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Abstract

Reinforcement Learning from Human Feed-001
back (RLHF) has become a dominating strat-002
egy in aligning Language Models (LMs) with003
human values/goals. The key to the strategy004
is learning a reward model (φ), which can re-005
flect the latent reward model of humans. While006
this strategy has proven effective, the training007
methodology requires a lot of human prefer-008
ence annotation (usually in the order of tens009
of thousands) to train φ. Such a large-scale010
annotation is justifiable when it’s a one-time011
effort, and the reward model is universally ap-012
plicable. However, human goals are subjec-013
tive and depend on the task, requiring task-014
specific preference annotations, which can be015
impractical to fulfill. To address this chal-016
lenge, we propose a novel approach to in-017
fuse domain knowledge into φ, which reduces018
the amount of preference annotation required019
(21×), omits Alignment Tax, and provides020
some interpretability. We validate our approach021
in E-Commerce Opinion Summarization, with022
a significant reduction in dataset size (to just023
940 samples) while advancing the SOTA (∼ 4024
point ROUGE-L improvement, 68% of times025
preferred by humans over SOTA). Our contri-026
butions include a novel Reward Modeling tech-027
nique and two new datasets: PROMPTOPIN-028
SUMM (supervised data for Opinion Summa-029
rization) and OPINPREF (a gold-standard hu-030
man preference dataset). The proposed method-031
ology opens up avenues for efficient RLHF,032
making it more adaptable to applications with033
varying human values.034

1 Introduction035

Reinforcement Learning from Human Feedback036

(RLHF) (Ziegler et al., 2019; Ouyang et al., 2022)037

is a prominent approach in aligning Language038

Models (LMs) with human values. Human val-039

ues are represented by a function (φ), which ul-040

timately acts as the reward in the RLHF training.041

For an output Y (= y1, y2, · · · , yn) to some in-042

Figure 1: Human Eval: Pairwise win-tie-loss percent-
age of INDUCTIVE-BIAS model (our proposed model)
vs. ground truth summary and summary from other
models, for AMAZON benchmark. We see that our
proposed approach (infusing domain knowledge into
φ to reap benefits of RLHF with modest human pref-
erence data) helps INDUCTIVE-BIAS model achieve
summaries which are always preferred (Section 5.2).

put X (= x1, x2, · · · , xm), φ performs the map- 043

ping (X,Y ) → r. The reward function φ is la- 044

tent to humans and manifests in human prefer- 045

ences. Preference Modeling techniques, such as 046

Bradley-Terry model (Bradley and Terry, 1952), 047

Plackett-Luce models (Plackett, 1975; Luce, 2012) 048

are used to learn φ from preference data, of the 049

form: D = {(X,Yw, Yl) | Yw ≻ Yl}1. 050

In contemporary works (Ziegler et al., 2019; 051

Bai et al., 2022a; Ouyang et al., 2022; Rafailov 052

et al., 2023), the reward functions are Large LMs 053

(LLMs; pretrained Transformers) themselves. The 054

text data, (X , Yw) and (X , Yl) are directly fed 055

to φ, for training. Such a formulation necessitates 056

large-scale human preference data to train the LLM 057

(millions/billions of parameters). Typically the size 058

of D varies from 20K (Nakano et al., 2021; Bai 059

et al., 2022a) to > 200K (Ethayarajh et al., 2022). 060

Such a large-scale annotation is justifiable when 061

it’s a one-time effort, and the trained φ is univer- 062

sally applicable, irrespective of the nature of the 063

1Yw ≻ Yl, in this entire paper, signifies that the output Yw

is preferred over the output Yl; w: win, l: loss.
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downstream task. However, human values are sub-064

jective (Jiang et al., 2022; Sorensen et al., 2023).065

For instance, hallucination would be desired in066

Creative Writing, but not in Question-Answering.067

This means that depending on the downstream068

task, the reward function φ must have varying069

characteristics. Collecting human preferences for070

all such tasks is impractical.071

Motivated to resolve this need, we propose072

a novel reward modeling methodology, signif-073

icantly reducing preference data requirements.074

We draw on the insight that φ is dependent075

on the downstream task and, hence, can uti-076

lize its task/domain2 knowledge. Specifically,077

φ lies in a low-dimensional manifold, whose di-078

mensions can be deduced using domain knowl-079

edge. Such an inductive bias reduces the num-080

ber of samples3 needed to train φ. Concretely,081

our hypothesis is: An inductive bias infused φ082

can help achieve alignment with human values for083

a task, with modest human preference annotations.084

Specifically, we say that φτ (reward model for a085

domain τ ) can be modelled by some numeric fea-086

tures v1, v2, · · · , vn. These n features fully char-087

acterize4 the outputs from the LLM on some in-088

put. Thus, instead of training φτ on the text data089

({(X,Yw, Yl) | Yw ≻ Yl}), we use the n features.090

Such a formulation for φ brings interpretabil-091

ity—which features influence human preference092

the most (Section 6), and is free from Alignment093

Tax (degradation of language capabilities of an094

LLM post reward modeling; Bai et al. (2022a)) as095

we do not use an LLM to model φ.096

We experimentally prove our hypothesis in the097

domain of E-Commerce Opinion Summarization098

(Bražinskas et al., 2020; Amplayo et al., 2021;099

Siledar et al., 2023b)—the task of summarizing100

user reviews for a product. In addition to advanc-101

ing SOTA, we also analyze how our approach helps102

the model achieve alignment with human values103

for Opinion Summarization (Section 6).104

Our contributions are:105

1. A novel Reward Modeling technique for106

RLHF, which leverages Domain Knowledge107

2We use task and domain interchangeably in the paper.
3An example: For a function, f : (x1, x2, x3, · · · , xm) →

y, assuming that f is a linear combination of xi (Linear Re-
gression) reduces the training data requirement. Assuming
no functional form (Feed-Forward Neural Network) would
require more data.

4Example of such characterization: Features like fluency,
coherence, etc. can characterize text generated by an LLM.

to achieve alignment with human values while 108

significantly reducing human preference anno- 109

tation. In the domain of Opinion Summariza- 110

tion, we achieve alignment while reducing5 111

the dataset size by > 21×. Our approach ad- 112

vances SOTA: at least ∼ 4-point ROUGE-L 113

improvement (Tables 1, 4 and 5; Section 5.2), 114

and humans prefer our models’ outputs 68% 115

over SOTA (Figure 1; Section 5.2). 116

2. Two new datasets: PROMPTOPINSUMM and 117

OPINPREF. PROMPTOPINSUMM includes 118

reviews and summaries for 25763 products 119

(229521 summaries), for training and valida- 120

tion. OPINPREF is a gold-standard human 121

preference dataset (with 940 instances) in the 122

domain of Opinion Summarization. 123

2 Related Works 124

Steering Language Models (LMs) towards 125

human goals: Steering LMs towards human 126

goals/values refers to the task of training LMs to 127

generate text which is more aligned with human 128

values, such as ‘text should not have harmful con- 129

tent’, ‘it should be polite’, etc. Such a task neces- 130

sitates a human presence in the training loop of 131

these LMs. In recent times, Reinforcement Learn- 132

ing from Human Feedback (RLHF) (Ziegler et al., 133

2019; Askell et al., 2021; Bai et al., 2022a; Ouyang 134

et al., 2022; Liu et al., 2022) has emerged as an ef- 135

fective solution—by incorporating Reward Models, 136

which reflect latent reward models within humans, 137

into the training pipeline. These reward models 138

are trained on human preference datasets (Ziegler 139

et al., 2019; Nakano et al., 2021; Ethayarajh et al., 140

2022), which are typically of the order of tens of 141

thousands, in size. Dependence on high-quality, 142

large-sized preference data is an obstacle for RLHF. 143

Recently, Reinforcement Learning from AI Feed- 144

back (RLAIF) (Bai et al., 2022b; Kim et al., 2023; 145

Lee et al., 2023) has emerged as an alternative. It 146

attempts to reduce the dependence on human pref- 147

erence datasets by using Large LMs (LLMs) as 148

preference data generators. While this is a scalable 149

approach to steering LMs, there is no guarantee that 150

the preference dataset generated by LLMs reflects 151

human goals. In our work, we propose a different 152

solution, which promises to use human preference 153

data but provides a way to reduce the required size 154

5As compared to the smallest publicly available preference
data. The smallest publicly available preference data is not in
the domain of Opinion Summarization.
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drastically. To the best of our knowledge, we are155

the first to attempt this.156

Opinion Summarization: Opinion Summariza-157

tion (Hu and Liu, 2004; Bražinskas et al., 2020;158

Amplayo et al., 2021; Siledar et al., 2023b) is the159

task of summarizing user reviews. Specifically,160

we look at E-Commerce Opinion Summarization,161

where user reviews are on products. These re-162

views contain aspects of the product and users’163

sentiments/opinions towards those aspects. Previ-164

ous works (Bražinskas et al., 2020; Siledar et al.,165

2023a) in E-Commerce Opinion Summarization166

have used Self-Supervised training methodology.167

In this context, self-supervision refers to picking168

one of the N available reviews as a summary, com-169

monly called pseudo-summary, and training the170

model on the remaining N − 1 reviews to gener-171

ate the pseudo-summary. The theme of solutions172

(Chu and Liu, 2018; Bražinskas et al., 2020; Siledar173

et al., 2023b,a) have mostly centered around Super-174

vised Learning. The core problem has always been175

getting good synthetic datasets for training. More176

recently, Prompting (Bhaskar et al., 2023) has been177

explored to solve the task. Bhaskar et al. (2023)178

move away from making a better synthetic dataset179

generation pipeline and test GPT-3.5 for Opinion180

Summarization.181

We do not propose a new synthetic dataset gen-182

eration methodology. Rather, we generate training183

data using an open-source LLM (Mistral-7B), to184

test our hypothesis. To the best of our knowledge,185

we are the first to propose such a dataset for training186

Opinion Summarizers. Such an approach has been187

explored for Generic Text Summarization (Wang188

et al., 2023; Taori et al., 2023; Peng et al., 2023).189

Taori et al. (2023) fine-tune LLaMA-7B (Touvron190

et al., 2023a) using Instruction-Tuning dataset gen-191

erated using GPT-3. Peng et al. (2023) fine-tune192

LLaMA-7B using a dataset generated by GPT-4.193

3 Dataset194

Previous works (Bražinskas et al., 2020; Siledar195

et al., 2023a) in Opinion Summarization have used196

Self-Supervised training methodology, where N−1197

reviews are used as input, and the left out review198

is used as a pseudo-summary (Section 2). Al-199

though these self-supervision datasets have helped200

further Opinion Summarization research, the ap-201

proach has several shortcomings: the summaries202

always present a one-person rather than the consen-203

sus view, the summaries are reviews and might not204

have good coverage of aspects and opinions, etc. 205

We move away from self-supervision to overcome 206

these shortcomings and propose a new dataset. In 207

the rest of this Section, we describe (a) PROMP- 208

TOPINSUMM: a new dataset to train Opinion Sum- 209

marizers, (b) the benchmarks we used for evalua- 210

tion, and (c) OPINPREF: gold-standard preference 211

dataset for Opinion Summarization. 212

3.1 PROMPTOPINSUMM Dataset 213

We prompt the instruction-tuned Mistral-7B 214

model (Jiang et al., 2023) to generate an opinion 215

summary given product reviews. We also tried 216

other open-source LLMs available at the time of 217

the work, such as LLaMA2-7B, LLaMA2-13B (Tou- 218

vron et al., 2023b), Vicuna-7B, Vicuna-13B (Chi- 219

ang et al., 2023), Zephyr-7B (Tunstall et al., 2023). 220

However, we found that Mistral-7B leads to better 221

summaries. We limit ourselves to open-source mod- 222

els due to cost. Appendix G includes examples and 223

qualitative analysis. We use the Amazon dataset 224

(He and McAuley, 2016), which has reviews for 225

∼ 180k products. We randomly sample reviews 226

for 20763 products for train set and 5000 prod- 227

ucts for validation set. Specifically, we prompt 228

the model to generate opinion summaries of 3 dif- 229

ferent qualities: Good (codenamed GOOD-SUM), 230

Slightly Bad (codenamed SBAD-SUM), and Very 231

Bad (codenamed VBAD-SUM). We generate mul- 232

tiple opinion summaries (3 at most) per quality. 233

We provide reasoning for generating multiple sum- 234

maries of different qualities in the extended discus- 235

sion of our approach (Appendix B). We generate 236

184620 summaries for train set and 44901 sum- 237

maries for validation set (see Appendix G). 238

3.2 Benchmarks for Evaluation 239

We use 9 Opinion Summarization benchmarks for 240

evaluation. 3 of these benchmarks are the Ama- 241

zon test set (Bražinskas et al. (2020), codenamed 242

AMAZON), the Oposum+ test set (Amplayo et al. 243

(2021), codenamed OPOSUM+) and the Flipkart 244

test set (Siledar et al. (2023b), codenamed FLIP- 245

KART). AMAZON has reviews for 32 products from 246

4 domains, OPOSUM+ has reviews for 60 products 247

from 6 domains and FLIPKART has reviews for 147 248

products from 3 domains. 249

Although these 3 benchmarks have been used 250

widely, they have several shortcomings. For in- 251

stance, AMAZON was developed by asking anno- 252

tators to write a summary in first-person point-of- 253

view. This causes problems such as summaries 254
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seeming personal rather than consensus opinions255

(which can include mixed sentiment), incomplete256

coverage of aspects and opinions, etc. Thus, using257

such pseudo-summaries for reference-based evalua-258

tions (ROUGE, BERTSCORE) on such a benchmark259

is not a correct portrayal of the models’ perfor-260

mances. We highlight the shortcomings in detail261

in Appendix D. Siledar et al. (2024) recently pro-262

vided 6 new benchmarks (AMAZON-R, AMAZON-263

RDQ, OPOSUM-R, OPOSUM-RDQ, FLIPKART-R,264

FLIPKART-RDQ) which are revamped versions (by265

getting rid of the shortcomings) of the aforemen-266

tioned 3 benchmarks. We primarily rely on these267

6 for our conclusions. Appendix D includes more268

details on domains and summary statistics.269

3.3 OPINPREF Dataset270

We create OPINPREF by asking humans to rank271

opinion summaries for given reviews. We utilize272

domain experts (annotator details in Appendix I)273

to perform the annotation. We believe that align-274

ing with the internal reward model of domain ex-275

perts would lead to better opinion summaries. We276

provide the domain expert with product reviews277

and two opinion summaries (products are sampled278

from the PROMPTOPINSUMM dataset). The do-279

main expert notifies which of the two summaries280

they prefer. We use this to construct a dataset of281

the form: Dh = {(R, sw, sl) | sw ≻ sl}, where282

R is the set of reviews and sw and sl are opinion283

summaries. We construct a dataset of 940 samples.284

We observe a Fleiss’ Kappa (κ) score of 62.67%285

(substantial aggrement; aggrement is substantial286

when 60% ≤ κ < 80%). Appendix H includes287

statistics on the dataset.288

4 Efficient Reward Modeling289

We highlighted in Section 1 how the reward model290

(φ) can depend on the downstream task. Such de-291

pendence necessitates task/domain-specific human292

preference datasets, which are costly and time-293

consuming to create. This creates an obstacle294

in employing RLHF in task/domain-specific se-295

tups, thus hindering the steering of LLMs towards296

task/domain-specific human values.297

We solve this challenge by leveraging domain298

knowledge. The key insight is that we can use299

the domain knowledge to impart some induc-300

tive biases into the mathematical modeling of φ.301

This would significantly reduce the amount of data302

required for training φ. Specifically, we say that303

φτ (reward model for a domain τ ) can be modelled 304

by some numeric features v1, v2, · · · , vn. These 305

n features fully characterize6 the outputs from the 306

LLM on some input. Thus, instead of training φτ 307

on the text data ({(X,Yw, Yl) | Yw ≻ Yl}), we use 308

the n features. Such a formulation for φ also brings 309

interpretability and frees φ from Alignment Tax. 310

In Section 4.1, we detail our technique 311

for the task/domain of E-Commerce Opinion 312

Summarization—the task of summarizing user 313

reviews for a product. Typically, user reviews 314

discuss several aspects of a product and opin- 315

ions/sentiments towards these aspects. An opinion 316

summary must reflect all the aspects discussed by 317

the input reviews and the opinions expressed to- 318

wards these aspects. We discuss how we leverage 319

such desirable properties to model φ. 320

4.1 Inducing Domain Knowledge 321

We identify desirable properties in an opinion 322

summary with the help of domain experts7. 323

We held multiple discussions to finalize the 324

set of desirable properties. We show that 325

these properties are correlated to humans’ 326

judgement of summary in Appendix A (Ta- 327

ble 3). Based on these properties, we model 328

φop (reward model for opinion summarization) 329

as: φop = f(v), where v ∈ {aspect-coverage, 330

opinion-faithfulness, opinion-coverage, 331

conciseness, relevance, hallucination, 332

language-correctness}. The features 333

aspect-coverage, opinion-faithfulness 334

and opinion-coverage check if the generated 335

opinion summary covers all mentioned aspects and 336

opinions faithfully. The features conciseness, 337

relevance , and hallucination check if the 338

generated summary is concise, relevant to the input 339

reviews, and is free from hallucination. The feature 340

language-correctness checks if the generated 341

text follows the language rules. We provide more 342

details in Appendix A. These features, together, 343

characterize the goodness of an opinion summary. 344

We instruct Mistral-7B (Appendix A) to generate 345

values for these features for an opinion summary, 346

given reviews. We denote this transformation 347

(from reviews and summary to 7 features) using Φ. 348

We train φop using OPINPREF, which is of the 349

form: Dh = {(R, sw, sl) | sw ≻ sl}, where R 350

is the set of reviews and sw and sl are opinion 351

6Example of such characterization: Features like fluency,
coherence, etc. can characterize text generated by an LLM.

7Domain experts are from an E-Commerce platform.
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Step 1

Collect data from LLM for experimental 
setup

 Following are some reviews . . 

 Please generate a [GOOD-SUM, 
  SBAD-SUM, VBAD-SUM] 
  opinion summary. 

Generating dataset for 
our experiments using 

Mistral-7B

GOOD VBADSBAD

 Following is an opinion 
 summary for these reviews . .

 Please generate a score 0-5  
 for the feature . .  

Generating scores for 
7 features using 
Mistral-7B

Generated dataset 
has reviews, summary 
and the values for the 

7 features

Step 2

Collect preference data, and train reward 
model

1. I bought this Darth Vader 
   mug for my husband . . .
2. A friend of mine collects 
   Darth Vader items . . .
3.  . . . 

These reviews are . . Users seem to  . .

Reviews are provided, 
along with two 

opinion summaries

A >

Domain Expert gives 
the preference

B

A B

Train the reward 
model using 

preference data

Step 3

Use Proximal Policy Optimization to Train 
Policy 𝜋𝜃 using the Domain Knowledge 
Infused Reward Model, through Limited 
Trajectory Reinforcement Learning

Reviews

A C

Scores

B

Reviews

A C

Scores

B

Reviews

A C

Features

B

𝜋𝜃Reviews

A C

Scores

B

Reviews

A C

Scores

B

Reviews

A C

Features

B

𝜑

Features

r

log-prob

PPO Trainer

𝜋𝜃 assigns probability to a sampled 
trajectory.

𝜑 assigns a reward to that trajectory.
PPO Trainer uses these to compute gradients

Reviews

A C

Scores

B

Reviews

A C

Scores

B

Reviews

A C

Features

B
𝜑

Figure 2: Overview of our approach. Step-1: We generate a new dataset for training Opinion Summarizers:
PROMPTOPINSUMM, by prompting Mistral-7B model. Again, we use Mistral-7B to compute values for the 7
features discussed in Section 4.1. Step-2: We ask humans (domain experts) for their preference, given reviews and
two opinion summaries (A, B). We use the preference data and the features to train the reward model, φop. Step-3:
We sample instances from PROMPTOPINSUMM dataset; φop assigns a score to the sampled summaries, the policy,
πθ, assigns log probabilities to these summaries. Proximal Policy Optimization uses these to update πθ.

summaries. We parameterize φop using a Feed-352

Forward Neural Network and train it using the353

Elo-loss (Ouyang et al., 2022; Glaese et al., 2022)354

(Equation 1; Φ(R, si) uses Mistral-7B to com-355

pute the 7 features; only φop is trainable, Φ is not).356

After such an efficient reward modeling, we use357

φop for regular RLHF training (Appendix B) to get358

an Opinion Summarizer aligned with human goals.359

We illustrate the whole flow in Figure 2.360

Lpr = −E(R,sw,sl)∼Dh

[
log σ

(
φop(Φ(R, sl))361

− φop(Φ(R, sw))
)]

(1)362

5 Experiments363

We test our technique against the State-of-the-Art364

(SOTA) models, and strong Reinforcement Learn-365

ing (RL) and RLHF baselines (our design and con-366

temporary works). We list the questions we attempt367

to answer (through the experiments) in Section 5.1.368

We conduct automatic, human, and GPT-4 evalua-369

tions to verify our claim. We find that our proposed370

technique excels significantly. In the rest of the371

section, we describe our models (Section 5.1) and372

evaluation results (Section 5.2).373

5.1 Models & Objectives 374

We train the following models: 375

SUPERVISED: This is a supervised model trained 376

using Maximum Likelihood Estimation. 377

NAIVEMEAN: This is a Reinforcement Learning 378

model, where the reward is computed by averaging 379

the feature values obtained using Φ. 380

SYNTH-FEEDBACK: This is a Reinforcement 381

Learning from Synthetic Feedback (RLSF) (Kim 382

et al., 2023) model. For this, we use a reward 383

model trained on the implicit preference GOOD- 384

SUM ≻ SBAD-SUM ≻ VBAD-SUM. Kim et al. 385

(2023) show that RLSF is an effective surrogate for 386

RLHF when no human preference data is available. 387

We train this reward model using Equation 1 too. 388

INDUCTIVE-BIAS: This RLHF model is trained 389

following our hypothesis (infusing domain knowl- 390

edge into φ to reap benefits of RLHF with modest 391

human preference data). We train φop using OPIN- 392

PREF dataset. 393

With these models, we ask the following ques- 394

tions in our experiments: 395

SCENE-I: How effective is our technique (infus- 396

ing domain knowledge into φ to reap benefits of 397

RLHF with modest human preference data) over 398

and above the usage of a good training dataset? 399
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A comparative evaluation of SUPERVISED and400

INDUCTIVE-BIAS would answer this.401

SCENE-II: How effective is our technique over402

and above vanilla RL? A comparative evaluation403

of NAIVEMEAN and INDUCTIVE-BIAS would an-404

swer this.405

SCENE-III: How effective is our technique over406

contemporary RLHF techniques, which work with-407

out preference data? A comparative evaluation of408

SYNTH-FEEDBACK and INDUCTIVE-BIAS would409

answer this.410

SCENE-IV: How effective is our technique, ag-411

nostic of the preference data? This question is412

raised to answer whether the gains are solely due413

to the good quality of OPINPREF, or the approach.414

A comparative evaluation between DPO (Rafailov415

et al. (2023), which uses OPINPREF in a supervised416

fashion) and INDUCTIVE-BIAS would answer this.417

In addition to the above questions, we also check418

how our models fare against the SOTA (OP-SUM-419

GEN: Siledar et al. (2023a), MEDOS: Siledar et al.420

(2024), etc.). We do not use vanilla RLHF (Ziegler421

et al., 2019; Bai et al., 2022a) as a baseline, as422

it requires huge human preference data. Given423

that the goal of the paper is not to propose a new424

RLHF technique, but rather to propose a way to use425

RLHF with modest human preference annotations,426

omitting vanilla RLHF as a baseline does not affect427

our conclusions in any way.428

We use BART-Large (Lewis et al., 2020) for all429

of our models. The choice of the model is gov-430

erned by two factors: (a) It provides a similar envi-431

ronment (model size) for comparison with SOTA,432

(b) We find that LLMs (Mistral-7B, LLaMA2-7B,433

Zephyr-7B, etc.) are already quite good at opin-434

ion summarization; thus any performance benefits435

(over SOTA) in those models cannot be reliably436

attributed to our approach. We include implemen-437

tation details in Appendix E.438

5.2 Evaluation Results439

We test our approach on 9 benchmarks (Section440

3.2). In the main manuscript, we report auto-441

matic evaluation results on Amazon-based bench-442

marks (Table 1), human evaluation on the AMA-443

ZON benchmark, and GPT-4 evaluations on AMA-444

ZON, FLIPKART and OPOSUM+ benchmarks. Liu445

et al. (2023) show that GPT-4 evaluations corre-446

late well with human evaluations for summariza-447

tion; hence, in the interest of time and monetary448

expense, we resort to GPT-4 evaluation. We in-449

clude automatic evaluation results for the rest of450

the benchmarks (Tables 4 and 5), and BERTSCORE 451

based evaluations (Table 6) for all the benchmarks 452

in Appendix C. We also include model generations 453

for a randomly sampled product in Appendix C 454

(Table 14). Due to the shortcomings highlighted in 455

Section 3.2 and Appendix D, we complement our 456

automatic evaluations of AMAZON, FLIPKART and 457

OPOSUM+ with human and GPT-4 evaluations. 458

Automatic Evaluation. From Table 1, we see 459

that our proposed models are always better 460

than the SOTA for AMAZON-R and AMAZON- 461

RDQ. Supervised Fine Tuning on PROMPTOPIN- 462

SUMM (SUPERVISED model) helps achieve sig- 463

nificantly better ROUGE scores. This high- 464

lights the efficacy of our proposed PROMPTOPIN- 465

SUMM dataset. From the automatic evaluations 466

on AMAZON-R and AMAZON-RDQ, we see the 467

following things: 468

Answer to SCENE-I: We see that INDUCTIVE- 469

BIAS achieves gains over SUPERVISED. This an- 470

swers the question in SCENE-I: Our technique is 471

effective over and above using a good dataset. 472

Answer to SCENE-II: We see that INDUCTIVE- 473

BIAS achieves gains over NAIVEMEAN. This an- 474

swers the question in SCENE-II: Our technique is 475

effective over vanilla RL. 476

Answer to SCENE-III: We see that INDUCTIVE- 477

BIAS achieves gains over SYNTH-FEEDBACK. 478

This answers the question in SCENE-III: Our tech- 479

nique is effective over the SOTA RLHF technique, 480

which works without human preference data. 481

Answer to SCENE-IV: We see that INDUCTIVE- 482

BIAS achieves gains over DPO. This verifies that 483

gains of INDUCTIVE-BIAS can be safely attributed 484

to the approach (not just the quality of OPINPREF). 485

Human/GPT-4 Evaluation. We conduct human 486

evaluation (Figure 1) for the AMAZON benchmark, 487

using 3 domain experts (details in Appendix I). 488

We observe a Fleiss’ Kappa (κ) score of 56.25% 489

(moderate agreement; agreement is moderate when 490

40% ≤ κ < 60%). We ask the experts to rank 491

the summaries (anonymized and shuffled) given 492

the reviews. Given the rankings, we compute the 493

fraction of pairwise wins, ties, and losses among 494

all the models. We compare summaries from 495

SUPERVISED, NAIVEMEAN, SYNTH-FEEDBACK, 496

INDUCTIVE-BIAS, OP-SUM-GEN (SOTA) models 497

and ground truth summaries. We include ground 498

truth summaries in the evaluation to verify our 499

claims about the quality of the benchmarks. From 500

Figure 1, we see that INDUCTIVE-BIAS wins sig- 501

nificantly over the competitors, further proving the 502
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Model-Code
AMAZON AMAZON-R AMAZON-RDQ

R-1 ↑ R-2 ↑ R-L ↑ R-1 ↑ R-2 ↑ R-L ↑ R-1 ↑ R-2 ↑ R-L ↑
P

ri
or

W
or

ks

MeanSum (Chu and Liu, 2018) 29.20 4.70 18.15 − − − − − −
CopyCat (Bražinskas et al., 2020) 31.97 5.81 20.16 20.09 1.79 12.94 20.54 1.94 13.85

PlanSum (Amplayo and Lapata, 2020) 32.87 6.12 19.05 20.49 1.76 12.44 19.09 1.58 12.02
MultimodalSum (Im et al., 2021) 34.19 7.05 20.81 21.43 1.58 13.20 20.39 2.08 12.83

OP-SUM-GEN (Siledar et al., 2023a) 35.46 7.30 21.50 − − − − − −
MEDOS (Siledar et al., 2024) 34.63 7.48 20.97 23.92 2.27 14.69 25.44 4.16 16.45

O
ur

s’

DPO 23.96 4.54 14.27 26.37 4.25 15.03 25.13 3.84 14.86
SUPERVISED 28.99 4.90 16.91 32.52 5.96 18.07 30.46 5.49 17.63
NAIVEMEAN 28.08 4.81 16.77 34.0 6.30 18.81 30.97 5.25 18.36

SYNTH-FEEDBACK 29.39 4.68 17.35 33.62 6.06 18.61 30.65 5.23 18.11
INDUCTIVE-BIAS 28.41 4.65 16.90 33.95 6.40 19.23 31.89 5.78 18.84

Table 1: Reference-based Evaluation Results (R-1: ROUGE-1, R-2: ROUGE-2, R-L: ROUGE-L) for the AMA-
ZON, AMAZON-R and AMAZON-RDQ benchmarks. We see the following things: (a) Our proposed dataset
(PROMPTOPINSUMM) leads to marked increased over the SOTA (by ∼ 4 R-L points), (b) INDUCTIVE-BIASproves
to be the winner in all the four scenarios: SCENE-I, SCENE-II, SCENE-III and SCENE-IV (Section 5.1), proving
the efficacy of our technique. We also see that for the AMAZON benchmark, our models lag behind. However, this is
expected, as we highlight in Section 3.2.

efficacy of our technique.503

We run GPT-4 evaluations for AMAZON, FLIP-504

KART and OPOSUM+ benchmarks (Figures 3, 4,505

5). We run GPT-4 evaluations for AMAZON, as506

the agreement in human evaluation was moder-507

ate. We arrive at the same conclusions as human508

evaluation. We prompt GPT-4 to rank the sum-509

maries (anonymized and shuffled) given the re-510

views. As before, we compute the fraction of wins,511

ties, and losses. Again, we see that INDUCTIVE-512

BIAS remains a clear winner.513

Figure 3: GPT-4 Eval: Pairwise win-tie-loss percentage
of INDUCTIVE-BIAS model vs. competitors, for AMA-
ZON benchmark.

6 Analysis514

We perform a two-fold analysis: (a) First, we see515

the domain knowledge features influence for φop,516

(b) Second, we see how the ground truth summary517

and summary from trained models fare on the do-518

main knowledge features. This two-fold analysis519

helps us understand: (a) which features influence520

Figure 4: GPT-4 Eval: Pairwise win-tie-loss per-
centage of INDUCTIVE-BIAS model vs. competitors,
for FLIPKART benchmark. Note that for the FLIP-
KART benchmark, we do not have results from OP-
SUM-GEN, as Siledar et al. (2023a) only provide aspect-
specific summaries.

Figure 5: GPT-4 Eval: Pairwise win-tie-loss percentage
of INDUCTIVE-BIAS model vs. competitors, for OPO-
SUM+ benchmark.

the latent reward model within humans8 the most, 521

and (b) how the ground truth summary and sum- 522

mary from trained models fare on these influential 523

8Note that the trained φop represents latent human reward
model.
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features. Performing well on influential features524

would mean the summary aligns well with the la-525

tent reward model within humans.526

6.1 Analysis of φop527

φop model has been trained on a set of features528

specified by domain experts. We analyze the rel-529

ative influence of each feature on the final score530

assigned by φop. Doing this helps us understand an531

approximate importance9 of each of these features.532

We do this by varying each feature by δ (= 0.1)533

while keeping the other features constant, over mul-534

tiple possible values of all features (Equation 2).535

∆i =
1

2δ

∑
x

(
f(x1, · · · , xi + δ, · · · , xn)536

− f(x1, · · · , xi − δ, · · · , xn)
)

(2)537

Figure 6 highlights the features’ relative influ-538

ence. We see that hallucination is most influ-539

ential. This aligns with what our human prefer-540

ence annotators report—hallucination in summary541

is the primary cause of rejection. We see that542

hallucinations are mostly within the opinions in543

the summary. This is also reflected in Figure 6:544

opinion-faithfulness has significant influence.545

We also see that annotators prefer summaries with546

more specifics, i.e. they include more aspects:547

aspect-coverage has significant influence.548

6.2 Analysis of Summaries549

We analyze the top-3 performing models (in human550

and GPT-4 evaluations) for the following features:551

opinion-coverage, opinion-faithfulness,552

hallucination and relevance. We show the553

analysis only for the AMAZON benchmark in554

the main manuscript, we include the rest in555

Appendix J. Table 2 shows the performance556

on these features. We see that INDUCTIVE-557

BIAS model fares much better than the competitors558

on hallucination (the most influential met-559

ric). For relevance, aspect-coverage and560

opinion-faithfulness, our model is fairly561

better than the other models.562

This shows that our technique helps INDUCTIVE-563

BIAS model perform well on features that influ-564

ence the latent reward model within humans for565

opinion summarization. This means that our566

technique helps INDUCTIVE-BIAS model achieve567

a significant alignment with the latent reward568

9We call this approximate importance as the influence of a
feature on the output is not necessarily its importance.
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24.45 %

13.73 %

Figure 6: Relative Influence of all features in φop. All
the influences sum to 1.

Models AC ↑ OPF ↑ RE ↑ HL ↑

IB 3.60 3.93 4.06 4.07
SF 3.43 3.73 4.04 3.94
NM 3.57 3.91 4.04 3.09

Table 2: Scores on domain knowledge-based
features (AC: aspect-coverage, RE: relevance,
OPF: opinion-faithfulness, HL: hallucination)
on the AMAZON benchmark for top-3 models (IB:
INDUCTIVE-BIAS, NM: NAIVEMEAN, SF: SYNTH-
FEEDBACK). Note that for hallucination, Φ gives
a higher score for less hallucination in the text.

model. This conclusion verifies our hypothe- 569

sis (in the domain of opinion summarization): A 570

domain-knowledge infused reward model (φop) 571

can help achieve alignment with latent reward 572

model of humans for a task, with modest human 573

preference annotations. 574

7 Summary, Conclusion and Future Work 575

In this work, we propose a novel Reward Mod- 576

eling technique via Domain Knowledge Infusion. 577

We verify our approach for E-Commerce Opinion 578

Summarization, where we achieve State-of-the-Art, 579

while significantly reducing the amount of human 580

preference annotations required (just 940 samples). 581

In addition to advancing SOTA and reducing pref- 582

erence annotations, our technique provides another 583

two-fold benefits: (a) No Alignment Tax and (b) 584

Interpretability. Due to the interpretable nature, we 585

find that our model does achieve alignment with 586

human goals for Opinion Summarization through 587

analysis. From the results and analysis, we con- 588

clude that Domain Knowledge Infusion into Re- 589

ward Modeling is a viable solution to reduce hu- 590

man preference annotations for downstream tasks. 591

In the future, we will verify this for other domains. 592
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8 Ethical Considerations593

We contribute two datasets in our work: PROMP-594

TOPINSUMM, OPINPREF. These datasets are gen-595

erated using an open-source model Mistral-7B596

(Jiang et al., 2023). We would release the datasets597

to further research in Opinion Summarization. For598

the OPINPREF, to the best of our knowledge, we599

have seen that it does not contain any harmful con-600

tent, such as social biases, stereotypes, etc. How-601

ever, we have seen that it contains products of ex-602

plicit nature (sexual products). For the PROMP-603

TOPINSUMM dataset, to the best of our knowledge,604

there is no presence of harmful content, such as605

social biases, stereotypes etc. We urge the research606

community to use the datasets with caution and607

check for potential harmfulness, based on their use-608

cases.609

9 Limitations610

A limitation of our work is we have tested our ap-611

proach for one domain: Opinion Summarization.612

However, we do not believe that this weakens our613

argument, as we have exhaustively shown that our614

approach not only advances SOTA but also inter-615

pretably achieves alignment with humans. Future616

work in other domains would help in verifying this617

claim for other domains. Another limitation is: we618

see empirically that Φ works well for Opinion Sum-619

marization, to extract the scores for the 7 features.620

However, there is no guarantee that such out-of-621

the-box performance would be reflected in another622

domain. Some fine-tuning might be necessary.623
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scores. This is a reason why we use an instruction- 912

tuned model. For each feature, 0 means the model 913

is doing bad on the feature, and 5 means the model 914

is doing good on the feature. We define all the 915

features below: 916

aspect-coverage: This feature considers the as- 917

pect coverage within an opinion summary. The 918

feature assumes a value 5 if all the aspects of the 919

product, mentioned in the reviews, are mentioned 920

in the summary. If none of the aspects are picked, 921

the feature assumes a value 0. 922

opinion-faithfulness: This feature considers 923

whether the mentioned opinions/sentiments in the 924
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summary are correct, that is, they are picked cor-925

rectly from the reviews. For example, if an user926

mentions that they are happy with the battery of a927

phone, and the summary mentions that users are928

unhappy with the battery, the summary will not be929

considered faithful to opinion in the review. The930

feature assumes a value 5 if all the opinions are931

faithfully reflected. If no opinion is faithfully re-932

flected, the value would be 0.933

opinion-coverage: This feature considers934

whether all the opinions in the input reviews are935

picked by the opinion summary. The feature as-936

sumes a value 5 if all the opinions are picked up.937

If none of the opinions are picked up, the feature938

assumes a value 0.939

relevance: This feature checks if the summary is940

relevant to the input reviews (that is the product).941

The feature assumes a value 5 if summary is com-942

pletely relevant. If it is completely irrelevant, the943

feature assumes a value 0.944

conciseness: This feature considers the concise-945

ness and completeness of the opinion summary.946

The feature assumes a value 5 if the summary is947

concise and complete—not one phrase/sentence948

can be dropped off. It assumes a value 0 if the949

summary is totally incomplete, or very verbose.950

hallucination: This feature considers the factu-951

ality of the opinion summary. The feature assumes952

a value 5 if the summary is totally factual, with953

respect to the input reviews. If there are a lot of954

hallucinations, the feature assumes a value 0.955

language-correctness: This feature checks the956

correctness of language/text in the opinion sum-957

mary. The feature assumes a value 5 if the sum-958

mary is grammatically fully correct. It assumes a959

value 0 if the summary is very poor linguistically.960

For conciseness, we do not include the prompts961

in the paper, we would release them as separate962

artifacts, with the datasets, in the camera ready963

version.964

We also analyze how these features correlate965

with humans’ judgement of goodness of opinion966

summaries. We do this by looking at the scores for967

these features for preferred and dis-preferred sum-968

maries in the OPINPREF dataset. In Table 3, we see969

that the preferred summaries clearly have a higher970

score on all the features, than the dis-preferred ones.971

This shows that the scores correlate well with hu-972

mans’ judgement of goodness.973

Feature Pref. Dis-pref.

aspect-coverage (↑) 3.69 2.84
opinion-faithfulness (↑) 4.02 3.05

opinion-coverage (↑) 3.92 3.22
conciseness (↑) 4.05 3.44
relevance (↑) 4.10 3.10

hallucination (↑) 3.99 2.79
language-correctness (↑) 4.50 3.32

Table 3: Scores for the domain knowledge based fea-
tures. We see that for all the features, the human pre-
ferred (Pref.) summaries have higher scores than the
ones rejected by humans (Dis-pref.). This shows that
these features correlate well with humans’ judgement
of goodness of an opinion summary.

B RLHF Training Pipeline 974

Using the trained reward model, we follow a simi- 975

lar training pipeline as Bai et al. (2022a); Ouyang 976

et al. (2022), with a modification: Limited Tra- 977

jectory Reinforcement Learning. Computing the 978

transformation Φ for each generation online (dur- 979

ing training) is expensive, especially with limited 980

compute resources. To circumvent this, we limit 981

the trajectories that are explored by our policy, πθ. 982

Specifically, we limit it to the GOOD-SUM, SBAD- 983

SUM and VBAD-SUM trajectories in the PROMP- 984

TOPINSUMM dataset. Having varying levels of 985

quality in PROMPTOPINSUMM is of use here—it 986

lets the model still explore trajectories of several 987

quality. Thus, we have an offline experience buffer, 988

with Φ precomputed, for πθ learn from. 989

We use Proximal Policy Optimization (PPO) 990

(Schulman et al., 2017) to train our model (Equa- 991

tion 3). For each training step, we sample 992

(R, s,Φ(R, s)) tuples from PROMPTOPINSUMM. 993

We use the trained φop to compute the reward for s 994

(= φop

(
Φ(R, s)

)
). PPO uses this to update the log 995

probability assigned by πθ. We parameterize πθ 996

using a Transformer model, which takes reviews as 997

input, and generates an opinion summary. 998

LPPO = −E(R,s,Φ(s))

[
φop(Φ(R, s)) 999

− β log
( πRL

θ (s|R)

πSFT (s|R)

)]
(3) 1000
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Model-Code
FLIPKART FLIPKART-R FLIPKART-RDQ

R-1 ↑ R-2 ↑ R-L ↑ R-1 ↑ R-2 ↑ R-L ↑ R-1 ↑ R-2 ↑ R-L ↑

MEDOS (Siledar et al., 2024) 25.97 5.29 16.05 26.29 4.03 16.59 22.92 4.30 16.35

O
ur

s’

DPO 28.85 4.10 15.55 34.23 7.86 18.62 29.96 5.25 17.28
SUPERVISED 27.38 4.09 15.37 39.32 10.52 22.56 32.25 6.88 19.04
NAIVEMEAN 28.34 4.38 16.20 40.56 10.68 22.74 32.57 6.67 19.39

SYNTH-FEEDBACK 26.37 4.18 15.48 38.77 10.99 22.97 31.04 6.98 18.59
INDUCTIVE-BIAS 27.42 4.21 15.71 39.10 11.03 23.30 33.08 7.30 19.46

Table 4: Reference-based Evaluation Results (R-1: ROUGE-1, R-2: ROUGE-2, R-L: ROUGE-L) for the FLIP-
KART, FLIPKART-R and FLIPKART-RDQ benchmarks. We see the following things: (a) Our proposed dataset
(PROMPTOPINSUMM) leads to marked increased over the SOTA (MEDOS; by ∼ 6 R-L points), (b) INDUCTIVE-
BIASproves to be the winner in all the four scenarios: SCENE-I, SCENE-II, SCENE-III and SCENE-IV (Section
5.1), proving the efficacy of our technique. We also see that for FLIPKART benchmark, despite the shortcomings,
our models perform similar to the SOTA.

Model-Code
OPOSUM+ OPOSUM-R OPOSUM-RDQ

R-1 ↑ R-2 ↑ R-L ↑ R-1 ↑ R-2 ↑ R-L ↑ R-1 ↑ R-2 ↑ R-L ↑

P
ri

or
W

or
ks

MeanSum (Chu and Liu, 2018) 26.25 4.62 16.49 − − − − − −
CopyCat (Bražinskas et al., 2020) 27.98 5.79 17.07 22.41 2.30 13.94 22.38 2.03 14.06

PlanSum (Amplayo and Lapata, 2020) 30.26 5.29 17.48 22.37 2.05 13.32 22.64 2.25 13.71
MultimodalSum (Im et al., 2021) 33.08 7.46 19.75 23.35 2.98 14.53 23.73 2.80 14.70

OP-SUM-GEN (Siledar et al., 2023a) 36.44 8.50 22.03 25.65 3.56 15.83 24.66 3.25 15.54
MEDOS (Siledar et al., 2024) 36.57 8.79 21.35 26.82 3.67 15.92 26.32 3.34 16.10

O
ur

s’

DPO 27.64 7.34 16.50 33.69 6.62 18.55 30.95 5.89 17.60
SUPERVISED 30.57 8.02 16.90 38.32 9.10 20.35 35.69 8.17 19.28
NAIVEMEAN 31.47 8.0 16.99 40.16 9.84 21.74 35.90 8.33 20.13

SYNTH-FEEDBACK 31.66 8.86 17.91 41.32 10.40 22.23 37.85 8.94 20.71
INDUCTIVE-BIAS 31.15 8.15 17.46 41.58 10.32 22.02 37.56 9.21 20.88

Table 5: Reference-based Evaluation Results (R-1: ROUGE-1, R-2: ROUGE-2, R-L: ROUGE-L) for the OPO-
SUM+, OPOSUM-R and OPOSUM-RDQ benchmarks. We see the following things: (a) Our proposed dataset
(PROMPTOPINSUMM) leads to marked increased over the SOTA (MEDOS; by ∼ 6 R-L points), (b) INDUCTIVE-
BIASproves to be the winner in almost all of the four scenarios: SCENE-I, SCENE-II, SCENE-III and SCENE-
IV (Section 5.1), proving the efficacy of our technique. We also see that for OPOSUM+ benchmark, our models lag
behind. However, this is expected, as we highlight in Section 3.2.

C Additional Automatic Evaluation1001

Results1002

In addition to the Amazon-based benchmarks (Ta-1003

ble 1), we also report results for Flipkart and Opo-1004

sum+ based benchmarks (Tables 4 and 5). As be-1005

fore, we see that INDUCTIVE-BIAS is almost al-1006

ways the winner. As before, we draw similar con-1007

clusions for SCENE-I, SCENE-II and SCENE-III:1008

INDUCTIVE-BIAS wins, further strengthening the1009

conclusion that our methodology is effective. We1010

also see that, inspite of the shortcomings of the1011

FLIPKART benchmark, our models perform similar1012

to the SOTA.1013

We also include BERTSCORE evaluations for1014

all the 9 benchmarks in Table 6. We see similar1015

trends as ROUGE Evaluation: our models are sig-1016

nificantly better than the SOTA in majority of the1017

benchmarks.1018

For a qualitative understanding, we include gen- 1019

erations from several models on a randomly picked 1020

sample from the AMAZON benchmark in Table 14. 1021

D Details on the Benchmark Datasets 1022

In this section we discuss details about the bench- 1023

marks, such as the domain of the products, sum- 1024

mary statistics and finally highlight some short- 1025

comings in the AMAZON, OPOSUM+ and FLIP- 1026

KART datasets. AMAZON has reviews for 32 prod- 1027

ucts from 4 domains: “electronics”, “home & 1028

kitchen”, “personal care”, and “clothing, shoes 1029

& jewellery”. OPOSUM+ has reviews for 60 prod- 1030

ucts from 6 domains: “laptop bags”, “bluetooth 1031

headsets”, “boots”, “keyboards”, “television”, and 1032

“vacuums”. FLIPKART has reviews for 147 prod- 1033

ucts from 3 domains: “laptops”, “mobiles”, and 1034

“tablets”. Table 7 includes summary statistics for 1035

13



Model Code AMAZON AMAZON-R AMAZON-RDQ OPOSUM+ OPOSUM-R OPOSUM-RDQ FLIPKART FLIPKART-R FLIPKART-RDQ

OP-SUM-GEN
88.78 86.94 86.76 86.63 86.96 86.95 − − −

(Siledar et al., 2023a)

DPO 86.45 86.60† 86.37† 84.39 87.35∗ 86.90 83.75 86.61 85.40
SUPERVISED 87.79 88.23∗ 87.76∗ 85.13 88.59∗ 88.02∗ 84.21 88.11 86.40
NAIVEMEAN 87.95 88.29∗ 87.81∗ 85.25 88.96∗ 88.39∗ 84.32 88.29 86.52

SYNTH-FEEDBACK 87.81 88.28∗ 87.74∗ 85.22 89.08∗ 88.45∗ 84.27 88.28 86.49
INDUCTIVE-BIAS 87.98 88.41∗ 88.16∗ 85.33 89.09∗ 88.46∗ 84.33 88.34 86.61

Table 6: BERTSCORE evaluation results on the 9 benchmark datasets. We observe a similar trend as ROUGE
evaluations: SOTA is better than our models for the AMAZON and OPOSUM+ benchmarks, which is expected
(Section 3.2). For the rest of the datasets, we see that our models are significantly better. We do not include SOTA
results for Flipkart-based benchmarks, as OP-SUM-GEN only provide aspect-specific summaries for the same. ∗

denotes gain is statistically significant compared to SOTA with significance level 1%, † denotes gain is statistically
significant compared to SOTA with significance level 5%.

the benchmarks.1036

Characteristic OPOSUM+ AMAZON FLIPKART

# domains 6 4 3
# products 60 32 147

# reviews
10 8 10

per product

# summaries
3 3 1

per product

Table 7: Statistics of the benchmark datasets. OPO-
SUM+ represents the statistics of all OPOSUM+ based
benchmarks (OPOSUM+, OPOSUM-R and OPOSUM-
RDQ). Similar is the case for AMAZON and FLIPKART.

Finally, now we highlight the shortcomings of1037

the benchmark datasets in the rest of the discussion.1038

AMAZON: Bražinskas et al. (2020) designed the1039

test-set in such a way that the summary has to1040

read like a review, for instance, summary would1041

contain ‘I think the quality has come down over1042

the years.’, instead of ‘Users think that quality has1043

come down over years’. Due to this writing style,1044

the summaries read like reviews and are often in1045

first person—high overlap would not necessarily1046

mean a better summary, it would rather mean a1047

better review.1048

FLIPKART: Siledar et al. (2023b) generate this1049

dataset by listing out the aspect-wise pros and cons1050

presented within the reviews. We form an opin-1051

ion summary by concatenating these pros and cons.1052

Due to this, the summaries have frequent incoher-1053

ent sentences.1054

OPOSUM+: Amplayo et al. (2021) create this1055

benchmark by extracting sentences from the input1056

reviews. Hence, this dataset has similar drawbacks1057

as the AMAZON benchmark.1058

AMAZON1059

Nice boots but run a bit narrow. They look 1060

great but I think the quality has come down 1061

over the years. Still comfortable but I wish 1062

they broke in easier. I recommend these for 1063

any lady who is patient and looking for com- 1064

fort. 1065

OPOSUM+ 1066

great product for the cost . very easy to use 1067

and compatible with all of my phones ! it 1068

holds a charge great , is light enough and fits 1069

perfectly in my ear . the sound quality is great 1070

, the style is very cool and the unit feels top 1071

quality . it would drop and reconnect every 1072

10 seconds nobody could hear me i could n’t 1073

get it to unpair from the phone , there ’s ap- 1074

parently no noise-cancellation in these . the 1075

battery life is ... bizarre . cheap , plastic-y , 1076

and poor sound quality . 1077

FLIPKART 1078

Summary 1079

Pros 1080

Design: The full-metal Infinix INBook X1 1081

Core i3 has a top notch and premium de- 1082

sign. 1083

35.56 cm (14 inch) 1920 x 1080 Pixel 1084

Full HD IPS Display: 100% sRGB with 1085

300nits brightness ensures an excellent 1086

display. 1087

Battery: Long-lasting battery. Gives 1088

around 8 hours of backup on normal us- 1089

age. 1090

Performance: The combination of Intel 1091

Core processor chip, high RAM size and 1092

sufficient storage capacity gives this lap- 1093

top a high-speed performance experience. 1094

Price: "Totally worth it in this price range. 1095
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Cons1096

Charging: Some current leakage during1097

charging. Sometimes the laptop won’t1098

charge.1099

Trackpad: Not upto the mark.1100

Verdict: This laptop comes with a i3 10th1101

gen dual core processor which is suitable for1102

normal tasks like web browsing, online classes1103

and watching movies. Not recommended as a1104

gaming laptop.1105

Additional Information: Can handle video1106

editing and expandable SSD.1107

E Implementation Details1108

We use BART-Large (Lewis et al., 2020) as our1109

policy (πθ) in all of the models. We do this to have1110

a fair comparison with the state-of-the-art in Opin-1111

ion Summarization. We use AdamW Optimizer1112

to train the models, with a weight decay of 0.05.1113

We use a cosine learning rate scheduler. We run a1114

hyperparameter sweep on batch size, learning1115

rate, and learning rate warmup. We include the1116

possible values for the sweep in Table 8. We train1117

all of our models using 2× A100 GPUs (80GB)1118

Hyperparameter Values

batch size [64, 128, 256]
learning rate ∼ U(5e−6, 5e−5)

learning rate warmup ∼ U(0.2, 0.4)

Table 8: Possible Values for Hyperparameters. For
learning rate warmup, we sample the fraction of total
steps the learning should be warmed up. For example,
if the learning rate warmup is 0.2, it means that the
learning rate will have a linear warmup for 20% of the
total training steps.

For the reward model, φop, we use a Feed For-1119

ward Network for the Policy Model. We use1120

AdamW Optimizer to train the models, with a1121

weight decay of 0.05. As before, we run a hyper-1122

parameter sweep on batch size, learning rate,1123

and learning rate warmup. Table 9 includes de-1124

tails on the hyperparameters.1125

F Generated Summary Lengths1126

We analyze the generation lengths of the models,1127

and the ground truth summary. Table 10 lists the1128

summary lengths. We see that theDPO model gen-1129

erates very verbose summary. Additionally, we1130

Hyperparameter Values

batch size [32, 64, 128]
learning rate ∼ U(5e−3, 1e−1)

Table 9: Possible Values for Hyperparameters for the
Reward Model. For learning rate warmup, we sample
the fraction of total steps the learning should be warmed
up. For example, if the learning rate warmup is 0.2,
it means that the learning rate will have a linear warmup
for 20% of the total training steps.

also see that the INDUCTIVE-BIAS model gener- 1131

ates very concise summaries. 1132

Model AMAZON OPOSUM+ FLIPKART

Ground-Truth 60.65 85.86 129.91
NAIVEMEAN 91.09 114.67 75.48
SYNTH-FEEDBACK 80.31 115.37 71.11
OP-SUM-GEN 55.84 62.93 -
INDUCTIVE-BIAS 81.62 88.63 73.57
SUPERVISED 81.31 117.03 74.56
DPO 138.50 141.50 131.40

Table 10: Generation Length Statistics: number of
words in summaries. We use NLTK to tokenize the
text.

G Details on PROMPTOPINSUMM 1133

Here we provide more details on the gener- 1134

ated PROMPTOPINSUMM dataset. Table 13 in- 1135

cludes summary statistics of the generated dataset. 1136

We include an example from PROMPTOPIN- 1137

SUMM dataset (Table 11). We show one sam- 1138

ple from GOOD-SUM, SBAD-SUM and VBAD- 1139

SUM quality each. We do not include the reviews 1140

for conciseness. However, we incluce the salient 1141

aspects of the reviews. The reviews talk about the 1142

following things: 1143

1. Great price, Nice looking / Good color, Good 1144

utility / Good protection, Quick shipping, 1145

Nice fitting, Good accessibility of the laptop 1146

while the cover is on, Good finish quality. 1147

2. Not a good fit for older macbooks, Broken 1148

/ Unusable for the original (∼ 2009 - 2010) 1149

white macbooks, cannot return return. 1150

GOOD-SUM manages to discuss all of these 1151

things—it was able to detect that the cover does 1152

not fit specific models (highlighted in blue). It also 1153

detects that a few users like the “personal touch 1154

addition” factor of the cover. 1155
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Good: The users have shared their positive experiences with the protective covers for Macbooks.
They appreciate the ease of application, vibrant colors, quick shipping, and great quality. Some have
mentioned the covers fit their Macbooks perfectly, while others have shared their disappointment
when they realized it did not fit their specific model. A few users have noted the covers add a
personal touch and pizzaz to their devices. However, some users have reported issues with the
covers not fitting their Macbooks or falling off, leaving them feeling disappointed and frustrated.

Slightly bad: Some users have reported positive experiences with the Macbook cover, praising its
protective qualities, easy application, and vibrant colors. Others, however, have encountered issues
with it not fitting properly on their devices or being returned due to size mismatches. Overall, the
product has been described as cute, great quality, and worth the investment, though some buyers
have experienced disappointment with its size compatibility and easy detachment.

Very Bad: This is a terrible product for people with old Macbooks, it doesn’t fit at all! And don’t
even bother looking at the description carefully before buying.

Table 11: Example summaries from PROMPTOPINSUMM.

VBAD-SUM is also a good representation of a1156

bad summary—it totally ignores the “positive” as-1157

pects of the product and presents the “negative”1158

aspects only. It fails at Aspect Coverage, Opinion1159

Faithfulness and Opinion Coverage.1160

SBAD-SUM maintains almost a similar quality1161

as the Good one. However, it fails to draw out1162

certain aspects, such as “pizzaz”, “personal touch1163

addition”, etc.1164

H Statistics of the OPINPREF dataset1165

We look at the summary statistics for the OPIN-1166

PREF dataset. Table 12. We see that, interestingly,1167

annotators prefer longer summaries—this is be-1168

cause these summaries contain more specifics and1169

details from the reviews.1170

Characteristic Value

# words in reviews 641.21
# reviews 13.08

# words in summaries 73.16
# words in preferred summaries 85.41

# words in unpreferred summaries 66.91

Table 12: Statistics of the OPINPREF dataset. We use
NLTK to tokenize the text.

I Annotator Details1171

We include two disjoint sets of annotators in our1172

work—first for creation of OPINPREF (3 annota-1173

tors), second for human evaluation (3 annotators).1174

For both annotations, we use domain experts. The1175

domain experts are NLP researchers (age group:1176

Split Characteristic µ σ

train

# reviews 13.24 10.07
# summaries 8.90 0.34

# words in review 49.0 10.78
# words in summary 78.28 34.45

validation

# reviews 10.53 6.80
# summaries 8.98 0.16

# words in review 48.65 10.63
# words in summary 74.26 34.27

Table 13: Statistics of PROMPTOPINSUMM dataset. We
use NLTK to tokenize the text.

24− 30) who have worked in Opinion Summariza- 1177

tion for a long time, with publication experience 1178

(in A/A∗ conferences). The domain experts for hu- 1179

man evaluation also have a similar profile. The 1180

annotators have been paid generously, based on 1181

the standard annotation rates in the geographical 1182

location. 1183

J All Evaluation Results 1184

We include all of the evaluation results in this sec- 1185

tion. In Tables 15, 16, 17 and 17 we include pair- 1186

wise comparison results, in a win/tie/loss format. 1187

We also include results on evaluation on how the 1188

models perform on the domain features in Tables 1189

19, 20 and 21. 1190
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Reviews: i really like these boots. they can be a beast to get on, like any boot fit to last; once on,
they are incredibly comfortable. I have had them for 4 years and they still look great - worn in but
not worn out...
What great boots! They do take some breaking in - like all real leather does. Run maybe a tad small
in the general spectrum, but hey, remember the break in period. Look fabulous, will last me for the
next twenty years.... They bridge the fashion vs. function quandary beautifully.
Every woman needs a pair of these Frye boots! Fit is true to normal size. I wear a standard 9. These
fit in the shaft for any ladies who have bigger calves as I do. You have to fight to get them on first
few times and they wear stiff until fully broken in. Worth the money and break in time.
Boots excellent quality, beautiful skin, a modern model. But! they are very narrow! This is the
second pair of shoes is a brand and my 8.5 size fits me perfectly, even he little more than usual. But
these are very narrow! go to a cobbler, let him try to stretch. Be careful!
bought these for the wife to have something to kick around in and keep up with the kids, but she
doesn’t like them. Her heel lifts with every step, and they’re stiff and heavy. Not an everyday casual
shoe.
Don’t get me wrong, they’re really good boots, but they used to make them better. My last pair from
a few years ago were much higher quality. Thicker sole, better full grain leather, now they only
make the black in ’grease’, which stains all my socks black. Keeping them, but still disappointed in
Frye.
i bought it just for the heavy snow cuz my UGG got wet through.even though it is a little expensive,
but the boots are nice and it was shipped to me for only two days.!!!!!! i love it
They were comfortable the moment I put them on. The sizes are exact. The color the way they are
made are what I expect from Frye which I’ve been wearing since the 70’s. With a 20year break
from not wearing Frye it was a pleasant surprise the quality has stood the test of time.

SUPERVISED: These Frye boots are a popular choice for women due to their comfort and durability.
However, they can be a bit challenging to put on and require a break-in period. Some users have
reported that they run small in size and are narrow, requiring a cobbler’s assistance for a proper fit.
The leather quality is generally good, but some users have noted that the leather may not last as
long as they had hoped.

NAIVEMEAN: Users generally appreciate the comfort and durability of the Frye boots, with some
mentioning the need for a break-in period. Sizes run true to normal, but some users find them to be
a bit narrow. The boots are praised for their stylish appearance and ability to bridge the fashion and
function quandary. However, some users have noted that they take some time to break in and are
not suitable for everyday casual wear.

SYNTH-FEEDBACK: These Frye boots are praised for their comfort and durability, with some
users noting the need for a break-in period. However, some users have noted that they run small
in size and require stretching, while others find them narrow and stiff. The leather is described as
beautiful and of good quality, with a modern model. Some users have had them for several years
and have not worn them out.

INDUCTIVE-BIAS: These Frye boots are praised for their comfort and durability, with users
expressing satisfaction with their fit and appearance. However, some users have noted that they
require a break-in period and can be a bit narrow. The leather quality is praised for its durability
and modern model, with some users expressing disappointment with the lack of improved quality
in recent years.

Table 14: Example generation (randomly sampled) for some input reviews from all the models. Olive implies
faithful/correct generation, while red indicates hallucinated text, or repetition. We see that only INDUCTIVE-BIAS is
free from red text. The model closest in performance to INDUCTIVE-BIAS, the NAIVEMEAN model, misses out on
two aspects: leather-quality and quality-degradation. INDUCTIVE-BIAS covers both, while being concise.
We do not include DPO model in this comparison, as it was too verbose.
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· SUPERVISED NAIVEMEAN SYNTH-FEEDBACK INDUCTIVE-BIAS OP-SUM-GEN

NAIVEMEAN 0.50/0.06/0.38
SYNTH-FEEDBACK 0.44/0.12/0.44 0.40/0.09/0.5
INDUCTIVE-BIAS 0.56/0.09/0.28 0.46/0.18/0.31 0.56/0.12/0.28
OP-SUM-GEN 0.31/0.28/0.38 0.25/0.12/0.56 0.25/0.21/0.5 0.25/0.06/0.68
Ground-Truth 0.46/0.06/0.48 0.31/0.18/0.44 0.40/0.15/0.40 0.28/0.09/0.59 0.5/0.09/0.38

Table 15: Pairwise Win/Tie/Loss Results for all models in Human Evaluation for AMAZON benchmark. We format
the data as: win/tie/loss, win specifies how many time the row won over the column.

· SUPERVISED NAIVEMEAN SYNTH-FEEDBACK INDUCTIVE-BIAS OP-SUM-GEN

NAIVEMEAN 0.63/0.12/0.25
SYNTH-FEEDBACK 0.59/0.12/0.28 0.5/0.06/0.44
INDUCTIVE-BIAS 0.62/0.12/0.25 0.46/0.09/0.44 0.5/0.06/0.44
OP-SUM-GEN 0.06/0.03/0.9 0.09/0.0/0.90 0.12/0.09/0.78 0.06/0.0/0.93
ground-truth 0.12/0.06/0.81 0.09/0.06/0.84 0.16/0.06/0.78 0.09/0.0/0.90 0.68/0.09/0.22

Table 16: Pairwise Win/Tie/Loss Results for all models in GPT-4 Evaluation for AMAZON benchmark. We format
the data as: win/tie/loss, win specifies how many time the row won over the column.

· SUPERVISED NAIVEMEAN SYNTH-FEEDBACK INDUCTIVE-BIAS

NAIVEMEAN 0.57/0.12/0.30
SYNTH-FEEDBACK 0.57/0.06/0.36 0.52/0.12/0.36
INDUCTIVE-BIAS 0.63/0.12/0.25 0.54/0.16/0.30 0.57/0.08/0.34
Ground-Truth 0.10/0.06/0.84 0.06/0.01/0.92 0.07/0.01/0.91 0.06/0.02/0.91

Table 17: Pairwise Win/Tie/Loss Results for all models in GPT-4 Evaluation for FLIPKART benchmark. We format
the data as: win/tie/loss, win specifies how many time the row won over the column.

· SUPERVISED NAIVEMEAN SYNTH-FEEDBACK INDUCTIVE-BIAS OP-SUM-GEN

NAIVEMEAN 0.56/0.03/0.4
SYNTH-FEEDBACK 0.5/0.16/0.34 0.46/0.1/0.44
INDUCTIVE-BIAS 0.66/0.0/0.33 0.46/0.1/0.44 0.56/0.06/0.36
OP-SUM-GEN 0.1/0.06/0.83 0.06/0.03/0.9 0.03/0.03/0.93 0.03/0.03/0.93
Ground-Truth 0.13/0.13/0.73 0.1/0.033/0.8666 0.06/0.06/0.86 0.06/0.06/0.86 0.7/0.1/0.2

Table 18: Pairwise Win/Tie/Loss Results for all models in GPT-4 Evaluation for OPOSUM+ benchmark. We format
the data as: win/tie/loss.

· AC OPF OPC CC RL HL LC

SUPERVISED 3.43± 0.20 3.71± 0.37 3.67± 0.26 3.79± 0.31 4.04± 0.37 3.89± 0.39 4.55± 0.35
NAIVEMEAN 3.56± 0.22 3.91± 0.50 3.76± 0.38 3.89± 0.36 4.04± 0.48 3.99± 0.48 4.60± 0.27
SYNTH-FEEDBACK 3.55± 0.40 3.87± 0.71 3.71± 0.43 3.94± 0.50 4.04± 0.61 3.94± 0.68 4.38± 0.92
INDUCTIVE-BIAS 3.60± 0.17 3.95± 0.40 3.85± 0.25 3.99± 0.35 4.06± 0.34 4.07± 0.43 4.65± 0.32
OP-SUM-GEN 3.34± 0.68 3.92± 0.79 3.70± 0.54 4.0± 0.50 4.08± 0.72 3.87± 1.08 4.05± 1.31
Ground-Truth 3.55± 0.50 3.93± 0.46 3.56± 0.31 4.08± 0.32 4.04± 0.46 3.81± 0.86 4.40± 0.45

Table 19: Intrisic Evaluation results on the AMAZON benchmark for all the models. Legend: AC:
aspect-coverage, OPF: opinion-faithfulness, OPC: opinion-coverage, CC: conciseness, RE: relevance,
HL: hallucination, LC: language-correctness.

· AC OPF OPC CC RL HL LC

SUPERVISED 3.61± 0.22 4.10± 0.39 3.84± 0.33 4.04± 0.28 4.21± 0.31 4.19± 0.42 4.53± 0.27
NAIVEMEAN 3.56± 0.21 4.13± 0.41 3.84± 0.34 4.0± 0.32 4.31± 0.36 4.26± 0.34 4.54± 0.39
SYNTH-FEEDBACK 3.56± 0.25 4.09± 0.40 3.79± 0.32 4.02± 0.30 4.19± 0.34 4.19± 0.36 4.53± 0.29
INDUCTIVE-BIAS 3.63± 0.20 4.22± 0.39 3.85± 0.30 4.01± 0.28 4.26± 0.29 4.33± 0.45 4.61± 0.29
Ground-Truth 3.59± 0.15 3.88± 0.53 3.68± 0.27 4.02± 0.28 3.87± 0.59 3.67± 0.78 4.35± 0.44

Table 20: Intrisic Evaluation results on the FLIPKART benchmark for all the models. Legend: AC:
aspect-coverage, OPF: opinion-faithfulness, OPC: opinion-coverage, CC: conciseness, RE: relevance,
HL: hallucination, LC: language-correctness.
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· AC OPF OPC CC RL HL LC

SUPERVISED 3.47± 0.14 3.38± 0.26 3.49± 0.06 3.64± 0.19 3.81± 0.26 3.22± 0.56 3.96± 0.32
NAIVEMEAN 3.49± 0.05 3.48± 0.06 3.5± 0.0 3.56± 0.13 3.66± 0.22 3.52± 0.33 4.1± 0.33
SYNTH-FEEDBACK 3.50± 0.03 3.41± 0.26 3.5± 0.0 3.63± 0.24 3.62± 0.20 3.32± 0.63 4.03± 0.38
INDUCTIVE-BIAS 3.54± 0.22 3.50± 0.06 3.57± 0.06 3.62± 0.19 3.65± 0.23 3.68± 0.36 4.0± 0.29
OP-SUM-GEN 3.39± 0.3 3.46± 0.45 3.49± 0.28 3.61± 0.40 3.58± 0.82 3.43± 0.92 3.79± 1.18
Ground-Truth 3.42± 0.22 3.475± 0.28 3.5± 0.0 3.57± 0.16 3.49± 0.28 3.21± 0.48 3.56± 0.23

Table 21: Intrisic Evaluation results on the OPOSUM+ benchmark for all the models. Legend: AC:
aspect-coverage, OPF: opinion-faithfulness, OPC: opinion-coverage, CC: conciseness, RE: relevance,
HL: hallucination, LC: language-correctness.
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