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Abstract

Despite the promising results of large mul-
timodal models (LMMs) in complex vision-
language tasks that require knowledge, reason-
ing, and perception abilities together, we sur-
prisingly found that these models struggle with
simple tasks on infographics that require per-
ception only. As existing benchmarks primarily
focus on end tasks that require various abilities,
they provide limited, fine-grained insights into
the limitations of the models’ perception abili-
ties. To address this gap, we leverage the the-
ory of graphical perception, an approach used
to study how humans decode visual informa-
tion encoded on charts and graphs, to develop
an evaluation framework for analyzing gaps
in LMMs’ perception abilities in charts. With
automated task generation and response eval-
uation designs, our framework enables com-
prehensive and controlled testing of LMMs’
graphical perception across diverse chart types,
visual elements, and task types. We apply our
framework to evaluate and diagnose the percep-
tion capabilities of state-of-the-art LMMs at
three granularity levels (chart, visual element,
and pixel). Our findings underscore several
critical limitations of current state-of-the-art
LMMs, including GPT-4o: their inability to (1)
generalize across chart types, (2) understand
fundamental visual elements, and (3) cross ref-
erence values within a chart. These insights
provide guidance for future improvements in
perception abilities of LMMs.

1 Introduction

Large multimodal models (LMMs; OpenAl (2024);
Gemini Team (2023)) have shown human-level
results in a range of visual-language tasks (Yue
et al., 2024a; Lu et al., 2024), including complex
knowledge- and reasoning-intensive tasks over in-
fographics in scientific documents. However, we
surprisingly found these LMMs may fail to solve
some simple tasks on chart such as retrieving values
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Figure 1: Given “Identify the activity with the highest
share of leisure travelers.”, GPT-40 responds “Small
towns/countryside” (10/10) whereas the correct answer
is “Sightseeing.” For “What’s the share of travelers
who go shopping?”, the latest Claude-Sonnet-3.7 and
Grok-3 reply “0.411” (10/10), but the correct answer
is “0.763.” Despite significant recent improvements in
LMMs, their persistent perceptual limitations lead to
mistakes on tasks that are trivial for humans.

or finding the extremum in given charts, where hu-
mans can easily achieve near-perfect results (Saket
et al., 2019). Figure 1 shows an example.!

Given that existing models have shown impres-
sive object recognition and reasoning capabili-
ties (Yue et al., 2024a), we suspect existing LMMs’
under-performing in these simple chart understand-
ing tasks come from their limitations in graphi-
cal perception (Cleveland and McGill, 1984), the
essential perceptual ability that human leverage
to understand data-coded graphical elements in
charts. Existing benchmarks primarily focus on
overall task performance, often combining percep-
tion, knowledge, and high-level reasoning into a
single accuracy score. This metric serves as an
indirect proxy for measuring LMMSs’ perception of
charts—a high score may suggest good perception
abilities, but poor performance makes it unclear
whether the failure stems from perception errors,
lack of knowledge, reasoning flaws, or a combi-

'The original image is in the supplementary materials.



nation of these factors. Additionally, models may
not even need to perceive and reason about charts
to answer questions: as reported in recent stud-
ies, models can generate correct answers without
the visual input (Yue et al., 2024b; Chen et al.,
2024a). Finally, the way current models perceive
charts—especially their understanding of funda-
mental visual elements—remains unexplored in
existing work. Thus, it is desirable to systemati-
cally study models’ perception capabilities to un-
derstand factors limiting their performance in low-
level chart perception tasks.

In this paper, we leverage graphical percep-
tion (Cleveland and McGill, 1984), a theory orig-
inally developed to study human interpretation of
visual data in charts and graphs, to investigate mod-
els’ perception capabilities. For example, prior
studies on human graphical perception show that,
because humans can better perceive the length of
lines than area sizes when comparing values, we
can more efficiently and accurately read bar charts
than pie charts to answer questions about calculat-
ing the differences between two values based on
their visual representation in the charts. This moti-
vates us to evaluate models’ fundamental graphical
perception (e.g., perception of color, length, size)
to explore the limitations of current LMMs. To
achieve this goal, we test LMMs’ performance on a
range of chart perception tasks that involve reading
and interpreting data based on its visual represen-
tation across a diverse set of chart types (e.g., bar,
line, scatter, pie) and visual elements (e.g., color,
length, size). This approach could offer a direct and
comprehensive evaluation of models’ perceptual
abilities, especially helping us understand in what
aspects the models fail to generalize.

We introduce an evaluation framework specifi-
cally designed to assess the graphical perception
abilities of state-of-the-art (SOTA) LMMs (Ope-
nAl, 2024; Chen et al., 2024b; Abdin et al., 2024;
Meng et al., 2024). Our framework includes an
automated task generation and response evaluation
pipeline that synthesizes a diverse set of chart per-
ception tasks with different chart representations
from a set of seed datasets, allowing us to scale up
the evaluation with minimal human intervention.
With this framework, we evaluate SOTA LMMs in
a coarse-to-fine manner, ranging from chart-type-
level performance to the fundamental visual ele-
ments forming the charts, and to the pixel-level
analysis that reveals how models perceive specific
regions in the charts. Our goal is to understand

where and how models fail to generalize in their
perception of charts. Our research questions and
key findings are listed as follows.

RQ1: Can SOTA LMMs Generalize Across
Diverse Chart Types? LMMs exhibit significant
performance fluctuations depending on the chart
type and rely heavily on the explicit numerical an-
notations. LMMs cannot generalize across differ-
ent chart types, despite the simplicity and identical
information presented.

RQ2: Do LMMs Learn Generalizable and
Compositional Visual Elements Beyond Chart
Patterns? LMMs perform relatively well only
on charts with specific combinations of visual el-
ements (e.g., length, size, position) but struggle
to generalize to charts composed of similar visual
elements. This indicates that current LMMs do
not develop compositional graphical perception by
learning from common chart patterns, as their per-
formance drops significantly when we compose
new charts that require different combinations of
perception dimensions.

RQ3: Can We Explain LMMs’ Limitations
Based on Their Pixel-Level Perception Patterns?
While models often successfully locate important
regions required for solving simple tasks such as
retrieving values, their referencing of these values
can be imprecise, leading to only approximate out-
puts. This imprecision accumulates in more com-
plex tasks, such as ordering all the data points.

2 Evaluation Framework

The major difference between prior evalua-
tions (Masry et al., 2022; Wang et al., 2024b) and
ours is that we don’t aim to create a more chal-
lenging benchmark. Instead, as shown in Figure 2,
we propose a framework that automatically cre-
ates various charts with different visual elements
to evaluate and diagnose the graphical perception
abilities of current SOTA LMMs.

2.1 Chart Generation

In our framework, we utilize the VisText (Tang
et al., 2023) dataset as the primary data seed as
it covers diverse domains including sports, news,
etc. It includes both textual data tables and exem-
plar Vega-Lite programs (Satyanarayan et al., 2017)
which can be used to generate diverse rasterized
charts after lightweight editing. For later experi-
ments, we randomly sample 1,000 datasets from
VisText (e.g., one shown in Fig. 2), covering a wide
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Figure 2: Framework of data synthesis and evaluation with one dataset as an example. With randomly sampled
1,000 datasets as seeds, we edit the Vega-Lite program to generate 14 types of charts and use GPT-40 with textual
data tables to generate 10 types of tasks and corresponding answers, resulting in a total of 140,000 inputs for each
model to be evaluated. For evaluation, we consider the most representative models from four model categories and
their responses are automatically evaluated by GPT-40 in text format.

variety of data types and relationships. Please refer
Appendix A.1 for more details.

2.2 Task Generation

Given seed datasets, we instruct GPT-40 to instan-
tiate tasks based on the textual data table. During
evaluation, only chart images and task texts are pro-
vided. Following prior work (Saket et al., 2019) on
human graphical perception, we design 10 types of
tasks for each dataset, as shown in Table 1. These
tasks are designed to cover a broad spectrum of
graphical perception skills, ranging from a single
data point (e.g., T1), to multiple data points (e.g.,
T4), and to an entire dataset (e.g., T10). This de-
sign allows us to evaluate how well models handle
increasing levels of task complexity. Appendix A.2
shows the detailed task generation prompt.

2.3 Evaluation Targets

Given the extensive variety of LMMs with different
vision and language backbones, a comprehensive
evaluation and analysis of all models may not be
feasible. Therefore, we focus on four categories
of models: proprietary, open-source, lightweight,
and chart-specialized LMMs. We select the most
representative model from each category for de-
tailed evaluation and study, based on the aver-
aged results reported on prior chart-included bench-
marks (Wang et al., 2024b; Yue et al., 20244a).2
GPT-40 (OpenAl, 2024), one of the strongest
proprietary general-purpose model, represents the
SOTA in LMMs. Benchmarking GPT-40 allows

2Though we focus on four models in the main paper, our
framework can easily extend to other models, showing consis-
tent conclusions (Table E1).

us to evaluate the performance of the latest model
in chart tasks, providing a reference point for com-
parison with other models in this domain. In-
ternVL2 (Chen et al., 2024b) is one of the best
open-source general-purpose LMMs. It is built
upon Llama3.1 (Dubey et al., 2024) and has a to-
tal of 76B parameters. Evaluating InternVL2 can
show the gap between open-source models and
GPT-40. Phi-3.5-Vision (Abdin et al., 2024) is
selected as a strong lightweight general-purpose
LMM, with only 4.2B parameters. With Phi-3.5,
we can evaluate whether models with smaller vi-
sion backbones can reach decent levels of percep-
tion. ChartAssistant (Meng et al., 2024) is the
best chart-specialist model. It is continually trained
with the LLaVA-13B (Liu et al., 2023) on a mas-
sive amount of chart datasets, including the original
VisText dataset. With this specialist model, we can
measure the benefits of in-domain training in en-
hancing perception and generalization abilities.

2.4 GPT-40-Aided Evaluation

We employ GPT-40 as an automated text evalua-
tor, which is particularly useful when models be-
ing evaluated output varied answer formats, such
as chain-of-thought reasoning format (Wei et al.,
2022), or when dealing with open-ended tasks.
GPT-40 evaluates responses by comparing the tex-
tual responses of models against the predefined an-
swer, which is generated automatically by GPT-40
based on textual representation of the data and chart
program that do not need visual perception. The
evaluation process is guided by a detailed rubric
designed for different task types. For example, in
Retrieve Value tasks, answers are considered accu-



Task

Description

T1. Retrieve Value

T2. Find Extremum

T3. Find Anomalies

T4. Determine Range

T5. Find Correlation

T6. Compute Derived Value
T7. Filter

T8. Order

T9. Find Clusters

T10. Characterize Distribution

Retrieve the value of a given attribute for a specific data point.

Identify the maximum or minimum value of a specified attribute.

Detect anomalies in the dataset regarding a given relationship or expectation.
Determine the range of values for a given attribute.

Identify any correlation between two data attributes.

Compute a derived value from a set of data points.

Filter the data points based on specific conditions.

Order the data points according to a numerical attribute.

Find clusters of similar attribute values.

Characterize the distribution of a data attribute over a given set.

Table 1: All 10 task types, ranging from a single data point (T1) to an entire dataset (T10).

rate if they are within a 5% margin of the correct
value. For order-based tasks, such as ranking items,
the model must return the exact sequence expected,
while other list-based tasks do not require specific
ordering. Evaluation outcomes are categorized into
accurate, fair, skipped, inaccurate, and n/a. Please
refer to Appendix A.3 for more details.

To calibrate GPT-40’s evaluation process, we
use a 10-shot demonstration (Brown et al., 2020)
that includes examples of textual data tables, tasks,
reference answers, model responses, and expected
evaluations. This calibration helps ensure consis-
tency and accuracy in evaluation. We manually
review GPT-40’s and Claude’s evaluations of the
same 200 questions for each of the four models.
Table B1 shows GPT-40 can achieve 99.0% evalu-
ation accuracy on average without noticeable bias
across different models. This establishes a reliable
foundation for our evaluation framework.

3 RQ1: Can SOTA LMMs Generalize
Across Diverse Chart Types?

Takeaways: No.

e Despite showing decent performance on spe-
cific chart types, LMMs struggle with variants of
the same charts, showing limited generalization.
e L MMs heavily rely on explicit numerical an-
notations, performing significantly worse when
| annotations are removed.

J

In this section, we analyze the performance of
models at the chart-type level, where we compare
models’ performance in solving tasks with data rep-
resented in different chart types (line, bar, scatter,
with and without explicit numerical annotations).
Despite the data being presented differently across
charts, the models are expected to achieve similar
performances due to the simplicity of the charts,
similar to human performance (Table E1). Fig-
ure C1 shows chart examples used in this section.

3.1 Charts w/ Numerical Annotations

Bar (Anno) Line (Anno) Scatter (Anno) Pie Table

GPT-40 InternVL2-Llama3-768

Phi-3.5-Vision-Instruct ChartAssistant

TI T2 T3 T4 T5 T6 17 18 719 Ti0 TI T2 T3 T4 T15 T6 17 18 19 Ti0

Figure 3: Accuracy of models on different types of
charts with numerical annotations given the same 10
types of tasks. The dotted line refers to the average
performance by chart type and color refers to the given
chart type, and T-¢ indicates the i-th task in Section 2.2.

Figure 3 presents the performance of models on
different types of charts with numerical annotations
given the same tasks, from which we observe:

(1) A significant performance gap exists for the
same model when interpreting different types of
charts containing the same information, suggest-
ing that these models lack generalization across
chart types. For example, GPT-40 consistently per-
forms the best overall, yet shows a clear prefer-
ence for Bar (Anno) over Pie charts (85.0% vs.
69.1%). This indicates that while GPT-40 excels
in understanding some chart types, it still relies
on specific visual structures to achieve its highest
performance. Meanwhile, InternVL2 and Phi-3.5,
the open-source general-purpose models, perform
best when presented with table images. This obser-
vation suggests that these models might be specifi-
cally optimized for structured data. However, the
performance gaps of these models between differ-
ent chart types are even larger, with up to 21.7%
for InternVL?2 and 28.9% for Phi-3.5, highlighting
a stronger dependency on specific visual structures.
(2) Despite being trained on a wide range of chart-
related datasets and tested on simplified versions
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GPT-40 17.6 21.1 22.6 41.2 22.9 24.4 53.4 27.7
InternVL2 18.3 20.7 21.1 334 25.2 24.1 45.9 26.5
Phi-3.5 17.8 18.9 19.6 27.9 21.2 20.9 324 22.7
ChartAssistant 12.3 14.0 13.6 254 19.2 17.4 339 18.5

Table 2: Overall accuracy of models given charts rendering values with single or multiple visual elements. In
multiple-element charts, a value is redundantly encoded through different elements. For example, the size, the
position of top part, and the length of a bar are all proportional to the value. In particular, we provide additional

guidance to LMMs for reading uncommon charts.

of its training data, ChartAssistant underperforms
general-purpose models and struggles to generalize
across chart types. Its relatively better performance
on Bar (Anno) can be attributed to the fact that bar
charts make up 44.3% of its training data. This
raises concerns about the effectiveness of chart-
specific training for generalization.
(3) Models show significant performance varia-
tions across the ten tasks (T1 to T10), and task
complexity amplifies inconsistencies across chart
types. For example, GPT-40 performs relatively
consistently across all tasks when given Bar (Anno)
charts. However, when interpreting Pie charts, its
performance varies dramatically, with a gap of
up to 48% between simpler tasks like Determine
Range (T4, 93%) and more complex tasks like Or-
der (T8, 46.3%). A similar trend is observed in the
other two general-purpose open-source models.
These observations highlight the importance of
improving graphical perception across a broader
range of chart types to generalize LMMs in real-
world applications where diverse charts appear in
various forms. Appendix D shows detailed results.

3.2 Charts w/o Numerical Annotations

Scatter
A | w/Amo. wlo Anno. A

298] 751 412 33.9

Line
A | w/Anno.  w/o Anno.

72.6 428

Bar
w/ Anno.  w/o Anno.

85.0 534 31.6 ‘

459 11.7
324 19.8
339 27

GPT-40

InternVL2
Phi-3.5
ChartAssistant

57.6
522
36.6

46.4
447
285

33.0 13.4
26.0 18
259

49.0
46.2
27.0

334 15.6
279 18.3
254 1.6

Table 3: Overall accuracy of models given the charts
with and without explicit numerical annotations. Exem-
plar charts are shown in Figure 2 and Figure C1.

Table 3 shows the performance differences of
models when transitioning from charts with nu-
merical annotations (w/ Anno.) to charts without
annotations (w/o Anno.). GPT-40 shows the most
significant drop in performance across all chart
types when numerical annotations are removed,

with an average performance decrease of 31.8%
across the three chart types. This indicates that
GPT-4o, despite being a leading model, still strug-
gles to accurately perceive charts without the aid of
numerical annotations. Similarly, Phi-3.5 and In-
tern VL2 exhibit substantial performance declines.
Additionally, Phi-3.5 shows a greater decline in
performance compared to InternVL?2 (e.g., -18.9%
vs. -13.6% on average), showing that lightweight
LMMs may have weaker generalization abilities
than larger models when faced with charts lacking
explicit numerical cues. These observations show
the importance of developing LMMs that are less
reliant on numerical annotations as many complex
charts in real-world scenarios do not include such
annotations. See Appendix D for detailed results.

4 RQ2: Do LMMs Learn Generalizable
Visual Elements Beyond Patterns?

Takeaways: No. Superficial Chart Patterns Only

o L MMs achieve relatively decent performance
only when given specific combinations of visual
elements but struggle even when generalizing to
very similar charts, showing their lack of robust
understanding of fundamental visual elements.

Visual elements (Bertin, 1967; Cleveland and
McGill, 1984; Munzner, 2014) are the core build-
ing blocks of data visualization, defining how quan-
titative values in charts are visualized. Following
prior work on human, we use four fundamental
visual elements that are widely used to represent
data values in charts: the position of a point (e.g.,
the top part of a bar), the length of a rule (e.g., bars
or lines), the size of a region (e.g., the area of a
bar), and the saturation of a color. By systemati-
cally analyzing models’ results on charts composed
of these elements, we aim to assess how each ele-
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Correct 52 2
Incorrect 34 12
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Correct 79 2
Incorrect 13 6

(a) Bar (b) Bar (Anno)

Phi-3.5
O

Correct 29 6
Incorrect 51 14

B O

Correct 72 1
Incorrect 23 4

(c) Bar (d) Bar (Anno)

Table 4: Correctness at retrieving values in the Retrieve Value task (table rows) depends on whether an LMM
correctly identifies important chart regions (table columns). Identifying important regions is measured by whether
the groundtruth labeled regions are covered (M) or not covered ([J) by the LMM’s feature importance map for
value retrieval. Important regions are successfully identified more often for Bar (Anno) charts (b & d). Sometimes,
important regions are successfully identified but the model fails to retrieve the correct value (red).

ment—or a combination thereof—impacts model
perception, identifying which visual elements are
most effective or challenging for current models.
Particularly, as some of the generated charts may
not be common, we provide guidelines on how to
interpret these charts for LMMs.

Table 2 presents the performance of models
when interpreting charts rendered with single or
multiple basic visual elements. We observe:

(1) LMMs suffer from basic visual element under-
standing. Across the board, models show relatively
poor performance when interpreting charts that rely
on a single visual element, such as length, color,
or size. For example, GPT-40 achieves only 17.6%
accuracy on charts using length alone, despite oth-
erwise strong performance. This indicates a funda-
mental challenge for LMMs in extracting quantita-
tive values from basic visual elements, potentially
limiting their abilities when comprehending com-
plex charts where such elements are used.

(2) Surprisingly, the addition of redundant visual
elements often hurt model performance. For ex-
ample, while using position only results in decent
performance (e.g., GPT-40 scores with 41.2% ac-
curacy), rendering values via size at the same time
(@, %) hurts the performance dramatically across all
models. Although the size can be more straightfor-
ward than position for tasks like ordering, LMMs
clearly fail to leverage the advantages of various
visual elements in most of the times. This sug-
gests that the presence of multiple visual elements
may overwhelm the models’ capacity to prioritize
relevant visual cues, leading to confusion and mis-
interpretation of the data.

(3) LMMs often fail to generalize effectively across
charts that use similar visual elements. For in-
stance, models show strong performance on bar
charts that combine position, length, and size (+,
@, %), but struggle with similar charts that only use
position and length (-, ). This suggests that mod-
els excel only with specific combinations of visual

elements and lack the robustness needed to transfer
this understanding to slightly altered visualizations.
Overall, these results demonstrate that current
LMMs merely follow specific and superficial per-
ception patterns for common charts such as scatter
(%) and bar (+», @, %), while struggling to gener-
alize beyond these familiar chart patterns. This
highlights the necessity of improving models’ un-
derstanding of fundamental visual elements beyond
specific chart types, leading to better generalization
and perception. Appendix D show detailed results.

5 RQ3: Explanation of Limitations on
Graphical Perception Patterns

Takeaways: Imprecise Value Referencing.

e LMMs often correctly localize the important
regions in the bar charts for value retrieval (e.g.,
data points, axes), but fail to accurately cross
reference the specific values, especially in charts
without explicit number annotations.

To understand the perception mechanisms of
LMMs, we conduct a pixel-level analysis to exam-
ine which specific regions of the charts that models
attend to when generating responses. This analy-
sis aims to test whether LMMs correctly attend to
important regions and cross reference the values of
the chart for the most basic Retrieve Value task.

5.1 Methodology

Faithfully interpreting transformer-based models
remains an open problem (Bereska and Gavves,
2024; Singh et al., 2024), particularly in the con-
text of newly emerging LMM capabilities. In
our analysis, we seek to use techniques that are
model-agnostic, i.e., they can be applied to a black-
box model without access to its weights or activa-
tions. The most popular model-agnostic interpre-
tation techniques generally require many calls to
the model with different corruptions (Ribeiro et al.,
2016; Lundberg, 2017), which are computationally
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Flgure 4: Examples of labeled regions and importance heatmaps for two models on Bar and Bar (Anno) charts.
Given “What is the value of total assets in billion yuan for the year 2010?”, both models successfully locate most
labeled important regions on both the Bar (Anno) and Bar charts but fail to reference the correct y-axis values on

the Bar chart. The correct answer is “10337.4.”

expensive for large LMMs like GPT-40. We use a
simplified, more efficient version of these methods
that occludes different regions of the input image
one at a time and measures the model’s response.
Specifically, we manually select 100 pairs of Bar
and Bar (Anno) charts and label the important re-
gions for the Retrieve Value task. Each image is di-
vided into 144 non-overlapping regions and we cor-
rupt each region one at a time by changing its pixels
to the background color. We then calculate the dif-
ference in generated token logits between the intact
chart and the corrupted version for each model.
We use the normalized logit difference as a mea-
sure of the feature importance of the region for the
generated tokens. We aggregate these region-level
feature importances into a heatmap and measure
whether the high-importance regions cover most of
the groundtruth labeled regions (Intersection over
Union > 50%) to determine whether models use
these important regions.

5.2 Results

Table 4 shows that both InternVL2 and Phi-3.5
are quite effective at localizing important regions
when given Bar (Anno) charts. As long as the mod-
els can identify regions with the correct numbers,
they generally generate correct responses, proving

their reliance on explicit number annotations for
accurate value retrieval shown in Section 3. When
annotations are removed (Bar), both models of-
ten still correctly locate the important regions but
struggle to precisely refer to the values from the
value-axis. Figure 4 illustrates this behavior. In
the Bar (Anno) chart (Figures 4d-4f), both models
accurately identify important regions and gener-
ate correct responses. In contrast, on Bar charts
(Figures 4a-4c), although they focus on the right
areas, their responses are far from correct. In ad-
dition, Phi-3.5 tends to be more easily influenced
by non-important regions compared to InternVL2,
showing that lightweight models may be more sen-
sitive to visual information irrelevant to the given
task, leading to less favorable results shown in Fig-
ure 3. More analysis can be found in Appendix B.

6 Discussion

In this section, we study SOTA LMMs with more
complex charts from the perspective of the number
of data points and the data dimensions. Both show
current LMMs are unable to handle complex charts.

6.1 Results on More Data Points

To measure the impact of the number of data points
on LMMSs’ graphical perception abilities, we ran-
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Figure 5: Overall accuracy of GPT-40 given 100
datasets with different sampled data points.

domly sample 100 datasets, each containing at least
20 data points. We then systematically reduce the
number of data points into three buckets: [1,5],
(5,10], and (10, 20], and observe how model per-
formance varies across common chart types rep-
resenting these data points. Figure 5 shows the
overall accuracy of GPT-40 when tested on 100
datasets. As the number of data points increases,
the performance consistently declines across all
chart types, highlighting the model’s sensitivity to
data density. Notably, Bar (Anno) charts exhibit
the steepest drop in accuracy, suggesting that while
numerical annotations aid graphical perception in
simpler cases, the presence of more data points
and numbers overwhelms the model’s ability to
effectively perceive the charts.

6.2 Results on Multi-Dimensional Dataset

We select 100 datasets from ChartLLM (Ko et al.,
2024), ensuring each dataset contains three data
dimensions (e.g., Nominal-Numerical-Nominal)
with a controlled number of data points. These
datasets are then manually edited to create the pop-
ular chart types of interest: bar, line, and scatter.
Figure 6 compares the performance of various mod-
els when understanding two-dimensional (2D) and
three-dimensional (3D) datasets across different
chart types. The results indicate a notable perfor-
mance drop when models are tasked with three-
dimensional data visualization, particularly for bar
and scatter charts. GPT-40 performs the best over-
all but still shows significant degradation when
moving from 2D to 3D visualizations. InternVL2
and Phi-3.5 show similar trends, though Phi-3.5
is relatively more robust than other models. Char-
tAssistant performs poorly overall, with minimal
adaptability between 2D and 3D contexts. These
findings indicate that current LMMs cannot fully
understand advanced data visualizations yet. Fig-
ure C3 shows concrete examples.

GPT-40 InternvL2.0

Phi-3.5-Vision ChartAssistant
Models

Figure 6: Overall accuracy comparison of four LMMs
when given two- and three-dimensional datasets.

7 Related Work

Graphical Perception Graphical perception
refers to interpreting data through basic visual
elements like position and color (Cleveland and
McGill, 1984). Follow-up studies expanded this
to evaluate human perception across various data
types (Heer et al., 2009; Javed et al., 2010),
tasks (Saket et al., 2019), and charts (Heer and
Bostock, 2010). Prior work tests vision-only mod-
els’ perception (Haehn et al., 2019), but LMMs
remain under-explored.

LMMs and Their Benchmarks LMMs have
progressed from early vision-language models (Tan
and Bansal, 2019) to unified frameworks (Ope-
nAl, 2024; Liu et al., 2024). Many LMM bench-
marks implicitly assess graphical perception as part
of broader tasks (Wang et al., 2024b; Yue et al.,
2024a). Another benchmark line evaluates general
visual perception using repurposed vision tasks (Fu
et al., 2024; Tong et al., 2024), but these focus
on natural images and lack detailed assessment of
graphical perception. Our work fills this gap with
a direct, isolated graphical perception evaluation.

8 Conclusion

This work introduces a comprehensive and config-
urable evaluation framework for automatically mea-
suring the graphical perception abilities of LMMs,
offering fine-grained insights into current LMMs.
Our findings reveal that these models struggle to
generalize across chart types, understand funda-
mental visual elements, and cross reference values
in charts. Future work may leverage this framework
to synthesize diverse data for training and testing
on a wider range of tasks, potentially improving
graphical perception and general visual reasoning.
We hope the framework and these findings can help
guide the development of LMMs with more gener-
alizable perception abilities in the future.



Limitations

A limitation of this work is that we focus only four
models in the main paper. However, our framework
is easily extendable to other LMMs and yields con-
sistent conclusions across them, as shown in Ta-
ble E1. Our selection prioritizes representativeness
by including proprietary, open-source, lightweight,
and chart-specialized models, rather than aiming
for exhaustiveness. Instead of benchmarking a
large number of models, our goal is to investigate
a diverse yet focused set of LMMs in detail to
uncover fine-grained limitations from multiple per-
spectives.

Another limitation is that, while related works
have also explored perceptual weaknesses in
LMMs, they primarily focus on abstract 1Q-test-
style figures (Li et al., 2024; Rahmanzadehgervi
etal., 2024) or natural images (Fu et al., 2024; Tong
et al., 2024). These efforts often lack a comprehen-
sive evaluation framework or a guiding theory to
systematically support benchmark design. In con-
trast, our work is grounded in the well-established
theory of graphical perception, which enables struc-
tured and principled evaluation. We further con-
tribute an automated evaluation framework that
supports consistent, scalable analysis. Additionally,
we focus on structured chart-based perception—a
more practical and underexplored domain that is
critical for real-world applications.

Finally, we do not aim to provide a mechanistic
or theoretical explanation for the observed limita-
tions. Instead, we contribute a general and auto-
mated framework for systematically probing graph-
ical perception across models as a first step. To
maintain broad applicability, we intentionally adopt
model-agnostic interpretability methods that can be
applied to both proprietary and open-source LMM:s.
More targeted causal or theoretical studies are left
for future work.
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Appendix
The appendix includes the following sections:

¢ Section A: Framework Details including Dataset Generation A.1, Task Generation A.2, Evalua-
tion Rubrics A.3, and Model Evaluation A .4.

¢ Section B: More Case Studies and Analysis for RQ3.
¢ Section C: More Chart Examples.
¢ Section D: Full Experiment Results in the Main Paper.

¢ Section E: More Results on Latest Models and Human Performance.

A  Framework Details

A.1 Dataset Generation Details

The datasets we use include three major types of data attributes: (1) Nominal Attributes: Categorical
variables that represent distinct labels without an inherent order (e.g., country, movie genres). (2) Ordinal
Attributes: Variables that have a meaningful order or ranking but no fixed intervals between values (e.g.,
movie ratings, years). (3) Numerical Attributes: Continuous variables that allow for the calculation of
differences and other mathematical operations (e.g., exhibition space in Figure 2). To ensure simplicity,
each dataset has at most two data dimensions (i.e., a nominal attribute paired with a numerical attribute or
an ordinal attribute paired with a numerical attribute). In addition, the number of data points is limited to 5.
These constraints allow us to evaluate the models’ graphical perception capabilities without overwhelming
them with complex visuals.

In terms of dataset generation license, we use Vega-Lite (Satyanarayan et al., 2017), an open-source
software library, in this project. Vega-Lite is licensed under a BSD 3-Clause License, which permits
redistribution and use with or without modification under specified conditions. We also use the VisText
dataset (Tang et al., 2023), which is released under the GPL-3.0 license. Our use is consistent with its
intended purpose for academic research. We modify and repurpose the original dataset to align with the
goals of our evaluation framework, and the resulting artifacts are used strictly within a research context.
Any derivatives remain under the same license terms, and we will release them accordingly for academic
use.
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A.2 Task Generation

Task Generation Prompt (with text input only)

You are a teacher to provide problems for students to solve. The problems are about understanding data and visualizations.
We will provide you with an input data, a Vega-Lite program, and a task type that the understanding task should base on.
You will need to design a chart understanding task contextualized in the given data and chart.

Design the task based off one of the following idioms:

* Retrieve Value: For this task, ask students to identify values of attributes for given data points. For example, what is
the value of horsepower for Mazda CX50?

* Find Extremum: For given concrete conditions on data attribute values, ask students to find data points satisfying those
conditions. For example, which car types have the most city miles per gallon?

* Find Anomalies: ask students to identify any anomalies within a given set of data points with respect to a given
relationship or expectation. For example, which car types have abnormally low MPG?

* Determine Range: For a given set of data points and an attribute of interest, ask students to find the span of values
within the set. For example, what is the range of car prices?

* Find Correlation: for a given set of two data attributes, ask students to determine if there is a correlation between them.
For example, is there a strong correlation between car price and MPG?

» Compute Derived Value: for a given set of data points, ask students to compute an aggregate value of those data points.
For example, what is the sum of the budget for the action and the sci-fi movies?

* Filter: For given concrete conditions on data attribute values, ask students to find data points satisfying those conditions.
For example, which car types have miles per gallon ranging from 20 to 40?

* Order: For a given set of data points, ask students to rank them according to a specific ordinal metric. For example, list
the car types based on their MPG from low to high.

* Find Clusters: for a given set of data points, ask students to count the number of groups of similar data attribute values.
For example, how many different car brands are shown in the chart below?

¢ Characterize Distribution: for a given set of data points, ask students to identify the distribution of that attribute’s
values over the set. For example, what percentage of the cars with MPG higher than 30?

You need to match the following requirements:

1. The task should be reasonable, and it should not exceed one sentence, and it should be contexualized in the given
data.

2. The task should be achievable by reading the visualization without referring other tools.

3. The task should be self-contained with the given dataset, it should not require student to look up external information.

4. Each task should have a standard answer, avoid generating questions like “compare two values of your choice."

5. Try not to repeat the verb for each task to maximize diversity.

Create a [Task] based off the [Data Summary] and [VegalLite Script] provided.

The response should be in a json format:

{"reason”:...,"tasks":[{"description”:...,"type":...},...]1}, including how you design the task and the
actual task description.

Generate 10 tasks at once.

For example:
[Data Summary]

|Date |Location
0]5/12/2009|Houston, TX
114/18/2009 |McAllen, TX
217/11/2009|Indianapolis, IN
3111/14/2009 |Kansas City, MO|MO
413/12/2010|Chicago, IL|IL

{Task Demonstration}
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A.3 Evaluation Rubrics

Evaluation Prompt (with text input only)

You are a teacher to grade students’ answers. We will provide you a dataset, a list of tasks and student answers. Your
goal is to use the dataset to evaluate if the student’s answer is correct. In order to form a good judgement, you should
first use the dataset to derive your answer, and then compare it with the students asnwer.

When you generate the referenece answer:

* If the task asks for a value, provide the value directly.

* If the task asks for trend or correlation, answer it with one of “increasing”, “decreasing" if the general trend point to
the direcrtion, otherwise provide "unclear".

* Provide a brief reasoning of how you come up with your answer in “reasoning" part.

* If you cannot answer a question, provide “I don’t know" as the answer, try not to provide a wrong answer.

When evaluating student’s answer:
The student_answer_correctness should include the grading results of the student’s answer and must be one of the
following options:

- correct

- fair (somewhat close but not precise)

- incorrect

- skipped (if the student skipped the answer)

- n/a (if the task does not make sense or is not answerable with the given dataset)

Note that if the student’s answer (value) is an approximation within 5% of your reference answer, it is considered as
correct. If is is an approximation within 20% of your reference answer, it is fair.

For order-based tasks, such as ranking items, the student answer must match the expected orders you found. However,
for list-based tasks where order is not important, the specific sequence does not need to match as long as all relevant
items are included.

Grade student questions based on [Data], [Tasks & Student Answers].
The output json should have the format:
[{“reasoning": ...,
“reference answer": ...,
“comparison_with_student_answer": ...,
“student_answer_correctness": ...},

o]

For example:
{Evaluation Demonstration }

We manually review GPT-40’s and Claude’s evaluations of the same 200 questions for each of the four
models. Table B1 shows that both evaluators are consistent and accurate, confirming the reliability of our
findings.

Model | GPT-40 Acc. (%) | Claude-3.5-Sonnet Acc. (%)
GPT-40 99.0 98.5
InternVL-2 99.5 98.0
Phi-3 99.0 97.5
ChartAssistant 98.5 98.5

Table B1: Evaluation accuracy of GPT-40 and Claude-Sonnet.

A.4 Model Evaluation/Inference

For each model, we explored prompt design before large-scale evaluation by using default system prompt
and prompts used in prior works. We found that using different prompts does not lead to notably different
results, since our charts and tasks are fairly simple and straightforward, and our findings hold across
various prompts for general-purpose LMMs. Therefore, to ensure a fair and consistent comparison,
we use the same prompt (shown below) for all general-purpose LMMs and the specified prompt for
ChartAssistant. Our general prompt covers the requirements for each task type.
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Model Inference Prompt

You are an expert in answering questions based on charts. We will provide you with a chart and a question. Your goal is
to read the chart and answer the question.

* If the question asks for a value, read the chart and provide the value directly. If you have trouble reading the exact
value, provide a close estimate and indicate “approximately".

* If the question asks for a trend, answer it with one of “increasing", “decreasing” if the general trend points in the
direction, otherwise provide "unclear".

* Provide a brief reasoning of how you come up with your answer in "reasoning" part. * If you cannot answer a question,
provide "I don’t know" as the answer, try not to provide a wrong answer.

* Answer your question based on [Chart] and [Tasks]. The output json should have the format {"reasoning”: ..., “anwer”:

\.

B More Case Studies for RQ3

r0.8

r0.6

0.0

(a) Labeled Regions-Bar (Anno) (b) InternVL2-Response: “0.4" (LJ)

Figure B1: Examples of labeled regions and importance heatmap of InternVL2 on a Bar (Anno) chart. Given the
task “Determine the share of leisure travelers for historical locations.”, InternVL2 incorrectly locates the bar for
“Experience fine dining," which is closely positioned near the correct one. As a result, it generates an imperfect
answer, 0.4. However, as this value is within 5% of the target value, 0.411, it is judged as correct according to the
evaluation rubric considering human perception.

Figure B1 demonstrates a case where models answer correctly even when not fully utilizing the
important regions. This shows that, region localization abilities of LMMs diminish when information is
rendered unusually, such as when categories are shown obliquely.

C Examples of Charts

We present one chart visualized in 14 different chart types used in the experiments in Figure C1 and
Figure C2. Additionally, we include our manually edited 3D chart examples in Figure C3. These charts
can also be used for direct comparisons of visual element perception, such as color hue vs. color luminance
in bar charts and color hue vs. texture in line charts. However, as current SOTA LMMs fail to achieve a
satisfactory level of accuracy, we are unable to obtain meaningful insights at this time. We leave further
exploration of LMMs’ visual element understanding in 3D charts for future work.
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Figure C1: Cases of charts with and without numerical annotations. The Table is used as an image input for models
being evaluated.
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Figure C3: Cases of charts with three data dimensions (i.e., three different data attributes).
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D Full Results

The detailed results of four representative LMMs on 10 tasks across 14 chart types used in Section 3 and
Section 4 are shown in Tables D1, D2, D3, D4.

w/ Number Annotated w/o Number Annotated ~ Single Element Multiple Elements
Bar Line Scatter Pie Table Bar Line  Scatter &~ [ @ (4% (@,%) (+,m0, %)
T1 883 752 747 682 738 635 50.0 52.5 149 20.1 166 17.6 17.9 27.4
T2 874 643 636 546 60.7 659 483 40.6 253 306 374 350 355 442
T3 870 770 780 640 751 69.1 599 555 18.1 213 273 297 323 37.0
T4 90.6 895 925 943 865 468 46.2 41.8 1.6 30 07 1.9 1.6 1.7
TS5 875 856 860 800 8.5 751 775 72.3 556 663 685 63.6 713 66.8
T6 776 794 841 779 743 210 154 16.5 70 53 49 74 6.5 74
T7 81.1 623 694 60.8 705 435 305 339 139 17.8 202 196  23.1 25.5
T8 783 419 454 463 616 36.0 14.1 14.6 14 39 38 43 32 5.6
T9 854 716 735 61.7 706 60.6 503 44.3 279 324 356 39.1 42.4 47.2
T10 87.6 800 845 842 874 556 395 444 1.5 131 128 117 12.8 15.1
Overall 850 726 751 69.1 747 534 428 412 17.6 21.1 226 229 244 277

Table D1: All results of GPT-40 (OpenAl, 2024) on 14 types of charts across 10 task types. The best result on each
task is marked in bold.

w/ Number Annotated w/o Number Annotated  Single Element Multiple Elements
Bar Line Scatter Pie Table Bar Line  Scatter — [ | @ (¢, %) (@,%) (+,m@,x)
T1 723 654 66.1 619 845 519 389 40.5 337 409 373 337 409 40.5
T2 773 508 530 495 920 753 49.7 46.5 26.1 233 304 26.1 233 46.5
T3 513 443 445 327 51.8 524 435 39.3 11.7 155 188 11.7 15.5 39.3
T4 69.7 638 666 514 754 273 260 21.5 57 161 62 5.7 16.1 21.5
TS5 496 450 535 378 532 426 450 455 41.6 420 420 416 420 455
T6 72.1 648 685 598 735 526 374 40.8 23.6 230 237 236 230 40.8
T7 409 304 312 254 50.8 358 206 24.0 81 10.1 126 8.1 10.1 24.0
T8 582 278 326 470 664 504 154 16.5 43 58 63 43 5.8 16.5
T9 349 322 347 260 390 348 273 30.4 144 173 209 144 17.3 30.4
T10 436 356 358 294 497 297 223 26.6 128 13.1 119 1238 13.1 26.7
Overall 57.6 464 490 425 642 459 330 334 183 20.7 21.1 252 241 26.5

Table D2: All results of InternVL2 (Chen et al., 2024b) on 14 types of charts across 10 task types. The best result
on each task is marked in bold.
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w/ Number Annotated w/o Number Annotated  Single Element Multiple Elements

Bar Line Scatter Pie Table Bar Line Scatter > [ @ (0, %) (@,%) (+,m@, %)
T1 70.5 627 632 53.6 859 363 268 34.7 322 36.7 321 320 37.5 47.0
T2 7277 536 529 30.7 903 59.7 385 40.6 21.0 22,6 26.1 312 28.5 33.6
T3 39.7 382 368 243 474 376 389 30.6 10.8 11.0 13.7 17.8 12.3 15.0
T4 70.6 674 665 512 548 146 13.1 14.3 89 153 9.0 11.7 9.6 10.8
TS 625 600 644 420 623 545 546 57.3 539 487 509 553 50.7 53.5
T6 66.8 624 66.1 535 764 27.6 18.7 27.1 192 175 178 174 19.8 21.3
T7 372 275 285 193 50.6 195 157 17.5 59 74 9.6 10.3 10.7 10.7
T8 40.7 24.1 278 21.6 737 275 103 15.1 6.6 7.6 93 74 9.9 8.0
T9 245 213 222 143 271 215 256 21.1 10.8 10.7 144 150 15.3 13.3
T10 321 263 298 145 415 216 172 19.7 96 122 138 137 15.1 14.2
Overall 522 447 462 327 61.6 324 260 27.9 178 189 19.6 212 20.9 22.7

Table D3: All results of Phi-3.5 (Abdin et al., 2024) on 14 types of charts across 10 task types. The best result on
each task is marked in bold.

w/ Number Annotated w/o Number Annotated  Single Element Multiple Elements

Bar Line Scatter Pie Table Bar Line  Scatter > u @ (¢, %) (@,%) (<, 1m0, %)

T1 544 425 436 328 55.0 328 23.1 23.6 9.1 179 144 378 28.3 37.3
T2 70.2 46.1 432 28.0 429 70.1 426 44.4 229 240 252 347 30.2 35.8
T3 479 357 343 287 340 499 387 38.5 122 121 121 196 16.3 16.4
T4 25.7 207 223 111 216 82 6.6 6.9 07 25 15 2.6 1.3 1.9
T5 546 549 493 469 441 562 3585 52.7 41.6 477 450 462 493 44.8
T6 28.1 215 209 181 157 321 240 25.5 73 7.0 93 13.2 12.6 13.3
T7 229 170 168 121 172 235 187 16.6 88 93 97 14.7 11.9 12.0
T8 147 59 52 41 296 144 37 39 08 1.1 26 1.4 2.2 1.0
T9 29.2 252 222 194 155 287 27.1 25.0 11.6 97 84 12.8 11.9 13.6
T10 145 138 122 106 100 175 135 14.2 82 93 72 9.2 10.8 8.7
Overall 36.6 284 270 212 285 339 259 25.4 123 14.0 13.6 192 17.4 18.5

Table D4: All results of ChartAssistant (Meng et al., 2024) on 14 types of charts across 10 task types. The best
result on each task is marked in bold.

E More Results on Latest Models and Human Performance

Our evaluation framework allows us to easily incorporate more recent models to assess their graphical
perception abilities. We extend our evaluation with Claude-3.5-Sonnet (Team, 2024), Gemini-1.5-
Pro (Gemini Team, 2024), and Qwen2-VL-72B (Wang et al., 2024a). As shown in Table E1, our main
findings still hold for these models. They remain unable to generalize well across chart types or effectively
understand fundamental visual elements that humans can easily do.

In terms of human performance, we invite 27 college-level crowdsourced workers in China to solve
the subset tasks used in our paper. Each worker is assigned one chart type and random tasks, ensuring
no two charts from the same dataset are seen to prevent answer leakage. The results in Table E1 show a
significant gap between the latest models and human performance. More importantly, humans perform
consistently across different chart types, while models exhibit strong variability, particularly struggling
with less common chart types.

w/ Number Annotated w/o Number Annotated Single Element Multiple Elements

Bar Line Scatter Pie Table Bar Line  Scatter R [ ] @ (¢0,%) (@,%) (<,m0 %)

Claude-3.5-Sonnet 857 788 775 802 952 68.7 55.1 59.6 20.8 237 231 332 28.0 34.4
Gemini-1.5-Pro 775 69.1 712 625 91.0 60.6 45.1 55.1 16,5 184 192 312 26.0 27.8
Qwen2-VL-72B 68.0 59.2 600 558 812 59.1 413 46.3 182 214 220 29.1 26.9 29.8
Human (1/10 Subset) 984 97.8 97.6 89.1 974 962 953 94.8 823 827 814 956 94.5 96.5

Table E1: Average performance across 10 task types on latest models.
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