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Abstract001

Despite the promising results of large mul-002
timodal models (LMMs) in complex vision-003
language tasks that require knowledge, reason-004
ing, and perception abilities together, we sur-005
prisingly found that these models struggle with006
simple tasks on infographics that require per-007
ception only. As existing benchmarks primarily008
focus on end tasks that require various abilities,009
they provide limited, fine-grained insights into010
the limitations of the models’ perception abili-011
ties. To address this gap, we leverage the the-012
ory of graphical perception, an approach used013
to study how humans decode visual informa-014
tion encoded on charts and graphs, to develop015
an evaluation framework for analyzing gaps016
in LMMs’ perception abilities in charts. With017
automated task generation and response eval-018
uation designs, our framework enables com-019
prehensive and controlled testing of LMMs’020
graphical perception across diverse chart types,021
visual elements, and task types. We apply our022
framework to evaluate and diagnose the percep-023
tion capabilities of state-of-the-art LMMs at024
three granularity levels (chart, visual element,025
and pixel). Our findings underscore several026
critical limitations of current state-of-the-art027
LMMs, including GPT-4o: their inability to (1)028
generalize across chart types, (2) understand029
fundamental visual elements, and (3) cross ref-030
erence values within a chart. These insights031
provide guidance for future improvements in032
perception abilities of LMMs.033

1 Introduction034

Large multimodal models (LMMs; OpenAI (2024);035

Gemini Team (2023)) have shown human-level036

results in a range of visual-language tasks (Yue037

et al., 2024a; Lu et al., 2024), including complex038

knowledge- and reasoning-intensive tasks over in-039

fographics in scientific documents. However, we040

surprisingly found these LMMs may fail to solve041

some simple tasks on chart such as retrieving values042

Figure 1: Given “Identify the activity with the highest
share of leisure travelers.”, GPT-4o responds “Small
towns/countryside” (10/10) whereas the correct answer
is “Sightseeing.” For “What’s the share of travelers
who go shopping?”, the latest Claude-Sonnet-3.7 and
Grok-3 reply “0.411” (10/10), but the correct answer
is “0.763.” Despite significant recent improvements in
LMMs, their persistent perceptual limitations lead to
mistakes on tasks that are trivial for humans.

or finding the extremum in given charts, where hu- 043

mans can easily achieve near-perfect results (Saket 044

et al., 2019). Figure 1 shows an example.1 045

Given that existing models have shown impres- 046

sive object recognition and reasoning capabili- 047

ties (Yue et al., 2024a), we suspect existing LMMs’ 048

under-performing in these simple chart understand- 049

ing tasks come from their limitations in graphi- 050

cal perception (Cleveland and McGill, 1984), the 051

essential perceptual ability that human leverage 052

to understand data-coded graphical elements in 053

charts. Existing benchmarks primarily focus on 054

overall task performance, often combining percep- 055

tion, knowledge, and high-level reasoning into a 056

single accuracy score. This metric serves as an 057

indirect proxy for measuring LMMs’ perception of 058

charts—a high score may suggest good perception 059

abilities, but poor performance makes it unclear 060

whether the failure stems from perception errors, 061

lack of knowledge, reasoning flaws, or a combi- 062

1The original image is in the supplementary materials.
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nation of these factors. Additionally, models may063

not even need to perceive and reason about charts064

to answer questions: as reported in recent stud-065

ies, models can generate correct answers without066

the visual input (Yue et al., 2024b; Chen et al.,067

2024a). Finally, the way current models perceive068

charts—especially their understanding of funda-069

mental visual elements—remains unexplored in070

existing work. Thus, it is desirable to systemati-071

cally study models’ perception capabilities to un-072

derstand factors limiting their performance in low-073

level chart perception tasks.074

In this paper, we leverage graphical percep-075

tion (Cleveland and McGill, 1984), a theory orig-076

inally developed to study human interpretation of077

visual data in charts and graphs, to investigate mod-078

els’ perception capabilities. For example, prior079

studies on human graphical perception show that,080

because humans can better perceive the length of081

lines than area sizes when comparing values, we082

can more efficiently and accurately read bar charts083

than pie charts to answer questions about calculat-084

ing the differences between two values based on085

their visual representation in the charts. This moti-086

vates us to evaluate models’ fundamental graphical087

perception (e.g., perception of color, length, size)088

to explore the limitations of current LMMs. To089

achieve this goal, we test LMMs’ performance on a090

range of chart perception tasks that involve reading091

and interpreting data based on its visual represen-092

tation across a diverse set of chart types (e.g., bar,093

line, scatter, pie) and visual elements (e.g., color,094

length, size). This approach could offer a direct and095

comprehensive evaluation of models’ perceptual096

abilities, especially helping us understand in what097

aspects the models fail to generalize.098

We introduce an evaluation framework specifi-099

cally designed to assess the graphical perception100

abilities of state-of-the-art (SOTA) LMMs (Ope-101

nAI, 2024; Chen et al., 2024b; Abdin et al., 2024;102

Meng et al., 2024). Our framework includes an103

automated task generation and response evaluation104

pipeline that synthesizes a diverse set of chart per-105

ception tasks with different chart representations106

from a set of seed datasets, allowing us to scale up107

the evaluation with minimal human intervention.108

With this framework, we evaluate SOTA LMMs in109

a coarse-to-fine manner, ranging from chart-type-110

level performance to the fundamental visual ele-111

ments forming the charts, and to the pixel-level112

analysis that reveals how models perceive specific113

regions in the charts. Our goal is to understand114

where and how models fail to generalize in their 115

perception of charts. Our research questions and 116

key findings are listed as follows. 117

RQ1: Can SOTA LMMs Generalize Across 118

Diverse Chart Types? LMMs exhibit significant 119

performance fluctuations depending on the chart 120

type and rely heavily on the explicit numerical an- 121

notations. LMMs cannot generalize across differ- 122

ent chart types, despite the simplicity and identical 123

information presented. 124

RQ2: Do LMMs Learn Generalizable and 125

Compositional Visual Elements Beyond Chart 126

Patterns? LMMs perform relatively well only 127

on charts with specific combinations of visual el- 128

ements (e.g., length, size, position) but struggle 129

to generalize to charts composed of similar visual 130

elements. This indicates that current LMMs do 131

not develop compositional graphical perception by 132

learning from common chart patterns, as their per- 133

formance drops significantly when we compose 134

new charts that require different combinations of 135

perception dimensions. 136

RQ3: Can We Explain LMMs’ Limitations 137

Based on Their Pixel-Level Perception Patterns? 138

While models often successfully locate important 139

regions required for solving simple tasks such as 140

retrieving values, their referencing of these values 141

can be imprecise, leading to only approximate out- 142

puts. This imprecision accumulates in more com- 143

plex tasks, such as ordering all the data points. 144

2 Evaluation Framework 145

The major difference between prior evalua- 146

tions (Masry et al., 2022; Wang et al., 2024b) and 147

ours is that we don’t aim to create a more chal- 148

lenging benchmark. Instead, as shown in Figure 2, 149

we propose a framework that automatically cre- 150

ates various charts with different visual elements 151

to evaluate and diagnose the graphical perception 152

abilities of current SOTA LMMs. 153

2.1 Chart Generation 154

In our framework, we utilize the VisText (Tang 155

et al., 2023) dataset as the primary data seed as 156

it covers diverse domains including sports, news, 157

etc. It includes both textual data tables and exem- 158

plar Vega-Lite programs (Satyanarayan et al., 2017) 159

which can be used to generate diverse rasterized 160

charts after lightweight editing. For later experi- 161

ments, we randomly sample 1,000 datasets from 162

VisText (e.g., one shown in Fig. 2), covering a wide 163
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Textual Data Table

Vega-Lite Program

Indoor venue exhibition space available 
worldwide in 2011, by country (in million 
square meters)

Exhibition space
6.71
4.76
…

Country 
USA
China
…

{"title": "Indoor venue...",
 "mark": "bar",
 "encoding": { 
     "color": {"value": "#b3e2cd"},
     "x": {"type": "quantitative", "axis": {...}, ...},
     "y": {"type": "nominal", "field": "Country"},
     …},
…}

Chart Images

...
Chart

Generation

Task
Generation

Tasks and Answers
Retrieve Value T: “How much exhibition space is 
available in Germany?” A: 3.38 million
Find Extremum T: “Identify the country with the 
smallest exhibition space” A: France
Find Anomalies T: “Find the country with an exhibition 
space significantly higher than others.” A: USA
Determine Range T: “Determine the range of 
exhibition spaces available across…”

{How much exhibition space is available in Germany?}+ {         }

14 Types

10 Types

Evaluation

Compare textual A’ and {3.38 million}

5 w/ Numerical Annotation 3 w/o Numerical Annotation 3 Single Visual Element 3 Multiple Visual Elements

Figure 2: Framework of data synthesis and evaluation with one dataset as an example. With randomly sampled
1,000 datasets as seeds, we edit the Vega-Lite program to generate 14 types of charts and use GPT-4o with textual
data tables to generate 10 types of tasks and corresponding answers, resulting in a total of 140,000 inputs for each
model to be evaluated. For evaluation, we consider the most representative models from four model categories and
their responses are automatically evaluated by GPT-4o in text format.

variety of data types and relationships. Please refer164

Appendix A.1 for more details.165

2.2 Task Generation166

Given seed datasets, we instruct GPT-4o to instan-167

tiate tasks based on the textual data table. During168

evaluation, only chart images and task texts are pro-169

vided. Following prior work (Saket et al., 2019) on170

human graphical perception, we design 10 types of171

tasks for each dataset, as shown in Table 1. These172

tasks are designed to cover a broad spectrum of173

graphical perception skills, ranging from a single174

data point (e.g., T1), to multiple data points (e.g.,175

T4), and to an entire dataset (e.g., T10). This de-176

sign allows us to evaluate how well models handle177

increasing levels of task complexity. Appendix A.2178

shows the detailed task generation prompt.179

2.3 Evaluation Targets180

Given the extensive variety of LMMs with different181

vision and language backbones, a comprehensive182

evaluation and analysis of all models may not be183

feasible. Therefore, we focus on four categories184

of models: proprietary, open-source, lightweight,185

and chart-specialized LMMs. We select the most186

representative model from each category for de-187

tailed evaluation and study, based on the aver-188

aged results reported on prior chart-included bench-189

marks (Wang et al., 2024b; Yue et al., 2024a).2190

GPT-4o (OpenAI, 2024), one of the strongest191

proprietary general-purpose model, represents the192

SOTA in LMMs. Benchmarking GPT-4o allows193

2Though we focus on four models in the main paper, our
framework can easily extend to other models, showing consis-
tent conclusions (Table E1).

us to evaluate the performance of the latest model 194

in chart tasks, providing a reference point for com- 195

parison with other models in this domain. In- 196

ternVL2 (Chen et al., 2024b) is one of the best 197

open-source general-purpose LMMs. It is built 198

upon Llama3.1 (Dubey et al., 2024) and has a to- 199

tal of 76B parameters. Evaluating InternVL2 can 200

show the gap between open-source models and 201

GPT-4o. Phi-3.5-Vision (Abdin et al., 2024) is 202

selected as a strong lightweight general-purpose 203

LMM, with only 4.2B parameters. With Phi-3.5, 204

we can evaluate whether models with smaller vi- 205

sion backbones can reach decent levels of percep- 206

tion. ChartAssistant (Meng et al., 2024) is the 207

best chart-specialist model. It is continually trained 208

with the LLaVA-13B (Liu et al., 2023) on a mas- 209

sive amount of chart datasets, including the original 210

VisText dataset. With this specialist model, we can 211

measure the benefits of in-domain training in en- 212

hancing perception and generalization abilities. 213

2.4 GPT-4o-Aided Evaluation 214

We employ GPT-4o as an automated text evalua- 215

tor, which is particularly useful when models be- 216

ing evaluated output varied answer formats, such 217

as chain-of-thought reasoning format (Wei et al., 218

2022), or when dealing with open-ended tasks. 219

GPT-4o evaluates responses by comparing the tex- 220

tual responses of models against the predefined an- 221

swer, which is generated automatically by GPT-4o 222

based on textual representation of the data and chart 223

program that do not need visual perception. The 224

evaluation process is guided by a detailed rubric 225

designed for different task types. For example, in 226

Retrieve Value tasks, answers are considered accu- 227
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Task Description

T1. Retrieve Value Retrieve the value of a given attribute for a specific data point.
T2. Find Extremum Identify the maximum or minimum value of a specified attribute.
T3. Find Anomalies Detect anomalies in the dataset regarding a given relationship or expectation.
T4. Determine Range Determine the range of values for a given attribute.
T5. Find Correlation Identify any correlation between two data attributes.
T6. Compute Derived Value Compute a derived value from a set of data points.
T7. Filter Filter the data points based on specific conditions.
T8. Order Order the data points according to a numerical attribute.
T9. Find Clusters Find clusters of similar attribute values.
T10. Characterize Distribution Characterize the distribution of a data attribute over a given set.

Table 1: All 10 task types, ranging from a single data point (T1) to an entire dataset (T10).

rate if they are within a 5% margin of the correct228

value. For order-based tasks, such as ranking items,229

the model must return the exact sequence expected,230

while other list-based tasks do not require specific231

ordering. Evaluation outcomes are categorized into232

accurate, fair, skipped, inaccurate, and n/a. Please233

refer to Appendix A.3 for more details.234

To calibrate GPT-4o’s evaluation process, we235

use a 10-shot demonstration (Brown et al., 2020)236

that includes examples of textual data tables, tasks,237

reference answers, model responses, and expected238

evaluations. This calibration helps ensure consis-239

tency and accuracy in evaluation. We manually240

review GPT-4o’s and Claude’s evaluations of the241

same 200 questions for each of the four models.242

Table B1 shows GPT-4o can achieve 99.0% evalu-243

ation accuracy on average without noticeable bias244

across different models. This establishes a reliable245

foundation for our evaluation framework.246

3 RQ1: Can SOTA LMMs Generalize247

Across Diverse Chart Types?248

Takeaways: No.

• Despite showing decent performance on spe-
cific chart types, LMMs struggle with variants of
the same charts, showing limited generalization.
• LMMs heavily rely on explicit numerical an-
notations, performing significantly worse when
annotations are removed.

249

In this section, we analyze the performance of250

models at the chart-type level, where we compare251

models’ performance in solving tasks with data rep-252

resented in different chart types (line, bar, scatter,253

with and without explicit numerical annotations).254

Despite the data being presented differently across255

charts, the models are expected to achieve similar256

performances due to the simplicity of the charts,257

similar to human performance (Table E1). Fig-258

ure C1 shows chart examples used in this section.259

3.1 Charts w/ Numerical Annotations 260

0
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60

80

100 GPT-4o

0

20

40

60

80

100 InternVL2-Llama3-76B

T1 T2 T3 T4 T5 T6 T7 T8 T9 T100

20

40

60

80

100 Phi-3.5-Vision-Instruct

T1 T2 T3 T4 T5 T6 T7 T8 T9 T100

20

40

60

80

100 ChartAssistant

Bar (Anno) Line (Anno) Scatter (Anno) Pie Table

Figure 3: Accuracy of models on different types of
charts with numerical annotations given the same 10
types of tasks. The dotted line refers to the average
performance by chart type and color refers to the given
chart type, and T-i indicates the i-th task in Section 2.2.

Figure 3 presents the performance of models on 261

different types of charts with numerical annotations 262

given the same tasks, from which we observe: 263

(1) A significant performance gap exists for the 264

same model when interpreting different types of 265

charts containing the same information, suggest- 266

ing that these models lack generalization across 267

chart types. For example, GPT-4o consistently per- 268

forms the best overall, yet shows a clear prefer- 269

ence for Bar (Anno) over Pie charts (85.0% vs. 270

69.1%). This indicates that while GPT-4o excels 271

in understanding some chart types, it still relies 272

on specific visual structures to achieve its highest 273

performance. Meanwhile, InternVL2 and Phi-3.5, 274

the open-source general-purpose models, perform 275

best when presented with table images. This obser- 276

vation suggests that these models might be specifi- 277

cally optimized for structured data. However, the 278

performance gaps of these models between differ- 279

ent chart types are even larger, with up to 21.7% 280

for InternVL2 and 28.9% for Phi-3.5, highlighting 281

a stronger dependency on specific visual structures. 282

(2) Despite being trained on a wide range of chart- 283

related datasets and tested on simplified versions 284
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Single Element Multiple Elements

Length (↔) Color ( ) Size ( ) Position (⋆) ↔, ⋆ , ⋆ ↔, , ⋆ ↔, , , ⋆

Toy Chart

20
12

20
13

Year

0.16

20
12

20
13

Year

0.12
0.14
0.16

0.18

0.20

Fees

20
12

20
13

Year

0.0

0.1

0.2

Fe
es

20
12

20
13

Year

0.0

0.1

0.2

Fe
es

20
12

20
13

Year

0.0

0.1

0.2

Fe
es 0.12

0.14
0.16

0.18

0.20

Fees

20
12

20
13

Year

0.0

0.1

0.2

Fe
es

GPT-4o 17.6 21.1 22.6 41.2 22.9 24.4 53.4 27.7
InternVL2 18.3 20.7 21.1 33.4 25.2 24.1 45.9 26.5
Phi-3.5 17.8 18.9 19.6 27.9 21.2 20.9 32.4 22.7
ChartAssistant 12.3 14.0 13.6 25.4 19.2 17.4 33.9 18.5

Table 2: Overall accuracy of models given charts rendering values with single or multiple visual elements. In
multiple-element charts, a value is redundantly encoded through different elements. For example, the size, the
position of top part, and the length of a bar are all proportional to the value. In particular, we provide additional
guidance to LMMs for reading uncommon charts.

of its training data, ChartAssistant underperforms285

general-purpose models and struggles to generalize286

across chart types. Its relatively better performance287

on Bar (Anno) can be attributed to the fact that bar288

charts make up 44.3% of its training data. This289

raises concerns about the effectiveness of chart-290

specific training for generalization.291

(3) Models show significant performance varia-292

tions across the ten tasks (T1 to T10), and task293

complexity amplifies inconsistencies across chart294

types. For example, GPT-4o performs relatively295

consistently across all tasks when given Bar (Anno)296

charts. However, when interpreting Pie charts, its297

performance varies dramatically, with a gap of298

up to 48% between simpler tasks like Determine299

Range (T4, 93%) and more complex tasks like Or-300

der (T8, 46.3%). A similar trend is observed in the301

other two general-purpose open-source models.302

These observations highlight the importance of303

improving graphical perception across a broader304

range of chart types to generalize LMMs in real-305

world applications where diverse charts appear in306

various forms. Appendix D shows detailed results.307

3.2 Charts w/o Numerical Annotations308

Bar Line Scatter
w/ Anno. w/o Anno. ∆ w/ Anno. w/o Anno. ∆ w/ Anno. w/o Anno. ∆

GPT-4o 85.0 53.4 -31.6 72.6 42.8 -29.8 75.1 41.2 -33.9

InternVL2 57.6 45.9 -11.7 46.4 33.0 -13.4 49.0 33.4 -15.6
Phi-3.5 52.2 32.4 -19.8 44.7 26.0 -18.7 46.2 27.9 -18.3
ChartAssistant 36.6 33.9 -2.7 28.5 25.9 -2.6 27.0 25.4 -1.6

Table 3: Overall accuracy of models given the charts
with and without explicit numerical annotations. Exem-
plar charts are shown in Figure 2 and Figure C1.

Table 3 shows the performance differences of309

models when transitioning from charts with nu-310

merical annotations (w/ Anno.) to charts without311

annotations (w/o Anno.). GPT-4o shows the most312

significant drop in performance across all chart313

types when numerical annotations are removed,314

with an average performance decrease of 31.8% 315

across the three chart types. This indicates that 316

GPT-4o, despite being a leading model, still strug- 317

gles to accurately perceive charts without the aid of 318

numerical annotations. Similarly, Phi-3.5 and In- 319

ternVL2 exhibit substantial performance declines. 320

Additionally, Phi-3.5 shows a greater decline in 321

performance compared to InternVL2 (e.g., -18.9% 322

vs. -13.6% on average), showing that lightweight 323

LMMs may have weaker generalization abilities 324

than larger models when faced with charts lacking 325

explicit numerical cues. These observations show 326

the importance of developing LMMs that are less 327

reliant on numerical annotations as many complex 328

charts in real-world scenarios do not include such 329

annotations. See Appendix D for detailed results. 330

4 RQ2: Do LMMs Learn Generalizable 331

Visual Elements Beyond Patterns? 332

Takeaways: No. Superficial Chart Patterns Only

• LMMs achieve relatively decent performance
only when given specific combinations of visual
elements but struggle even when generalizing to
very similar charts, showing their lack of robust
understanding of fundamental visual elements.

333

Visual elements (Bertin, 1967; Cleveland and 334

McGill, 1984; Munzner, 2014) are the core build- 335

ing blocks of data visualization, defining how quan- 336

titative values in charts are visualized. Following 337

prior work on human, we use four fundamental 338

visual elements that are widely used to represent 339

data values in charts: the position of a point (e.g., 340

the top part of a bar), the length of a rule (e.g., bars 341

or lines), the size of a region (e.g., the area of a 342

bar), and the saturation of a color. By systemati- 343

cally analyzing models’ results on charts composed 344

of these elements, we aim to assess how each ele- 345
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InternVL2 Phi-3.5

■ □

Correct 52 2
Incorrect 34 12

(a) Bar

■ □

Correct 79 2
Incorrect 13 6

(b) Bar (Anno)

■ □

Correct 29 6
Incorrect 51 14

(c) Bar

■ □

Correct 72 1
Incorrect 23 4

(d) Bar (Anno)

Table 4: Correctness at retrieving values in the Retrieve Value task (table rows) depends on whether an LMM
correctly identifies important chart regions (table columns). Identifying important regions is measured by whether
the groundtruth labeled regions are covered (■) or not covered (□) by the LMM’s feature importance map for
value retrieval. Important regions are successfully identified more often for Bar (Anno) charts (b & d). Sometimes,
important regions are successfully identified but the model fails to retrieve the correct value (red).

ment—or a combination thereof—impacts model346

perception, identifying which visual elements are347

most effective or challenging for current models.348

Particularly, as some of the generated charts may349

not be common, we provide guidelines on how to350

interpret these charts for LMMs.351

Table 2 presents the performance of models352

when interpreting charts rendered with single or353

multiple basic visual elements. We observe:354

(1) LMMs suffer from basic visual element under-355

standing. Across the board, models show relatively356

poor performance when interpreting charts that rely357

on a single visual element, such as length, color,358

or size. For example, GPT-4o achieves only 17.6%359

accuracy on charts using length alone, despite oth-360

erwise strong performance. This indicates a funda-361

mental challenge for LMMs in extracting quantita-362

tive values from basic visual elements, potentially363

limiting their abilities when comprehending com-364

plex charts where such elements are used.365

(2) Surprisingly, the addition of redundant visual366

elements often hurt model performance. For ex-367

ample, while using position only results in decent368

performance (e.g., GPT-4o scores with 41.2% ac-369

curacy), rendering values via size at the same time370

( , ⋆) hurts the performance dramatically across all371

models. Although the size can be more straightfor-372

ward than position for tasks like ordering, LMMs373

clearly fail to leverage the advantages of various374

visual elements in most of the times. This sug-375

gests that the presence of multiple visual elements376

may overwhelm the models’ capacity to prioritize377

relevant visual cues, leading to confusion and mis-378

interpretation of the data.379

(3) LMMs often fail to generalize effectively across380

charts that use similar visual elements. For in-381

stance, models show strong performance on bar382

charts that combine position, length, and size (↔,383

, ⋆), but struggle with similar charts that only use384

position and length (↔, ⋆). This suggests that mod-385

els excel only with specific combinations of visual386

elements and lack the robustness needed to transfer 387

this understanding to slightly altered visualizations. 388

Overall, these results demonstrate that current 389

LMMs merely follow specific and superficial per- 390

ception patterns for common charts such as scatter 391

(⋆) and bar (↔, , ⋆), while struggling to gener- 392

alize beyond these familiar chart patterns. This 393

highlights the necessity of improving models’ un- 394

derstanding of fundamental visual elements beyond 395

specific chart types, leading to better generalization 396

and perception. Appendix D show detailed results. 397

5 RQ3: Explanation of Limitations on 398

Graphical Perception Patterns 399

Takeaways: Imprecise Value Referencing.

• LMMs often correctly localize the important
regions in the bar charts for value retrieval (e.g.,
data points, axes), but fail to accurately cross
reference the specific values, especially in charts
without explicit number annotations.

400

To understand the perception mechanisms of 401

LMMs, we conduct a pixel-level analysis to exam- 402

ine which specific regions of the charts that models 403

attend to when generating responses. This analy- 404

sis aims to test whether LMMs correctly attend to 405

important regions and cross reference the values of 406

the chart for the most basic Retrieve Value task. 407

5.1 Methodology 408

Faithfully interpreting transformer-based models 409

remains an open problem (Bereska and Gavves, 410

2024; Singh et al., 2024), particularly in the con- 411

text of newly emerging LMM capabilities. In 412

our analysis, we seek to use techniques that are 413

model-agnostic, i.e., they can be applied to a black- 414

box model without access to its weights or activa- 415

tions. The most popular model-agnostic interpre- 416

tation techniques generally require many calls to 417

the model with different corruptions (Ribeiro et al., 418

2016; Lundberg, 2017), which are computationally 419
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(a) Labeled Regions
Bar (b) Heatmap-InternVL2

Response: “9,000" (■) (c) Heatmap-Phi-3.5
Response: “9,000" (■)

(d) Labeled Regions
Bar (Anno) (e) Heatmap-InternVL2

Response: “10337.4" (■) (f) Heatmap-Phi-3.5
Response: “10337.4" (■)

Figure 4: Examples of labeled regions and importance heatmaps for two models on Bar and Bar (Anno) charts.
Given “What is the value of total assets in billion yuan for the year 2010?”, both models successfully locate most
labeled important regions on both the Bar (Anno) and Bar charts but fail to reference the correct y-axis values on
the Bar chart. The correct answer is “10337.4.”

expensive for large LMMs like GPT-4o. We use a420

simplified, more efficient version of these methods421

that occludes different regions of the input image422

one at a time and measures the model’s response.423

Specifically, we manually select 100 pairs of Bar424

and Bar (Anno) charts and label the important re-425

gions for the Retrieve Value task. Each image is di-426

vided into 144 non-overlapping regions and we cor-427

rupt each region one at a time by changing its pixels428

to the background color. We then calculate the dif-429

ference in generated token logits between the intact430

chart and the corrupted version for each model.431

We use the normalized logit difference as a mea-432

sure of the feature importance of the region for the433

generated tokens. We aggregate these region-level434

feature importances into a heatmap and measure435

whether the high-importance regions cover most of436

the groundtruth labeled regions (Intersection over437

Union ≥ 50%) to determine whether models use438

these important regions.439

5.2 Results440

Table 4 shows that both InternVL2 and Phi-3.5441

are quite effective at localizing important regions442

when given Bar (Anno) charts. As long as the mod-443

els can identify regions with the correct numbers,444

they generally generate correct responses, proving445

their reliance on explicit number annotations for 446

accurate value retrieval shown in Section 3. When 447

annotations are removed (Bar), both models of- 448

ten still correctly locate the important regions but 449

struggle to precisely refer to the values from the 450

value-axis. Figure 4 illustrates this behavior. In 451

the Bar (Anno) chart (Figures 4d-4f), both models 452

accurately identify important regions and gener- 453

ate correct responses. In contrast, on Bar charts 454

(Figures 4a-4c), although they focus on the right 455

areas, their responses are far from correct. In ad- 456

dition, Phi-3.5 tends to be more easily influenced 457

by non-important regions compared to InternVL2, 458

showing that lightweight models may be more sen- 459

sitive to visual information irrelevant to the given 460

task, leading to less favorable results shown in Fig- 461

ure 3. More analysis can be found in Appendix B. 462

6 Discussion 463

In this section, we study SOTA LMMs with more 464

complex charts from the perspective of the number 465

of data points and the data dimensions. Both show 466

current LMMs are unable to handle complex charts. 467

6.1 Results on More Data Points 468

To measure the impact of the number of data points 469

on LMMs’ graphical perception abilities, we ran- 470
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Figure 5: Overall accuracy of GPT-4o given 100
datasets with different sampled data points.

domly sample 100 datasets, each containing at least471

20 data points. We then systematically reduce the472

number of data points into three buckets: [1, 5],473

(5, 10], and (10, 20], and observe how model per-474

formance varies across common chart types rep-475

resenting these data points. Figure 5 shows the476

overall accuracy of GPT-4o when tested on 100477

datasets. As the number of data points increases,478

the performance consistently declines across all479

chart types, highlighting the model’s sensitivity to480

data density. Notably, Bar (Anno) charts exhibit481

the steepest drop in accuracy, suggesting that while482

numerical annotations aid graphical perception in483

simpler cases, the presence of more data points484

and numbers overwhelms the model’s ability to485

effectively perceive the charts.486

6.2 Results on Multi-Dimensional Dataset487

We select 100 datasets from ChartLLM (Ko et al.,488

2024), ensuring each dataset contains three data489

dimensions (e.g., Nominal-Numerical-Nominal)490

with a controlled number of data points. These491

datasets are then manually edited to create the pop-492

ular chart types of interest: bar, line, and scatter.493

Figure 6 compares the performance of various mod-494

els when understanding two-dimensional (2D) and495

three-dimensional (3D) datasets across different496

chart types. The results indicate a notable perfor-497

mance drop when models are tasked with three-498

dimensional data visualization, particularly for bar499

and scatter charts. GPT-4o performs the best over-500

all but still shows significant degradation when501

moving from 2D to 3D visualizations. InternVL2502

and Phi-3.5 show similar trends, though Phi-3.5503

is relatively more robust than other models. Char-504

tAssistant performs poorly overall, with minimal505

adaptability between 2D and 3D contexts. These506

findings indicate that current LMMs cannot fully507

understand advanced data visualizations yet. Fig-508

ure C3 shows concrete examples.509

GPT-4o InternVL2.0 Phi-3.5-Vision ChartAssistant
Models

0

10

20

30

40

50 Bar-3D
Line-3D
Scatter-3D

Bar-2D
Line-2D
Scatter-2D

Figure 6: Overall accuracy comparison of four LMMs
when given two- and three-dimensional datasets.

7 Related Work 510

Graphical Perception Graphical perception 511

refers to interpreting data through basic visual 512

elements like position and color (Cleveland and 513

McGill, 1984). Follow-up studies expanded this 514

to evaluate human perception across various data 515

types (Heer et al., 2009; Javed et al., 2010), 516

tasks (Saket et al., 2019), and charts (Heer and 517

Bostock, 2010). Prior work tests vision-only mod- 518

els’ perception (Haehn et al., 2019), but LMMs 519

remain under-explored. 520

LMMs and Their Benchmarks LMMs have 521

progressed from early vision-language models (Tan 522

and Bansal, 2019) to unified frameworks (Ope- 523

nAI, 2024; Liu et al., 2024). Many LMM bench- 524

marks implicitly assess graphical perception as part 525

of broader tasks (Wang et al., 2024b; Yue et al., 526

2024a). Another benchmark line evaluates general 527

visual perception using repurposed vision tasks (Fu 528

et al., 2024; Tong et al., 2024), but these focus 529

on natural images and lack detailed assessment of 530

graphical perception. Our work fills this gap with 531

a direct, isolated graphical perception evaluation. 532

8 Conclusion 533

This work introduces a comprehensive and config- 534

urable evaluation framework for automatically mea- 535

suring the graphical perception abilities of LMMs, 536

offering fine-grained insights into current LMMs. 537

Our findings reveal that these models struggle to 538

generalize across chart types, understand funda- 539

mental visual elements, and cross reference values 540

in charts. Future work may leverage this framework 541

to synthesize diverse data for training and testing 542

on a wider range of tasks, potentially improving 543

graphical perception and general visual reasoning. 544

We hope the framework and these findings can help 545

guide the development of LMMs with more gener- 546

alizable perception abilities in the future. 547

8



Limitations548

A limitation of this work is that we focus only four549

models in the main paper. However, our framework550

is easily extendable to other LMMs and yields con-551

sistent conclusions across them, as shown in Ta-552

ble E1. Our selection prioritizes representativeness553

by including proprietary, open-source, lightweight,554

and chart-specialized models, rather than aiming555

for exhaustiveness. Instead of benchmarking a556

large number of models, our goal is to investigate557

a diverse yet focused set of LMMs in detail to558

uncover fine-grained limitations from multiple per-559

spectives.560

Another limitation is that, while related works561

have also explored perceptual weaknesses in562

LMMs, they primarily focus on abstract IQ-test-563

style figures (Li et al., 2024; Rahmanzadehgervi564

et al., 2024) or natural images (Fu et al., 2024; Tong565

et al., 2024). These efforts often lack a comprehen-566

sive evaluation framework or a guiding theory to567

systematically support benchmark design. In con-568

trast, our work is grounded in the well-established569

theory of graphical perception, which enables struc-570

tured and principled evaluation. We further con-571

tribute an automated evaluation framework that572

supports consistent, scalable analysis. Additionally,573

we focus on structured chart-based perception—a574

more practical and underexplored domain that is575

critical for real-world applications.576

Finally, we do not aim to provide a mechanistic577

or theoretical explanation for the observed limita-578

tions. Instead, we contribute a general and auto-579

mated framework for systematically probing graph-580

ical perception across models as a first step. To581

maintain broad applicability, we intentionally adopt582

model-agnostic interpretability methods that can be583

applied to both proprietary and open-source LMMs.584

More targeted causal or theoretical studies are left585

for future work.586
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Appendix769

The appendix includes the following sections:770

• Section A: Framework Details including Dataset Generation A.1, Task Generation A.2, Evalua-771

tion Rubrics A.3, and Model Evaluation A.4.772

• Section B: More Case Studies and Analysis for RQ3.773

• Section C: More Chart Examples.774

• Section D: Full Experiment Results in the Main Paper.775

• Section E: More Results on Latest Models and Human Performance.776

A Framework Details777

A.1 Dataset Generation Details778

The datasets we use include three major types of data attributes: (1) Nominal Attributes: Categorical779

variables that represent distinct labels without an inherent order (e.g., country, movie genres). (2) Ordinal780

Attributes: Variables that have a meaningful order or ranking but no fixed intervals between values (e.g.,781

movie ratings, years). (3) Numerical Attributes: Continuous variables that allow for the calculation of782

differences and other mathematical operations (e.g., exhibition space in Figure 2). To ensure simplicity,783

each dataset has at most two data dimensions (i.e., a nominal attribute paired with a numerical attribute or784

an ordinal attribute paired with a numerical attribute). In addition, the number of data points is limited to 5.785

These constraints allow us to evaluate the models’ graphical perception capabilities without overwhelming786

them with complex visuals.787

In terms of dataset generation license, we use Vega-Lite (Satyanarayan et al., 2017), an open-source788

software library, in this project. Vega-Lite is licensed under a BSD 3-Clause License, which permits789

redistribution and use with or without modification under specified conditions. We also use the VisText790

dataset (Tang et al., 2023), which is released under the GPL-3.0 license. Our use is consistent with its791

intended purpose for academic research. We modify and repurpose the original dataset to align with the792

goals of our evaluation framework, and the resulting artifacts are used strictly within a research context.793

Any derivatives remain under the same license terms, and we will release them accordingly for academic794

use.795
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A.2 Task Generation 796

Task Generation Prompt (with text input only)

You are a teacher to provide problems for students to solve. The problems are about understanding data and visualizations.
We will provide you with an input data, a Vega-Lite program, and a task type that the understanding task should base on.
You will need to design a chart understanding task contextualized in the given data and chart.

Design the task based off one of the following idioms:
• Retrieve Value: For this task, ask students to identify values of attributes for given data points. For example, what is
the value of horsepower for Mazda CX50?
• Find Extremum: For given concrete conditions on data attribute values, ask students to find data points satisfying those
conditions. For example, which car types have the most city miles per gallon?
• Find Anomalies: ask students to identify any anomalies within a given set of data points with respect to a given
relationship or expectation. For example, which car types have abnormally low MPG?
• Determine Range: For a given set of data points and an attribute of interest, ask students to find the span of values
within the set. For example, what is the range of car prices?
• Find Correlation: for a given set of two data attributes, ask students to determine if there is a correlation between them.
For example, is there a strong correlation between car price and MPG?
• Compute Derived Value: for a given set of data points, ask students to compute an aggregate value of those data points.
For example, what is the sum of the budget for the action and the sci-fi movies?
• Filter: For given concrete conditions on data attribute values, ask students to find data points satisfying those conditions.
For example, which car types have miles per gallon ranging from 20 to 40?
• Order: For a given set of data points, ask students to rank them according to a specific ordinal metric. For example, list
the car types based on their MPG from low to high.
• Find Clusters: for a given set of data points, ask students to count the number of groups of similar data attribute values.
For example, how many different car brands are shown in the chart below?
• Characterize Distribution: for a given set of data points, ask students to identify the distribution of that attribute’s
values over the set. For example, what percentage of the cars with MPG higher than 30?

You need to match the following requirements:
1. The task should be reasonable, and it should not exceed one sentence, and it should be contexualized in the given

data.
2. The task should be achievable by reading the visualization without referring other tools.
3. The task should be self-contained with the given dataset, it should not require student to look up external information.
4. Each task should have a standard answer, avoid generating questions like “compare two values of your choice."
5. Try not to repeat the verb for each task to maximize diversity.

Create a [Task] based off the [Data Summary] and [VegaLite Script] provided.
The response should be in a json format:
{"reason":...,"tasks":[{"description":...,"type":...},...]}, including how you design the task and the
actual task description.
Generate 10 tasks at once.

For example:
[Data Summary]

|Date |Location
0|5/12/2009|Houston, TX
1|4/18/2009|McAllen, TX
2|7/11/2009|Indianapolis, IN
3|11/14/2009|Kansas City, MO|MO
4|3/12/2010|Chicago, IL|IL
...

{Task Demonstration}

797
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A.3 Evaluation Rubrics798

Evaluation Prompt (with text input only)

You are a teacher to grade students’ answers. We will provide you a dataset, a list of tasks and student answers. Your
goal is to use the dataset to evaluate if the student’s answer is correct. In order to form a good judgement, you should
first use the dataset to derive your answer, and then compare it with the students asnwer.

When you generate the referenece answer:
* If the task asks for a value, provide the value directly.
* If the task asks for trend or correlation, answer it with one of “increasing", “decreasing" if the general trend point to
the direcrtion, otherwise provide "unclear".
* Provide a brief reasoning of how you come up with your answer in “reasoning" part.
* If you cannot answer a question, provide “I don’t know" as the answer, try not to provide a wrong answer.

When evaluating student’s answer:
The student_answer_correctness should include the grading results of the student’s answer and must be one of the
following options:

- correct
- fair (somewhat close but not precise)
- incorrect
- skipped (if the student skipped the answer)
- n/a (if the task does not make sense or is not answerable with the given dataset)

Note that if the student’s answer (value) is an approximation within 5% of your reference answer, it is considered as
correct. If is is an approximation within 20% of your reference answer, it is fair.
For order-based tasks, such as ranking items, the student answer must match the expected orders you found. However,
for list-based tasks where order is not important, the specific sequence does not need to match as long as all relevant
items are included.

Grade student questions based on [Data], [Tasks & Student Answers].
The output json should have the format:
[{“reasoning": ...,

“reference answer": ...,
“comparison_with_student_answer": ...,
“student_answer_correctness": ...},

...]

For example:
{Evaluation Demonstration}

799

We manually review GPT-4o’s and Claude’s evaluations of the same 200 questions for each of the four800

models. Table B1 shows that both evaluators are consistent and accurate, confirming the reliability of our801

findings.802

Model GPT-4o Acc. (%) Claude-3.5-Sonnet Acc. (%)

GPT-4o 99.0 98.5
InternVL-2 99.5 98.0
Phi-3 99.0 97.5
ChartAssistant 98.5 98.5

Table B1: Evaluation accuracy of GPT-4o and Claude-Sonnet.

A.4 Model Evaluation/Inference803

For each model, we explored prompt design before large-scale evaluation by using default system prompt804

and prompts used in prior works. We found that using different prompts does not lead to notably different805

results, since our charts and tasks are fairly simple and straightforward, and our findings hold across806

various prompts for general-purpose LMMs. Therefore, to ensure a fair and consistent comparison,807

we use the same prompt (shown below) for all general-purpose LMMs and the specified prompt for808

ChartAssistant. Our general prompt covers the requirements for each task type.809
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Model Inference Prompt

You are an expert in answering questions based on charts. We will provide you with a chart and a question. Your goal is
to read the chart and answer the question.
* If the question asks for a value, read the chart and provide the value directly. If you have trouble reading the exact
value, provide a close estimate and indicate “approximately".
* If the question asks for a trend, answer it with one of “increasing", “decreasing" if the general trend points in the
direction, otherwise provide "unclear".
* Provide a brief reasoning of how you come up with your answer in "reasoning" part. * If you cannot answer a question,
provide "I don’t know" as the answer, try not to provide a wrong answer.
* Answer your question based on [Chart] and [Tasks]. The output json should have the format {"reasoning”: ..., “anwer”:
...}. ...

810

B More Case Studies for RQ3 811

(a) Labeled Regions-Bar (Anno) (b) InternVL2-Response: “0.4" (□)

Figure B1: Examples of labeled regions and importance heatmap of InternVL2 on a Bar (Anno) chart. Given the
task “Determine the share of leisure travelers for historical locations.”, InternVL2 incorrectly locates the bar for
“Experience fine dining," which is closely positioned near the correct one. As a result, it generates an imperfect
answer, 0.4. However, as this value is within 5% of the target value, 0.411, it is judged as correct according to the
evaluation rubric considering human perception.

Figure B1 demonstrates a case where models answer correctly even when not fully utilizing the 812

important regions. This shows that, region localization abilities of LMMs diminish when information is 813

rendered unusually, such as when categories are shown obliquely. 814

C Examples of Charts 815

We present one chart visualized in 14 different chart types used in the experiments in Figure C1 and 816

Figure C2. Additionally, we include our manually edited 3D chart examples in Figure C3. These charts 817

can also be used for direct comparisons of visual element perception, such as color hue vs. color luminance 818

in bar charts and color hue vs. texture in line charts. However, as current SOTA LMMs fail to achieve a 819

satisfactory level of accuracy, we are unable to obtain meaningful insights at this time. We leave further 820

exploration of LMMs’ visual element understanding in 3D charts for future work. 821
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(a) Bar (Anno) (b) Line (Anno) (c) Scatter (Anno)

(d) Bar (e) Line (f) Scatter

(g) Table (h) Pie

Figure C1: Cases of charts with and without numerical annotations. The Table is used as an image input for models
being evaluated.

(a) Length (↔) (b) Color ( ) (c) Size ( )

(d) (↔, ⋆) (e) ( , ⋆) (f) (↔, , , ⋆)

Figure C2: Cases of charts with single and multiple visual elements.
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(a) 3D Bar-Color Hue (b) 3D Line-Color Hue (c) 3D Scatter-Size

(d) 3D Bar-Color Luminance (e) 3D Line-Texture (f) 3D Scatter-Color Saturation

Figure C3: Cases of charts with three data dimensions (i.e., three different data attributes).
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D Full Results822

The detailed results of four representative LMMs on 10 tasks across 14 chart types used in Section 3 and823

Section 4 are shown in Tables D1, D2, D3, D4.824

w/ Number Annotated w/o Number Annotated Single Element Multiple Elements

Bar Line Scatter Pie Table Bar Line Scatter ↔ (↔, ⋆) ( , ⋆) (↔, , , ⋆)

T1 88.3 75.2 74.7 68.2 73.8 63.5 50.0 52.5 14.9 20.1 16.6 17.6 17.9 27.4
T2 87.4 64.3 63.6 54.6 60.7 65.9 48.3 40.6 25.3 30.6 37.4 35.0 35.5 44.2
T3 87.0 77.0 78.0 64.0 75.1 69.1 59.9 55.5 18.1 21.3 27.3 29.7 32.3 37.0
T4 90.6 89.5 92.5 94.3 86.5 46.8 46.2 41.8 1.6 3.0 0.7 1.9 1.6 1.7
T5 87.5 85.6 86.0 80.0 89.5 75.1 77.5 72.3 55.6 66.3 68.5 63.6 71.3 66.8
T6 77.6 79.4 84.1 77.9 74.3 21.0 15.4 16.5 7.0 5.3 4.9 7.4 6.5 7.4
T7 81.1 62.3 69.4 60.8 70.5 43.5 30.5 33.9 13.9 17.8 20.2 19.6 23.1 25.5
T8 78.3 41.9 45.4 46.3 61.6 36.0 14.1 14.6 1.4 3.9 3.8 4.3 3.2 5.6
T9 85.4 71.6 73.5 61.7 70.6 60.6 50.3 44.3 27.9 32.4 35.6 39.1 42.4 47.2
T10 87.6 80.0 84.5 84.2 87.4 55.6 39.5 44.4 11.5 13.1 12.8 11.7 12.8 15.1

Overall 85.0 72.6 75.1 69.1 74.7 53.4 42.8 41.2 17.6 21.1 22.6 22.9 24.4 27.7

Table D1: All results of GPT-4o (OpenAI, 2024) on 14 types of charts across 10 task types. The best result on each
task is marked in bold.

w/ Number Annotated w/o Number Annotated Single Element Multiple Elements

Bar Line Scatter Pie Table Bar Line Scatter ↔ (↔, ⋆) ( , ⋆) (↔, , , ⋆)

T1 72.3 65.4 66.1 61.9 84.5 51.9 38.9 40.5 33.7 40.9 37.3 33.7 40.9 40.5
T2 77.3 50.8 53.0 49.5 92.0 75.3 49.7 46.5 26.1 23.3 30.4 26.1 23.3 46.5
T3 51.3 44.3 44.5 32.7 51.8 52.4 43.5 39.3 11.7 15.5 18.8 11.7 15.5 39.3
T4 69.7 63.8 66.6 51.4 75.4 27.3 26.0 21.5 5.7 16.1 6.2 5.7 16.1 21.5
T5 49.6 45.0 53.5 37.8 53.2 42.6 45.0 45.5 41.6 42.0 42.0 41.6 42.0 45.5
T6 72.1 64.8 68.5 59.8 73.5 52.6 37.4 40.8 23.6 23.0 23.7 23.6 23.0 40.8
T7 40.9 30.4 31.2 25.4 50.8 35.8 20.6 24.0 8.1 10.1 12.6 8.1 10.1 24.0
T8 58.2 27.8 32.6 47.0 66.4 50.4 15.4 16.5 4.3 5.8 6.3 4.3 5.8 16.5
T9 34.9 32.2 34.7 26.0 39.0 34.8 27.3 30.4 14.4 17.3 20.9 14.4 17.3 30.4
T10 43.6 35.6 35.8 29.4 49.7 29.7 22.3 26.6 12.8 13.1 11.9 12.8 13.1 26.7

Overall 57.6 46.4 49.0 42.5 64.2 45.9 33.0 33.4 18.3 20.7 21.1 25.2 24.1 26.5

Table D2: All results of InternVL2 (Chen et al., 2024b) on 14 types of charts across 10 task types. The best result
on each task is marked in bold.
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w/ Number Annotated w/o Number Annotated Single Element Multiple Elements

Bar Line Scatter Pie Table Bar Line Scatter ↔ (↔, ⋆) ( , ⋆) (↔, , , ⋆)

T1 70.5 62.7 63.2 53.6 85.9 36.3 26.8 34.7 32.2 36.7 32.1 32.0 37.5 47.0
T2 72.7 53.6 52.9 30.7 90.3 59.7 38.5 40.6 21.0 22.6 26.1 31.2 28.5 33.6
T3 39.7 38.2 36.8 24.3 47.4 37.6 38.9 30.6 10.8 11.0 13.7 17.8 12.3 15.0
T4 70.6 67.4 66.5 51.2 54.8 14.6 13.1 14.3 8.9 15.3 9.0 11.7 9.6 10.8
T5 62.5 60.0 64.4 42.0 62.3 54.5 54.6 57.3 53.9 48.7 50.9 55.3 50.7 53.5
T6 66.8 62.4 66.1 53.5 76.4 27.6 18.7 27.1 19.2 17.5 17.8 17.4 19.8 21.3
T7 37.2 27.5 28.5 19.3 50.6 19.5 15.7 17.5 5.9 7.4 9.6 10.3 10.7 10.7
T8 40.7 24.1 27.8 21.6 73.7 27.5 10.3 15.1 6.6 7.6 9.3 7.4 9.9 8.0
T9 24.5 21.3 22.2 14.3 27.1 21.5 25.6 21.1 10.8 10.7 14.4 15.0 15.3 13.3
T10 32.1 26.3 29.8 14.5 41.5 21.6 17.2 19.7 9.6 12.2 13.8 13.7 15.1 14.2

Overall 52.2 44.7 46.2 32.7 61.6 32.4 26.0 27.9 17.8 18.9 19.6 21.2 20.9 22.7

Table D3: All results of Phi-3.5 (Abdin et al., 2024) on 14 types of charts across 10 task types. The best result on
each task is marked in bold.

w/ Number Annotated w/o Number Annotated Single Element Multiple Elements

Bar Line Scatter Pie Table Bar Line Scatter ↔ (↔, ⋆) ( , ⋆) (↔, , , ⋆)

T1 54.4 42.5 43.6 32.8 55.0 32.8 23.1 23.6 9.1 17.9 14.4 37.8 28.3 37.3
T2 70.2 46.1 43.2 28.0 42.9 70.1 42.6 44.4 22.9 24.0 25.2 34.7 30.2 35.8
T3 47.9 35.7 34.3 28.7 34.0 49.9 38.7 38.5 12.2 12.1 12.1 19.6 16.3 16.4
T4 25.7 20.7 22.3 11.1 21.6 8.2 6.6 6.9 0.7 2.5 1.5 2.6 1.3 1.9
T5 54.6 54.9 49.3 46.9 44.1 56.2 58.5 52.7 41.6 47.7 45.0 46.2 49.3 44.8
T6 28.1 21.5 20.9 18.1 15.7 32.1 24.0 25.5 7.3 7.0 9.3 13.2 12.6 13.3
T7 22.9 17.0 16.8 12.1 17.2 23.5 18.7 16.6 8.8 9.3 9.7 14.7 11.9 12.0
T8 14.7 5.9 5.2 4.1 29.6 14.4 3.7 3.9 0.8 1.1 2.6 1.4 2.2 1.0
T9 29.2 25.2 22.2 19.4 15.5 28.7 27.1 25.0 11.6 9.7 8.4 12.8 11.9 13.6
T10 14.5 13.8 12.2 10.6 10.0 17.5 13.5 14.2 8.2 9.3 7.2 9.2 10.8 8.7

Overall 36.6 28.4 27.0 21.2 28.5 33.9 25.9 25.4 12.3 14.0 13.6 19.2 17.4 18.5

Table D4: All results of ChartAssistant (Meng et al., 2024) on 14 types of charts across 10 task types. The best
result on each task is marked in bold.

E More Results on Latest Models and Human Performance 825

Our evaluation framework allows us to easily incorporate more recent models to assess their graphical 826

perception abilities. We extend our evaluation with Claude-3.5-Sonnet (Team, 2024), Gemini-1.5- 827

Pro (Gemini Team, 2024), and Qwen2-VL-72B (Wang et al., 2024a). As shown in Table E1, our main 828

findings still hold for these models. They remain unable to generalize well across chart types or effectively 829

understand fundamental visual elements that humans can easily do. 830

In terms of human performance, we invite 27 college-level crowdsourced workers in China to solve 831

the subset tasks used in our paper. Each worker is assigned one chart type and random tasks, ensuring 832

no two charts from the same dataset are seen to prevent answer leakage. The results in Table E1 show a 833

significant gap between the latest models and human performance. More importantly, humans perform 834

consistently across different chart types, while models exhibit strong variability, particularly struggling 835

with less common chart types. 836

w/ Number Annotated w/o Number Annotated Single Element Multiple Elements

Bar Line Scatter Pie Table Bar Line Scatter ↔ (↔, ⋆) ( , ⋆) (↔, , , ⋆)

Claude-3.5-Sonnet 85.7 78.8 77.5 80.2 95.2 68.7 55.1 59.6 20.8 23.7 23.1 33.2 28.0 34.4
Gemini-1.5-Pro 77.5 69.1 71.2 62.5 91.0 60.6 45.1 55.1 16.5 18.4 19.2 31.2 26.0 27.8
Qwen2-VL-72B 68.0 59.2 60.0 55.8 81.2 59.1 41.3 46.3 18.2 21.4 22.0 29.1 26.9 29.8

Human (1/10 Subset) 98.4 97.8 97.6 89.1 97.4 96.2 95.3 94.8 82.3 82.7 81.4 95.6 94.5 96.5

Table E1: Average performance across 10 task types on latest models.
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