deployment and low-latency1328

response for both evaluation and generation tasks.1329

Your task is to assess the accuracy, clarity,
and fidelity of the model’s translation to the
golden translation.

1330

You will be provided the golden translation,
and the model’s translation. Your task is to
judge how correct the model’s translation is
based on the golden translation, and then
give a correctness score. The correctness
score should be one of the below numbers:
0.0 (totally wrong), 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, or 1.0 (totally right).
You should give the correctness score
directly. The correctness score must strictly
follow this format: "[[score]]", e.g., "The
correctness score: [[0.5]].
Golden Translation: {Golden Translation}

Model Translation: {Model’s Translation}

1331

H.2 Prompt for SFT 1332

We primarily adopt the classical SFT approach, 1333

where the model is trained to predict the next 1334

token by minimizing the cross-entropy loss. 1335

Consequently, training data typically consist of 1336

input-output pairs, such as question-answer or 1337

instruction-response formats. The input is usually 1338

referred to as the prompt and the output as the an- 1339

swer. During training, the prompt and answer are 1340

concatenated and fed into the model, with the ob- 1341

jective of guiding the model to generate the answer 1342

portion. In this work, we employ the following 1343

training template. 1344

Below is an instruction that describes a task,
paired with an input that provides further
context. Write a response that appropriately
completes the request.

### Instruction:
Translate the following English input text
into Luxembourgish. Do not include any
additional information or unrelated content.

### Input:
{The sentence to be translated}

### Response:
{The translated sentence}

1345
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