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Let Me Finish My Sentence:
Video Temporal Grounding with Holistic Text Understanding

Anonymous Authors

ABSTRACT
Video Temporal Grounding (VTG) aims to identify visual frames
in a video clip that match text queries. Recent studies in VTG em-
ploy cross-attention to correlate visual frames and text queries as
individual token sequences. However, these approaches overlook a
crucial aspect of the problem: a holistic understanding of the query
sentence. A model may capture correlations between individual
word tokens and arbitrary visual frames while possibly missing out
on the global meaning. To address this, we introduce two primary
contributions: (1) a visual frame-level gate mechanism that incor-
porates holistic textual information, (2) cross-modal alignment loss
to learn the fine-grained correlation between query and relevant
frames. As a result, we regularize the effect of individual word to-
kens and suppress irrelevant visual frames. We demonstrate that
our method outperforms state-of-the-art approaches in VTG bench-
marks, indicating that holistic text understanding guides the model
to focus on the semantically important parts within the video.

CCS CONCEPTS
• Computing methodologies→ Video summarization; Scene
understanding; Activity recognition and understanding; •
Information systems→ Video search.

KEYWORDS
Video Temporal Grounding, Video Moment Retrieval, Video High-
light Detection

1 INTRODUCTION
Recently, the boom of video and streaming platforms such as Dis-
ney+, YouTube, TikTok, Netflix, etc., has led to an abundance of
online video content. Naturally, the growing pool of videos from
various platforms sparked an interest in efficiently searching videos
using text inputs. Video Temporal Grounding (VTG) is a prominent
research area within video-text search, that focuses on grounding
visual frames that correspond to custom queries. Within VTG, vari-
ous tasks such as Moment Retrieval (MR) [6, 14, 24, 27, 50, 51] and
Highlight Detection (HD) [20, 37, 47] has been proposed.

The goal of MR is to identify time intervals that are highly rel-
evant to text queries, while HD assesses the significance of each
video frame to select the most significant segments. HD can be
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“A man speaks to the camera while he is wearing shades and black biker’s helmet.”

w/o 
Holistic Text
Understanding

Ours

: Correct Predictions: GT : Wrong Predictions

Figure 1: This example shows the critical role of holistic
text understanding in Video Temporal Grounding. Unlike
previous works that do not take holistic text understanding
into account, our method effectively filters out frames that
do not correspond to the full context of the query. Here, our
model does not predict the final frames due to the absence
of the helmet and shades mentioned in the query.

categorized into two perspectives: query-independent and query-
dependent. This paper focuses exclusively on query-dependent
HD, which utilizes text queries to analyze video content. Despite
the distinct operational focuses of MR and HD, both tasks share
the core aim of aligning video content with corresponding natural
language queries. Recognizing their shared goal, [13] introduced
the QVhighlights dataset. This allows for simultaneous training on
both MR and HD, promoting a unified approach to VTG.

Prior approaches have focused on developing cross-modal in-
teraction strategies [10, 18] or developed models specifically for
the demands of the MR and HD tasks [36, 42]. However, despite
these advancements, existing models often treat the text query
as a sequence of tokens rather than an entire sentence. These ap-
proaches may neglect the overall textual semantics, as individual
text tokens either lack the capacity to convey the complete meaning
and/or cause the model to attend to unrelated words or frames. This
oversight can limit the model’s ability to fully capture the intent
of the query. For instance, as shown in Fig. 1, the model without
holistic text understanding may highlight the latter part of a video
in response to the tokens inside the clause “A man speaks to the
camera.” To tackle this issue, we focus on utilizing the global infor-
mation contained within text queries, emphasizing its importance
in accurately identifying the most relevant video frames.

To this end, we propose a novel framework that utilizes a holis-
tic, or global text anchor—representing the full input sentence—to
selectively suppress less relevant video frames while emphasizing
the relevant ones. Leveraging this specialized token, our frame-
work introduces a gated cross-attention mechanism that effectively
filters out irrelevant video content. The gated cross-attention em-
ploys two gating mechanisms: local and non-local gates. The local
gate assigns weights based on channel-wise similarity between the
text anchor and individual frames (frame-level). In contrast, the

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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non-local gate assigns weights by evaluating the overall relevance
between the text anchor and the entire video (clip-level), prioritiz-
ing frames that exhibit greater contextual alignment with the global
text query. The overall relevance is computed through an anchor-
query cross-attention mechanism that employs the text anchor as a
query to interact with video frames. An attention map derived from
this interaction effectively assesses clip-level correlation, thereby
emphasizing the focus on contextually pertinent frames. To fur-
ther refine the precision in assessing similarity, we introduce two
fine-grained alignment losses that optimize clip-level consistency
and frame-level relevance. These losses use the text query as an
anchor, enabling a more targeted and accurate alignment between
the video content and the corresponding textual information. The
clip-level consistency loss aims to minimize the discrepancy be-
tween the anchor and the clip-level video feature outputted from
the anchor-query cross-attention layer. This reduction aims to en-
hance the accuracy in determining the relative significance of each
video frame in relation to the anchor. On the other hand, the frame-
level relevance loss aims to ensure that frames relevant to the text
query are closely aligned with the global text query representa-
tion. It minimizes the distance between the global query and the
corresponding frames, thus enhancing the model’s ability to more
accurately align relevant video content with the text.

To demonstrate the effectiveness of our proposed framework, we
conduct extensive experiments on the QVHighlights [13] dataset,
as well as on other notable VTG benchmarks, including Charades-
STA [6] and TACoS [27]. Our experimental results show that our
proposed method, to the best of our knowledge, achieves state-of-
the-art performance compared to previous methods. Additionally,
we carry out a detailed ablation study to further assess and validate
the advantages of our proposed method. The contributions of our
approach are summarized as follows:

• We introduce a novel framework that utilizes a global text-
anchor based approach to enhance video grounding, lever-
aging holistic textual information to accurately filter and
prioritize relevant frames.

• To best exploit our global text-anchor, we introduce two
cross-attention mechanisms where we integrate both gated
and anchor-query cross-attention for deeper video-text in-
teraction.

• We propose fine-grained alignment loss functions (clip-level
and frame-level) anchored by the text query, designed to
refine the accuracy in measuring similarities and aligning
video content with the given text queries.

2 RELATEDWORKS
Moment Retrieval (MR) is a task that identifies temporal mo-
ments that are highly relevant to a given natural language query.
Within MR, previous works have been categorized in two sections:
proposal-based and proposal-free. As in the name, proposal-based
methods have generally followed a pipeline where a model gener-
ates candidate windows from the entirety of the video, then grants
a rank based on the matched scores. This approach often relies on
predefined temporal structures like sliding windows [1, 6, 18, 31, 52]
or temporal anchors [3, 33, 44, 46, 49, 51] to formulate candidate mo-
ments. On the other hand, proposal-free methods solve the task as

a regression problem where they directly regress the start and end
time frames through various multimodal methods. Within this line
of works, previous methods have utilized methods such as multi-
modal coattention [7, 23, 48, 50], dynamic filters [29], and additional
features [4, 29] to varying degrees of success. Both proposal-based
and proposal-free methods are effective but rely on hand-crafted
processes such as proposal generation and non-maximum suppres-
sion.
Highlight Detection (HD) is a task that focuses on the evalua-
tion of individual video clips’ significance by assigning them clip-
wise saliency scores and highlighting the segments with the high-
est scores. However, HD datasets [30, 34, 38] are usually domain-
specific and operate independently of textual queries. The common
datasets [20, 47] available for query-based highlight detection offer
a limited number of annotated frames for training and evaluation.
The scarcity of query-dependent HD datasets underscores the per-
ception of HD as primarily a vision-only problem. Unlike earlier HD
datasets that were query-agnostic, we explore and test on an HD
task that offers a saliency score for query-relevant clips, facilitating
models to perform query-dependent highlight detection.
Video Temporal Grounding seeks to combine the two afore-
mentioned tasks. Despite their similar objectives, the absence of a
unified dataset supporting both tasks has constrained simultaneous
exploration and combination of these two fields. To this end, [13]
released QVhighlights and proposed Moment-DETR as a simple
baseline. Subsequently, UMT [21] explored the addition of audio
cues to enrich query generation, and QD-DETR [22] enhanced
query-dependent video representations through a specialized cross-
attention module. MH-DETR [45] explores further cross-modal
integration by merging visual and textual features through a pool-
ing mechanism, while UniVTG [17] proposes a unified grounding
model including video summarization. More recent efforts by TR-
DETR [36] and UVCOM [42] incorporate distinct task characteris-
tics into their frameworks. Even with these advancements, existing
models often interpret text queries as a sequence of individual
tokens, neglecting the holistic semantics of the entire query. To
address this issue, we introduce a novel framework that emphasizes
holistic textual understanding to accurately identify and emphasize
relevant video segments.
Cross-modal alignment is an important concept in tasks that
involve multiple modalities. This type of alignment ensures that
representations from various modalities, such as visual and textual
data, are positioned in a shared embedding space. This is often
achieved through contrastive learning methods [11, 12, 15, 26, 43].
Particularly in the video-text domain, approaches such as [2, 8, 41]
aim to align these modalities in a more fine-grained manner.

3 METHOD
In this section, we provide an in-depth explanation of our approach
that centers on the global text-anchor. As shown in Fig. 2, our frame-
work integrates four components: feature extraction, cross-modal
interaction, fine-grained alignment loss, and prediction. We first
outline the task while detailing the feature extraction process in
Sec. 3.1. We then introduce the core method of our framework in
Sec. 3.2, where the concept of the global text anchor is introduced
to encapsulate the holistic textual context. In Sec. 3.3, we detail
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Figure 2: The pipeline of our framework consists of four components: feature extraction, cross-modal interaction, fine-grained
alignment loss, and prediction. First, we extract visual and text features with frozen pre-trained encoders. Since the task requires
cross-modal understanding and suppression of irrelevant information, we incorporate the gated cross-attention mechanism for
the cross-modal interaction. The encoded features of cross-modal interaction are leveraged through the fine-grained alignment
loss, which guides the model to enhance cross-modal alignment. Finally, the visual and textual representations from this
aligned embedding space are fed into the prediction section to produce task-specific outputs.

two critical cross-attention mechanisms—gated cross-attention and
anchor-query cross-attention. Both mechanisms utilize the global
text anchor to enhance the interaction between the video content
and the text query. We then present newly devised fine-grained
alignment losses in Sec. 3.4, aimed at improving the alignment
between video content and text queries. Finally, we detail the infer-
ence procedure, explaining how our model concurrently predicts
for both Moment Retrieval (MR) and Highlight Detection (HD).

3.1 Preliminaries
Given a video 𝑉 ∈ R𝐿𝑣×𝐻×𝑊 ×3, consisting of 𝐿𝑣 frames sam-
pled from the original video at specific intervals and a natural
language text query 𝑇 comprising 𝐿𝑡 tokens, the objective is to
identify all relevant moments

{
𝑚𝑛 =

(
𝑚𝑐𝑛 ,𝑚𝜎𝑛

)}𝑁
𝑛=1, where𝑚𝑐𝑛

denotes the center coordinate of a moment and 𝑚𝜎𝑛 represents
its width. Additionally, the model predicts a frame-level saliency
score {𝑠𝑖 }𝐿𝑣𝑖=1 concurrently. For feature extraction, following previ-
ous works [13, 17, 22, 36, 42], we employ pre-trained encoders 𝐸𝑉
and 𝐸𝑇 to extract visual features 𝐹𝑣 = [𝑣1, 𝑣2, . . . , 𝑣𝐿𝑣 ] ∈ R𝐿𝑣×𝑑𝑣
and text features 𝐹𝑡 = [𝑡1, 𝑡2, . . . , 𝑡𝐿𝑡 ] ∈ R𝐿𝑡×𝑑𝑡 , respectively. Sepa-
rate Multi-layer Perceptron (MLP) are used to project the video and
text features into a shared embedding space of the same dimension
𝑑 . In the following sections, we describe in detail our contributions
of cross-modal interaction, fine-grained alignment loss, and how
we train our model with our proposed methods.

3.2 Global Text Anchor
The primary goal of the VTG task is to identify video sequences
that correspond to the entire query. In order to do this effectively,

an essential aspect of VTG is that it needs to capture the overall
meaning of a given text query. Therefore, we propose to use a global
text anchor that embodies a holistic understanding of the sentence,
as emphasized in our title: Let Me Finish My Sentence. Adopting
the global text query as an anchor offers two main advantages: (1)
the text modality is generally less noisy compared to the visual
modality due to its discreteness, and (2) we can effectively leverage
prior knowledge from language models trained on a large corpora,
which are well-generalized across various domains. We employ a
global mean pooling operation, denoted as 𝜙 , to derive a global text
anchor from token-level text representations. This anchor is then
integrated into our cross-modal interaction module and is further
detailed in the following section.

3.3 Cross-Modal Interaction
As mentioned, we hypothesize the need for holistic understanding
of the text query so that the model may take into account the
entire text query instead of being biased to certain words in the
query. Hence, we propose and introduce a global text anchor to
address the aforementioned issues in these ways: 1) suppressing
non-essential video frames through a gating mechanism with the
global text anchor, 2) enhancing cross-modal alignment between
video content and global textual information. The versatile use of
the global text-anchor enhance the contextual relevance of video-
text interactions and cross-model understanding.
Gated Cross-Attention. As shown in Fig. 2, we extend the con-
ventional cross-attention mechanism [40] by incorporating local
and non-local gates. The standard cross-attention is defined as:

Attention(𝑄,𝐾,𝑉 ) = softmax

(
𝑄𝐾𝑇√︁
𝑑𝑘

)
𝑉 , (1)
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where 𝑄 , 𝐾 , and 𝑉 represent the query, key, and value matrices
respectively, and 𝑑𝑘 is the dimensionality of the key. In our model,
this formula becomes:

Attention(𝑄,𝐾,𝑉 ) = Attention(𝑊𝑄𝐹𝑣,𝑊
𝐾𝐹𝑡 ,𝑊

𝑉 𝐹𝑡 ) = 𝐹
′
𝑣, (2)

where𝑊𝑄 ,𝑊𝐾 , and𝑊𝑉 are learned weight that project the video
features (𝐹𝑣 ) and text features (𝐹𝑡 ) into the query, key, and value.

The local gate weight, denoted by𝑔𝐿 , employs element-wise mul-
tiplication and sigmoid activation to assess the relevance between
the video clip and the text query, utilizing the global key 𝐾𝐺 ∈ R𝑑 .
This key 𝐾𝐺 is derived by mean pooling 𝐾 across time dimensions:

𝑔𝐿 = 𝜎

(
𝑊
𝑔
𝑞𝑄 ⊙𝑊 𝑔

𝑘
𝐾𝐺

)
∈ R𝐿𝑣×𝑑 , (3)

where𝑊 𝑔
𝑞 and𝑊 𝑔

𝑘
are trainable weights applied to the query𝑄 and

the global key 𝐾𝐺 , respectively, to capture channel-wise relevance
between single frame and global text. The output, 𝑔𝐿 , modulates the
feature vector𝑉 ′ through element-wise multiplication, resulting in
a relevance-enhanced feature representation 𝑉 ′

𝐿
:

𝑉 ′
𝐿 = 𝑔𝐿 ⊙ 𝐹

′
𝑣 . (4)

The non-local gate weight 𝑔𝑁 , designed for broad relevance
assessment across video clips, modifies the interaction to enhance
contextually pertinent video frames:

𝐹𝑣 = 𝑔𝑁 ⊙ 𝑉
′
𝐿 = {𝑣1, 𝑣2, . . . , 𝑣𝐿𝑣 }. (5)

This mechanism, 𝑔𝑁 ∈ R𝑑 , computes min-max normalized atten-
tion scores between the global text anchor and video frames, ef-
fectively weighting the relative significance of each video frame
in relation to the global text. It serves as an effective filter that
emphasizes frames with substantial contextual relevance while
suppressing the less relevant ones.

Through the integration of both local and non-local gates, our
model emphasizes clips closely aligned with the text query while
minimizing the influence of non-relevant clips in subsequent steps.
Anchor-Query Cross-Attention. Here, the global text anchor 𝑡𝑎 ,
obtained through the mean pooling operator 𝜙 (𝐹𝑡 ) is encoded into
the visually enriched text-query. The video clip representations
𝐹𝑣 are adapted as both keys and values within the cross-attention
mechanism. While the gated cross-attention approach learns the
alignment between individual video frames and text tokens, the
anchor-query cross-attention addresses the relative relevance be-
tween the global text representation and each of the video frames.
The operational equation is defined as follows:

Attention(𝑄𝑎, 𝐾𝑎,𝑉𝑎) = Attention(𝑊𝐾 𝑡𝑎,𝑊𝑄𝐹𝑣,𝑊
𝑉 ′
𝐹𝑣)

= softmax

(
𝑄𝑎𝐾

𝑇
𝑎√︁

𝑑𝑘

)
𝑉𝑎 = 𝑡𝑎, (6)

In this configuration,𝑊𝑄 and𝑊𝐾 serve as projection layers for
video and text modalities within the gated cross-attention mecha-
nism, respectively. They aid in establishing the understanding be-

tween video content and textual information. Since softmax
(
𝑄𝑡𝐾

𝑇
𝑡√

𝑑𝑘

)
represents the similarity score between the text query and video
frames, we represent this calculation as 𝑔𝑁 .

The two parts in the cross-modal interaction module refine the
intermediate features based on cross-modal understanding. The
module guides the model to emphasize the frames which are con-
textually relevant to the text query.

3.4 Fine-Grained alignment loss
Understanding of the fine-grained correlation between text queries
and video clips is essential for MR and HD tasks. Moreover, the
validity of the local and non-local gates depends on the reliability
of cross-modal understanding. To address this, we propose two loss
functions to better learn cross-modal alignment: 1) preserving the
consistency of the global text representation before and after the
anchor-query cross-attention step, and 2) inducing the model to
capture the frame-level relevance between the visual frame and
global text representation.
Clip-Level Consistency Loss. Suppose we are given a mini-batch
of feature pairs {(𝐹 𝑖𝑣, 𝐹 𝑖𝑡 )}𝐵𝑖=1, where 𝐵 refers to the size of the mini-
batch. The loss function incorporates the global representation 𝑡𝑖𝑎 =

𝜙 (𝐹 𝑖𝑡 ) of text query 𝐹 𝑖𝑡 , and the output of the anchor-query cross-
attention layer 𝜓 , 𝑡𝑖 𝑗𝑎 = 𝜓 (𝑡𝑖𝑎, 𝐹

𝑗
𝑣 ). We employ 𝑡𝑝𝑎 and 𝑡𝑛𝑎 , positive

and negative visual-enriched global text representation from paired
(𝑖 = 𝑗 ), and unpaired (𝑖 ≠ 𝑗 ) video-text respectively. The proposed
loss function is designed to minimize the distance between the
global text anchor 𝑡𝑎 and 𝑡

𝑝
𝑎 , while maximizing the distance between

𝑡𝑎 and 𝑡𝑛𝑎 , expressed as:

Lclip = − 1
𝐵

𝐵∑︁
𝑖=1

log ©« exp(𝑡𝑖𝑖𝑎 · 𝑡𝑖𝑎)∑𝐵
𝑗=1 exp(𝑡

𝑖 𝑗
𝑎 · 𝑡𝑖𝑎)

ª®¬ (7)

− 1
𝐵

𝐵∑︁
𝑗=1

log

(
exp(𝑡 𝑗 𝑗𝑎 · 𝑡 𝑗𝑎)∑𝐵
𝑖=1 exp(𝑡

𝑖 𝑗
𝑎 · 𝑡 𝑗𝑎)

)
. (8)

Optimizing the model with this objective enhances the cross-
modal alignment between the text anchor 𝑡𝑎 and semantically rel-
evant video clips. By minimizing the distance between 𝑡𝑎 and the
visually enriched text query 𝑡𝑝𝑎 , which incorporates both relevant
and irrelevant video frames, the approach guides the text anchor’s
attention strongly towards semantically relevant video frames.

The training objective aims to refine the video clip representation
𝐹𝑣 , derived from the gated cross-attention, to align closely with the
text anchor 𝑡𝑎 for relevant text queries, and to diverge when the
queries are irrelevant. This method conditions the model to enhance
the semantic correlation between video clips and the corresponding
text query, ensuring their representations in the embedding space
accurately reflect their contextual relevance.
Frame-Level Relevance Losses. This loss function refines the
representation of video clips 𝐹𝑣 , which has been processed through
gated cross-attention, by optimizing the alignment between video
frames and the text anchor. Specifically, it enhances the similarity
between relevant video frames 𝑣𝑝 and the text anchor 𝑡𝑎 , while re-
ducing the similarity with irrelevant frames 𝑣𝑛 . This loss guides the
model to learn the fine-grained correlation between visual frames
and the corresponding text query, ensuring their representations in
the embedding space accurately reflect their contextual relevance.
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The similarity score between the i-th frame 𝑣𝑖 and the text anchor
𝑡𝑎 is given by 𝐷𝑖 = 𝜎 (𝑣𝑖 · 𝑎), where 𝜎 denotes a sigmoid that
incorporates the similarity score. The loss function then is:

Lframe =
𝐿𝑣∑︁
𝑖=1

𝐶𝑖 log(𝐷𝑖 ) + (1 −𝐶𝑖 ) log(1 − 𝐷𝑖 ) (9)

Here, 𝐶𝑖 is a binary indicator reflecting whether the i-th clip is
relevant (1) or irrelevant (0) to the text query.

3.5 Prediction and Losses
In our cross-modal interaction module, which consists of 𝑁 trans-
former layers, we aim to generate a composite representation. This
is achieved by channel-wise concatenating the intermediate out-
puts from each layer 𝑂𝑙 with the input video features 𝐹𝑣 , and then
projecting this concatenation into a 𝑑-dimensional space using a
linear projection layer 𝑓 :

𝑂
′
= 𝑓 (Concatchannel (𝐹𝑣,𝑂1,𝑂2, . . . ,𝑂𝑁 )) ∈ R𝐿𝑣×𝑑 . (10)

Subsequently, the output 𝑡𝑎 is concatenated with 𝑂 in a temporal
manner to form the basis for a query-dependent adaptive classi-
fier [22, 35]:

𝑂 = Concattemporal (𝑂
′
, 𝑡𝑎) ∈ R(𝐿𝑣+1)×𝑑 . (11)

This concatenated output, denoted as 𝑂 , is considered the final
feature set of the cross-modal interaction module.
Highlight Prediction. The final feature set𝑂 is processed through
a transformer encoder 𝐸. Separate Multi-layer Perceptron (MLP) is
used to project the video and text features into a shared embedding
space of the same dimension 𝑑 , producing �̂� = {𝑜1, . . . , 𝑜𝐿𝑣 , 𝑡

′
𝑎}.

Following QD-DETR [9, 22], we calculate a vector of saliency scores
𝑆 ∈ R𝐿𝑣 for every frame in the video as follows:

𝑆𝑖 =
𝑤𝑠 · 𝑡

′
𝑎 · (𝑤𝑣 · 𝑜𝑖 )
𝑑

, for 𝑖 = 1, . . . , 𝐿𝑣, (12)

where 𝑤𝑠 and 𝑤𝑣 are learnable parameters applied to the query
representation and each video frame representation respectively.
Moment Retrieval Prediction. Following decoder strategies from
prior research [19, 22, 36], we utilize dynamic anchor boxes to
represent moment queries (which is clearly separate from text
queries). Together with the output �̂� = {𝑜1, . . . , 𝑜𝐿𝑣 }, this input
is provided to the decoder 𝐷 , resulting in moment features 𝑄 . 𝑄
undergoes processing via a Multi-Layer Perceptron (MLP) and a
sigmoid activation to generate predictions for moment dimensions
(�̂�), yielding𝑀 moment predictions. Concurrently, another linear
layer equipped with a softmax activation categorizes each predicted
moment as foreground or background (𝑝).
Highlight Loss. The highlight loss 𝐿ℎ𝑙 is comprised of a margin
contrastive loss 𝐿margin and a rank-aware contrastive loss 𝐿rank.
Margin loss contrasts high and low scoring frames within (𝑡high,
𝑡low) and outside (𝑡in, 𝑡out) ground-truth moments, given by:

Lmargin = max(0,Δ+𝑆 (𝑡low)−𝑆 (𝑡high))+max(0,Δ+𝑆 (𝑡out)−𝑆 (𝑡in)),
(13)

with Δ denoting the margin. Following QD-DETR [22], the rank-
aware loss is:

Lrank = −
𝑅∑︁
𝑟=1

log

∑
𝑥∈𝑋 pos

𝑟
exp(𝑆𝑥/𝜏)∑

𝑥∈ (𝑋 pos
𝑟 ∪𝑋 neg

𝑟 ) exp(𝑆𝑥/𝜏)
, (14)

where𝑋pos
𝑟 and𝑋neg

𝑟 are the indexes of positive and negative frames
within the 𝑟 -th rank group, respectively, and 𝜏 is a temperature
scaling parameter. The total highlight loss is as follows:

Lhd = Lmargin + Lrank . (15)

Moment Retrieval Loss. To address the set prediction challenge
in moment retrieval without a direct one-to-one correspondence
between ground truth and predictions, we apply the Hungarian
matching algorithm. This algorithm pairs ground truth moments
with predictions, where �̂� (𝑖) indexes the predictedmomentmatched
to the 𝑖-th ground truth moment. The span loss for matched pairs
is as follows:

Lspan (𝑚𝑖 , �̂��̂� (𝑖 ) ) = 𝜆L1∥𝑚𝑖 − �̂��̂� (𝑖 ) ∥ + 𝜆iouLiou (𝑚𝑖 , �̂��̂� (𝑖 ) ), (16)
incorporating the generalized IOU loss [28]. The moment retrieval
loss combines classification and span losses:

Lmr =
𝑁∑︁
𝑖=1

[−𝜆cls log 𝑝�̂� (𝑖 ) (𝑐𝑖 )+I (𝑐𝑖 ≠ ∅) Lspan (𝑚𝑖 , �̂��̂� (𝑖 ) )], (17)

where I (·) applies span loss only to non-empty ground truth mo-
ments.
Overall Loss. The overall loss is defined as:

L = Lhd + Lmr + 𝜆clipLclip + 𝜆frameLframe (18)

where the coefficients 𝜆clip and 𝜆frame are parameters that balance
the contribution of clip-level and frame-level losses to the overall
loss, respectively.

4 EXPERIMENTS
In this section, we outline the experimental setup and list details
on the dataset, evaluation metrics, and implementation specifics
as discussed in Sec. 4.1. Then, we compare the performance of
our framework with established baselines in Sec. 4.2 and show
a detailed ablation study in Sec. 4.3. Lastly, we show qualitative
results showcasing the effectiveness of our approach in Sec. 4.4.

4.1 Experimental Setup
Datasets. As our task is to detect highlights while retrieving mo-
ments, we use commonly usedMR andHDdataset QVhighlights [13]
as our main benchmark. The QVhighlights dataset currently stands
as the sole dataset available to test both MR and HD tasks concur-
rently and comprises of over 10,000 YouTube videos accompanied
by human-written, free-form text queries. For moment labels, each
video-text pair is annotated with one or more relevant moments,
and highlight labels are provided with 5-scale saliency scores (rang-
ing from 1 being very bad to 5 being very good). Additionally, in
order to ensure a fair benchmark for evaluation, the performance
on the test set is assessed exclusively through submissions to the
QVhighlights server.1 In addition to this, to further test the effi-
cacy of our method, we evaluate it on other VTG datasets, namely
1https://codalab.lisn.upsaclay.fr/competitions/6937

https://codalab.lisn.upsaclay.fr/competitions/6937


581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM MM, 2024, Melbourne, Australia Anonymous Authors

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 1: Experimental results on the QVHighlights test split, comparing performance in Moment Retrieval (MR) and Highlight
Detection (HD). All models listed utilized uniform video (SlowFast and CLIP) and text features (CLIP).

MR HD
Method R1 mAP ≥Very Good

@0.5 @0.7 @0.5 @0.75 Avg. mAP HIT@1

XML+ [14] ECCV2020 46.69 33.46 47.89 34.67 34.90 35.38 55.06
Moment-DETR [13] NeurIPS2021 52.89 33.02 54.82 29.40 30.73 35.69 55.60
UMT [21] CVPR2022 56.23 41.18 53.83 37.01 36.12 38.18 59.99
MomentDiff [16] NeurIPS2023 57.42 39.66 54.02 35.73 35.95 - -
MH-DETR [45] ACM MM2023 60.05 42.48 60.75 38.13 38.38 38.22 60.51
QD-DETR [22] CVPR2023 62.40 44.98 62.52 39.88 39.86 38.94 62.40
UniVTG [17] ICCV2023 58.86 40.86 57.60 35.59 35.47 38.20 60.96
TR-DETR [36] AAAI2024 64.66 48.96 63.98 43.73 42.62 39.91 63.42
UVCOM [42] CVPR2024 63.55 47.47 63.37 42.67 43.18 39.74 64.20
Ours 65.95 49.74 65.82 44.14 43.57 40.27 65.60

Charades-STA [6] and TACoS [27]. Charades-STA features 9,848
videos with 16,128 query-moment pairs focusing on indoor activi-
ties. TACoS comprises 127 videos annotated specifically for cooking
scenarios.
Evaluation Metrics. We follow the conventions established in
previous research [10, 13, 17, 21, 22, 36, 42, 45]. In MR, we apply
Recall@1 (R@1) at IoU thresholds of 0.5 and 0.7. We also calculate
mean Average Precision (mAP) for IoU thresholds [0.5 : 0.05 : 0.95].
For HD, we measure mAP and HIT@1, where HIT@1 is determined
by the hit ratio of the clip with the highest score.
Baseline Architecture. Our framework is built upon the QD-
DETR [22] architecture, which is a widely used baseline in Video
Temporal Grounding due to its effective use of cross-attention
layers for injecting text query information into video frames. We
build upon this baseline while retaining its standard cross-attention
mechanism, decoder structure, and rank-aware loss. Our method
introduces novel approaches aimed to effectively leverage the holis-
tic context of text queries for improved video frame selection and
alignment.
Implementation Details.We configure the number of layers in
the transformer encoder 𝐸 and decoder 𝐷 as 3. We set the cross-
modal interaction layer count to 2. The loss balancing parameters
are established as 𝜆L1 = 10, 𝜆iou = 1, 𝜆cls = 4, 𝜆frame = 1, and 𝜆clip
is adjusted to 1 for QVHighlights and Charades-STA, and 0.6 for
TACoS. We set the batch size to 32 and the learning rate (LR) to
0.0001 for QVHighlights, maintain a batch size of 32 with an LR
of 0.0002 for Charades. We adjust the batch size of 16 with an LR
of 0.0002 for TACoS following previous works. Across all datasets,
training proceeds for 200 epochs with a learning rate reduction at
epoch 100, using the Adam optimizer. Additionally, for all datasets,
we set the hidden dimension 𝑑 to 256 and the number of moment
queries𝑀 to 10. Whereas otherwise stated, we employ a pre-trained
SlowFast and CLIP [26] model for video feature extraction. Specifi-
cally for Charades-STA, additionally features were extracted using
VGG [32], C3D [39], and GloVe [25]. All models were trained on a
single NVIDIA RTX 4090 with an average training time of 3 hours
for all 200 epochs on our machines.

4.2 Main Result
We compare how our method performs in relation to recent state-
of-the-art methods for MR and HD and summarize our findings in
the following sections.
Results on QVHighlights. In Table 1, we list the experimental
results of our method as well as other established methods on the
QVHighlights dataset. Our method diverges from XML [14], which
adopts a proposal-free strategy, and aligns with the transformer-
based and end-to-end trainable nature of current baselines [10, 13,
16, 17, 21, 22, 36, 42, 45]. MH-DETR [45] and QD-DETR [22] fo-
cus more on cross-modal interaction before transformer encoder
and TR-DETR [36] explores the inherent reciprocity between MR
and HD, and UVCOM [42] is tailored to address the unique de-
mands of both MR and HD tasks effectively. Although EaTR [10]
is a fairly recent work, we do not list them in our main table as
they do not evaluate on the QVHighlights test split. Our model cap-
italizes on global text semantics and novel loss functions within a
refined cross-modal interaction framework, surpasses all compared
methods. Notably, our method outperforms the baseline model,
QD-DETR [22], in MR by achieving a 3.5% improvement in R@1 at
IoU 0.5, 4.76% improvement at IoU 0.7, and 3.7% increase in average
mAP, and in HD by 1.63 mAP and 3.20 in HIT@1. Our method
outperforms the most recent method, UVCOM [42], in MR by 2.40%
R@0.5, 2.24% R@0.5, and 0.39% average mAP, and in HD by 0.50
mAP and 1.40 HIT@1 respectively. We find that our method out-
performs all previous baselines across all metrics in both MR and
HD, to the best of our knowledge, setting the new state-of-the-art.
Results on Charades-STA and TACoS. To test the generaliz-
ability and efficacy of our method, we extend our experimenta-
tion to other VTG benchmarks such as Charades-STA [6] and
TACoS [27]. On top of our comparisons with transformer-based
models, we further test our approach against prior proposal-based
approaches [49, 51]. As evidenced in Tables 2 and 3, our method
surpasses previous techniques, establishing new state-of-the-arts
on these benchmarks. Particularly on Charades-STA, our approach
demonstrates its robustness by consistently outperforming existing
methods across a variety of backbones, including learned multi-
modal features from CLIP [26], as well as 2D and 3D features from
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Table 2: Experimental results on the Charades-STA test split.
All models employed uniform features for fairness in evalu-
ation, with ‘SF+C, C’ denoting SlowFast and CLIP for video
and CLIP for text, respectively, ‘VGG, Glove’ indicating VGG
features for video and GloVe embeddings for text, and ‘C3D,
Glove’ representing C3D features for video and GloVe em-
beddings for text.

Method feat R@0.5 R@0.7

Moment-DETR [13] NeurIPS2021 SF+C, C 53.63 31.37
MomentDiff [16] NeurIPS2023 SF+C, C 55.57 32.42
QD-DETR [22] CVPR2023 SF+C, C 57.31 32.55
UniVTG [17] ICCV2023 SF+C, C 58.01 35.65
TR-DETR [36] AAAI2024 SF+C, C 57.61 33.52
UVCOM [42] CVPR 2024 SF+C, C 59.25 36.64
Ours SF+C, C 60.73 39.49

MAN [49] CVPR2019 VGG, GloVe 41.24 20.54
2D-TAN [51] AAAI2020 VGG, GloVe 40.94 22.85
MomentDiff [16] NeurIPS2022 VGG, GloVe 51.94 28.25
QD-DETR [22] CVPR2023 VGG, GloVe 52.77 31.13
TR-DETR [36] AAAI2024 VGG, GloVe 53.47 30.81
UVCOM [42] CVPR2024 VGG, GloVe 54.57 34.13
Ours VGG, GloVe 56.56 37.28

IVG-DCL [24] CVPR2021 C3D, GloVe 50.24 32.88
MomentDiff [16] NeurIPS2023 C3D, GloVe 53.79 30.18
QD-DETR [22] CVPR2023 C3D, GloVe 50.67 31.02
Ours C3D, GloVe 54.78 35.13

Table 3: Experimental results on the TACoS test split. All
models utilized uniform video (SlowFast and CLIP) and text
features (CLIP).

Method R@0.3 R@0.5 R@0.7 mIoU

2D-TAN [51] AAAI2020 40.01 27.99 12.92 27.22
VSLNet [50] ACL2022 35.54 23.54 13.15 24.99
Moment-DETR [13] NeurIPS2021 37.97 24.67 11.97 25.49
UniVTG [17] ICCV2023 51.44 34.97 17.35 33.60
UVCOM [42] CVPR2024 - 36.39 23.32 -
Ours 52.04 39.12 23.62 36.09

VGG [32] and C3D [39], respectively. Notably, with features com-
bining SlowFast [5] and CLIP (SF+C, C), our method surpasses the
recent state-of-the-art model, UVCOM [42], by achieving improve-
ments of 1.48% in R@1 at an IoU of 0.5 and 2.85% at an IoU of 0.7. On
TACoS, our method once again outperforms all previous baselines,
affirming its effectiveness across diverse domains and datasets.

4.3 Ablation Studies
To understand the individual components of our framework and
its effects, we present a series of ablation studies on QVHighlights
validation split.
Gated Cross-Attention.We analyse the significance of employing
both local and non-local gates within our gated cross-attention
framework and present it in Table 4. Implementing the non-local
gate alone enhances performance inMR andHD tasks, underscoring

Table 4: Ablation study results on QVHighlights val split
regarding gated cross-attention mechanisms. The ‘local’ and
‘non-local’ columns refer to the use of local and non-local
gates, respectively.

MR HD
local Non-local R1 mAP ≥Very Good

@0.5 @0.7 Avg. mAP

63.29 48.45 42.22 39.69
✓ 62.45 48.90 42.5 39.82

✓ 65.87 49.29 43.61 40.79
✓ ✓ 67.61 50.65 44.8 40.98

Table 5: Highlight Detection performance on QVHighlights
val split, showcasing the validity of non-local gate weights
in gated cross-attention. † denotes intermediate outputs as-
sessed directly for HD.

HD
≥Very Good

Method mAP HIT@1

𝑔𝑁 w/o Non-local† 25.31 41.16
𝑔
†
𝑁

35.83 56.71

Moment-DETR [13] 35.69 55.60
Ours 40.98 65.35

its utility. The synergy of local and non-local gates, however, yields
the best outcome, underlining their collective importance in refining
video-text alignment and enhancing prediction accuracy.

To further assess the validity of our non-local gate weight (𝑔𝑁 )
within the gated cross-attention framework, we test to see if it can
be used directly as a saliency score for Highlight Detection on the
QVHighlights validation split. Table 5 demonstrates that using 𝑔𝑁
directly to predict saliency not only exceeds Moment-DETR’s HD
performance but also shows the utility of our gate mechanism in
emphasizing relevant video sections in cross-modal interaction.
Additionally, ‘𝑔𝑁 w/o Non-local,’ represents a scenario where 𝑔𝑁 is
computed without applying the non-local gate, which corresponds
to the the second row of Table 4, and this results in a significant drop
in performance. This underlines the non-local gate’s critical role in
emphasizing relevant video frame and enhancing the accuracy of
the similarity measure between global text and video frames.
Fine-Grained Alignment Losses. We further analyse the impact
of the frame-level and clip-level similarity losses in Table 6. Im-
plementing each loss individually offers noticeable improvements;
however, integrating both simultaneously provides a substantial
performance boost. Specifically, without these similarity losses, the
model achieves lower scores across all metrics. With both losses
applied, we observe a 5.29% increase in R@1 at IoU 0.5, a 3.3% rise
at IoU 0.7, and a 2.88% improvement in mAP, highlighting their ef-
fectiveness in refining the model’s capability to align video content
with textual queries accurately.
Global Text Anchor. We also explore various methods for gener-
ating the global text anchor, which is pivotal to our framework as
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QUERY: A teacher is writing on a white board.

QUERY: Woman walks around town with purple mirrored sunglasses.

Figure 3: Qualitative results of predictions on QVHighlights validation split. We show the effectiveness of our method com-
pared to the baseline, QD-DETR. From top to bottom are the text queries, along with the predicted moments and highlights
corresponding to each method.

Table 6: Ablation study results on QVHighlights val split on
text-anchor similarity loss. The ‘frame’ and ‘clip’ columns
denote the frame-level loss and clip-level loss, respectively.

MR HD
frame clip R1 mAP ≥Very Good

@0.5 @0.7 Avg. mAP

62.32 47.35 41.92 39.02
✓ 65.48 49.23 43.20 40.46

✓ 63.48 48.13 43.43 39.56
✓ ✓ 67.61 50.65 44.80 40.98

it focuses attention on the relevant parts of the video correspond-
ing to the text query. To determine the most effective approach,
as detailed in Table 7, we compared mean pooling, max pooling,
weighted pooling, and the use of a transformer layer. We find that
mean pooling outperforms other methods. This underscores the
effectiveness of a simple yet powerful mean pooling strategy in
capturing the holistic semantics of the text query for VTG.

4.4 Qualitative Results
We show qualitative results in Fig. 3 compared with the baseline
model, QD-DETR. By adopting a holistic approach to understanding
text queries, our method consistently identifies moments that fully
align with the intent of the textual queries. This approach allows
our model to capture the essence of the entire query, preventing
the oversight of integral query components such as ‘a white board’

Table 7: Ablation study on various global text anchor genera-
tion methods on QVHighlights val split.

MR HD
Method R1 mAP ≥Very Good

@0.5 @0.7 Avg. mAP

Max pooling 64.45 49.55 44.07 40.48
Weighted pooling 65.87 49.29 43.61 40.79
Transformer 65.68 50.06 44.24 40.30
Mean pooling 67.61 50.65 44.80 40.98

and ‘walks around’, which QD-DETR sometimes overlooks. This
underscores the advantage of our method’s integration of global
text semantics for more accurate video grounding.

5 CONCLUSION
In this work, we present a novel approach to Video Temporal
Grounding (VTG) that emphasizes holistic understanding of text
queries and suppresses irrelevant visual frames. By integrating the
entire query text into a global representation and employing vi-
sual frame-level gate mechanisms within a cross-modal interaction
framework, our approach significantly enhances the alignment of
text queries with accurate video segments. We demonstrate state-
of-the-art performance on several VTG benchmarks, highlighting
the importance of considering the entire text query and selectively
focusing on relevant video.
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